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Abstract—IoT devices implement firmware update mecha-
nisms to fix security issues and deploy new features. These
mechanisms are often triggered and mediated by mobile
companion apps running on the users’ smartphones. While
it is crucial to update devices, these mechanisms may cause
critical security flaws if they are not implemented correctly.
Given their relevance, in this paper, we perform a system-
atic security analysis of the firmware update mechanisms
adopted by IoT devices via their companion apps. First, we
define a threat model for IoT firmware updates, and we cat-
egorize the different potential security issues affecting them.
Then, we analyze 23 popular IoT devices (and corresponding
companion apps) to identify vulnerable devices and the SDKs
that such devices use to implement the update functionality.
Our analysis reveals that 6 popular SDKs present dangerous
security flaws. Additionally, we fingerprint each vulnerable
SDK and we leverage our fingerprints to perform a large-
scale analysis of companion apps from the Google Play Store.
Our results show that 61 popular devices and 1,356 apps
rely on vulnerable SDKs, thus, they potentially adopt an
insecure firmware update mechanism.

1. Introduction

The adoption of IoT devices has been increasing con-
stantly over the past few years. According to a study
by Avast [12], the number of IoT devices will triple
by 2025, reaching over 75 billion devices. As a result,
an increasing number of IoT devices are showing up in
different settings, ranging from corporate networks [20] to
short-term rentals such as Airbnb [49]. Thus, researchers
are actively studying the security and privacy concerns
imposed by the adoption of these devices [27], [28], [30],
[40], [41], [43]–[45], [51], [67], [71], [74], [76], [80],
[83]–[85], [88].

Normally, IoT devices make use of a relay device, in
most cases a smartphone, to accept commands from users.
To provide an interface for user interaction, a mobile app
is often installed on the smartphone to communicate with
the IoT device. These apps are commonly referred to as
companion apps [56], and they utilize diverse types of
channels and protocols for handling communication with
the IoT devices (e.g., Bluetooth or Wi-Fi).

A critical feature for the security of IoT devices is their
firmware update mechanism, which allows for fixing bugs,
improving security, or adding new features. The mecha-
nism for sending firmware updates is referred to as ‘device
firmware update’ or DFU. Often, IoT device vendors make
use of companion apps, running on smartphones, to send
firmware updates to the IoT devices. Naturally, if the DFU
mechanisms are not securely implemented, IoT devices

can miss critical security patches or can be compromised
by executing malicious code.

Previous works [10], [23], [34], [47], [69] identified
specific vulnerabilities in the firmware update mechanisms
of some IoT devices. However, the state-of-the-art lacks
a comprehensive and systematic picture of DFU issues
in the IoT ecosystem. In fact, existing works only focus
on a few selected products from specific vendors and do
not provide a scalable categorization approach. Besides,
the previously investigated attacks require access to the
hardware of the IoT devices, significantly limiting the
scope to attack scenarios that include physical access.

Conversely, in this paper, we examine mobile compan-
ion apps and their critical role in triggering, controlling,
and mediating the updating of IoT devices. Specifically,
we first investigate the app-mediated DFU mechanisms
of IoT devices, understanding their threat model and po-
tential vulnerabilities. We then present a comprehensive
methodology for identifying vulnerable firmware update
mechanisms in IoT devices on a large scale. A high-level
overview of our methodology is illustrated in Figure 1,
which includes three components: AoT-Scout, a manual
systematic analysis to study DFU mechanisms of IoT
Devices via their companion apps; Attack-Tester, a sys-
tematic manual testing procedure to test DFU mechanisms
of IoT Devices against firmware attacks; App-Rumbling,
an automated pipeline for classifying companion apps
based on the vulnerable SDKs used for DFU.

Methodology. We systematically investigate the threat
model of IoT firmware update mechanisms and define the
following three categories of attacks that can be performed
via their companion apps:

• Firmware Modification Attack (ModAttack) This
attack allows an attacker to inject untrusted, mali-
cious firmware into the target IoT device.

• Firmware Downgrade Attack (DownAttack) This
attack allows an attacker to downgrade the firmware
of the target IoT device.

• Device Bricking Attack (BrickAttack) This attack
allows an attacker to render the IoT device unusable.

The root cause of these attacks is the fact that
cryptographic verification and rollback prevention of the
firmware updates is absent or incorrectly implemented.
Our goal is to detect the presence of these vulnerabilities
in the firmware update mechanisms of IoT devices at
a large scale. To achieve this goal, we aim to utilize
fingerprints of vulnerable companion app SDKs for a
large-scale analysis of Android marketplaces.
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Figure 1: Overview of our methodology.

We collect a dataset of IoT devices and their compan-
ion apps using the following two sources:

1) Amazon Bestseller IoT Devices: We collect the Best-
seller IoT devices and their companion apps from
Amazon Bestseller products [8].

2) Top SDKs used in companion apps: We collect the
companion apps (and corresponding devices) using
popular SDKs identified by IoTSpotter, a prior study
of IoT devices and companion apps [42].

To test this dataset, we first follow the AoT-Scout
analysis to obtain both information about the update
mechanism and the firmware binary. Using the extracted
knowledge, we then use Attack-Tester to test companion
apps for the presence of DFU vulnerabilities. Specifically,
following the Attack-Tester analysis, we test which of the
aforementioned attacks can be performed by transferring
modified firmware binaries to the target IoT device.

Additionally, AoT-Scout enables us to identify, for
each vulnerable device, the SDK used to implement the
DFU mechanism. In fact, companion apps typically use
dedicated libraries (i.e., SDKs) to interact with their
corresponding IoT devices and to implement the DFU
functionality. Our analysis reveals 6 vulnerable SDKs. We
confirm these vulnerabilities by exploiting, in our lab, 8
devices that use the identified vulnerable SDKs.

Finally, for each of these vulnerable SDKs, we gener-
ate a code fingerprint. By leveraging the vulnerable SDKs’
fingerprints, we assess the extent of vulnerable SDK usage
in the companion apps on the Android app marketplaces.

Our results show that SDKs vulnerable to firmware
attacks are widely used in the companion apps of IoT
devices. In particular, we find that 61 popular devices and
1,356 apps rely on vulnerable SDKs, thus, they potentially
adopt an insecure firmware update mechanism.

Contributions. In summary, in this paper we make the
following contributions:

• We investigate the state of firmware update mech-
anisms adopted by IoT devices and their potential
vulnerabilities.

• We propose two manual approaches (Attack-Tester
and AoT-Scout) to study and detect vulnerable
firmware update mechanisms of 23 IoT devices.

• We identify that 6 popular SDKs used by IoT com-
panion apps to implement the DFU functionality are
vulnerable to the studied attacks.

• We generate fingerprints of the vulnerable SDKs,
and we use them to perform the first large-scale IoT
DFU vulnerability analysis using our App-Rumbling
pipeline. Our analysis reveals 1,356 apps (and 61
popular devices) using these vulnerable SDKs.

2. Background

2.1. IoT Devices

As a definition of IoT device, we use the following
definition: An IoT device is a physical device that can
communicate data over a network. However, in this paper,
we restrict our scope to IoT devices with certain charac-
teristics to ease our analysis. We explain our scope of IoT
devices below.

As Chen et al. [19] shows that majority of the IoT
Devices communicate with a companion iOS or Android
app. There might be some IoT devices that only communi-
cate with non-Android relay devices such as iOS devices.
We exclude those kinds of IoT devices from our study to
ease our analysis.

We also exclude IoT devices that are not bare metal
devices. As discussed by Salehi et al. [58], a bare metal
is a device that is not running any operating system and
the majority of the IoT devices are bare metal devices.
We exclude non-bare metal devices from our study be-
cause our study involves performing firmware attacks via
companion apps and most non-bare metal devices do not
perform firmware updates via their companion apps.

Consumer IoT devices are mostly controlled using a
relay device such as a smartphone. IoT device vendors
publish companion mobile apps for their IoT devices. The
companion apps provide an interface for the end users to
interact with the IoT devices. The IoT device vendors em-
ploy a variety of mechanisms to facilitate communication
between the IoT device and its companion app. The two
main methods of communication between an IoT device
and its companion app are: Bluetooth and Wi-Fi.

While using Bluetooth, the IoT device and the smart-
phone communicate directly with each other. Since Blue-
tooth supports short-range communication, the devices
must be in physical proximity.

While using Wi-Fi, the IoT device and the smartphone
usually do not communicate directly. A common mech-
anism is to rely on an MQTT [31] broker that acts as
a proxy for communication between the IoT device and
the companion app. The user sends commands using the
companion app to the MQTT broker, which forwards them
to the respective IoT device.

In the next section, we discuss how these communi-
cation mechanisms are used to perform firmware updates.

2.2. Companion Apps

Companion apps are the primary interface for the end
users to interact with the IoT devices. Companion apps are
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installed on relay devices, such as smartphones, and can
communicate with their corresponding IoT devices using
a variety of mechanisms, as mentioned in the previous
section. Companion apps are used to perform various tasks
such as device configuration, monitoring, and firmware
updates. These tasks are handled by SDKs (Software
Development Kits) which are present in the companion
apps. SDKs provide a set of APIs that can be used by the
developers to perform a variety of tasks such as firmware
updates without having to write the code from scratch.

2.3. IoT Device Firmware Update (DFU)

IoT device vendors use companion apps to perform
firmware updates on their IoT devices. We will use the
term DFU to refer to Device Firmware Update. DFUs are
necessary to fix bugs and add new features to the IoT
devices. DFUs involve transferring an updated firmware
binary to the IoT device. A firmware repository stores
the updated firmware binaries of the IoT devices. The
firmware repository can be the companion app itself or a
separate backend server. The first step of the DFU process
is to check if there is updated firmware available in the
firmware repository. Different IoT vendors can implement
the DFU mechanism in different ways to facilitate the
firmware updates of their IoT devices. However, the basic
procedure for checking if a DFU is available can be
generalized as follows:

1) The companion app requests the current firmware
version from the IoT device.

2) After receiving the current firmware version, the
companion app checks if there is a newer firmware
version available in the firmware repository.

