
Asynchronous Remote Key Generation for
Post-Quantum Cryptosystems from Lattices

Nick Frymann
Surrey Centre for Cyber Security

University of Surrey
Guildford, United Kingdom
n.frymann@surrey.ac.uk

Daniel Gardham
Surrey Centre for Cyber Security

University of Surrey
Guildford, United Kingdom
daniel.gardham@surrey.ac.uk

Mark Manulis
Research Institute CODE

Universität der Bundeswehr München
Munich, Germany
mark@manulis.eu

Abstract—Asynchronous Remote Key Generation (ARKG),
introduced by Frymann et al. at CCS 2020, allows for the
generation of unlinkable public keys by third parties, for
which corresponding private keys may be later learned only
by the key pair’s legitimate owner. These key pairs can
then be used in common public-key cryptosystems, including
signatures, PKE, KEMs, and schemes supporting delegation,
such as proxy signatures. The only known instance of ARKG
generates discrete-log-based keys.

In this paper, we introduce new ARKG constructions
for lattice-based cryptosystems. The key pairs generated
using our ARKG scheme can be applied to lattice-based
signatures and KEMs, which have recently been selected for
standardisation in the NIST PQ process, or as alternative
candidates.

In particular, we address challenges associated with the
noisiness of lattice hardness assumptions, which requires
a new generalised definition of ARKG correctness, whilst
preserving the security and privacy properties of the former
instantiation. Our ARKG construction uses key encapsulation
techniques by Brendel et al. (SAC 2020) coined Split KEMs.
As an additional contribution, we also show that Kyber (Bos
et al., EuroS&P 2018) can be used to construct a Split KEM.
The security of our protocol is based on standard LWE
assumptions. We also discuss its use with selected candidates
from the NIST process and provide an implementation and
benchmarks.

1. Introduction

1.1. ARKG and its applications

Asynchronous Remote Key Generation (ARKG) [1]
is a key generation protocol that allows for creation of
derived public keys, that are associated with original public
key. A corresponding derived secret key can be computed
later in time, or asynchronously, using only the derived
public key, the original secret key and some auxiliary
information. All derived public keys remain unlinkable
with respect to the original public key, and derivation of
a derived secret cannot happen without knowledge of the
original secret key. Moreover, only users for whom public
keys were derived may compute corresponding private keys
when provided with auxiliary data, which may be public.
Key pairs computed with ARKG are designed to have
statistically-similar distributions to randomly generated

key pairs, and thus can be securely used in public key
cryptosystems.

ARKG was proposed for an application in WebAuthn
[2], forming part of FIDO2, which is a W3C1 standard
for challenge-response authentication on the web using
digital signatures. Its envisioned use is to enable recovery
and delegation of WebAuthn accounts. In WebAuthn,
authenticators, such as Yubico’s YubiKey or Windows
Hello, manage and store private keys on behalf of users,
which means account recovery becomes problematic after
loss or damage to an authenticator may render a user’s
online accounts inaccessible. ARKG produces unlinkable
public keys that satisfy WebAuthn’s strong unlinkability
requirement, which means users can use a single authen-
ticator when registering for different accounts, yet remain
unlinkable across services. Furthermore, the remote feature
of this protocol means that the ‘backup’ authenticator
does not need to be present at account creation. More
recently, ARKG was used in a proxy signature scheme
that supports unlinkability across delegations, in a protocol
called Proxy Signatures with Unlinkable Warrants [3]. It
offers a delegator the ability to delegate signing rights to the
proxy signer using a delegation-by-warrant approach—in
which a public key for the proxy is signed by the delegator.
These proxy signatures were used to enable delegation for
WebAuthn accounts. The use of ARKG as a building block
results in warrants that are unlinkable with respect to the
proxy signer, and the asynchronicity allows the delegation
process to be non-interactive.

1.2. Post-quantum ARKG and main challenges

The only known2 construction for ARKG is for discrete-
log key pairs, i.e. of the form (sk, pk) = (x, gx) for some
group generator g, which are known to be susceptible
to quantum attackers [5]. This threat has motivated huge
efforts to create protocols that are resistant to quantum
attacks. As such, NIST3 have recently selected primitives
to standardise post-quantum cryptography based on a
range of differing hard problems including isogenies,
multivariate polyonmials and code-based problems. Many
of the candidates submitted to the process are based on

1. https://www.w3.org/

2. We note new ARKG constructions for pairing-based cryptosystems
introduced concurrently by Frymann et al. at ACNS 2023 [4].

