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Abstract—The offline-online model is a leading paradigm
for practical secure multi-party computation (MPC) proto-
col design that has successfully reduced the overhead for
several prevalent privacy-preserving computation function-
alities common to diverse application domains. However, the
prohibitive overheads associated with secure comparison –
one of these vital functionalities – often bottlenecks current
and envisioned MPC solutions. Indeed, an efficient secure
comparison solution has the potential for significant real-
world impact through its broad applications.

This work identifies and presents SIM, a secure protocol
for the functionality of interval membership testing. This
security functionality, in particular, facilitates secure less-
than-zero testing and, in turn, secure comparison. A key
technical challenge is to support a fast online protocol for
testing in large integer rings while keeping the precomputa-
tion tractable. Motivated by the map-reduce paradigm, this
work introduces the innovation of (1) computing a sequence
of intermediate functionalities on a partition of the input into
input blocks and (2) securely aggregating the output from
these intermediate outputs. This innovation allows control-
ling the size of the precomputation through a granularity
parameter representing these input blocks’ size – enabling
application-specific automated compiler optimizations.

To demonstrate our protocols’ efficiency, we implement
and test their performance in a high-demand application:
privacy-preserving machine learning. The benchmark results
show that switching to our protocols yields significant perfor-
mance improvement, which indicates that using our protocol
in a plug-and-play fashion can improve the performance of
various security applications. Our new paradigm of protocol
design may be of independent interest because of its potential
for extensions to other functionalities of practical interest.

1. Introduction

Privacy-enhancing technologies, such as secure multi-
party computation (MPC), are essential for bridging the
data utility and privacy chasm. MPC [21], [47] allows
mutually distrusting parties to compute over their pri-
vate data without revealing any non-essential information.
From initial conceptual prototypes in calculating prices
of Danish sugar beet market [7], evaluating gender pay
disparities in Boston [30], detecting tax fraud in Esto-
nia [5], and preventing satellite collisions [23], advances

§. This work was done while the author was at Purdue University.

in computer hardware have inspired a recent revolution in
MPC research and technologies (see [19]).

As more memory and high-end processors become
more available, a leading paradigm for practical MPC
protocol design is the offline-online model [4], [9], [12],
[13], [22], [26], [33], [34], [40], which offloads most com-
putationally and cryptographically complex operations to
an offline precomputation step. The online phase is a
fast protocol that uses the output of the precomputation
to perform the intended computation securely. Protocol
design in this model proceeds by identifying essential
atomic functionalities prevalent across diverse high-impact
application domains. For example, atomic functionalities
like multiplication, (multi-variate) polynomial evaluation,
inner product, and comparison have representative appli-
cations in arithmetic circuit evaluation [33], decision-tree
evaluation [20], [43], [44], private set intersection [14],
[24], [39], and neural network training [1], [27], [35], [40],
respectively. Individually, each of these atomic function-
alities is sufficient to emulate any computation, especially
any other atomic functionality listed above. However, in
some cases, custom-built precomputations for individual
atomic functionalities have demonstrated the possibility of
reducing the security overhead of MPC technologies.

The secure comparison functionality, which compares
whether one secret value is greater than another or not,
is essential in various privacy-sensitive domains like ma-
chine learning [36], [45], [46], data analytics [6], and
auctions [2], [7]. Furthermore, it is also essential for
domains relying on linear programming and dynamic pro-
gramming – prospective applications include, for example,
optimization and biomedical research, respectively. Prac-
tical solutions for secure comparison shall create exciting
collaborative opportunities in these application domains
by meeting the privacy expectations of the actors. There-
fore, it is not surprising that there are many works that
present secure comparison as a key building block, such
as ABY [16], ABY2.0 [37], ABY3 [35], FALCON [46],
AriaNN [40], and SecureNN [45], or focus solely on
secure comparison, such as [10], [8], and [34]. This paper
presents a versatile framework for designing secure com-
parison protocols in the offline-online model – allowing
for performance optimizations in light of network quality
(for example, latency, bandwidth, and throughput) and
application-specific considerations.

Ishai et al. [26] offer a simple MPC approach that em-
ploys function tables to achieve an efficient online phase
by precomputing the function for all possible inputs in the
offline phase, such that the online phase is simply a table-
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lookup. This approach pushes as much computation as
possible to the offline phase, resulting in a highly efficient
online phase but exponentially high precomputation for
typical input sizes. This idea may work for small input
sizes, but the size of the function table grows exponen-
tially with the input size, thus making many applications
unpractical. Applying the map-reduce framework [15] to
[26], this work presents SIM, a general framework to
construct efficient secure computation protocols for secure
interval membership testing functionality, in turn, leading
to efficient secure protocols for the “less than zero” testing
and “greater than” functionalities.

This work explores a construction that leverages prob-
lem size reduction to shift many computations to the of-
fline phase, which significantly improves the performance
of the online phase compared to other traditional methods
while keeping the size of function tables computationally
tractable and practical. In our secure comparison protocol,
we divide the original input into multiple blocks, perform
membership testing on each block, and combine block
results into the final answer. These steps significantly
reduce the size of function tables, thus making them
practical and efficient. To the best of our knowledge, this is
the first work that brings the use of precomputed function
tables into the realm of practical MPC.

Our construction is in the offline-online model, where a
third (offline) party prepares a suitable (input-independent)
precomputation for two or more online parties (say) Alice
and Bob in the offline phase (as in [41], [42], [48]).
Online parties Alice and Bob respectively have private
inputs [x]1 and [x]2 for the online phase of the secure
computation protocol, which are additive secret shares of
the input x (i.e., x = [x]1+[x]2). At the end of the online
protocol between Alice and Bob, they obtain the additive
secret shares of the output (bit) of interval testing. Our
construction is secure against semi-honest (honest-but-
curious) adversaries in a two-online-party setting. Further,
we achieve malicious security efficiently by extending our
system setting to three or more online parties.

For an n-bit input, we divide the input into k blocks
of �-bits each such that n = k · �. Our online phase
of secure membership testing has three communication
rounds, and its communication cost is k · �+ 2k+ 1 bits.
The precomputation results in a memory requirement of
around k(2� + �3k) bits per input. We compare our work
with various state-of-the-art comparison protocols, includ-
ing ABY [16], ABY2.0 [37], ABY3 [35], BLAZE [38],
and FALCON [46]. Overall, our work has lower com-
munication complexity and outperforms most works with
respect to round complexity.

To demonstrate the performance of our protocols, we
implement our protocols on the state-of-the-art FALCON
framework [46]. The performance benchmark illustrates
that our secure comparison is about 2× faster than FAL-
CON’s secure comparison protocol, with 4× cheaper com-
munication. In a semi-honest setting, by only replacing
FALCON’s secure comparison protocol with ours, the
neural network training efficiency has improved to around
1.3× for a network with ReLU activation function and
around 1.25× for a network with MaxPool activation
function. In the malicious setting, we achieve an even
larger performance improvement (1.35× faster and 5×
cheaper communication for Network A).

Structure of the paper. We first provide a notation table
for common notations that will be used throughout the
paper in Figure 1.

In Section 2, we provide a general picture of our pro-
tocols and explain how it works with a concrete example.
We also discuss related works here. In Section 3, we
introduce the background and the system setting of our
protocols. Then we formalize the use of function tables
in MPC in Section 4.

We formalize and provide the detailed construction of
our protocol in Section 5, which is followed by the cost
analysis and security analysis (Section 6). In Section 7,
we show how to achieve malicious security efficiently.
Then in Section 8, we illustrate how our protocol can
help with building high-level applications such as privacy-
preserving neural network training/inference. Meanwhile
we provide our implementation details and the benchmark
results there. In Section 9, we show the potential of our
protocols to be generalized in multiple ways.

Notation Table
• [x] represents the secret sharing of x, with [x]i represent-

ing the ith party’s share of x
• −→y represents the n-bit (two’s complement) binary rep-

resentation of the element y
• −→y i,j represents the ith to jth (inclusive) bits of y
• ‖ is (binary) string concatenation

Figure 1. Table of notations used throughout the paper

2. Solution Overview

Before proceeding with this section, we suggest the
readers refer to Figure 1 for some common notations used
throughout the paper.

We consider computations over the set of integers{−2n−1, . . . ,−1, 0, 1, . . . , 2n−1 − 1
}

(i.e., a ring Z2n

along with integer addition and multiplication modulo 2n

as the operators). Here, a subset I ⊆ Z2n is an interval
if there are i, j ∈ Z2n such that I = {i, i+ 1, . . . , j}.1
Let indicator function 1I : Z2n → {0, 1} represent
the membership functionality for interval I . For any
x ∈ Z2n , we have 1I(x) = 1 if x ∈ I; otherwise,
1I(x) = 0. In particular, when I = N is the set
of all “negative elements” for an n-bit value, where
N :=

{−2n−1,− (
2n−1 − 1

)
, . . . ,−1}, the functionality

1N tests whether x ∈ Z2n is “less than zero” or not.