3) If a newer firmware version is available, the updated
firmware is transferred to the IoT device.

The implementation of transferring the updated
firmware binary depends on the type of communication
used by the IoT device. We now discuss the basic DFU
binary transfer procedures when Bluetooth or Wi-Fi com-
munication is used.

When using Bluetooth, the firmware binary is directly
transferred from the companion app to the IoT device.
To perform DFU, the companion app needs to have
the updated firmware binary. In this case, the firmware
repository can be the companion app itself or a separate
backend server. If the companion app itself is the firmware
repository, the IoT device vendor packages the updated
firmware binary within the companion app and publishes
the app on the Android marketplaces. The companion
app with the updated firmware binary is downloaded and
installed on the smartphone. Then, it checks if an updated
firmware is available and if so, the updated firmware
binary is transferred directly using Bluetooth to the IoT
device. If the firmware repository is a separate backend
server, the companion app requests the latest firmware
version from the backend server. If an updated firmware
version is available, the companion app downloads the
updated firmware binary to the smartphone. Finally, the
updated firmware binary is transferred to the IoT device
using Bluetooth.

When using Wi-Fi, an MQTT broker and a backend
firmware repository are involved in the transfer of the
firmware binary to the IoT device. Generally, the fol-

Figure 2: Wi-Fi IoT DFU involving an MQTT broker. The
MQTT broker serves as proxy for communication between
the IoT device and the companion app. ‘Data’ contains
information about the firmware binary. Specifically, the
latest firmware version and firmware’s URL.

lowing steps (illustrated in Figure 2) are performed for
transferring the firmware binary:

1) The developer’s server sends the URL of the
firmware repository server and the version of the
updated firmware binary to the companion app.

2) The companion app checks if an updated version of
the firmware is available and sends the URL of the
firmware to the MQTT broker.

3) The MQTT broker sends a request to fetch the
firmware from the repository using the URL.

4) The MQTT broker downloads the firmware image
from the firmware repository.

5) The firmware image is transferred from the MQTT
broker to the IoT device.

Within this general communication framework, there
can be device-specific variations in the steps of the MQTT
DFU mechanism. For example, in Step 3, the URL can be
sent to the IoT device, which can then directly download
the firmware from the firmware repository.

3. Firmware Attacks on IoT

3.1. Threat Model

To perform the firmware attacks, we assume the at-
tacker has the capability to intercept and modify the
communication between the companion app and the IoT
device. This can be achieved in several ways including:
(1) Attacker getting within the communication range of
the victim device with their own relay device. (2) At-
tacker taking control of the victim relay device that is in
communication range of the IoT device.

For the first case, possible scenarios are hotels and
Airbnb [49] that have IoT devices installed for their
customers. The customers who have access to the physical
place (hotel/Airbnb) can intentionally modify the firmware
of the devices running in that place by exploiting their
DFU mechanisms.

For the second case, the attacker can install a malicious
app, which the attacker controls, on the victim’s relay
device. The attacker can program the app in way that the
malicious firmware is transferred when DFU is performed.
Achieving malicious activity on the victim’s relay device
through malicious apps is a common attack vector in
mobile devices [14], [55], [57].
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Essentially, the above scenarios allow the attacker to
modify the communication with the target IoT device. By
doing so, the attacker can modify the firmware running
on the IoT device by abusing the IoT DFU mechanism.

In our threat model, we exclude the attacks that re-
quire the attacker to have wired physical access to the
SoC (System on Chip) of the IoT Device.

3.2. IoT DFU Vulnerabilities

Our goal in this paper is to perform a large-scale
analysis of vulnerabilities affecting IoT DFUs. To this
aim, we first categorize these attacks into the following
three categories.

Firmware Downgrade Attack (DownAttack) This attack
reverts the firmware of the target IoT device to an older
version. Reverting to an older firmware image may allow
an attacker to re-introduce, and then exploit, vulnerabili-
ties in older firmware or disable security features present
in the updated version.

Device Bricking Attack (BrickAttack) This attack ren-
ders the target IoT device unusable. An attacker capable
of performing the Device Bricking can launch this attack
to perform DoS (Denial of Service) causing monetary
damage to victim users or use the Device Bricking as an
intermediary step to perform a more complex malicious
activity, e.g., disabling security cameras, trackers, and
motion sensors, to evade detection.

Firmware Modification Attack (ModAttack) This attack
results in arbitrary execution of modified firmware on
the target IoT device. Being able to arbitrarily modify
the firmware images allows an attacker to run arbitrary
code on the IoT device. An attacker who can perform the
ModAttack has capabilities ranging from compromising
privacy to harming the victim user. An attacker able to
arbitrarily modify the firmware can, consequently, also
perform a Device Bricking Attack (by substituting the
original code with non-working code) or a Firmware
Downgrade Attack (by replacing the original code with
an older version).

To categorize the IoT devices based on their vulner-
ability to these attacks, we formulate an analysis called
Attack-Tester, which is described in the following section.

3.3. Attack-Tester Analysis

Attack-Tester is a manual analysis for testing IoT
devices and determining if they are affected by the studied
categories of DFU vulnerability. Here, we explain the
analysis process of Attack-Tester (Figure 3).

The Attack-Tester analysis requires knowledge of the
IoT DFU mechanism (knowledge required to trigger the
DFU and transfer firmware binary) and firmware bina-
ries of the IoT Device as inputs to perform the testing
and categorization. First, we reverse engineer the IoT
DFU mechanisms by analyzing the interaction of the IoT
devices and their companion apps, and we obtain the
firmware binaries using our AoT-Scout analysis, described
in Section 5.3. After our AoT-Scout analysis, we modify
the original updated firmware binary by changing a few
bytes and transferring it to the IoT device. We assign the
aforementioned attack categories based on the state of the

Figure 3: Overview of the Attack-Tester DFU vulnerability
categorization analysis.

IoT device after the transfer of the modified firmware bi-
nary. Specifically, after transferring the modified firmware
binary, we can observe the device in one of the following
three states:

1) The IoT device accepts and executes the modified
firmware.

2) The IoT device rejects the modified firmware and
reverts to the previous firmware.

3) The IoT device becomes unresponsive or unusable.

An IoT device is vulnerable to Firmware Modifi-
cation Attack if it accepts and executes the modified
firmware. We verify the modified firmware is transferred
and executed by checking the bytes transferred to the IoT
device and the firmware version number of the firmware.
If the transferred bytes and firmware version match the
modified bytes and version of the modified firmware re-
spectively, then the IoT device is vulnerable to Firmware
Modification. In certain cases, to make the IoT device
accept the modified firmware, we need to provide valid
checksums or signatures and ‘re-sign’ the binary. The
details of ‘re-signing’ are discussed in Section 7.4. We
modify the firmware by changing only one or two bytes
that are part of a string in the firmware binary. Modifying
the firmware binary bytes in the code section without
sufficient knowledge about their functionality can result
unforeseen changes in the code execution which might
make firmware binary unusable. More modifications can
be done by understanding the firmware binary to achieve
the required goal without making the device faulty. How-
ever, understanding the firmware binary comprehensively
is out of scope of this paper.

IoT devices that are bricked by the modified firmware
are vulnerable to the Device Bricking Attack. We verify
the IoT device is bricked by checking if the IoT device
is unresponsive or unusable. If the IoT device is unre-
sponsive or unusable, then the IoT device is vulnerable to
Device Bricking.
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If the IoT device rejects the firmware, it means there
is some mechanism in place for detecting firmware modi-
fications which we are not able to bypass. For the devices
that reject the firmware, we try to send older firmware
versions that are retrieved during the AoT-Scout analysis
described in Section 5.3. If the IoT device accepts the
older firmware, then the IoT device is vulnerable to the
Firmware Downgrade Attack.

As explained in Section 3.2, IoT devices vulnera-
ble to ModAttack are also considered vulnerable to De-
vice Bricking Attack (DBA) and Firmware Downgrade
Attacks (FDA). In fact, BrickAttack can be performed
by sending a modified firmware that bricks the victim
IoT device. Likewise, DownAttack can be performed
by replacing the firmware image with an older version.
Consequently, if a device accepts an arbitrarily modified
firmware binary, it is vulnerable to all three attacks.

By using the Attack-Tester categorization, we can ef-
fectively test IoT devices and identify their corresponding
firmware update vulnerabilities. This analysis allows us
to simulate various attack scenarios and test the device’s
resilience to these attacks, thereby providing valuable
insights into potential vulnerabilities and weaknesses.

4. Methodology

In this paper, we study the security of firmware up-
date mechanisms of IoT devices, and our study has two
main phases. First, we focus on IoT DFU security recon-
naissance (Section 5). Second, we perform a large-scale
analysis of IoT companion apps (Section 6).

In the first phase, we manually analyze the security of
the DFU mechanisms of IoT devices and use the results
to perform, in the second phase, an automated large-scale
analysis. This is shown in Figure 1, where the AoT-Scout
and Attack-Tester analyses represent the first manual phase
and their results are used, in the second phase, as inputs
for the automated App-Rumbling pipeline.

In the first phase (Section 5), our goal is to determine if
popular devices or apps fall under any vulnerability cate-
gories discussed in Section 3.2 and to generate fingerprints
of vulnerable SDKs used by the affected companion apps.
To do so, we collect Bestseller IoT devices from Amazon
and sample top-ranked companion apps from the IoTSpot-
ter dataset [42], and we perform a security analysis of the
DFU mechanisms using our AoT-Scout analysis (Section
5.3). We refer to this phase as Reconnaissance.

In the second phase (Section 6), we perform a large-
scale analysis of the companion apps on the Android
marketplaces using the categorized fingerprints obtained
in the first phase. For the second phase, our goal is to
estimate the number of vulnerable companion apps on
the Android marketplaces and the number of vulnerable
devices that are affected by these apps. We refer to this
phase as App-Rumbling.