3. https://csrc.nist.gov/Projects/post-quantum-cryptography

928

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Nick Frymann. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00059

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
59

lattices, such as the signatures in [6]–[8] and KEMs and
PKEs in [9]–[11]. Moreover, 3 of the 4 candidates selected
for standardisation fall into this category, which is in part
due to their relatively more mature security analysis and
wide versatility. The focus of our work is, therefore, in the
design of suitable ARKG constructions for lattice-based
cryptosystems, including those from the current NIST PQ
standardisation process.

However, lattices introduce new problems that are not
inherent in group-based cryptography. Namely, one of the
major security assumptions, Learning with Errors (LWE)
[12] critically relies on introducing noise for its security.
This noise can affect correctness properties of protocols,
and requires careful parameter selection to balance cor-
rectness with security. This adds additional complexity
to our work as we aim to derive keys compatible with
other cryptosystems for which the structure and parameter
values of the keys may differ. For example, KEMs and PKE
typically rely on LWE based problems where as signatures
tend to use the assumed hardness of the Short Integer
Solution problem, or SIS. In this case, the distribution of
the secret key is not so important (provided there is enough
entropy) but the size now plays a critical role. Balancing
these two requirements is a new challenge for ARKG in
the lattice-based setting.

1.3. Contributions

In this work, we give a new generic construction of
ARKG allowing for the use of the primitive with lattice-
based public key cryptosystems. We aim to capture a wide
range of lattice protocols despite differing requirements
on their keys. Lattice schemes based on Short Integer
Solution (SIS) [13] often use bounded short vectors for
their keys, whereas KEMs/PKEs based on Learning with
Errors (LWE) [12] typically require keys with a specific and
proper distribution (typically discretised Gaussian). Our
ARKG is the first to support LWE and SIS based-schemes,
encompassing a wide range of potential applications. We
build this general lattice ARKG (LARKG) using Split
KEM (sKEM) [14] functionality to achieve the required
asynchronicity.

Whilst maintaining ARKG’s original security and
privacy properties, we overcome the inherent challenges
with lattice assumptions’ noisiness. The need to select
cryptographically hard parameters for composed protocols
means consideration must be given to the correctness versus
security trade-off–this can be challenging for signature
schemes using SIS because, as the norm of the key
increases, security is weakened. Similarly, PKE typically
requires well distributed secret and error vectors. To
address this, we introduce a new definition of correctness,
that we call τ -correctness that captures the probability
that some derived keys may fail or be too large. This
parameter is related to the repetition rate of the rejection
sampling techniques inherent in our generic construction.
These parameters can be varied to trade-off correctness
against efficiency.

Additionally, we provide two instantiations of our
LARKG based on Frodo [9] and Kyber [10]. Since Kyber
has previously not known to have sKEM functionality, we
also state how to construct this and give proof it has security
properties of an sKEM. We give a discussion on potential

applications in lattice-based KEMs, signatures, and encryp-
tion schemes. In particular, we discuss integration with
Dilithium [6] and Kyber, which have recently been selected
for standardisation by the NIST PQC process. We provide
benchmarking of both of our instantiations using a publicly
available implementation in Python. This performance
analysis shows that our implmentations achieve practical
performance when generating derived key pairs, compared
to the standard key generation algorithms.

1.4. Organisation

We start in Section 2 by recalling the ARKG primitive,
with a new correctness definition to make it compatible
with lattices. In Section 3, we define the necessary prelim-
inaries, building blocks and security assumptions before
we present our general lattice-based ARKG construction
and security analysis. Section 4 presents two instantiations
of LARKG and discusses its usage in lattice-based KEMs,
PKE, and signatures. In this section we also show how to
construct an sKEM based on Kyber, and give proof it meets
standard security properties of an sKEM. We conclude this
section with implementation details and benchmarks of
our protocol. Our conclusion and a future work discussion
is presented in Section 5.

2. Asynchronous Remote Key Generation

In this section we recall Asynchronous Remote Key
Generation based on the model introduced by Frymann
et al [1]. We give the syntax and security properties, and
modify the definition of correctness to account for some
failure probability.