2.1. An Illustrative Example for Secure Less-
Than-Zero Computation

Towards illustrating the solution strategy, we first
present a simplified example of secure less-than-zero func-
tionality for two parties (Alice and Bob) for n = 6-bit
inputs. (See Figure 2.) For ease of exposition, assume

1. Note that, with respect to the +1 operator, the elements of Z2n

embed on a size-2n circle 0 → 1 →· · · → 2n−1 − 1 → −2n−1 →
· · · → −1 → 0, a one-dimensional torus (informally, a cycle). The
mentioned intervals are defined over such a one-dimensional torus.
Therefore, if i = −1 and j = 1, then the corresponding interval is
I = {−1, 0, 1}. For i = 1 and j = −1, the corresponding interval is
I = {1, 2, . . . , 2n−1 − 1,−2n−1, . . . ,−2,−1} = Z2n \ {0}.
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Figure 2. An example of problem size reduction where λ = 6, k = 3, � = 2. The left-hand side is the overall function table before problem size
reduction. The right-hand side is the function table structure used in our protocol. ”U” means Undetermined, ”P” means Positive, and ”N” means
negative. The red lines in the original function tables indicate the gaps when numbers change the sign bit. If any row in function tables includes the
gaps, its result is “Undetermined”. A significant observation is that there could be at most 2 such gaps, which is the reason why we only need two
tables for all the blocks except the first block.

that the objective of the parties is to determine the answer
s = 1N (x) in the clear for secret shared input x.

With a uniformly random key r ← Z2n that is hidden
from both parties, parties reconstruct the corresponding
masked secret y = (x + r). In the example, we consider
x = 33 and r = 1, which results in y = 33 + 1 = 34
in the clear. Next, we equivalently need to compute bit s
indicating whether the blinded output y = (x + r) is an
element of the interval N +r (whether y is in the interval
[33, . . . , 63, 0]).

Let −→y represent the n = 6-bit (two’s complement)
binary representation of the element y (100010). For
illustrative purposes, consider the number of blocks k = 3
and each block length � = n/k = 6/3 = 2. For brevity,
let y1 = −→y 1,� (the most significant � bits of −→y ), y2 =−→y �+1,2� (the middle �-bits of −→y ), and y3 = −→y 2�+1,3� (the
least significant � bits of −→y ). For this example, y1 = 10,
y2 = 00, y3 = 10.

Level 1 search. We use the first block
to perform a level 1 search. Consider the
interval J(y1) =

{
y1‖02�, . . . , y1‖12�

} ⊂ Z2n

(J(10) = {100000, . . . , 101111}). Intuitively, this
interval contains all values that begin with y1. Let
f1 : {0, 1}� → F3 be the function defined as follows.
If the interval J(y1) ⊆ N + r then y ∈ N , we define
f1(y1) = 1. If the interval J(y1) ⊆ Z2n \ (N + r) then
y �∈ N + r and we define f1(y1) = 0. However, it is also
possible that J(y1) has non-empty intersections with both
N + r and Z2n \ (N + r), in which case it is uncertain
whether x ∈ N + r or not. We define f1(y1) = 2
indicating this uncertainty. Intuitively, the function f1 is
a coarse-grained membership testing functionality (and
the granularity parameter � determines the granularity of
this search). In this example, we can see that if y1 is
11 then f1(y1) = 1, since all values of y starting with
11 are Negative. If y1 is 01 then f1(y1) = 0, otherwise
f1(y1) = 2.

Alice and Bob compute the output a1 = f1(y1)
securely using the precomputed function table. However,
there is a subtlety. Obtaining the answer a1 in the clear
reveals additional information about x, rendering the pro-
tocol insecure. In particular, if x is close to either of the
end-points of N , then the probability of a1 = 2 is high.
However, if x is far from both the end-points of N , then
the probability of a1 = 2 is low. Therefore, parties obtain
ã1 ∈ F3 instead, the masking of a1 using a random shared
r1 that is hidden from them. In the concrete example,
we omit this subtlety, and instead directly present the
answering using P, N, and U for Positive, Negative, and
Undetermined, respectively.

Observe that there can be at most two values of y1
such that f1(y1) = 2. The function f1(y1) also needs to
produce an auxiliary information b ∈ {0, 1}, representing
whether the uncertainty stems from the inclusion of the
starting point of the interval or the end point of the inter-
val. Note that this auxiliary information is masked in our
protocol, but we omit the masking in this example for ease
of understanding. The utility of this auxiliary information
shall become apparent in the discussion below.

Level 2 search. Next, parties need to perform a finer-
grained search if f1(y1) = 2 using the second block of
inputs. Alice and Bob continue to the second level of
the search while being oblivious to whether f1(y1) =
2 or not. They test whether the interval J(y1‖y2) ={
y1‖y2‖0�, . . . , y1‖y2‖1�

}
is entirely inside the interval

N + r, entirely outside the interval N + r, or partially
intersecting both these sets, indicating uncertainty. We
define a2 = f2(y2, b) to be this function. We emphasize
that one needs b to reconstruct y1. Again, parties use
precomputed function tables to securely compute ã2, the
masking of a2 with a random share r2.

In this example, we assume b = 1. The parties then
look up the entry for y2 = 00 in the table for the second
block with b = 1. This is testing whether the interval
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{100000, 100001, . . . 100011} is entirely negative, entirely
positive, or partially negative and partially positive.

Observe that in this search, irrespective of whether
b = 0 or b = 1, there can be at most one y2 such that
f2(y2) = 2. This property is essential to ensure that we do
not need to generate any additional auxiliary information
for this search; otherwise, the domain of auxiliary infor-
mation would have increased exponentially in k (the total
number of search levels).

Level 3 search. Alice and Bob continue with their final
search, oblivious to whether their previous searches are
uncertain or not. They test whether the (singleton) interval
J(y1‖y2‖y3) = {y1‖y2‖y3} is inside of N + r or not.
These cases are exhaustive because a singleton interval
cannot be uncertain. Define the function a3 = f3(y3, b)
to be this function. Parties securely compute the en-
cryption ã3 (using the secret key r3) of the output a3
using precomputed function tables. Note that although we
describe these searches in multiple levels, one can perform
all k block searches in parallel as long as the auxiliary
information b is known.

Reconstruction of answer. Given the (masked) answers
ã1, ã2, ã3, and using built-in r1, r2, and r3, the aggregation
function g finds the smallest index i ∈ {1, 2, 3} such
that ai �= 2 and aj = 2, for all j ∈ {1, . . . , i − 1}.
Finally, the output of g is s = ai. Parties compute this
aggregation function securely using another precomputed
function table to obtain the output s.

Intuitively, the reconstruction function inherently ac-
counts for the masking of the intermediate outputs and
outputs the first value that is not Undetermined.

Efficiency. Through our approach, the number of rows
in all the function tables is 24. As a comparison, if we
directly use one single function table, the number of rows
is 26 = 64. Therefore, our approach significantly reduces
the size of precomputed function table. This effect is larger
with the increase of n. (e.g. when n = 64, our approach
requires 15 × 28 rows, while one single function table
requires 264 rows)

2.2. Protocol Steps of SIM

The above discussed technique extends to any interval
I that satisfies |I| � 2n−�. 2 We conclude the procedures
of secure interval-membership testing below:

1) As 1I(x) = 1I+r(y = x + r), for any r ∈ Z2n ,
where I + r is the interval {x+ r : x ∈ I}, the pre-
computation samples an element r ← Z2n uniformly
random, hidden from Alice and Bob. Alice and Bob
reconstruct y = x+ r during the online phase.

2) Let −→y ∈ {0, 1}n represent the (two’s complement)
binary representation of the element y ∈ Z2n . Let−→y1, . . . ,−→yk ∈ {0, 1}� represent the partition of −→y
into k blocks of �-bit strings, i.e., −→y = −→y1‖· · · ‖−→yk .
For i ∈ {1, . . . , k}, we determine special functions
fi : {0, 1}� → F3, and Alice and Bob interactively

2. If |I| is smaller, then both of its endpoints may fall within one
uncertain interval of the level 1 search. Given this possibility, one
needs to generate auxiliary information in level 2 search because parties
are oblivious to whether this event has already occurred or not. This
generation of auxiliary information in every level of the search increases
the input domains of the search functions and the aggregation function
exponentially in k.

obtain the encryption of the output ai = fi (
−→yi ) using

the secret key ri, which is unknown to them. The
precomputation step establishes the keys (r1, . . . , rk)
and appropriate precomputations (c.f., [26]) that help
in the secure computation of the functions f1, . . . , fk.

3) Let ã1, . . . , ãk represent the encryptions of the inter-
mediate outputs a1, . . . , ak, respectively, mentioned
above. Alice and Bob interactively aggregate the an-
swer s = g (ã1, . . . , ãk) (in a secret-shared manner),
where the function g : F k

3 → {0, 1} depends on
the secret keys r1, . . . , rk, and satisfies the identity
g (ã1, . . . , ãk) = 1I(x). At the end of the online
phase, Alice and Bob, respectively, obtain the ad-
ditive secret shares [s]1 and [s]2 of the secret s.