5. IoT DFU Security Reconnaissance

In this phase, our goal is to generate fingerprints of the
companion app SDKs that are affected by firmware update
vulnerabilities. To achieve this goal, we need to obtain IoT
devices and their companion apps so we can analyze the
security of their DFU mechanisms using our AoT-Scout

Analysis (5.3). To get representative and impactful data for
our analysis we select two sources of data: (1) Bestseller
IoT devices from Amazon (Section 5.1) and (2) Top-
ranked companion apps from the IoTSpotter dataset [42]
(Section 5.2). We refer to the dataset of devices, and
their corresponding companion apps, obtained from these
sources as DeviceDataset.

We choose two sources of data because each source
has its own advantages and disadvantages. The Amazon
Bestseller list ranks the products based on the number of
sales. Consequently, for the Amazon data, we cover the
SDKs of the IoT devices that are popular among the con-
sumers. The IoTSpotter dataset comprises companion apps
from the Google PlayStore. The IoTSpotter dataset ranks
SDKs by the number of companion apps that use them.
We sample apps that are using the top-ranked SDKs from
the IoTSpotter dataset. Consequently, for the IoTSpotter
data, we cover the SDKs that are popular among the
developers.

On the contrary, if we only targeted the top-ranked
SDKs from the IoTSpotter dataset, we would miss the
proprietary SDKs that are not open sourced and are not
included in the IoTSpotter dataset. Although few apps
use proprietary SDKs, a substantial number of consumers
use their IoT devices. Similarly, if we only targeted the
popular IoT devices from Amazon, we would miss the
SDKs that are used by many companion apps even though
the devices controlled by those companion apps are com-
paratively less popular among the consumers.

In the following sections we discuss the details of our
DeviceDataset collection and our AoT-Scout analysis.

5.1. Bestseller IoT Devices Collection

To perform DFU security analysis of popular and
widely used IoT devices, we consult specific categories
of Bestseller lists on Amazon. The rank in categorical
Bestseller lists on Amazon is an indicator of how much a
product is selling in a particular category [8]. In particular,
we focus on the 16 Bestseller categories that are likely to
contain IoT devices (listed in Appendix B in Table 2).
Since these lists are updated hourly, we captured a snap-
shot of them on April 1st, 2022, by using web scraping.

Sampling Bestseller Products. Each Bestseller list has
100 products ranked in the order of their sales. Since
the total number of products from all the Bestseller lists
amounts to more than 1,000 products, it is not feasible
to analyze all of them. While we need to have a feasible
number of IoT devices for analysis, our goal is to cover
a wide variety of devices. To create a reasonably sized
dataset and cover a variety of devices, we restrict our sam-
pling to the top 6 devices from each Bestseller category
and remove the devices that do not satisfy our definition
of an IoT device (as detailed in Section 2).

Filtering IoT Devices. After removing the non-IoT de-
vices, we are left with 41 IoT devices. To ease our
analysis, we formulate criteria that restrict our study to
specific IoT devices. Specifically, from the 41 IoT devices
we remove the devices that: (1) Cost more than $50. (2)
Require additional devices to operate and cannot function
on their own. After removing the devices that do not
satisfy our criteria, we are left with 30 IoT devices. This
process helps us focus on those devices that are affordable
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and used by a wide range of consumers. However, this
filtering process also introduces certain limitations and
biases that we discuss in Section 8.

Identifying Companion Apps. We identify the com-
panion apps of the selected IoT devices by using the
information given on the product page on Amazon and
we compile a list of the companion apps’ package names.
We identify 19 unique companion apps.

Out of the 19 identified companion apps, 8 companion
apps control multiple devices. Since we are interested in
studying the companion apps’ SDKs’ DFU mechanisms,
we want to avoid buying multiple devices communicating
with the same companion app. To this aim, we determine,
for each device the package name of its companion app
and select the device that has the highest ranking among
the other devices that are controlled by the same app.

In the end, we are left with 19 IoT devices. We
download the companion apps of the 19 IoT devices
from the Google PlayStore, and we add them to our
DeviceDataset. We use these 19 apps/devices as input to
our AoT-Scout analysis (Section 5.3) to analyze their DFU
mechanism.

5.2. Top-Ranked Companion Apps Collection

In addition to what is explained in Section 5.1, we also
use the IoTSpotter dataset [42] to sample companion apps
for our analysis. Specifically, we consult the IoTSpotter
dataset to cover the SDKs that are popular among the
developers and to obtain the companion apps that use
those SDKs.

IoTSpotter Dataset. IoTSpotter analyzed 2,182,654 apps
on the Google PlayStore and identified apps that are
IoT companion apps using a machine learning classifier.
IoTSpotter classifies 37,783 apps as IoT companion apps.
IoTSpotter identifies the ‘IoT-related’ class package names
in the companion apps by using the number of companion
apps that use the SDKs as a heuristic. IoTSpotter clusters
IoT-related class package names based on similar prefixes.
IoTSpotter ranks the clusters by using the number of
companion apps that use the SDKs as a metric. IoTSpotter
manually analyzes the top 50 clusters and identifies 11
SDKs that are present in the greatest number of com-
panion apps. We manually analyze the 11 SDKs and only
consider those that are involved in IoT DFU. We will refer
to these SDKs as IoTSpotter-SDKs.

Sampling Companion Apps. To sample the companion
apps that use the IoTSpotter-SDKs we use the apps’ num-
ber of downloads as a ranking metric. For each IoTSpotter-
SDK, we scrape the number of downloads of the compan-
ion apps that use that SDK from the Google PlayStore.
We group the companion apps based on their number
of downloads. Starting from the group with the highest
number of downloads, we randomly select an app and
manually check if the app meets the following criteria:

1) We confirm if the app is an IoT companion app by
manually checking the Google PlayStore page of the
app.

2) We check whether the companion app is involved in
DFU by decompiling the app and manually analyzing
the decompiled code of the app.

3) We check whether we can acquire an IoT device that
the companion app controls.

Figure 4: AoT-Scout Analysis.

4) We verify if the IoT Device fulfills the device selec-
tion criteria mentioned in Section 5.1.

When we find a companion app that satisfies all the above
criteria, we include the app in our sample and repeat the
process for the next IoTSpotter-SDK. If we have already
analyzed an SDK from a companion app in Amazon
Bestsellers, we skip the SDK. We sample one app for
each remaining SDK and acquire its corresponding IoT
device from Amazon. In the end, we are left with 1
IoT device and its companion app, and we add it to our
DeviceDataset. We use the device (and its companion app)
as input to our AoT-Scout analysis (Section 5.3) in order
to analyze its DFU mechanism.

5.3. AoT-Scout Analysis

In this section, we describe our AoT-Scout manual
analysis. The goal of this analysis is to study the DFU
mechanisms of the companion apps and their IoT de-
vices. To this aim, the AoT-Scout analysis: (1) generates
fingerprints of companion app SDKs that are involved
in DFU mechanisms; (2) obtains firmware binaries and
knowledge about the DFU mechanisms for our Attack-
Tester analysis (Section 3.3).

In turn, to achieve these goals, we systematically
reverse engineer the DFU mechanisms of IoT Devices by
following these steps:

1 Locate app DFU code;

2 Trigger DFU process;

3 Obtain firmware binaries;

4 Identify SDKs;

5 Fingerprint SDKs.

These steps are illustrated in Figure 4 and explained
in detail in the following sections.

5.3.1. Locate app DFU code. In this step, we have
companion apps and IoT devices as inputs. We want to
locate the code involved in DFU in the companion apps.
We start the analysis by decompiling the companion apps
to get their Java source code and resource files. We use
jadx [3] to decompile the apps. We check the resource
files to see if any firmware binary is packaged within the
companion app. If a binary is found, we locate if and
where the binary is being accessed in the app code. To
achieve this goal, we perform string search on the Java
code using the firmware file name and location as the
search keyword. We also perform string search on the Java
code to locate code potentially involved in the DFU and
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APIs involved in communication with other devices. For
example, Android Bluetooth and network APIs. We use
search keywords including ‘firmware’, ‘DFU’, ‘update’,
and method names of the communication APIs.

After locating the aforementioned code, we dynami-
cally analyze that code and the network communication
of the companion app using a physical Android device.
To perform dynamic analysis, we first achieve superuser
privileges on the Android device we are using for the
analysis. We achieve superuser privileges by ‘rooting’ [32]
the Android device using an Android rooting app called
Magisk [81]. By having superuser privileges, we can use
the objection framework [64] and the HttpCanary [2]
app to bypass SSL Certificate pinning. Bypassing SSL
Certificate pinning allows us to analyze companion apps’
network traffic. We use the HttpCanary app for analyzing
the network traffic. To sniff the Bluetooth traffic, we
enable Bluetooth HCI Snoop log in the Android device
settings which enables us to capture Bluetooth traffic using
WireShark [68]. For dynamically analyzing code, we use
Frida [54]. Frida allows us to hook Android app methods
for performing dynamic instrumentation. By using Frida,
we can alter the companion app’s method implementa-
tions, print logs, analyze stack traces, and study how the
companion app communicates with its IoT Device and
backend server.

We monitor the network communication of the com-
panion app and check if any information about the
firmware, such as firmware version or firmware binary
URL, is being sent to or from the IoT Device and the
backend server. If we detect such firmware information,
we analyze decompiled app code to locate where the
firmware information is handled, requested, received, and
parsed. We locate the app code handling such firmware
information because processing the firmware information
is an essential part of the DFU mechanism, and our goal
is to locate the code involved in the DFU mechanism.

In most cases, the firmware information is also dis-
played in the app UI. We analyze the app UI to locate
the code that generates the UI displaying the firmware
information. We locate the relevant UI code by searching
the location of displayed strings and images in the app
code. Then, we trace back the UI code to the code location
where firmware information is handled.

At the end of this step, we have located the companion
app code involved in the DFU of the controlled device.

5.3.2. Triggering the DFU mechanism. After pinpoint-
ing the code that handles the DFU, we check if we
can trigger the DFU mechanism. To achieve this goal,
we exploit the fact that most companion apps compare
the current firmware version of the IoT Device and the
firmware version available in the firmware repository to
trigger the DFU process. Recall, from Section 2.3, that
by firmware repository we mean the location that hosts
the firmware binaries. This can be the companion app
itself or the backend server. The firmware repository is the
companion app itself if the firmware binary is packaged
within the app otherwise firmware repository is a backend
server, and the firmware binary is downloaded from the
backend server. The DFU process is triggered if a newer
firmware version is available in the firmware repository
than the current firmware version of the IoT device.