2.1. ARKG Model

For the key pair (sk, pk) and credential cred, ARKG
allows arbitrary public keys pk′ to be derived from an
original pk , with corresponding sk′ being calculated at a
later time—requiring private key sk .

Definition 1 (ARKG [1]). The asynchronous remote key
generation scheme ARKG := (Setup,KeyGen,DerivePK,
DeriveSK,Check) consists of the following five algorithms:

• Setup(λ) generates and outputs public parameters pp
of the scheme for the security parameter λ ∈ N. We
assume pp is taken as implicit input to all algorithms.

• KeyGen() computes and returns a key pair (sk, pk).
• DerivePK(pk, aux) probabilistically returns a new
public key pk′ together with the link cred between pk
and pk′, for the inputs pp, pk and auxiliary data aux.
The input aux is always required but may be empty.

• DeriveSK(sk, cred), computes and outputs either the
new private key sk′, corresponding to the public key
pk′ using cred, or ⊥.

• Check(sk′, pk′), on input (sk′, pk′), returns 1 if
(sk′, pk′) forms a valid private-public key pair, where
sk′ is the corresponding private key to public key pk′,
otherwise 0.

Correctness. We modify the correctness property from
Frymann et al. [1] to allow for some probability of failure
that DeriveSK does not output a valid derived secret

929

key after correct execution of a corresponding DerivePK.
We capture this failure probability with the correctness
parameter τ . Note that our definition is consistent with
Frymann et al. when τ → ∞. In this case we say the
scheme has perfect correctness.

An ARKG scheme is τ -correct if, ∀λ ∈ N, pp ←
Setup(λ), the probability Pr

[
(Check(pp, sk′, pk′) = 1)

]
�

1− 2−τ given

(sk, pk) ← KeyGen(pp);

(pk′, cred) ← DerivePK(pp, pk, ·);
sk′ ← DeriveSK(pp, sk, cred).

2.1.1. Security Properties. We recall the security proper-
ties for ARKG. The first, PK-unlinkability, is an anonymity
property whereas unforgeability is provided by SK-security.
This property comes in 4 flavours to capture a wide range
of adversarial capabilities. Furthermore, we introduce gen-
eralised security definitions to accommodate the possibility
that DeriveSK returns an error ⊥ instead of a derived secret
key. This can be seen in the challenge and private key
oracles. Adversaries and Oracles

An adversary A, used in our security experiments,
is modelled as a probabilistic polynomial time (PPT)
algorithm. The adversary A may make a polynomial
number of queries to the following oracles:

• Derived public key oracle Opk′(pk, ·): Opk′ is para-
meterised with public key pk. This oracle returns
the result of calling DerivePK(pp, pk, aux) on input
aux. It records the resulting (pk′, cred) in PKList:
PKList ← PKList ∪ (pk′, cred). PKList is initialised
as PKList ← Ø.

• Challenge oracle Ob
pk′(b, sk0, pk0): Ob

pk′ is paramet-

erised with a bit b and fixed key pair (sk0, pk0), and
takes no inputs. If b = 0, the key-pair (sk′, pk′)
derived using the initial pk0 using DerivePK and
DeriveSK. If DeriveSK returns ⊥ then a DerivePK
is invoked again to create a new derived key, and this
is repeated until success. If b = 1, then a freshly-
generated key pair sampled from a distribution D.

• Private key oracle Osk′(sk, ·): on input cred,
where (·, cred) ∈ PKList, Osk′ outputs the result
of DeriveSK(pp, sk, cred) and updates SKList ←
SKList ∪ cred if the output is not ⊥. SKList is
initialised as SKList ← Ø. If (·, cred) /∈ PKList, the
oracle aborts, otherwise it returns sk′ without giving
access to sk .

Remark 1. We note that our security model does capture
the possibility of timing attacks that might be present due
to the variable run time of the challenge oracle. However,
in the envisioned use case, such a timing attack would
imply adversarial access to back up authenticators – which
is beyond the security model of ARKG.