2.3. Related Works

Escudero et al. [18] present an efficient secure com-
parison protocol through the use of novel precomputation
values called edabits. The communication complexity of
the protocol is O(n), and in our case, we only need
to reconstruct approximately two n-bit ring elements.
Additionally, their round complexity is logarithmic while
our protocol is constant round. An alternate way of using
edabits is briefly mentioned, in which edabits are used
to convert an arithmetic secret sharing to a garbled circuit
setting. While this reduces the round complexity, it greatly
increases the communication complexity due to the use of
garbled circuits.

Makri et al. [34] use an adaptation of the BIT-LT
protocol by Damgård et al. [11] and edabits [18] to com-
pare a secret-shared value with a public value (Less Than
Constant protocol). Such a comparison protocol requires
log n+2 rounds when our protocol requires only constant
rounds. Additionally, Makri et al. presented an optimized
protocol for LTZ (presented as ReLU). However, the
optimized LTZ protocol still requires log n rounds.

Ryffel et al. [40] extend [9] to perform secure com-
parison with similar performance using function secret
sharing. Compared with them, our protocol provides both
the semi-honest version and the malicious secure version
while AriaNN only realizes solutions for the semi-honest
setting. Besides, their construction achieves computational
security while our solution is perfectly secure. Addition-
ally, their protocol has a non-zero error rate. Although in
their setting, the error rate is low enough to not signifi-
cantly affect their application, the error rate may be larger
and more significant for other applications and settings. In
comparison, our protocol always outputs a correct answer.

There are also plenty of research focusing on privacy-
preserving machine learning, thus the secure comparison
protocol is one of the key building blocks in these works.
For instance, ABY3 [35] uses bit extraction to get the
most significant bit of an element, which costs O(log(n))
rounds and O(n) reconstructions. Many works afterward
such as SWIFT [28] follow this method to do secure
comparison. Additionally, SWIFT reports an amortized
online communication cost of 9n − 6 bits, which is also
higher than our protocol.

ABY [16] and ABY2.0 [37] make use of a parallel
prefix adder (PPA) to achieve the extraction of the most
significant bit. The circuit itself has O(log n) depth, thus
constant round complexity can only be achieved through
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the garble circuit method. As a result, ABY2.0 designs
efficient protocols to transfer secret sharing from arith-
metic form and garble circuit form efficiently. However,
this secure comparison requires more communication than
our protocol due to the use of the garble circuits. Besides,
our protocol works only in the arithmetic world, therefore
it can be easily generalized to include more online servers.
This generalization is not straightforward for ABY2.0.

Damgård et al. [13] present some efficient building
blocks for privacy-preserving machine learning. Their se-
cure comparison protocol follows a similar idea as ed-
abits [18], where a random share and its bit-wise shares
are used to accelerate the computation. Their protocol has
O(log(n)) round complexity as a bit-wise less than op-
eration is required. Compared to their work, our protocol
only takes three rounds for arbitrary size inputs.

Most relevant to our work, SecureNN achieves secure
comparison through the use of share conversion between
the original even ring to an odd ring in order to extract
the most significant bit (MSB) of a value, which directly
determines its sign. This construction requires opening
O(n) secret sharings in the online phase, thus it is outper-
formed by our protocol in communication cost. FALCON
performs secure comparison (called Derivative of ReLU
in their paper) through the use of wrap functions and
local computations. The wrap function is essentially a
function that computes the carry bit when shares are added
together. For a n bit input, both SecureNN and FALCON
require O (log n) rounds and O (n) bits of communication.

Tetrad [29] follows the direction of ABY2.0, where
they construct a mixed-protocol framework and use a
garble circuit to extract the most significant bit. Compared
with their solution, our protocol is built in pure arithmetic
circuits, thus no share transfer is needed. Meanwhile, our
protocol can be generalized to n parties much more easily.

3. Preliminaries

3.1. System Model

We consider an asymmetric three-party setting where
three parties P1, P2, P3 perform different tasks for the
protocol. P3 is only involved in the offline phase and does
not participate in the online phase, while P1 and P2 only
participate in the online phase, similar to [41], [42], [48].

We assume point-to-point authenticated and se-
cure communication channels between the parties. The
communication channels are assumed to be bounded-
synchronous [3], meaning that the protocol operates in
rounds. In each round, parties can perform local compu-
tations and send messages. By the end of the round, all
parties are guaranteed to receive the messages sent to them
in that round. Our protocol also works in the standard
offline/online model.

SIM tolerates a semi-honest adversary who can corrupt
at most one party. We emphasize that the adversary can
corrupt any one of the parties, in particular, the adversary
is allowed to corrupt P3, who is only involved in the
offline phase of the protocol. We extend our protocol
against the malicious adversary in Section 7.

3.2. Two-Party Secret Sharing Based MPC

We use a three-party MPC (3PC) setting where two
parties participate in the online phase while the third party
only produces the offline data and is absent from the
online phase. Therefore, our construction closely follows
two-party MPC (2PC) protocols for the online phase, and
we summarize the relevant 2PC concepts below.

3.2.1. Linear Two-Party Secret Sharing. A linear
secret-sharing scheme is a secret-sharing scheme where
parties only need to perform local operations on their
shares to perform linear operations such as addition on
the secret-shared value. In this work, we use a specific
linear secret-sharing scheme, known as additive secret
sharing. To share a secret s, the first share [s]1 is generated
uniformly at random, and the second share is set such that
the sum of the two shares is the secret. To reconstruct
the secret s, the two parties add their respective shares
together. We can see that additive secret sharing indeed
has the linear property. For example, to add two secrets s
and t, parties simply need to locally add their share of s
to their share of t to obtain their share of s+ t.

Formally, the dealer shares a secret s ∈ Z2n to two
parties P1, P2 by generating shares [s]1, [s]2 ∈ Z2n such
that each party Pi holds [s]i and [s]1 + [s]2 = s. We
use [s] to denote the secret sharing of s. Here, for public
constants a, b ∈ Z2n and secret shared values [s], [u], the
following identity holds: [a · s+ b · u] = a · [s] + b · [u].

3.2.2. MPC based on secret sharing. In two-party secret-
sharing-based MPC, the function inputs are secret-shared
to the two parties P1, P2, where operations are then carried
out on the secret shares. When using a linear secret-
sharing scheme, the addition of two secret shared values
becomes the local addition of the respective shares.

When we need to multiply two values, we can use
state-of-the-art techniques such as [4], [16], which require
the parties to communicate with each other to perform the
multiplication of two secret shared values.

3.3. Offline-Online Model and Secure Precom-
puted Function (SPF) Tables

For our secure comparison construction, we follow the
standard offline-online model of MPC, where the com-
putation is separated into an (input-independent) offline
phase and an online phase. In the offline phase, input-
independent correlated secret sharings are generated that
are consumed during the online phase.

As the communication and round complexity of the
online phase are critical for the performance of an MPC
protocol, our goal is to optimize the online phase and try
to push more cryptographically expensive operations to
the offline phase. In particular, we build upon the secure
precomputed function (SPF) table approach introduced by
Ishai et al. [26], which offers a very efficient online phase
for computing any function.

The intuition behind the SPF protocol is to precompute
the function output for all possible inputs to generate
function tables in the offline phase, which allows the
online phase to be simple function lookups (which is
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highly efficient). We formalize the original Ishai et al.’s
protocol in Section 4.

This approach manages the small input domains well;
however, the size of the SPF table increases exponentially
with the input size, and is not practical to use for ap-
plications using moderate-sized input domains. While our
construction uses SPF tables to achieve a highly efficient
online phase, as a key novelty, we significantly reduce the
function table size.

4. Formalizing and Extending SPF Compiler

To illustrate how the function table is used in MPC,
we first formalize the original (input-hiding) SPF proto-
col [26] as a compiler. We then introduce our (function-
hiding) SPF compiler.

4.1. Original (Input-Hiding) SPF Compiler

Consider a 2PC with two parties P1 and P2 holding
inputs x and y respectively, and the parties want to jointly
compute f(x, y) for some function f . Here, function
f : X1 × X2 → Y , where (X1,+), (X2,+), and (Y,+)
are groups.

The input-hiding SPF compiler [26] takes function f
as the input and outputs an MPC protocol that securely
realizes the function. In particular, the compiler takes
a matrix {f(x1, x2)}(x1,x2)∈X1×X2

as input and outputs
(i) a 2-party correlation Qf (so-called the precomputa-
tion/offline phase), and (ii) a 2-party online protocol Φf .
Notice that the compiler depends only on the input-output
behavior of the function, and is independent of how the
functionality f is realized. To emphasize this property, we
use f to mean the input-output behavior of f .

Description of the correlation Qf .
1) Pick uniformly random offsets α1 ∈ X1 and α2 ∈ X2

2) Generate F (1) =
{
f (1)(x1, x2)

}
(x1,x2)∈X1×X2

, where

each element f (1)(x1, x2) is uniformly and indepen-
dently chosen from the group Y .