In case the IoT device is already on the latest firmware
version then the DFU process is not triggered. In this
scenario, we spoof the current firmware version by modi-
fying the firmware version number to a lower one, so that
the firmware repository believes that it needs to send a
newer version of the firmware to the IoT device. We force-
trigger the DFU process by spoofing the current firmware
version that is advertised by the IoT Device to the Android
app. We spoof version numbers by modifying app code
statically and/or injecting code dynamically into the app.
For static modification, we use Apktool [1] to disassemble
the app and repackage it after modification. For dynamic
code injection, we use Frida.

At the end of this step, we can successfully force-
trigger the DFU mechanism of the IoT Device.

5.3.3. Obtaining firmware binary. After successfully
triggering the DFU, the goal of the next step is to obtain
the firmware binary of the IoT device. As explained in
Section 2.3, triggering the DFU causes the companion app
to retrieve the firmware in one of the following two ways:

1) The companion app retrieves the firmware binary
packaged within the companion app’s APK.

2) The companion app requests the URL of the firmware
repository from the backend server.

For the first scenario, we locate the directory where the
firmware is stored using our knowledge about the DFU
process from the first step. For the second scenario,
we intercept the network traffic to the backend server
to obtain the packet containing the URL of firmware
repository. We retrieve the firmware binaries by using
the firmware repository URL. In some cases, we are
also able to access the older versions of firmware by
modifying the firmware version string in the URL
(e.g., changing http://firm.repo/ver_3.bin
into http://firm.repo/ver_2.bin). The older
versions of the firmware can be useful for performing
DownAttack in the Attack-Tester analysis.

At the end of this step, we have retrieved the current
version of the firmware binary of the IoT Device and for
some cases also the older versions of the firmware.

5.3.4. Identifying SDKs. In this step, our goal is to
identify whether the DFU process is handled within an
SDK in the companion apps of the IoT devices that are
categorized as vulnerable by the Attack-Tester analysis.
We need to identify SDKs in the companion apps, so we
can generate their fingerprints in the next step. To identify
the SDKs, we check if the class packages handling the
DFU are not part of the main app packages and standard
Android packages. We consider an identified SDK to be
affected by the Attack-Tester vulnerability category.

At the end of this step, we have SDKs categorized
into Attack-Tester vulnerability categories.

5.3.5. Fingerprinting SDKs. Our next goal is to finger-
print the identified vulnerable SDKs, so we can detect
their presence in an app for our analysis in Section 6. For
fingerprinting the SDKs, we formulate a regular expres-
sion that indicates the presence of that SDK in an app.

SafetyNot [36] has shown the usage of regular expres-
sions for fingerprinting Android APIs. We use a similar
approach to fingerprint the SDKs and formulate regular
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expressions for each SDK. However, Android code obfus-
cation can interfere with this step of our analysis. Code ob-
fuscation is used to prevent the reverse engineering of An-
droid apps. As shown by Dong et al. [26], most Android
apps use ProGuard [33] to obfuscate their code. ProGuard
is the most used obfuscation tool because it is the default
obfuscation tool for Android. ProGuard obfuscates app
code by changing class package names and method names.
While formulating the regular expression for SDKs, we
exploit the fact that hardcoded strings present in the app
code are not obfuscated by ProGuard and that, in apps
on the Google PlayStore, hardcoded strings are typically
not obfuscated (as experimentally shown by Dong et al.).
These regular expressions include hardcoded strings spe-
cific to the SDK vendor and string UUIDs involved in
communication with the IoT devices. For example, the
fingerprint: no./nordicsemi./android./dfu is a
prefix for Bluetooth communication involving DFU infor-
mation for IoT devices using a particular SDK. We refer
to these regular expressions as SDK-Fingerprints.

Since we can encounter false positives if the SDK-
Fingerprints are present in the non-DFU app code, we
only target expressions that are present in the DFU mech-
anism’s code of the companion apps. Using this approach
allows us to target specific functionalities of the SDKs.

IoTSpotter also detects the presence of SDKs in
Android apps. Specifically, IoTSpotter [42] utilizes Lib-
Scout [13], [24] to search for SDKs in Android apps.
LibScout is a tool for detecting third-party libraries in
Android apps. LibScout requires compiled jar files of the
third-party libraries in order to detect them. Since the
compiled jar files of all the SDKs from Section 5.3 are not
available, we cannot use LibScout for detecting the usage
of all SDKs. Furthermore, LibScout’s approach also suf-
fers from false positives as discussed in IoTSpotter [42].
We evaluate our approach against LibScout in Section 7.3.

At the end of this step, we have obtained SDK-
Fingerprints of the vulnerable companion app SDKs.

We apply our AoT-Scout and Attack-Tester analyses
to the DeviceDataset. From each dataset, we obtain a list
of SDK-Fingerprints and their corresponding vulnerability
category. We refer to this output as Recon-Results.

6. Large-Scale Analysis (App-Rumbling)

In this section, we present our large-scale analy-
sis (App-Rumbling) of Android apps on the Google Play-
Store. Since we cannot analyze and buy hundreds of
different IoT apps and their corresponding devices, we
exploit the assumption that the companion apps and their
devices using the same SDKs are affected by the same
bugs regarding the DFU process. We will show that this
assumption holds in Section 6.2.

Our goal is to estimate the number of apps using
vulnerable companion app SDKs. To this aim, we utilize
the Recon-Results1 obtained from our Reconnaissance
phase (Section 5.3) and the 37,783 apps as IoT companion
apps from the IoTSpotter dataset to perform this analysis.
Specifically, in the App-Rumbling analysis we perform the
following two steps:

1. Recon-Results contain the SDK-Fingerprints and their correspond-
ing vulnerability category.

Figure 5: Overview of the large-scale app analysis using
the App-Rumbling pipeline.

1) We use the SDK-Fingerprints to identify the vulner-
able companion app SDKs in the companion apps
from the IoTSpotter dataset (Section 6.1).

2) We use the AoT-Scout analysis to verify the pres-
ence of DFU vulnerabilities in the companion apps
detected in the previous step (Section 6.2).

The details of these steps of the App-Rumbling anal-
ysis are explained in the following subsections.

6.1. SDK-Fingerprint Detection

This section explains the core steps of the App-
Rumbling analysis that is assessing the prevalence of vul-
nerable companion app SDKs in the companion apps on
the Google PlayStore. To perform this step, we utilize the
Recon-Results1 obtained from the previous section (Sec-
tion 5.3). We analyze the 37,783 IoT companion apps
from the IoTSpotter dataset using our automated App-
Rumbling pipeline. Specifically for each app, we perform
the following steps, which are also illustrated in Figure 5:

1) We download the application APK from Andro-
Zoo [6].

2) We disassemble the APK into smali using Apk-
tool [1].

3) We search the smali files using the SDK-Fingerprints
obtained from the Recon-Results.

4) If we find matching SDK-Fingerprints, we assign
the app the corresponding vulnerability category ob-
tained from the Recon-Results.

As the output of this analysis, we obtain a list of
companion apps and their corresponding vulnerability cat-
egory. We will refer to this list as Rumbling-Results.

6.2. Vulnerability Verification

As the last step of our App-Rumbling analysis, we
verify the presence of DFU vulnerabilities in the com-
panion apps detected in the previous step (Section 6.1).
To this aim, for each SDK in Recon-Results, we ran-
domly sample one companion app from the Rumbling-
Results that uses the SDK. For each sampled app, we
acquire its corresponding IoT device using the criteria
mentioned in Section 5.1. If we cannot find an IoT device
that satisfies these criteria, we skip the app and sample
another app. After acquiring the IoT devices, we perform
the analysis of their DFU mechanisms using our AoT-
Scout analysis and finally verify the presence of DFU
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Device Name (Type) App Name SDK

Amazon Plug (Plug) Amazon Alexa Alexa (P)
ESICOO Smart Plug (Plug) Cloud Intelligence Aliyun [4]
Tracki 2022 (Tracker) Tracki GPS AltBeacon [7]
Daybetter LED (Light) Apollo Lighting Consmart (P)
Amazon Fire (Media Player) Amazon Fire TV Fling [9]
Govee H5075 (Env. Sensor) Govee Home Govee (P)
Hatch Mini (Speaker) Hatch Sleep HatchBaby (P)
Philips A19 (Light) Philips Hue Hue/Signify [52]/(P)
Tenmiro LED (Light) KeepSmile Inuker [25]
NIIMBOT D11 (Printer) NIIMBOT JcPrinter (P)
LandAirSea 54 (Tracker) SilverCloud LandAirSea (P)
ilumi LED A19 (Light) New ilumi Nordic [61]
SwitchBot Switch (Switch) SwitchBot NordicSecure [61]
NUT Key Finder (Tracker) Findthing NordicSecure [61]
Apple AirTag (Tracker) Tracker Detect OBF (P)
Blurams Dome (Camera) blurams OBF (P)
SYLVANIA LED (Light) SYLVANIA Telink [70]
Tile Mate 2022 (Tracker) Tile Tile (P)
Kasa KP115 (Plug) Kasa Smart Tplinkra (P)
Wyze v2 (Camera) Wyze Tutk [73]
Aoycocr Smart Plug (Plug) Popotan Tuya [38]
GoSund Power Strip (Switch) Gosund Tuya [38]
Wemo WSP080 (Plug) Wemo Wemo [77]

TABLE 1: Overview of the analyzed devices and apps.
(P) = Proprietary SDKs. OBF = Obfuscated.

vulnerability using our Attack-Tester analysis. We include
the IoT devices (and their companion apps) acquired in
this step in our DeviceDataset.

7. Experimental Results

We evaluate and discuss the results of our study. First,
we discuss the Recon-Results obtained from the IoT DFU
security reconnaissance phase (Section 7.1). Then, we
focus on the Rumbling-Results obtained from the large-
scale App-Rumbling phase (Section 7.2).