SK-security. This security property ensures that an ad-
versary A cannot derive a valid key pair (sk�, pk�) along
with corresponding cred�, for a fixed challenge key pk . We
recall four variants of private-key security defined in Fry-
man et al., modelled using the experiment Expks

LARKG,A(λ)
in Figure 1 with ks ∈ {mwKS, hwKS,msKS, hsKS}.
Adversary A is always given access to Opk′ and must
find a (sk�, pk�, cred�) triple for a provided pk . We have

altered the original definition to include a check that the
derived secret key sk′ is not ⊥, this is to account for
the fact that there is some probability that DeriveSK fails.
The malicious (m) and honest (h) variants result from
the omission or presence of the PKList check on line
8, respectively, which ensures that the triple is for an
honestly-generated pk (modelled using Opk′) if present.
The weak (w) and strong (s) variants depend on whether
A has access to the private key derivation oracle Osk′ .
If A has access to Osk′ , trivially querying it with cred�

is prevented through the SKList check on line 7. It was
shown by Frymann et al. that strong implies weak security,
and malicious implies honest security. We defer to the
original work for the reduction.

Definition 2 (SK-security). An ARKG scheme
provides private-key security, or ks-security with
ks ∈ {mwKS, hwKS,msKS, hsKS}, if the following
advantage is negligible in λ:

Advks
LARKG,A(λ) := Pr

[
Expks

LARKG,A(λ) = 1
]
.

PK-unlinkability. This property ensures that derived key
pairs cannot be distinguished from a sample of a distri-
bution D, which also implies an adversary cannot link a
derived public key to a long-term public key or second
derived public key. This property is formally defined

in Exppku
LARKG,A(λ). Intuitively, the game chooses a bit

b ∈ {0, 1} and generates a key pair (sk0, pk0). A is
given access to oracle Ob

pk′ , public parameters pp, and

pk0. When called, Ob
pk′ returns a derived key pair (sk′, pk′),

which is derived from pk0 if b = 0, otherwise, for b = 1,
it samples and returns key pair (sk′, pk′) according to
a distribution D. It is able to corrupt any derived key,
for which corresponding sk′ is output. The adversary A
wins the game if it is able to determine whether Ob

pk′ is
instantiated with b = 0 or b = 1.

Definition 3 (PK-unlinkability). An ARKG scheme
provides PK-unlinkability if the following advantage is
negligible in λ:

Advpku
LARKG,A(λ) :=

∣∣∣∣Pr
[
Exppku

LARKG,A(λ) = 1
]
− 1

2

∣∣∣∣.

Remark 2. As previously mentioned, Frymann et al. [1]
give a construction for discrete-log key pairs. They achieve
weak variants of the scheme (i.e. mwKS and hwKS)
under the discrete log assumption. For stronger flavours,
msKS and hsKS, security is reduced to the snPRF-ODH
assumption by Brendel et al. [15], which they introduce
to study the security of TLS1.3.

3. General Lattice-based ARKG Construction
from Split KEMS

In this section we define sKEMs and the other necessary
building blocks for our general ARKG construction. We
present our construction in Figure 5 and prove its security.

3.1. Assumptions and Building Blocks

We now introduce the technical background, hardness
assumptions and the building blocks used in this work.

930

Expks
LARKG,A(λ)

1 : pp← Setup(λ)

2 : (sk, pk)← KeyGen(pp)

3 : (sk�, pk�, cred�)← AOpk′ ,Osk′ (pp, pk)

4 : sk′ ← DeriveSK(pp, sk, cred�)

5 : return Check(sk�, pk�) =? 1

6 : ∧ Check(sk′, pk�) =? 1

7 : ∧ sk′ �= ⊥
8 : ∧ cred� �∈ SKList

9 : ∧ (pk�, cred�) ∈ PKList

(a) SK-security experiment.

Exppku
LARKG,A(λ)

1 : pp← Setup(1λ)

2 : (sk0, pk0)← KeyGen(pp)

3 : b←$ {0, 1}
4 : b′ ← AOb

pk′ (pp, pk0)

5 : return b =? b′

(b) PK-unlinkability experiment.

Figure 1: Security experiments for LARKG. The boxes
denote the four variants of the ks ∈ {mwKS, hwKS,
msKS, hsKS} experiment. Presence of the dashed boxes
gives the strong variants of ks(msKS and hsKS), the
presence of the dotted box gives the honest variants (hwKS
and hsKS), and the exclusion of all boxes gives mwKS.