3) Let F (2) =
{
f (2)(x1, x2)

}
(x1,x2)∈X1×X2

be the unique

matrix defined by the identity f(x1, x2) = f (1)(x1 +
α1, x2+α2)+f (2)(x1+α1, x2+α2), for every element
(x1, x2) ∈ X1 ×X2.

4) Send (α1, F
(1)) to Party 1 and (α2, F

(2)) to Party 2.

Description of the 2-party protocol Φf .
Private inputs. For i ∈ {1, 2}, Party i has private input xi ∈
Xi.
Correlated private randomness. For i ∈ {1, 2}, Party i has cor-
related private randomness (αi, F

(i)) given by the correlation
Qf .
Description of the protocol.

1) For i ∈ {1, 2}, party i broadcasts x′i = xi + αi. (Round
1)

2) For i ∈ {1, 2}, party i outputs yi = F (i)(x′1, x
′
2).

Figure 3. The original compiler’s procedure to generate the offline
precomputation Qf and the online protocol Φf .

Figure 3 describes the generation of the precompu-
tation Qf and the online protocol Φf . In the offline
phase, the offline party prepares a random element r, then

constructs function tables of the input x+r for all x in the
input domain. Finally, it secret-shares the SPF table and
sends the shared table together with [r] to online parties.
In the online phase, online parties add the input [x] and
[r] locally, then reconstruct x + r. Finally, online parties
check the SPF table using x+ r to get the final output.

4.2. Function-Hiding SPF Compiler

Towards developing our efficient protocol, we formal-
ize a variant of the input-hiding compiler [26]. Compared
to the input-hiding compiler, our function-hiding compiler
also takes one round and has a lower communication cost.
This variant takes as input a function from a family of
functions, and outputs a secure protocol that does not hide
the input to the function, but instead hides the function
within the family of functions. We call it the function-
hiding compiler and use this variant to construct our
secure comparison protocol.

Consider a function f : X → Y , where (Y,+) is a
group. Our variant takes the matrix {f(x)}(x)∈X as input
and outputs (i) a 2-party correlation Pf , and (ii) a 2-party
online protocol Πf .

Description of the correlation Pf .
1) Generate F (1) =

{
f (1)(x)

}
(x)∈X

, where each element

f (1)(x) is uniformly and independently chosen from the
group Y .

2) Let F (2) =
{
f (2)(x)

}
(x)∈X

be the unique matrix de-

fined by the identity f(x) = f (1)(x)+f (2)(x), for every
element (x) ∈ X .

3) Send (F (1)) to party 1 and (F (2)) to party 2.

Description of the 2-party protocol Πf .
Public inputs. There is a public input x ∈ X known by all
parties.
Correlated private randomness. For i ∈ {1, 2}, party i has
correlated private randomness (F (i)) given by the correlation
Pf .
Description of the protocol.

1) For i ∈ {1, 2}, party i broadcasts yi = F (i)(x). (Round
1)

2) For i ∈ {1, 2}, party i outputs y = y1 + y2.

Figure 4. Our variant’s procedure to generate the offline protocol Pf

and the online protocol Πf .

The generation of the precomputation Pf and the
online protocol Πf is defined in Figure 4. In the offline
phase, the offline party prepares the SPF tables for all
possible plaintext input x, then secret-shares it to online
parties. In the online phases, the online parties simply
check the SPF table using the plaintext input, then recon-
struct the final output.

5. Secure Comparison Protocol using Pre-
computed Function Table

As a showcase of SIM, we introduce our protocol of
secure comparison in the form of less-than-zero (LTZ)
operation. The protocol takes secret shares [x] as the input,
and outputs [s] such that s = fLTZ(x).

We suggest the readers refer to Figure 1 if any of the
following notations are unclear.
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5.1. Protocol Overview

The goal of the protocol is to compute the fLTZ(·)
function for a secret-shared [x] ∈ Z2n . First, both online
parties compute [x+ r] and open it, where r is a random
mask generated during the offline phase. Second, they
divide the binary representation of x + r into k blocks,
where each block has � bits such that k · � = n.3 Third,
the online parties perform membership testing functions
for all the blocks, and get the intermediate outputs, la-
beled a1, a2, . . . ak. The intermediate outputs can either
be Positive(P), Negative(N), or Undetermined(U).4 As the
membership testing function has small input domains, the
offline party can precompute the function tables for it such
that the online phase of the block membership testing is
extremely fast. Finally, the parties open the intermediate
outputs and use the intermediate outputs as inputs to the
recombination function table to produce the final output.

In the offline phase, the offline party P3 generates
the precomputation and function tables needed for the
protocol, and secret shares them to two online parties P1

and P2. We have designed multiple sub-functionalities to
collaboratively achieve fLTZ(·), explained in detail below.

5.2. Building Blocks

We start by introducing the building blocks used in
our protocol. Then we explain how to use these functions
to construct a full protocol.

We use superscripts to denote public parameters of
functions, while subscripts denote secret parameters that
need to be kept hidden from the online parties. The secret
parameters set during the offline phase are r ∈ Z2n ,
r1, r2, . . . , rk ∈ F3, and β ∈ {0, 1}. r is used to mask
the input x, ri is used to mask the i-th intermediate result
ai, and β is used to mask the selection bit.

The functions SLTZi
ri,r,β

are the coarse-grained
membership testing functions that test if a block of in-
put can directly tell us the overall output. SLTZi

ri,r,β

takes public parameter i ∈ {1, 2, . . . , k}, which represents
which of the k blocks this function is for, and is defined
as a family of functions over the secret parameters r, ri,
and β.

We start from the first block, the block result is posi-
tive if all values that depend on this block (has this block
input as prefix) are positive. It is negative if all values that
depend on this block are negative, and it is undetermined
if some values are positive and some are negative. When
the block result of the first block is undetermined, we
take the first two blocks as the prefix and check the second
block. Since revealing this intermediate result could reveal
information on the input, we mask them using the secret
parameter ri.

3. If n is not a multiple of k, then one chooses the k block-lengths
such that any two block-lengths are either identical or differ by one. For
example, if n = 8 and k = 3 then block-lengths are 3, 3, and 2. For
the simplicity of the presentation, this minor detail is omitted; however,
our implementation addresses this subtlety while creating the partitions.

4. The reconstructed intermediate values are randomly masked such
that the actual values are kept secret.

Formally, we define a function

SLTZi
ri,r,β

(y1y2 . . . y�, b̃) : {0, 1}� × {0, 1} → F3

such that

SLTZi
ri,r,β(y1 . . . y�, b̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 + ri, if z0 /∈ N + r and

z1 /∈ N + r

1 + ri, if z0 ∈ N + r and

z1 ∈ N + r

2 + ri, otherwise.

where −→z0 = prefixi,r,β⊕˜b‖y1y2 . . . y�‖00 . . . 0︸ ︷︷ ︸
n-bits

and −→z1 =

prefixi,r,β⊕˜b‖y1y2 . . . y�‖11 . . . 1︸ ︷︷ ︸
n-bits

, and prefixi,r,β,˜b ∈

{0, 1}�·(i−1).

Additionally, if z0 ∈ N + r and z1 /∈ N + r, then
prefixi+1,r,0 = prefixi,r,0‖y1y2 . . . y�. If z0 /∈ N + r and
z1 ∈ N + r, then prefixi+1,r,1 = prefixi,r,1‖y1y2 . . . y�.
Besides, we use value 0 in the output above to indicate
”Positive”, 1 as ”Negative”, and 2 as ”Undetermined”.

Next, we explain the function BLTZr,β , and the use

of the selection bit b̃ in SLTZi
ri,r,β

(y1y2 . . . y�, b̃). We
note that the result of Undetermined can only appear in
at most two rows of the function table of the first block.
The reason is that the block result is Undetermined if and
only if the numbers represented by that row contain both
positive numbers and negative numbers. As the numbers in
the function table are consecutive and in ascending order,
we only have two such cases: When a block contains both
0 and −1, and when a block contains both 2n−1 − 1 and
−2n−1.

Since there are at most two uncertain rows in the
first block, we build two function tables for the sec-
ond block (and all the following blocks), one table for

each uncertain row in the first block. The input b̃ of

SLTZi
ri,r,β

(y1y2 . . . y�, b̃) is used to indicate if the first
group of the tables are used or the second. The goal of

BLTZr,β is to determine b̃ given the first block of the in-
put, such that b can be available for following SLTZi

ri,r,β

executions. We use b̃ to represent the randomly masked

version of b, and b̃ will be reconstructed during the online
phase.

Formally, we define a function BLTZr,β(y1y2 . . . y�) :
{0, 1}� → {0, 1} such that

BLTZr,β(y1y2 . . . y�) =

{
0⊕ β, if z0 ∈ N + r, z1 /∈ N + r

1⊕ β, otherwise.

Where −→z0 = y1y2 . . . y�‖00 . . . 0︸ ︷︷ ︸
n-bits

and −→z1 =

y1y2 . . . y�‖11 . . . 1︸ ︷︷ ︸
n-bits

.