The results from the first phase indicate the presence
of vulnerable DFU mechanisms among the Bestseller IoT
devices on Amazon and popular companion app SDKs.
Specifically, there are 61 potentially vulnerable IoT de-
vices among the top 50 Bestsellers from the 16 categories
mentioned in Section 5.1 and 6 vulnerable companion
app SDKs. The results from the second phase reveal that
vulnerable SDKs are being widely used in the companion
apps on the Google PlayStore. Specifically, there are
1,356 apps that are using at least one of the vulnerable
companion app SDKs.

In summary, we analyzed 23 devices (with their cor-
responding companion apps) and identified 6 SDKs that
are vulnerable to firmware attacks and 1,356 companion
apps that are using these vulnerable SDKs. A summarized
list of the 23 analyzed devices/apps devices is shown in
Table 1 (Table 3 in Appendix B provides more details
about these devices). We verified the firmware attacks us-
ing our Attack-Tester analysis on 8 devices from Amazon.
Furthermore, we also identified 61 Bestseller IoT devices
from Amazon IoT devices that are potentially vulnerable
to firmware attacks.

7.1. Reconnaissance Results

In this section, we discuss the results of our DFU
security analysis of DeviceDataset, which contains the IoT
Devices and their corresponding companion apps gathered
from Amazon and the IoTSpotter dataset, respectively.

Data Collection For compiling the data from Amazon
Bestsellers, we sampled the 19 IoT devices and their 19
corresponding companion apps. These 19 devices were
chosen after filtering out devices that did not satisfy
our selection criteria. Filtered-out devices include non-
IoT devices and non-bare metal devices like smartwatches
and voice assistants. We also filtered out devices that did
not communicate with companion apps such as cameras,
speakers, and lighting products.

To obtain data from IoTSpotter, we analyzed the com-
panion apps that were using the 11 top-ranked SDKs as
described in Section 5.2. We manually investigated each
SDK and found 3 SDKs that were involved in DFU mech-
anisms (IoTSpotter-SDKs). The remaining 9 SDKs were
not involved in the DFU mechanisms. For the IoTSpotter-
SDKs, we sampled companion apps that were using the
SDK and selected one app for which we can acquire its
corresponding IoT device that meets our selection criteria
as described in Section 5.2. After removing duplicate
SDKs found in Amazon Bestsellers’ companion apps, we
sampled 1 companion app and its IoT device.

AoT-Scout Analysis We analyzed the devices/apps from
DeviceDataset using our AoT-Scout and Attack-Tester
analyses to obtain the Recon-Results. Recon-Results con-
tains the list of companion app SDKs and their corre-
sponding vulnerability category. We found 6 companion
app SDKs that are vulnerable to firmware attacks. Specif-
ically, the 6 SDKs are Nordic-SDK [61], Tuya-SDK [38],
JcPrinter-SDK, NordicSecure-SDK, Telink-SDK [70], and
Wemo-SDK [77]. The specific details of the SDKs are
discussed as case studies in Section 7.4 and additional
case studies are discussed in Appendix A.

Attack-Tester Analysis We tested the 6 SDKs using our
Attack-Tester analysis (Section 3.3) to categorize SDKs
by their DFU vulnerabilities. We identified that 3 SDKs
are vulnerable to ModAttack (Firmware Modification
Attack): Nordic-SDK, Tuya-SDK, and JcPrinter-SDK. The
IoT devices on which we can perform ModAttack are a
smart switch, a smart plug, and a label printer for the
Nordic-SDK, Tuya-SDK, and JcPrinter-SDK, respectively.
As a consequence of ModAttack, these 3 SDKs are also
vulnerable to DownAttack and BrickAttack. Additionally,
we identified 1 SDK (Telink-SDK) that is exclusively
vulnerable to DownAttack by testing DownAttack on a
smart bulb. Finally, we identified 2 SDKs (Wemo-SDK
and NordicSecure-SDK) that are exclusively vulnerable to
BrickAttack by testing BrickAttack on a smart plug and
a smart tracker.

Throughout our attack tests, we focus on manipu-
lating companion apps as a way of demonstrating the
potential DFU vulnerabilities of IoT devices. However,
it is important to note that these attacks could also be
achieved through communication manipulation. Specifi-
cally, by manipulating the communication protocols that
are used to connect IoT devices, an attacker can potentially
send malicious firmware directly to the IoT device.

We gained interesting insights after our analysis of
the DeviceDataset. Most IoT devices utilizing proprietary
SDKs use obfuscation techniques to prevent reverse en-
gineering and security mechanisms in place to prevent
reverse engineering. On the contrary, most IoT devices
utilizing open-source SDKs do not utilize such compre-
hensive defensive mechanisms in place that can prevent
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Figure 6: Logarithmic-scaled distribution of Rumbling-
Results showing the usage of potentially vulnerable SDKs
in the 1,356 companion apps from Google PlayStore. (N-
Secure is the NordicSecure-SDK.)
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Figure 7: Venn diagram (not in scale) showing the number
of companion apps that use vulnerable SDKs for Brick-
Attack, ModAttack, and DownAttack.

firmware attacks. However, as shown by our results the
proprietary SDKs are vulnerable to firmware attacks. We
also found that the IoTSpotter data covers mostly open-
sourced SDKs, but it misses many proprietary SDKs used
by the popular devices in the Amazon Bestseller lists.

To summarize, in the Reconnaissance phase of our
study, we manually analyzed 20 devices (with their com-
panion apps) from the DeviceDataset, and we identified 6
vulnerable SDKs. We fingerprinted each of the vulnerable
SDKs and organized them into a comprehensive list that
we refer to as Recon-Results. The additional 3 devices
in the DeviceDataset will be used for verification (see
Section 6.2).

7.2. App-Rumbling Results

This section discusses the results of the large-scale
analysis of apps on the Google PlayStore using our App-
Rumbling pipeline from Section 6. We used Recon-Results
as the input to the App-Rumbling pipeline to search for
vulnerable SDK fingerprints in the 37,783 companion
apps list from the IoTSpotter dataset to obtain Rumbling-
Results. Rumbling-Results comprise the 6 potentially vul-
nerable SDKs and the companion apps that use those
SDKs. We identified 1,356 companion apps on the
Google PlayStore that use at least one of the 6 vulnerable
SDKs. The Rumbling-Results are shown in Figure 6.

SDK-Fingerprint Detection As can be seen in Figure 6,
Nordic-SDK and Tuya-SDK are used widely among the
companion apps. NordicSecure-SDK is also used by a
significant number of companion apps. The reason for
their wide usage is that these three SDKs are open-source

and developed by the vendors of the SoCs (System on
Chip) used in IoT devices. The IoT device vendors prefer
to use the SDKs developed by the SoC vendors because it
is feasible to integrate the SDKs with their IoT devices and
companion apps. JcPrinter-SDK is the only proprietary
SDK that is vulnerable to firmware modification attacks.
Since it is a proprietary SDK, it is not available to the
public and hence it is not used by many companion apps.
However, JcPrinter-SDK still has a high impact since it
is used by popular Bestseller IoT Devices.

Wemo-SDK is vulnerable to device bricking attack.
Wemo-SDK’s DFU mechanism involves sending signed
and encrypted firmware to the IoT devices. However, if
a firmware image with an invalid signature is sent, this
results in a device bricking attack, as the IoT devices using
the Wemo-SDK do not present a recovery strategy. Wemo-
SDK was open source in the past, however, the developer
decommissioned [39] the SDK, which explains its low
usage. Nevertheless, Wemo-SDK still has a high impact
as it is used by Bestseller IoT Devices.

Telink-SDK is vulnerable to firmware downgrade at-
tack. Telink-SDK is open source, and the company is also
an SoC provider, however, Tuya-SDK provides wrappers
around the Telink-SDK. Since Tuya-SDK is widely used,
this leads to lower usage detection of only Telink-SDK.
We formulate our SDK-Fingerprints to detect Telink-SDK
only if the Tuya-SDK is not used in the app.

Note that the sum of apps in Figure 6 is greater than
1,356 because some apps use multiple SDKs. Specifically,
we found 933 apps that use more than one SDK. Apps
using more than one SDK are designed to control different
IoT devices from different vendors.

Impact of Rumbling-Results We show the distribu-
tion of firmware attacks in the companion apps from
the Rumbling-Results in Figure 7. There are 1,355 apps
vulnerable to DownAttack, 1,347 apps vulnerable to Mo-
dAttack, and 1,348 apps vulnerable to BrickAttack. As
discussed in Section 3.3, vulnerabilities to ModAttack also
result in vulnerabilities to DownAttack and BrickAttack.
As shown in Figure 7, most DownAttacks and BrickAt-
tacks are caused by the fact that most companion apps are
vulnerable to ModAttack.

From the numbers in Figure 7, we excluded 3 apps
that are using only NordicSecure-SDK. In fact, during
the responsible disclosure process (see Section 7.5), by
communicating with the Nordic Semiconductor company,
we discovered that, while the devices in our dataset using
NordicSecure-SDK are vulnerable, it is in theory possible
to use this SDK safely. We provide more details about
this SDK in Section 7.4.

To extend our evaluation of the impact of Rumbling-
Results, we identify which companion apps control the
top 50 Amazon Bestsellers devices from the 16 categories
mentioned in Section 5.1. We found 24 companion apps
from the Rumbling-Results that control 61 potentially
vulnerable IoT devices among the top 50 Amazon Best-
sellers. These IoT devices include smart lighting, speakers,
doorbells, cameras, environment sensors, and trackers.

We further extend the scope of our evaluation by gath-
ering the number of downloads of apps in the Rumbling-
Results from Google PlayStore. Figure 8 shows the dis-
tribution of the number of downloads of the affected
apps. The apps in the top download categories control IoT
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Figure 8: Distribution of number of app downloads of
the 1111 companion apps from the Rumbling-Results that
are potentially affected by firmware update vulnerabilities.
The chart shows downloads of 1111 apps since for 245
apps download information was not available.

devices such as smart home products and fitness bands.