On notation, we use χn×m
α,γ to denote an n × m matrix

that is element-wise sampled from a distribution χ with
parameters (α, γ). In this work, we utilise Gaussian distri-
butions χα,γ where α is the standard deviation and γ is the
centre. If we omit γ then it is understood to be 0. We use
χ(X) to denote the probability of X occuring under the
distribution χ. We reserve the notation U [a, b] to indicate
uniform sampling from the closed interval [a, b]. Matrices
are denoted in bold capital letters, e.g. C, and vectors are
notated as bold lowercase letters such as x. In this work we
consider a polynomial ring Rq := Zq[X]/(Xn+1) where
n = 2n̂−1 and n̂ is the 2n̂-th cyclotomic polynomial. We
use x ←$ X to denote that x is uniformly sampled from
X , whereas Gaussian sampling is denoted x ←G X .

Definition 4. Decisional Learning with Errors (LWE). For
LWE parameters n, q, χ and a matrix A sampled uniformly
from Z

n×m
q , sample e ← χ and a vector s ∈ Z

n
q . In the

decisional variant of LWE, an adversary must decide, for
a tuple (A,b), whether b = As + e mod q or b is a
uniform sample from Z

m
q . This can be extended to the

Matrix-LWE by taking S,E ←G χm×k.

We do not distinguish between these two variants since
hardness of LWE implies hardness of Matrix-LWE.

Definition 5. Decisional Module Learning with Errors
(MLWE) [16]. For parameters m, k, χ the MLWE problem
is stated for a matrix A sampled uniformly from Rk×k

q

and e, s ← χk
η . The problem requires an adversary to

decide, for a tuple (A,b), whether b = As+ e or b is
a uniform sample from Rk

q . MLWE becomes Ring-LWE
(RLWE) when the dimension of the ring is set to 1, i.e.

when the parameter k = 1.

Definition 6. Short Integer Solution (SIS) [13]. The
SIS problem SISn,m,q,β requires an adversary, given a
uniformly sampled matrix A ∈ Z

n×m
q , to find a non-zero

vector z ∈ Z
m
q such that ‖z‖ � β and Az = 0 mod q.

Definition 7. Module Short Integer Solution (MSIS) [16].
The MSIS problem MSISn,m,q,β requires an adversary
who, given a uniformly sampled matrix A ∈ Rk×m

q to
find a non-zero vector z ∈ Rk

q such that ‖z‖ � β and
Az = 0 ∈ Rk

q . MSIS becomes Ring-SIS (RSIS) when the
parameter k is set to 1.

Rejection Sampling. This is a technique that ensures we
can control the shape of distributions, first used in lattice
cryptography by Lyubashevsky [17]. Let f and g be
probability distributions and M ∈ R a scalar constant,
such that for all x we have f(x) � Mg(x). Then,
one can sample y from g and output it with probability
f(y)/Mg(y), and the resulting distribution of output values
is precisely f . The repetition rate M is the expected
amount of time needed to output a sample.
Split Key Encapsulation Mechanism. The fundamental
building block for our ARKG protocol is a Split Key
Encapsulation Mechanism, or sKEM. It is related to stand-
ard notion of a KEM, where the encapsulation algorithm
can be divided into two phases for key generation and
shared-key computation. This primitive was introduced by
Brendel et al. [14] and used to propose quantum secure
key exchange for the Signal protocol [18]. We recall their
model and security definitions.

Definition 8 (sKEM [14]). An sKEM consists of four
algorithms KeyGenEnc,KeyGenDec, sEncaps and sDecaps,
where KeyGenEnc and sEncaps are executed by the encap-
sulator, and KeyGenDec and sDecaps by the decapsulator.

• KeyGenEnc is the probabilistic key gen-
eration algorithm for the encapsulator
(E, e) ← KeyGenEnc(1λ).

• KeyGenDec is the probabilistic key gen-
eration algorithm for the decapsulator
(D, d) ← KeyGenDec(1λ).

• sEncaps(e;D) is a probabilistic algorithm executed
by the encapsulator. It takes as input e ∈ Kenc, the
secret key of the encapsulator, and D ∈ Kdec, the
public key of the decapsulator. Algorithm sEncaps
then outputs the shared secret K ∈ K along with its
encapsulation c ∈ C, sometimes referred to as the
ciphertext.

• sDecaps(d;E; c) is a deterministic algorithm executed
by the decapsulator. On input a ciphertext c, the
decapsulator’s secret key d, and encapsulator’s public
key E, it outputs either the decapsulation K of c or
⊥, if it fails.