The RECOMBr1,r2,...rk function takes the inter-

mediate outputs produced by SLTZi,˜b
ri,r,β

and com-
bines them to produce the final output. Intuitively,
RECOMBr1,r2,...rk outputs the first intermediate output
that is not undetermined.
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Algorithm 1: Less Than Zero LTZ([x])

Offline Phase
Sample r ∈ Z2n , β ∈ {0, 1}
Generate [r]
for i← 1 to k do

Sample ri ∈ F3

for i← 1 to k do
Compute

{
PSLTZi

ri,r,β

}
i

Compute PBLTZr,β
, PRECOMB

r1,r2,...rk,˜b

Online Phase
Input : [x]
Output : [s]
Pre-computation: [r], PBLTZr,β

,{
PSLTZi

ri,r,β

}
i∈{1,2,...,k}

,

PRECOMB
r1,r2,...rk,

˜b

1 [y] = [x] + [r]
2 y = Open([y]) // Round 1

3 [̃b] = ΠBLTZr,β
(−→y 1,�)

4 b̃ = Open([̃b]) // Round 2
5 for i← 1 to k do
6 [ãi] = ΠSLTZi

r,β,ri

(−→y (i−1)·�+1 , i·�, b̃
)

7 (ã1, ã2, . . . ãk) = Open([ã1], [ã2], . . . [ãk])
// Round 3

8 [s] = ΠRECOMBr1,r2,...rk
(ã1, ã2, . . . ãk)

9 return [s]

Formally, function RECOMBr1,r2,...rk(ã1, ã2, . . . ãk) :
F k

3
→ {0 ,1} offers

RECOMBr1,...rk(ã1, . . . ãk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if ∃i s.t. ∀j < i,

(ãj − rj) = 2

and (ãi − ri) = 0

1, otherwise.

5.3. Protocol Details

We now present how to use the compiler presented in
Section 4.2 and the functions presented in Section 5.2 to
build a complete protocol for Less Than Zero (LTZ).

Algorithm 1 describes both the offline phase and on-
line phase of the protocol.

5.3.1. Online Phase. During the online phase, our proto-
col proceeds in three rounds. In the first round, the online
parties P1 and P2 compute and open y = x + r. Next,
online parties divide the binary representation of y into k
pieces of � bits each. Parties use the first � bits of y as input

to evaluate ΠBLTZr,β
and get the result [̃b]. In the second

round, the parties open [̃b]. Then the parties use b̃ and the
ith blocks of y as inputs to evaluate ΠSLTZi

r,β,ri

for all

i ∈ {1, 2, . . . , k} and receive shares of the k intermediate
outputs ã1, ã2, . . . , ãk. In the third round, the parties open
all the intermediate results [ãi]. Using them as inputs,
the parties run the online phase ΠRECOMBr1,r2,...,rk

to
receive secret shares of the final output [s].

5.3.2. Offline Phase. During the offline phase, P3 gener-
ates independent and uniformly random values r ∈ Z2n ,
β ∈ {0, 1}, and ri ∈ F3 for i ∈ {1, 2, . . . , k}. Using
those values, P3 selects the corresponding functions from
the family of functions. Specifically, P3 selects BLTZr,β ,
SLTZi

ri,r for i ∈ {1, 2, . . . , n}, and RECOMBr1,r2,...rk .
P3 then acts as our variant of the SPF compiler with those
functions as inputs and generates the offline correlated
randomness specified by the compiler. P3 then sends the
offline correlated randomness to P1 and P2, as well as
generates secret shares of r to send to P1 and P2. Specif-
ically, the offline correlated randomness are PBLTZr,β

,
PSLTZi

ri,r
for i ∈ {1, 2, . . . , k}, and PRECOMBr1,r2,...rk

.

The correctness of our protocol comes from the way
the function tables are defined. We highlight a few things
related to the correctness of our protocol. Firstly, while
some of the intermediate results can be Undetermined,
our protocol always outputs a correct result at the end.
Due to the structure of the Less Than Zero problem, there
are always at most two possible Undetermined values for
the first block. Since we account for that by creating
two sets of tables for the second block onward, we are
essentially dealing with one Undetermined value. For that
one Undetermined value of the first block, there can be at
most one Undetermined value in the second block since it
contains only one point where the values change between
positive and negative. Since there is only one point of
change, once we reach the last block, we are always able
to determine if the value is positive or negative.

6. Protocol Analysis

6.1. Cost Analysis and Comparison

As our protocol is technically a 3PC protocol, but the
online phase works as a pure 2PC protocol, we present
comparisons with state-of-the-art 3PC comparison proto-
cols as well as 2PC protocols.

6.1.1. Three-party Computation Protocols. We first
present a fully parameterized theoretical performance
comparison in Table 1, then present a few selected param-
eters to provide concrete performance numbers in Table 2.
For our work, the offline phase communication cost con-
sists of three parts: the block function tables (SLTZ), the
selection bit table (BLTZ), and the recombination table
(RECOMB). BLTZ has 2� = 2

n
k rows,5 where each row

has a one-bit element. Each SLTZ table has 2� = 2
n
k

rows with two-bit elements, and we have in total 2k − 1
of them (the first block has one SLTZ table, and all
following blocks have two SLTZ tables each.). Thus the
size of all the SLTZ tables is (2k− 1) · 2n

k · 2. RECOMB
table has 3k rows, and each row contains an n-bit secret
sharing. The overall offline precomputation communica-
tion/storage cost is given by the summation of the three
parts above. As for the online communication cost, the
reconstruction of x + r in the first round requires the
communication of one n-bit share. The reconstruction of
k SLTZ results requires 2k bits of communication. Finally,

5. For simplicity, we replace � with n
k

to keep the number of variables
to two.
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TABLE 1. COMPARISON OF PERFORMANCE FOR VARIOUS THREE-PARTY PROTOCOLS (ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND

ARE DIVIDED INTO k BLOCKS IN OUR PROTOCOL. κ IS THE SECURITY PARAMETER OF OT USED IN GARBLE CIRCUIT PROTOCOLS)

This Work ABY3* [35]
BLAZE* [38]
(arithmetic circuit)

BLAZE* [38]
(garbled circuit)

FALCON [46]
Ishai
et al. [26]

(Precomputation) Offline
Communication (bits)

(4k−1)2n/k+
n3k

24n 9n (5κ+ 2) · n O(n) (Esti-
mated)

2n

Online Communication
(bits)

n+ 2k + 1 18n 9n κn 28n n

Online Round 3 1 + log(n) 1 + log(n) 2 1 + log(n) 1
* The output of ABY3 [35] and BLAZE [38] are not arithmetic sharing. Therefore some additional sharing conversion (costing one or
more rounds) is required if their secure comparison results are used in arithmetic circuits.

the reconstruction of the selection bit in the second round
takes one-bit of communication.

In general, our protocol has the least online communi-
cation cost among all recent works. Besides, our protocol
has constant round complexity, whereas most recent works
required O(log n) rounds.

To make the numbers concrete in Table 2, we present
the performance numbers for when inputs are n = 32 bits,
and for our protocol, we divide the input into k = 4 blocks
of � = 8 bits each. We also assume OT takes 2 rounds.
We chose these parameters for our protocol because they
provide the most balanced values.

6.1.2. Two-Party Computation Protocols. Similarly, for
various two-party protocols, we present a fully param-
eterized theoretical performance comparison in Table 3,
then select a group of parameters to provide concrete
performance numbers in Table 4 since our online pro-
tocol is designed for two online parties. In general, we
outperform the recent works in terms of communication
cost and achieve the same constant round complexity as
all other works.

6.1.3. Offline Phase Cost. We also explain the theoretical
computation complexity and actual execution time for our
offline phase below. As each row of all function tables
only requires O(1) computation, the computation cost of
the offline phase can be counted by the number of rows
of all the function tables. Therefore, our computation cost
and communication cost is O(k · 2� + 3k).

6.2. Security Analysis

We consider a static semi-honest adversary that can
corrupt at most one party. Therefore, either the offline
party or one of the online parties could be corrupted.

The ideal functionality FLTZ is defined as follows:
FLTZ receives input x1 from P1 and input x2 from
P2. FLTZ calculates x = x1 + x2. FLTZ computes
s such that s = 1 if x is less than zero (in the set{−2n−1,−(2n−1 − 1), . . .− 1

}
, and s = 0 otherwise.

FLTZ sends s to P1 and P2.6

6. For the purpose of the proof, let us assume that Party 1 and Party
2 open the secret-sharing of the output s immediately. Note that this
ensures that even the output distribution is indistinguishable between
the simulated execution and real execution, and the proof still holds if
the parties do not open the output and the ideal functionality sends the
secret shares to the parties.

Theorem 1. Our LTZ protocol securely realizes the ideal
functionality FLTZ in the presence of a PPT adversary
A who can corrupt at most one party as semi-honest.