Vulnerability Verification As mentioned in Section 6.2,
for each vulnerable SDK, we verified the vulnerability by
performing the firmware attack on one IoT device and its
companion app sampled from the Rumbling-Results. We
verified the vulnerabilities for Nordic-SDK, NordicSecure-
SDK, and Tuya-SDK on one additional IoT device and
its companion app. Hence, we performed vulnerability
verification on 3 devices (and their apps). For JcPrinter-
SDK, Wemo-SDK, and Telink-SDK, we were unable to
acquire an additional IoT device that satisfied our selection
criteria since these SDKs are not widely used.

7.3. Results Validation

We compared our SDK-Fingerprints detection against
the result of LibScout as used by IoTSpotter for each
SDK present in both the IoTSpotter dataset and our App-
Rumbling results. Three SDKs that are present in both
datasets: Nordic-SDK, Tuya-SDK, and Telink-SDK. For
each of these SDKs, we took the difference between the
set of apps detected by our App-Rumbling and the set
of apps detected by LibScout in the IoTSpotter dataset.
Specifically, we were looking for apps that were de-
tected by our App-Rumbling analysis pipeline but not
by LibScout. We will refer to these apps as Evaluation-
AppSet. Essentially, the apps in Evaluation-AppSet are
either false negatives of LibScout or true positives of
our App-Rumbling analysis. We manually analyzed the
Evaluation-AppSet and confirmed that the apps were in-
deed using the SDKs. Specifically, our App-Rumbling
pipeline detected 4 Tuya-SDK and 6 Telink-SDK apps
that were not detected by LibScout. For Nordic-SDK, we
sampled 5 apps out of 600 apps that were detected by our
App-Rumbling pipeline but not detected by LibScout. In
summary, our evaluation shows a 100% true positive rate
for all the apps in Evaluation-AppSet, demonstrating that
our approach is better suited for the detection of libraries
handling DFU than the LibScout approach.

7.4. Case Studies

In this section, we discuss the details of the DFU
mechanisms of four identified vulnerable SDKs. We pro-
vide an additional case study in Appendix A.

Nordic and Nordic-Secure. In this case study, we dis-
cuss the Nordic-SDK [61] that we identify during our
analysis of DeviceDataset in Section 5. Nordic-SDK is
developed by Nordic Semiconductor [60] SoC vendor.
During our analysis, we discovered two variants of the
SDKs: one without firmware signature verification and
one with firmware signature verification. We refer to the
one without verification as Nordic-SDK and to the other
as NordicSecure-SDK. Using our Attack-Tester analysis,
we verified that Nordic-SDK is vulnerable to firmware
modification attack since the SDK has no firmware sig-
nature verification. However, NordicSecure-SDK is only
vulnerable if the SDK is misconfigured. We generated
SDK-Fingerprints for both SDK variants. Furthermore, we
ensure that each fingerprint only indicates the presence of
its specific variant and does not trigger the detection of
the other variant. After our App-Rumbling analysis, we
detected Nordic-SDK in 1,128 apps and NordicSecure-
SDK in 936 apps.

We identified the NordicSecure-SDK being used in
the SwitchBot [79] companion app. The Bestseller de-
vice we analyzed is the ‘SwitchBot Smart Switch Button
Pusher’ [66]. The SwitchBot Switch uses Nordic Semi-
conductor’s nRF52 Series SoC. This SoC series supports
communication via Bluetooth. After reverse engineering
the companion app, we discovered that the firmware is
packaged within the APK. When performing DFU, the
firmware is sent to the SwitchBot Switch using Bluetooth.
By manually analyzing the firmware, we found that the
firmware is in compressed zip format, and it includes the
main firmware binary, a .dat file, and a .json file containing
metadata about the firmware.

To test the firmware modification attack, we modified
the firmware binary that is packaged in the APK and trans-
ferred it to the SwitchBot Switch. The SwitchBot Switch
rejected the modified firmware. However, after extensively
analyzing the app and researching the SDK firmware for-
mats, we discovered that specific bytes in the .dat file were
the CRC of the firmware. We reverse engineered the CRC
algorithm by analyzing firmware packaging tools from
Nordic Semiconductor, generated the new CRC for the
modified firmware, and packaged the modified firmware
using Nordic Semiconductor’s firmware packaging tool.
The SwitchBot Switch accepted the modified firmware
with the updated CRC. We confirmed the transfer of the
modified firmware by ensuring the firmware version that
the SwitchBot Switch is running after the DFU is the
same as the firmware version of the modified firmware.
The current firmware version was confirmed using the
firmware version displayed in the SwitchBot App and the
firmware version communicated by the SwitchBot Switch
via Bluetooth.

For verification of NordicSecure-SDK vulnerability, as
mentioned in Section 6.2, we sampled the Findthing com-
panion app. We analyzed and tested the DFU mechanism
of the Findthing app and its IoT device and realized that
the Findthing app uses firmware signature verification.
In this case, the signature is included in the .dat file in
the compressed zip file. We tested the tracking device for
firmware modification attack by modifying the firmware
binary and sending it to the IoT device. Our modified
binary made the tracking device inoperable (bricked).
Specifically, it stopped interacting with the companion
app and did not respond to any hardware reset commands
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using the buttons on the tracking device. We confirmed
this device bricking attack by performing the attack on
two additional similar tracking devices. We were not able
to perform the firmware downgrade attack on this device
because we were not able to retrieve signed firmware
having a lower version number.

For Nordic-SDK, without the signature verification,
the IoT device is vulnerable to ModAttack. We confirmed
the ModAttack on the ‘ilumi smart bulb’ using the ‘New
ilumi’ companion app [37]. It should be noted that Nordic-
SDK is vulnerable to ModAttack by design and there is
no defensive mechanism implemented in Nordic-SDK that
can prevent this attack.

As part of our Coordinated Vulnerability Disclosure,
we reported this issue to Nordic Semiconductor. We re-
ceived a development kit [63] from Nordic Semiconductor
for testing and verifying our findings. For NordicSecure-
SDK, we discovered that it is vulnerable to device bricking
attacks and firmware modification attacks only if the SDK
is misconfigured. Specifically, if the Nordic Semiconduc-
tor’s firmware packaging tool is misconfigured, it can
package firmware without a signature, which makes the
firmware vulnerable to modification attacks. This mis-
configuration is what makes, for instance, the SwitchBot
Switch vulnerable to ModAttack.

Regarding device bricking attacks, we discovered that
they are possible when the IoT device receives incorrectly
signed firmware and there is no mechanism to revert to
the old firmware. Specifically, when the IoT device detects
an incorrect firmware signature, it discards the incorrectly
signed firmware and waits for the companion app to send
a correctly signed firmware. While in this ‘waiting’ state,
the IoT device cannot be operated normally by the end
user. If no correctly signed firmware is sent to the IoT
device, it will remain inoperable (bricked) indefinitely.
This issue happens, for instance, in the Findthing tracking
device in our dataset. Specifically, after we send the incor-
rectly signed firmware to the tracking device, it discards
the firmware and enters the ‘waiting’ state.

After further discussion with Nordic Semiconductor,
we discovered that there are two mechanisms to recover
from the ‘waiting’ state. The first mechanism is to send
the correctly signed firmware to the tracking device us-
ing the companion app. However, this mechanism is not
available to the end user in the Findthing tracker’s com-
panion app. The second mechanism is only available if
the IoT device supports dual-bank firmware updates [62].
Essentially, dual-bank firmware updates allow the IoT
device to have two firmware images. When the IoT device
receives a firmware update, it first writes the firmware
to the secondary bank for verification. If the firmware is
correctly signed, the IoT device overwrites the primary
bank firmware and runs the new firmware. If the firmware
is incorrectly signed, the IoT device discards the firmware
and continues to run the firmware from the primary
bank. We confirmed this behavior of NordicSecure-SDK
by performing the BrickAttack on the development kit
that we received from Nordic Semiconductor. However, if
the IoT device does not have enough storage to support
dual-bank firmware updates, it will overwrite the primary
bank firmware with the incorrectly signed firmware. In
this case, the IoT device will remain inoperable (bricked)
indefinitely until the companion app sends the correctly
signed firmware. The tracker in our dataset does not

support dual-bank firmware updates and does not have
a mechanism to recover from the ‘waiting’ state so it
is vulnerable to BrickAttack. However, the tracker can
be recovered from the ‘waiting’ state by sending the
correctly signed firmware using Nordic Semiconductor’s
‘nRF Connect for Mobile’ app [11].

In summary, while, in theory, it is possible to use the
NordicSecure-SDK in a way in which no attack against
DFU is possible, all the devices in our dataset using
NordicSecure-SDK use it incorrectly, and, for this reason,
they are exposed to DFU attacks. On the other hand,
Nordic-SDK is vulnerable to ModAttack in all configu-
rations.

Tuya. Tuya [75] is a smart device vendor that provides
both ready-to-use smart devices and an SDK to control the
devices. These devices mostly communicate via Wi-Fi and
use the Espressif Systems’ ESP8266 SoC. We identified
Tuya-SDK during the analysis of DeviceDataset in the
Popotan companion app for the Aoycocr Smart Plug. We
discovered a tool called tuya-convert [22] that is used
to modify firmware of the devices using the Tuya-SDK.
Tuya-convert relies on exploiting the MQTT broker as
discussed in Section 2. When the IoT device is registering
to the MQTT broker, tuya-convert impersonates as the
broker and connects to the IoT device. After a successful
connection, the tuya-convert’s MQTT broker triggers the
DFU and sends the modified firmware. Since the modi-
fied firmware is successfully flashed on the IoT device,
the Tuya-SDK is vulnerable to ModAttack. We verified
the firmware modification vulnerability on the GoSund
companion app that controls a smart switch.

Telink. Telink [70] is an SoC vendor that provides SDKs
for Android apps and is the developer of Telink-SDK.
We identified Telink-SDK in the SYLVANIA Smart Home
companion app from the DeviceDataset. We analyzed the
DFU mechanism of the SYLVANIA app with the SYLVA-
NIA SMART+ Bluetooth Soft White BR30 LED BULB.
The SYLVANIA Bulb communicates with the SYLVANIA
app using Bluetooth. The firmware binaries used by the
SYLVANIA Bulb are encrypted and signed. We tested the
firmware modification attack on the SYLVANIA Bulb, but
the modified firmware was rejected by the device. In fact,
the SYLVANIA Bulb reverted to the original firmware
after signature verification of the firmware failed.

We retrieved the older versions of the firmware from
the SYLVANIA app’s backend server by tweaking the
URL of the firmware update binary as mentioned in
Section 5.3. The older firmware binaries we retrieved were
already signed and encrypted by the backend server. We
tested the firmware downgrade attack on the SYLVANIA
Bulb using the older firmware binaries. We successfully
downgraded the SYLVANIA Bulb to the older firmware
version. We confirmed the downgrade attack by verifying
the decrement in the version number of the firmware
currently running on the SYLVANIA Bulb. While the
Telink-SDK is vulnerable to the DownAttack, we found
that it is not affected by ModAttack and BrickAttack. We
were not able to find an additional device for verification
of the DownAttack on Telink-SDK.

7.5. Coordinated Vulnerability Disclosure

Following the ethical guidelines of our community, we
initiated the coordinated vulnerability disclosure process.
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We contacted the vendors of the affected IoT devices to
the best of our ability. At the time of this writing, we have
contacted 9 vendors. We received acknowledgment of the
presence of vulnerabilities from SwitchBot. As discussed
in Section 7.4, we contacted Nordic-SDK’s vendor (Nordic
Semiconductor) and performed further investigation of the
vulnerabilities on their development kit [63]. We discov-
ered that NordicSecure-SDK is vulnerable to firmware
attacks only if the SDK is misconfigured and Nordic-SDK
is vulnerable to ModAttacks in all configurations. This
investigation is discussed in detail in Section 7.4.

For Wemo-SDK, the vulnerability was triaged, by a
crowdsourced security platform (BugCrowd [21]), as crit-
ical. However, Wemo-SDK’s vendor (Belkin) decided to
stop providing updates for the affected device since they
have released a newer version of the affected device. We
note that, however, the affected device was an Amazon
Bestseller in April 2022, and, at the time of this writing
(February 2023), it can still be purchased on Amazon.

8. Limitations and Future Work

The following sections discuss the limitations of the
two main analyses performed in this paper.

Reconnaissance. Our first study (Section 5) involves the
analysis of IoT devices using only Bluetooth or Wi-Fi.
However, there are other ways for IoT devices to commu-
nicate with the companion app besides using Bluetooth
or Wi-Fi. Two other popular methods of communication
are by using ZigBee [5] or Z-Wave [86]. We do not
include IoT devices using these communication methods
in our study because they do not meet our device selection
criteria (Section 5.1). As mentioned in Section 2.1, we
exclude IoT Devices with certain characteristics from
our study. Specifically, we exclude IoT devices that are
not bare metal and IoT devices that only communicate
with non-Android relay devices. Furthermore, we do not
analyze devices that cost more than $50, as explained in
Section 5.1. Limiting our analysis to the devices on the
lower side of the cost spectrum could have potentially
biased our results. While, in our investigation, we did not
find any indication of this aspect, it is reasonable to as-
sume that more expensive devices might be implemented
following higher security standards. For this reason, a
future direction is to evaluate whether the cost, as well as
other factors (e.g., the targeted customers), are correlated
with the overall security of an IoT device.

There are certain companion apps that we cannot
reverse engineer properly. One reason for this issue is
their usage of native code. Since our analysis methodology
involves analyzing the Java code of apps, we consider
apps relying on native code out of scope for this paper.
This restriction further limits the range of IoT devices our
analysis covers. Consequently, there are companion app
SDKs that remain unevaluated by our analyses.

The DFU vulnerabilities we find by applying Attack-
Tester are limited by our capability to manually reverse
engineer the DFU mechanisms of the IoT devices using
the AoT-Scout analysis. Although by using our methodol-
ogy we can systematically study the DFU mechanisms, it
is still possible that some of the devices that we are not
able to attack have vulnerable DFU mechanisms. These
false negatives can be eliminated by putting more effort
into manual reverse engineering.

Large-Scale App Analysis. In our large-scale analysis,
we try to the best of our ability to give a generalized
picture of the IoT DFU mechanisms on the Google Play-
Store. To the best of our ability, we try to formulate SDK-
Fingerprints that counter obfuscation for detecting SDKs
as mentioned in Section 5.3. Still, there can be apps that
employ obfuscation techniques that are more sophisticated
than the default Android ProGuard obfuscation, discussed
in Section 5.3. The usage of such obfuscation techniques
can cause SDK-Fingerprints to not be detected and result
in false negatives in the Rumbling-Results. However, as
previous studies [26] have shown, the usage of such ob-
fuscation is almost non-existent on the Google PlayStore.

One cause of false positives in the Rumbling-Results
is the presence of apps that use vulnerable SDKs but
never actually execute that code. Our analysis only detects
the presence of SDKs. However, as shown by our results
in Section 7.2, the presence of an IoT SDK in an IoT
companion app is a good indicator that the IoT SDK
code is executed. Additionally, we do not analyze the
bootloader of the IoT devices. For this reason, IoT devices
that use a bootloader that is not part of the SDK to
verify the updated firmware might lead to false positives.
However, in our dataset, we have not encountered devices
with this behavior. Another factor for false positives is
when the companion apps implement their own security
mechanisms, such as performing signature verification
of the downloaded firmware, on top of the SDKs, or
when they modify the SDKs in a way to secure IoT
devices against the firmware attacks we identified. How-
ever, no such modifications are present in the apps that
we manually analyzed, and such modifications would be
overwritten every time an SDK is updated.

Future Work. Some steps of our analysis require manual
effort. As future work, manual analysis can be automated.
For example, the retrieval of firmware binaries can be
automated by statically extracting URLs to the firmware
repositories from the APKs and detecting and extracting
binaries packaged within the APKs. We tried existing
tools [53] for extracting URLs but they were not useful for
our purpose. The tools failed to work on modern Android
apps and cannot extract authentication tokens required
to access URLs. The DFU code identification and SDK-
Fingerprints generation can be automated by performing
static analysis on the companion app code.

9. Related Works

IoT Device Firmware Updates. Prior works have in-
vestigated vulnerabilities in the DFU mechanisms of IoT
devices. However, most of the prior works only focus
on a single device or require physical access to the IoT
device for flashing the firmware. Cui et al. [23] find
vulnerabilities in the firmware update mechanisms of HP
printers. They send modified firmware to the HP printers
by sending specific commands to the printers to trigger the
firmware update process. The methodology of Cui et al.
differs from ours because they do not leverage companion
apps for their attacks and only focus on HP printers.

Hernandez et al. [34] reverse engineered Google’s
Nest thermostat and found vulnerabilities in the firmware
update verification. The attack of Hernandez et al. requires
knowledge of the IoT device hardware and physical access
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to the IoT device hardware via USB or UART port. Their
attack intervenes in the boot process and injects modified
firmware before the firmware verification is performed.
Pen Test Partners [47] and Positive Technologies [69] in-
vestigate DFU vulnerabilities of IoT devices. Both works
focus on specific IoT devices, while our approach aims
to analyze IoT devices at a large scale. The authors
conclude that having physical access to the IoT device
can allow attackers to upload modified firmware. Their
attacks differ from our approach because we do not require
a physical connection to the hardware of the IoT de-
vices. Andy et al. [10] discuss the possibility of injecting
modified firmware into IoT devices that use the MQTT
protocol. Their attack involves changing the URL of the
firmware sent to the IoT Device. Ling et al. [46] perform
a firmware modification attack on a smart plug using the
device’s Windows update tool.

IoT App Analysis. Prior works [18], [35], [48], [50], [59],
[82] performed security analyses of IoT companion apps.
IoTSpotter [42] analyzes the security of IoT companion
apps by detecting the presence of CVEs in the SDKs used
by the companion apps. Our study differs from IoTSpotter
because none of the CVEs detected by IoTSpotter are
related to DFU vulnerabilities or directly affect the se-
curity of the IoT devices. Furthermore, our study involves
analyzing both the companion apps and the IoT devices.

Chatzoglou et al. [17] use existing tools and frame-
works to analyze the security of IoT companion apps.
Their study finds existing CWEs, third-party trackers
and some other known issues in the companion apps.
Casagrande et al. [15] reverse engineer communication
protocols of Xiaomi fitness trackers by leveraging their
companion apps. The authors find attacks involving man-
in-the-middle, companion app impersonation, and eaves-
dropping on the communication between the compan-
ion app and the fitness trackers. Casagrande et al. also
find methods to trigger the DFU but do not attempt to
downgrade or inject modified firmware. Wang et al. [76]
generate fingerprints of companion apps of vulnerable IoT
devices. The authors utilize the fingerprints to find similar
IoT apps and other potentially vulnerable IoT devices.
This work differs from ours because the authors only in-
vestigate known CVEs that do not include the DFU attacks
in our work. Neupane et al. [51] utilize existing tools to
perform a security analysis of IoT apps. Neupane et al.
find privacy policy violations and vulnerabilities such as
TLS misconfigurations. Zhang et al. [87] analyze IoT apps
for detecting vulnerabilities in the process of generating
shared credentials for communication between the IoT
device and the companion app. All these works do not
focus on the DFU mechanisms of IoT devices, but explore
other aspects related to apps’ security.

Finally, other works study the security of Android
apps’ SDKs. Thomas et al. [72] explore the JavaScript-
to-Java interface vulnerability in advertisement SDKs.
Backes et al. [13] analyze Android apps to detect vul-
nerabilities caused by API misuse in third-party libraries.
Derr et al. [24] detect vulnerabilities in Android apps due
to outdated third-party libraries. Feal et al. [29] analyze
the privacy violations caused by third-party libraries in
Android apps. The methodologies of these works cannot
directly be applied to our study as they do not consider the
interplay between companion apps and the corresponding

devices. On the contrary, we designed dedicated analyses
to force the execution of the DFU mechanism.