Proof. To prove this, it suffices to prove Lemma 1 and
Lemma 2.

Lemma 1. Our LTZ protocol is secure in the presence of
a PPT adversary A who corrupts P3 as semi-honest.

Proof. Since P3 is only involved in the input-independent
offline phase, adversary A gains no information.

Lemma 2. There exists a PPT Simulator S that can
simulate the adversary A’s view in LTZ when A corrupts
either P1 or P2 such that the simulated view is indistin-
guishable from the view of the real execution.

Without loss of generality, let A be a probabilistic
polynomial time (PPT) adversary who corrupts P1 (since
P1 and P2 are symmetric). We construct a PPT simulator
S that simulates the adversary A’s view.

To simulate the offline phase, the simulator S gener-
ates uniformly random values as entries for P1’s share of
the various function tables as well as for P1’s share of r
and sends them to A. Note that S records P1’s share of
r as r′.

To simulate the online phase, in the first round, S
samples a uniformly random value as [y]2 and sends it
to A to simulate opening [y = x+ r]. At the same time,
S receives [y]1. S can recover the input [x]1 of P1 by
computing [x]1 = [y]1 − r′ where r′ is recorded from the
precomputation step. In the second round, S samples a

uniformly random bit as [̃b]2 and sends it to A to simulate

opening [̃b]. In the third round, S samples k uniformly ran-
dom element from F3 as [ã1]2, [ã2]2, . . . [ãk]2 and records
and sends them to A to simulate opening [ãi]. At the same
time, S receives [ã1]1, [ã2]1, . . . [ãk]1.

Using [ã1]1, [ã2]1, . . . , [ãk]1 and [ã1]2, [ã2]2, . . . [ãk]2,
S computes a1 = [ã1]1 + [ã1]2, a2 = [ã2]1 +
[ã2]2, . . . ãk = [ãk]1 + [ãk]2. S now looks at the function
table RECOMB it sent to A during the offline phase and
locates the output of ã1, ã2, . . . ãk in the function table,
labeling it as [s]1.

To simulate opening [s], S first sends the input [x]1 of
P1 to the ideal functionality, and receives the output s∗.
S can then calculate [s]2 such that [s]2 = s∗ − [s]1, and
send it to A to simulate opening [s].

We now show that this simulation is indistinguishable
from the real protocol execution. Since the precomputation
that P1 receives in the real execution are all secret shares
of values, they are all independent and uniformly random,
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TABLE 2. COMPARISON OF PERFORMANCE FOR VARIOUS THREE-PARTY PROTOCOLS (WITH n = 32, k = 4, � = 8, κ = 128)

This Work
ABY3 [35] BLAZE (arithmetic

circuit) [38]
BLAZE (garbled
circuit) [38]

FALCON [46] Ishai
et al. [26]

(Precomputation) Offline
Communication (bits)

6432 768 288 20544 × 4294967296

Online Communication
(bits)

41 576 288 4096 896 32

Online Round 3 6 6 2 6 1
* The offline cost of FALCON is omitted as we could not obtain concrete numbers.

TABLE 3. COMPARISON OF PERFORMANCE FOR VARIOUS TWO-PARTY PROTOCOLS (ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND ARE

DIVIDED INTO k BLOCKS WITH EACH BLOCK BEING � BITS IN OUR PROTOCOL. κ IS THE SECURITY PARAMETER OF OBLIVIOUS TRANSFER USED

IN GARBLE CIRCUIT PROTOCOLS)

This Work Garbled Circuit [25] ABY [16] ABY2.0 [37]

(Precomputation) Offline Communication (4k − 1)2n/k + n3k κ 4nκ 4nκ+ n
Communication n+ 2k + 1 nκ 2nκ+ n 2nκ

Round 3 2 2 2
* The output of ABY [16] and ABY2.0 [37] are not arithmetic sharing. Therefore some additional sharing conversion (costing
one or more rounds) is required if their secure comparison results are used in arithmetic circuits.

TABLE 4. COMPARISON OF PERFORMANCE FOR VARIOUS TWO-PARTY PROTOCOLS (WITH n = 32, k = 4, � = 8, κ = 128)

This Work Garbled Circuit [25] ABY [16] ABY2.0 [37]

(Precomputation) Memory Usage 6432 128 16384 16416

Communication 41 4096 8224 8192

Round 3 2 2 2

which has identical distribution to what S generates for
precomputation. In the first round, since r is generated
uniformly at random in the real execution, x + r is
also uniformly at random, and the simulated view has
identical distribution to the real execution. In the second
round, since β is generated uniformly at random in the

real execution, b̃ is uniformly random, and the simulated
view has identical distribution to the real execution. We
highlight the nontriviality that since only one value b̃ is
opened from the function tables of BLTZr,β , the value

of b̃ is independent of anything in the transcript prior

to opening b̃. In the third round, since ris are generated
uniformly at random in the real execution, each ãi is also
uniformly at random, and the simulated view has identical
distribution to the real execution. We once again highlight
the nontriviality that only one value from each SLTZi

r,β,ri
is opened, ensuring that each ri is effectively only used
once, making all ãi independent and uniformly random,
which is indistinguishable for the real execution and the
simulated view.

Since the final output [s] is a secret share, it is in-
distinguishable from a value sampled from the uniform
distribution. Note that the S is able to simulate the cor-
rect output with random shares, which means the joint
distribution of the output and the view is identical for the
real execution and the simulation.

We note that this proof is not limited to only LTZ,
and can be generalized to other functions mentioned in
Section 9.1. The generalized proof can be found in Sec-
tion 9.1.3.

7. Malicious Security

We now present how we can extend our protocol to
achieve malicious security.

7.1. System Model

Malicious security can be achieved in a two-online-
party setting if we apply the same methods provided
in [26], however, it requires a decent amount of addi-
tional cost because of the usage of message authentication
codes (MACs). Therefore, to achieve a highly-efficient
malicious secure protocol, we require a different system
model, where one offline party and three online parties
are needed. We assume there exists an adversary that can
corrupt up to one party. In this honest-majority setting,
we can directly use replicated secret sharing to achieve
secure-with-abort online phase at no additional cost. This
model can be extended such that there are n � 3 servers
and t < n

2 corrupted servers.

7.2. Offline Phase

The offline phase of our protocol can be converted
to maliciously secure using the standard cut-and-choose
technique [31], [32]. Essentially, the offline party pre-
pares μ sets of precomputations, where μ is the statistical
security parameter. As an additional step to the offline
phase, the online parties randomly choose μ − 1 sets of
precomputation and open them by sending all values and
tables from those μ − 1 sets to each other. The online
parties can then locally verify that the function tables and
values are generated according to protocol specifications.
If any of the sets of precomputation fails the check,
the online parties abort and potentially issue punishments
towards the offline party. The probability that the offline
party can generate an inconsistent offline phase and not
be detected is 1

μ .
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7.3. Online Phase

With the offline phase using the cut-and-choose pro-
cedure, we assume that we have one set of precomputed
values and that all precomputation is performed according
to the protocol specifications.

Since our protocol is in the honest majority setting, it
can easily be transformed to tolerate a malicious adversary
that controls at most one party. For example, we can
use the same replicated secret sharing scheme used in
FALCON [46], which will provide security with abort
against malicious adversaries. The parties can check if the
replicated shares sent by the other two parties are consis-
tent or not. If not, the parties abort. Such a transformation
does not affect the cost of our protocol beyond the natural
increase in cost due to the maliciously secure framework.
For example, replicated secret sharing will require two
shares to be sent instead of one during reconstruction but
does not otherwise affect our protocol’s performance.

We implement our protocols using FALCON. We refer
the readers to Section 8.3 for detailed benchmark and
performance analysis.

7.4. Security Analysis

In this section, we informally argue about the security
against the malicious adversary.

Theorem 2. Assuming the existence of a malicious-secure
replicated secret sharing scheme, Our LTZ protocol se-
curely realizes the ideal functionality FLTZ in the pres-
ence of a PPT adversary A who can corrupt at most one
party as malicious under the secure-with-abort setting.

Firstly, the offline-phase is secure due to the cut-and-
choose technique. Regrading the online-phase, following
the same idea mentioned in Ishai et al. [26], we need to
ensure that a malicious party does not choose to report
a secret share from a wrong entry in the function table.
By using the maliciously-secure replicated secret sharing
scheme, the honest parties can detect malicious behavior
by reporting inconsistencies between the secret shares of
the malicious party and the honest parties. At which point
the honest parties can abort the protocol. Then a similar
proof to the semi-honest security proof (Theorem 1) ap-
plies. Together, our protocol achieves malicious security
under the secure-with-abort setting.

8. Application: Privacy-preserving Neural
Network Training/Inference

To illustrate the performance of our protocols, we
develop prototypes for our secure comparison protocols.
Additionally, to demonstrate the effect of our protocol
in a real-world application, we choose to implement our
protocol for the privacy-preserving neural network train-
ing/inference application.

The state-of-the-art works in this area are FAL-
CON [46] and SecureNN [45]. We observe that the main
bottleneck is the evaluation of the ReLU activation func-
tion, where secure comparison is a core building block.
In addition to ReLU, the Division and Maxpool functions
also have high costs, with secure comparison as the main

reason. Therefore, we think secure comparison is one
of the main bottlenecks of privacy-preserving neural net-
work, meaning that the use of our protocol should provide
a significant performance improvement. We choose to
implement our protocol in C++ and embed it into the
FALCON [46] framework by replacing the derivative of
ReLU (FALCON’s secure comparison implementation)
with our protocol. Our code and implementation has been
made public at https://github.com/lu562/falcon-public.git.

8.1. Implementation details

As our protocol has two online parties whereas FAL-
CON has three online parties, we need to properly embed
our protocol into the FALCON framework. To begin with,
FALCON uses replicated secret sharing. If we only con-
sider the first two parties P1 and P2, they actually hold a
two-party additive secret sharing of the input. Therefore,
we can run our secure comparison on P1 and P2 without
any other changes. However, we still need to make sure
the final output s is a three-party replicated share (e.g.
s = s1 ⊕ s2 ⊕ s3, and each party Pi holds si and si+1).
To achieve this, we allow the offline party P3 to generate
s3 and s1 in advance and take them as the final shares of
P3. In the offline phase, P3 sends s1 to P1 and s3 to P2. In
the final recombination table, the shares of s2 are stored
instead of the shares of the final output in our original
protocol. Therefore, P1 and P2 need an additional round
to reconstruct s2 using the shares.

We can think of the LTZ as a black box, FALCON
provides 3-party replicated secret sharings as the input
to LTZ. Inside the box, LTZ operates with 2-party ad-
ditive secret sharing, and the output of LTZ is a 3-
party replicated secret sharing again. The security of this
construction is straightforward in a semi-honest setting.

8.2. Evaluation Results

To compare our protocol against the secure compar-
ison used by FALCON, we choose to evaluate the per-
formances on Network A and Network C from FALCON
using the same MNIST [17] dataset that FALCON uses.
Network A is a 3 layer fully connected network with
the ReLU activation function after each layer. Network
C is a 4 layer network with 2 convolutional and 2 fully-
connected layers. This network also uses both Max Pool-
ing and ReLU. MNIST [17] is a collection of images
of handwritten digits, and is one of the standard dataset
used in machine learning literature. For more detail on
the dataset, we refer the readers to FALCON [46] and the
MNIST [17] dataset.

To begin with, we run the micro-benchmark that only
considers the performance of the secure comparison. The
micro-benchmark is launched in AWS clusters using three
t3.2xlarge instances (8 cores and 32GB RAM). The three
instances are located in different regions and have an
average round trip time of around 130ms. We call this
testing environment the “distributed setting” for the rest of
the paper. The experiments show that our LTZ takes 0.790
seconds and 0.163MB of data transmission per party to do
128 secure comparisons. Meanwhile, FALCON’s secure
comparison takes 1.353 seconds and 0.606MB bandwidth.
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TABLE 5. ONLINE PHASE BENCHMARK: PRIVACY-PRESERVING NEURAL NETWORK TRAINING/INFERENCE WITH OUR LTZ VS FALCON’S LTZ.
THE EXPERIMENTS ARE RUN USING AWS T3.2XLARGE INSTANCES WITH 130MS PING. COMMUNICATION IS MEASURED BY THE TOTAL MB

SENT PER PARTY. PARAMETER SETTING: n = 32, k = 4, � = 8.

Network Mode
Online time(s) Communication (MB)

This work FALCON This work FALCON

Network A
training 6.21s 10.14s 22.61MB 33.98MB

inference 1.83s 3.16s 0.65MB 1.57MB

Network C
training 22.45s 38.94s 584.21MB 1123.35MB

inference 11.45s 22.39s 79.392MB 199.949MB

So we can expect a 1.7× efficiency improvement in run-
ning time and 4× improvements in communication here.

Then we run some neural network tests in the dis-
tributed setting. We tested two versions of the codebase:
the first one is the original FALCON codebase, and the
other is the FALCON codebase with only the LTZ function
replaced by our protocol. Therefore all the performance
difference is caused by the replacement of the LTZ func-
tion. For the neural network training, we run 15 forward-
backward pass iterations just to show the performance
difference. The benchmark result is available in Table 5. In
general, the neural network training time with our LTZ is
around 30% more efficient. For the inference, the running
time is improved at around 1.4×. The communication of
our protocol is also significantly cheaper than FALCON.

We also provide the execution time and communica-
tion of the offline phase in Table 6. The result shows that
the cost is acceptable for neural network use cases.

TABLE 6. OFFLINE PHASE BENCHMARK FOR n = 32, k = 4, � = 8.
(ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND ARE DIVIDED

INTO k BLOCKS WITH EACH BLOCK BEING � BITS IN OUR PROTOCOL.)

Network Mode # of Com-
parisons

Execution
Time

Commu-
nication

Network A
training 606720 780s 488 MB

inference 34048 44s 28 MB

Network C
training 19968000 7.16 hr 16.1 GB

inference 1324800 1688s 1.1 GB
* The benchmark is executed in AWS clusters with t3.2xlarge in-
stances.

Tuning Parameters for Better Performance. Our pro-

Figure 5. Offline phase benchmark with different parameter settings (n =
32, k is the number of blocks). The experiments are run using AWS
t3.2xlarge instances with 130ms ping.

tocol is highly flexible since the parameters such as k

Figure 6. Online phase benchmark with different parameter settings (n =
32, k is the number of blocks). The experiments are run using AWS
t3.2xlarge instances with 130ms ping.

and � are all flexible to change, and different parameter
combinations lead to different offline/online performances.
Therefore, the users of our protocol can pick the proper
parameters to fit into their application. As an illustrative
example, we test the offline/online performance of differ-
ent k, � combinations using the same testing environment.
Notice that when we fix k, the best offline phase perfor-
mance can be achieved if the size of all the blocks are
the same (or closer to each other). The reason is that the
size of the recombination table is fixed with k, and the
offline phase performance is bottlenecked by the largest
block table. The size of the largest block table is most
optimized if we set the sizes of all blocks to be the same.
We follow this setting in our experiments and only include
parameter k in the benchmark figure.

Figure 5 shows the offline phase performance with
different parameter settings. When k is very small, the
size of each block function table is large, thus the offline
phase is costly. Similarly, when k is very large, the size
of the recombination table is large, leading to an expen-
sive offline phase. Therefore, if the users pursue a more
efficient offline phase, an intermediate k is a good option.
Figure 6 illustrates the online phase performance. It can
be seen that the online performance increases linearly with
k. The reason is that the communication complexity and
computation complexity of our protocol are both linear
with k. Therefore, the users can pick the smallest k that
they can afford (in terms of the offline phase) to get
the best online phase performance. As for the overall
performance including both the online and offline phases,
the pattern is almost the same as the offline phase since
the offline phase is the main bottleneck taking around 90%
to 95% of the overall cost.
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8.3. Implementation and Evaluation of the Mali-
cious Secure Version of Our Protocol

We implement the maliciously secure version of our
protocol using FALCON [46] in a three-online-party set-
ting. As we only need share reconstructions in the online
phase, we directly use the replicated secret sharing and the
corresponding malicious-secure share reconstruction func-
tions provided by FALCON. Accordingly, the offline party
generates function tables with replicated secret sharing as
the function table output.

We test the performance of the protocols in AWS,
where three servers are instantiated as c5.9xlarge (36
cores and 72GB RAM) instances in the same region.
For illustrative purposes, we test the performance of both
training and inference with Network A. The benchmark
result is shown in Table 7. Compared with the semi-
honest case, the main difference is the communication
cost, which increases significantly in both our protocols
and FALCONs protocols. However, we see that our pro-
tocol achieves a larger performance gain than the semi-
honest case. The communication cost of our protocol is
around 5× cheaper than FALCON in a malicious setting,
while in the semi-honest case it is only around 2×. The
reason is that the malicious building block significantly
increases the cost of secure comparison, and because our
secure comparison protocol requires less reconstruction,
the performance gain becomes inherently larger.

9. Generalization

9.1. General Functions

The idea of problem size reduction could be gen-
eralized to solve more problems beyond less-than-zero.
Since we are using function tables for blocks of input,
our protocol can be generalized to a class of functions,
which we define as block determinable functions.

We define block determinable functions as functions
where the overall output of the function is determined by
first examining the inputs block by block. More formally,
it satisfies the following identity : f(x1‖x2‖· · · ‖xk) =
h (g1(x1), g2(x2), . . . , gk(xk)).

Furthermore, to achieve better performance, the func-
tion should have an additional property where either the
functions gis have small ranges (preferably one to two
bits), or the function h can be performed efficiently
through MPC, e.g. secure addition. In addition to Less
Than Zero, Hamming distance and parity are also block
determinable functions with significant potential for im-
pact through their privacy-preserving applications.