IoT Device Firmware. Prior works investigated vulner-
abilities in the firmware of IoT devices. Chapman [16]
reverse engineers the firmware of a smart bulb to decrypt
Wi-Fi credentials and inject network packets into the
smart bulb. Stroetmann et al. [65] reverse engineer Kasa
Smart plug’s firmware and identify vulnerabilities includ-
ing unauthenticated Wi-Fi commands sent to the device
and improper TLS certificate verification. Wen et al. [78]
present a static firmware analysis tool called FirmXRay,
which identifies vulnerabilities in the Bluetooth pairing of
IoT devices. Finally, other works [19], [56] analyze IoT
apps to generate inputs for fuzzing the firmware of their
corresponding IoT devices. In our study, we do not focus
specifically on reverse engineering firmware. Conversely,
we study companion apps to identify issues in the DFU
mechanisms of IoT devices.

10. Conclusion

In this paper, we analyzed the security of the firmware
update mechanisms adopted by IoT devices. Using our
AoT-Scout and Attack-Tester analyses, we reverse engi-
neered the firmware update mechanisms of Bestseller IoT
devices and top-ranked companion apps. Specifically, we
tested 23 companion apps and their corresponding devices
against three categories of firmware update attacks.

Then, to scale our security analysis to thousands of
apps, we identified specific SDKs used by companion apps
to implement the firmware update process. Specifically,
we found 6 SDKs that, when used to implement the DFU
functionality, lead to insecure updates. For these SDKs,
we first confirmed our findings on 8 real-world devices
that adopt them. Then, we fingerprinted vulnerable SDKs
and used our fingerprints to detect their presence on a
large dataset of companion apps from the Google Play
Store. Our results indicate the usage of vulnerable SDKs
by 1,356 apps and 61 popular devices. Overall, our work
highlights that a critical feature such as DFU is often not
securely implemented by popular IoT devices and SDKs.

Acknowledgements

We are grateful to our reviewers for their valuable
feedback. We are also grateful to companies Nordic Semi-
conductor and SwitchBot U.S. for providing support and
working with us. We would also like to thank Everett
Johnson for helping us with the manual analysis. This
work has been supported by the INTERSECT project,
Grant No. NWA 1160.18.301, funded by the Netherlands
Organisation for Scientific Research (NWO), and by the
Dutch Ministry of Economic Affairs and Climate Policy
(EZK) through the AVR project ‘FirmPatch’. This work
was also supported in part by DARPA under contract
number N6600120C4031, and by the Google’s ASPIRE
Award. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of DARPA, the U.S. Government, or Google.

1060



References

[1] Apktool. https://github.com/iBotPeaches/Apktool, 2022.

[2] Httpcanary. https://github.com/MegatronKing/HttpCanary, 2022.

[3] Jadx. https://github.com/skylot/jadx, 2022.

[4] Aliyun.com. Alibaba cloud iot. https://iot.aliyun.com/, 2023.

[5] Connectivity Standards Alliance. Zigbee. https://csa-iot.org/all-
solutions/zigbee/, 2022.
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A. Additional Case Study: JcPrinter

We identified JcPrinter-SDK in the NIIMBOT com-
panion app from the DeviceDataset. We analyzed the
NIIMBOT D11 Label Printer that is controlled by the
NIIMBOT app. After analyzing the NIIMBOT app using
our AoT-Scout analysis, we discovered that JcPrinter-
SDK is handling Bluetooth communication with the La-
bel Printer. After connecting to the companion app, the
Label Printer sends the current firmware version running
on the Label Printer along with other information about
the device to the NIIMBOT app. The NIIMBOT app
forwards this information to the app’s backend server. The
backend server responds with information in accordance
with the information sent by the NIIMBOT app. If the
device is on the latest version, the backend server provides
no information about the updated firmware binary. The
Label Printer we analyzed is on the latest version, so we
got no information about the firmware binary from the
backend server. To trigger the DFU process, we spoofed
the firmware version sent by the Label Printer to the
NIIMBOT app. We spoofed the firmware version number
by dynamically injecting code in the companion app using
Frida and advertising a lower firmware version number
lower than the actual firmware version number. We were
able to trigger the DFU mechanism after firmware ver-
sion spoofing. After triggering the DFU mechanism, we
retrieved the URL of the updated firmware binary from
the backend server. We downloaded the firmware binary
using the URL provided by the backend server.

After acquiring the firmware binary, our goal was
to test the firmware modification attack by sending a
modified firmware binary to the Label Printer. To this aim,
we uploaded the modified firmware binary to our server.
Then we triggered the DFU process again by spoofing
the firmware version number. When the NIIMBOT app’s
backend server responded with the updated binaries URL,
we intercepted the backend server’s response and replaced
the URL of the updated firmware binary with the URL of
our server that has the modified firmware binary. Now the
NIIMBOT app downloaded the modified firmware from
our server.

After the NIIMBOT app downloaded our modified
binary, JcPrinter-SDK computed the CRC of the binary
and verified the integrity of the binary. The NIIMBOT app
performed CRC verification on the binary and stopped
the DFU process after it detected the modification. We
bypassed this CRC verification by dynamically injecting
code into the NIIMBOT app using Frida. After bypass-
ing the CRC verification, we were able to complete the
DFU process and successfully transferred the modified

firmware to the Label Printer. We confirmed that the
modified firmware was sent to the Label Printer by sniffing
the Bluetooth traffic and verifying that the bytes sent
to the Label Printer matched the bytes of our modified
firmware. Finally, to confirm the success of the firmware
modification attack, we ensured that the Label Printer
ran the modified firmware. To this aim, we verified that
the firmware version of the modified binary was equal
to the firmware version sent by the Label Printer. Since
the JcPrinter-SDK is a proprietary SDK and is only used
by one companion app, we did not verify the firmware
modification attack on an additional device.

B. Additional Tables

Table 2 lists the Amazon Bestseller Categories we
used to obtain our initial list of IoT devices (as explained
in Section 5.1). Table 3 provides details of all the devices
analyzed in this paper.

TABLE 2: Amazon Bestseller Categories.

Home Automation Hubs and Controllers

GPS, Finders and Accessories

Home Automation Smart Baby Monitors

Electrical Outlet Switches Electronics

Indoor Thermometers Devices and Accessories

Baby Monitors Baby Sleep Soothers

Camera and Photo Products LED Bulbs

Nursery Night Lights Sleep Sound Machines

LED Strip Lights Computer Printers
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Device Name
(Device Type)

App Package Name
(Version Name), (Version Code) App Name SDK Dataset

Aoycocr Bluetooth WiFi
Smart Plug (Plug)

com.xiaozhanlianbing
(1.0.2), (4)

Popotan Tuya [38] Amazon

ESICOO Smart Plug
(Plug)

com.aliyun.iot.living
(3.7.0), (370)

Cloud Intelligence Aliyun [4] Amazon

Wemo Smart Plug WSP080
(Plug)

com.belkin.wemoandroid
(1.2), (160)

Wemo Wemo [77] Amazon

Kasa Smart Plug Mini KP115
(Plug)

com.tplink.kasa android
(2.33.1.998), (998)

Kasa Smart Tplinkra (P) Amazon

Amazon Smart Plug
(Plug)

com.amazon.dee.app
(2.2.416420.0), (892952711)

Amazon Alexa Alexa (P) Amazon

Tracki 2022 4G LTE Mini GPS
(Tracker)

com.trackimo.android.tracki
(1.0.199), (202108021)

Tracki GPS –
Track Cars, Kids,

AltBeacon [7] Amazon

Tile Mate (2022) Bluetooth
(Tracker)

com.thetileapp.tile
(2.82.0), (3522)

Tile: Making
Things Findable

Tile (P) Amazon

Apple AirTag
(Tracker)

com.apple.trackerdetect
(1.1), (8)

Tracker Detect OBF (P) Amazon

LandAirSea 54 GPS
(Tracker)

com.landairsea.silvercloud
(4.29), (129)

SilverCloud LandAirSea (P) Amazon

Tenmiro LED Strip
(Light)

com.zjf.kslight
(1.2.6), (126)

KeepSmile Inuker [25] Amazon

Daybetter LED Strip
(Light)

com.qh.Apollo
(1.004), (4)

Apollo Lightning Consmart (P) Amazon

Wyze Cam v2 1080p Indoor
(Camera)

com.hualai
(2.20.21), (61532)

Wyze Tutk [73] Amazon

Blurams Camera Dome Lite 2
(Camera)

com.blurams.ipc
(5.1049.0.283), (1283)

blurams OBF (P) Amazon

Govee Hygrometer Thermometer
H5075 (Environment Sensor)

com.govee.home
(4.4.3), (214)

Govee Home Govee (P) Amazon

SwitchBot Smart Switch
(Switch)

com.theswitchbot.switchbot
(5.2.6.6), (211)

SwitchBot NordicSecure [61] Amazon

NIIMBOT D11
(Printer)

com.gengcon.android.jccloudprinter
(4.5.1), (376)

NIIMBOT JcPrinter (P) Amazon

Hatch Rest Mini Sound Machine
(Speaker)

com.hatchbaby.rest
(3.0.3), (699)

Hatch Sleep HatchBaby (P) Amazon

Amazon Fire TV Stick
(Media Player)

com.amazon.storm.lightning.client.aosp
(1.0.18.00), (1000180000)

Amazon Fire TV Fling [9] Amazon

Philips Hue A19 LED
(Light)

com.signify.hue.blue
(1.31.0), (3852)

Philips Hue
Bluetooth

Hue/Signify [52]/(P) Amazon

SYLVANIA Bluetooth Mesh
LED 75763 (Light)

com.ledvance.smartplus
(2.2.29), (2020029)

SYLVANIA
Smart Home

Telink [70] IoTSpotter

ilumi Bluetooth Smart LED A19
(Light)

com.ilumibeta
(4.3.30), (100)

New ilumi Nordic [61] Verification

NUT Key Finder
(Tracker)

com.nut.blehunter.findthing
(3.11.36), (20210522)

Findthing -
Smart Finder

NordicSecure [61] Verification

GoSund Power Strip
(Switch)

com.gosund.smart
(3.22.5), (15)

Gosund Tuya [38] Verification

TABLE 3: List of all devices analyzed in this paper. (P) = Proprietary SDKs. OBF = Obfuscated.
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