Note that the above block determinable functions fol-
low a strategy similar to the map-reduce paradigm, where
functions gis resemble mapping and function h resembles
reduction operation.

We elaborate on two example functions that can be
solved by our protocols, secure hamming distance evalu-
ation and secure equal to zero evaluation.

9.1.1. Secure Hamming Distance. Consider a setting
when online parties P1 and P2 hold two secret shared
bit strings of the same length X = (x1x2 · · ·xn) and

Y = (y1y2 · · · yn). These two strings are represented as
ring elements in Z2n . The hamming distance is defined as
h(X,Y ) =

∑n
i=1 xi

⊕
yi.

If we build up one precomputed function table to solve
this problem, the size of function table is 2n × 2n since
the function h(X,Y ) has two inputs of size 2n. This is
too large to be used in practice when n is large.

This efficiency problem can be solved by applying the
problem size reduction here. Similarly, in the online phase,
we can reconstruct randomly masked X and Y and divide
them into k pieces where each piece is � bit, such that
n = k × �. Then we build function tables for each piece
so that each function table returns the hamming distance
of the corresponding piece. The size of each table is 2l

and there are in total k function tables.
For hamming distance, there is no need to build up

a recombination table to combine block results, since the
recombination steps can be done by easily summing up
all the block results.

If we set k = � =
√
n, then the problem size reduction

reduces the offline cost from O(2n) to O(
√
n × 2

√
n).

Assuming n = 64, this is a 253× improvement.

9.1.2. Secure Equal to Zero. Equal to Zero can be seen
as a special case of the Less Than Zero function. Instead
of having 3 possible intermediate outputs (Positive, Nega-
tive, Unknown), EQZ will have two possible intermediate
outputs (True and False). If a block directly determines
that the value is not equal to zero, the intermediate output
will be False. A value is overall equal to zero if all blocks
return True. While we may still need a recombination
table, since the intermediate output space is reduced, our
recombination table will only have 2k instead of 3k rows.

9.1.3. Security Proof. We now provide the security proof
for such general functions.

Theorem 3. Our protocol securely realizes the ideal
functionality Ff in the presence of a PPT adversary A
who can corrupt at most one party as semi-honest.

Proof. To prove this, it suffices to prove Lemma 4 and
Lemma 3.

Lemma 3. Our protocol is secure in the presence of a
PPT adversary A who corrupts P3 as semi-honest.

Proof. Since P3 is only involved in the input-independent
offline phase, adversary A gains no information.

Lemma 4. There exists a PPT Simulator S that can
simulate the adversary A’s view in our protocol when A
corrupts either P1 or P2 such that the simulated view is
indistinguishable from the view of the real execution.

Without loss of generality, let A be a probabilistic
polynomial time (PPT) adversary who corrupts P1 (since
P1 and P2 are symmetric). We construct a PPT simulator
S that simulates the adversary A’s view.

To simulate the offline phase, the simulator S gener-
ates uniformly random values as entries for P1’s share of
the various function tables as well as for P1’s share of r
and sends them to A. Note that S records P1’s share of
r as r′.

To simulate the online phase, S samples a uniformly
random values as [y]2 and sends it to A to simulate
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TABLE 7. MALICIOUS-SECURITY BENCHMARK: PRIVACY-PRESERVING NEURAL NETWORK TRAINING/INFERENCE WITH OUR LTZ VS

FALCON’S LTZ. THE EXPERIMENTS ARE RUN USING AWS C5.9XLARGE INSTANCES LOCATED IN THE SAME REGION. COMMUNICATION IS

MEASURED BY THE TOTAL MB SENT PER PARTY. PARAMETER SETTING: n = 32, k = 4, � = 8.

Network Mode
Online time(s) Communication (MB)

This work FALCON This work FALCON

Network A
training 3.83s 5.18s 58MB 216MB

inference 0.218s 0.298s 1.6MB 10.5MB

opening [y = x+ r]. At the same time, S receives [y]1.
S can recover the input [x]1 of P1 by computing [x]1 =
[y]1 − r′ where r′ is recorded from the precomputation
step. Next, S samples k uniformly random elements as
[ã1]2, [ã2]2, . . . [ãk]2 and records and sends them to A
to simulate opening [ãi]. At the same time, S receives
[ã1]1, [ã2]1, . . . [ãk]1.

Using [ã1]1, [ã2]1, . . . , [ãk]1 and [ã1]2, [ã2]2, . . . [ãk]2,
S computes ã1 = [ã1]1+[ã1]2, ã2 = [ã2]1+[ã2]2, . . . ãk =
[ãk]1+[ãk]2. S now looks at the function table for h(·) it
sent to A during the offline phase, and locates the output
of ã1, ã2, . . . ãk in the function table, labels it [s]1.

To simulate opening of [s], S first sends the input [x]1
of P1 to the ideal functionality, and receive the output s∗.
S can then calculate [s]2 such that [s]2 = s∗ − [s]1, and
send it to A to simulate opening s.

We now show that this simulation is indistinguishable
from the real protocol execution.

Since the precomputation that P1 receives in the real
execution are all secret shares of values, they are all
independent and uniformly random, which has identical
distribution as what S generates for precomputation. Since
r is generated uniformly at random in the real execution,
x+r is also uniformly at random, the simulated view has
identical distribution to the real execution. Since ris are
generated uniformly at random in the real execution, each
ãi is also uniformly at random, the simulated view has
identical distribution to the real execution. We highlight
the nontriviality that only one value from each g(·) is
opened, ensuring that each ri is effectively only used once,
making all ãi independent and uniformly random, which
is indistinguishable between the real execution and the
simulated view.

Since the final output [s] is a secret share, it is in-
distinguishable from a value sampled from the uniform
distribution. Note that the S is able to simulate the cor-
rect output with random shares, which means the joint
distribution of the output and the view is identical for the
real execution and the simulation.

9.2. Going Beyond Two Online Parties

In this section, we describe how to turn our protocol
from a 3PC protocol to include more online parties. In
the original protocol, both online parties execute the same
computations, the only difference is that the contents
of their function tables are different. Therefore, we can
leverage it to extend our protocol to accommodate more
online parties. If we consider n-online parties, the offline
party will generate function tables for each online party,
the only difference is that the output of function tables
will be (n, n) additive secret sharing instead of 2-party
secret sharing. 7 The online parties will follow the same

7. (n, t) ring-based secret sharing could also be used.

online phase, and the only difference is that they will use
(n, n) secret sharing scheme to reconstruct the secrets.
In this case, the offline party becomes a single point of
failure, as the privacy is broken if the adversary knows the
randomness generated by the offline party. Therefore, we
can only use this idea when there is a trustworthy third
party who is willing to take care of the offline phase.

As an alternative, in some applications, we can also
let the clients who provide private inputs generate the pre-
computation. If the clients don’t generate correct precom-
putation or leak it to the adversary, the privacy/correctness
of their own data will be broken, thus they have no
motivation to become a “corrupted offline party”. In this
setting, we don’t need an offline party anymore and the
precomputation will be taken as part of the inputs of the
MPC protocol. For instance, this idea could be used when
the online parties hold a neural network model privately
in the form of secret sharing, and clients want their private
input to be evaluated on the private neural network.

10. Conclusion

In this work, we have proposed SIM, a secure interval
testing protocol that leverages function tables to achieve
both an efficient online phase and a practical offline phase.
As the first step, we introduced the abstract functionality
of testing membership in an interval. Similar to the map-
reduce methodology, we have presented a solution ap-
proach for partitioning input into input blocks, computing
a sequence of intermediate functionalities on those input
blocks, and securely aggregating the output from these
intermediate outputs. We have illustrated that our proto-
col significantly improves the performance of high-level
applications such as privacy-preserving machine learning.

As a step towards generalization, we have defined a
notion of block determinable functions and also proposed
an approach for going beyond two online parties. We
believe the proposed techniques have the potential to be
applied to other MPC problems as well as generalized to
further settings and may be of interest independent of the
less-than-zero function.
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[5] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How
the estonian tax and customs board evaluated a tax fraud detection
system based on secure multi-party computation. In Rainer Böhme
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Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,
Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation
goes live. In Roger Dingledine and Philippe Golle, editors, FC
2009, volume 5628 of Lecture Notes in Computer Science, pages
325–343. Springer, Heidelberg, Germany, February 2009. 1

[8] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval
Ishai, Nishant Kumar, and Mayank Rathee. Function secret sharing
for mixed-mode and fixed-point secure computation. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of Lecture Notes in Computer Science, pages
871–900. Springer, Heidelberg, October 2021. 1

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with
preprocessing via function secret sharing. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part I, volume 11891 of Lecture
Notes in Computer Science, pages 341–371. Springer, Heidelberg,
Germany, December 2019. 1, 4

[10] Geoffroy Couteau. New protocols for secure equality test and
comparison. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18: 16th International Conference on Applied Cryptography
and Network Security, volume 10892 of Lecture Notes in Com-
puter Science, pages 303–320, Leuven, Belgium, July 2–4, 2018.
Springer, Heidelberg, Germany. 1
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