Security Properties. sKEMs can offer a range of indistin-
guishability properties, that are denoted as lr-IND-CCA
where the parameters l, r are in the set {n, s,m}. Here,
l indicates whether the adversary is allowed to make no
(l = n), a single (l = s), or polynomially many (l = m)
queries to the decapsulation oracle OsDecaps. Analogously,
r indicates the number of queries the adversary is allowed
to make to the encapsulation oracle OsEncaps. The case
that r = s is excluded since the adversary cannot make

931

the encapsulator encapsulate only once more under the
secret key e used for challenge generation. The key pair
of the encapsulator is used either solely for the challenge
generation or may be queried up to a bound which is
poly(λ). The ‘many’ case models key re-use attacks
and has historically been a challenge for post-quantum
cryptography. As noted by Brendel et al. [14], nn-IND-
CCA security corresponds to the notion of IND-CPA
security for KEMs, i.e. the adversary is only able to learn
the public keys and challenge ciphertext and key, but
remains passive. It is also restricted from querying the
decapsulation oracle.

Definition 9. Let sKEM = (KeyGenEnc; KeyGenDec;
sEncaps; sDecaps) be a split KEM with key space
K. Let l, r ∈ {n, s,m}. We say sKEM provides lr-
indistinguishability under chosen-ciphertext attacks, or
for short, sKEM is lr-IND-CCA secure, if for every PPT
adversary A the following advantage is negligble in λ.

Advlr-IND-CCA
sKEM,A (λ) :=

∣∣∣∣Pr
[
Explr-IND-CCA

sKEM,A (λ) = 1
]
− 1

2

∣∣∣∣
In Figure 3, we recall a generic lattice-based con-

struction from Brendel et al. [14], presented in Figure 3.
Many lattice KEM candidates fit this generic 2-phase
structure of generating ephemeral keys and then combing
and reconciling a shared key [9], [19]–[21].
Key Derivation Function (KDF) [22] A key generation
function KDF(k, l) takes source key k and label l and re-

turns a new key k′. It is secure if the advantage AdvKDF
A (λ)

is negligible in λ for a PPT adversary A to distinguish
outputs of the KDF from random bitstrings of the same
length. In this work we consider uniform outputs of KDF1

with small Gaussian outputs (paramterised by χ) and KDF2

with uniform outputs.
Public Key Encryption (PKE) A PKE scheme consists
of three algorithms KeyGen, Enc and Dec. The former
outputs a key-pair based on a security parameters λ. The
encryption algorithm takes as input a key k and plaintext
m and returns a ciphertext c. Decrypt then outputs the
plaintext m on input of a ciphertext and corresponding
secret key. The game is formally defined in Figure 4.

It is IND-CPA secure if the advantage AdvPKEA (λ) is
negligible in λ for a PPT adversary A to decide which of
two chosen messages a ciphertext contains. Precisely, PKE
is IND-CPA secure if the following advantage is negligible
in λ.

AdvIND-CPA
A,PKE (λ) :=

∣∣∣∣Pr
[
ExpIND-CPA

PKE (λ) = 1
]
− 1

2

∣∣∣∣.

3.2. Our LARKG scheme based on Split KEMs

We now present our ARKG construction based on
lattices. In our construction, key pairs (pk, sk) are given by
the vectors of matrices (A,B = AS+E) ∈ Z

n×m
q ×Z

n×k
q

which form an LWE sample. The derived key pair (pk′, sk′),
i.e. the outputs of DerivePK and DeriveSK respectively,
are given by P and S′′ also form an LWE sample. For this
construction, we focus on plain LWE and the simple case
where the secret and error matrices are taken from the same
distribution χ. This is for simplicity in presention, but we

emphasise that our techniques readily extend to Ring-LWE
and Module-LWE settings. Furthermore, the restricted
distribution is not a requirement of our scheme and can
be chosen independently according to the application.

The core building block of our construction is the
sKEM primitive. The main benefit of using this over
standard KEMs is that the flavours of security that allow
for oracle queries capture the notion of key reuse. As our
security theorems will show, security in the presence of
key reuse allows us to achieve all, including the strongest,
security flavours of SK security for ARKG.

Intuitively, we use a split KEM to create a shared secret
K with recovery information c. The format of sKEMs
allows us to assume the structure of the KEM mechanism,
in particular, that the encapsulation and decapsulation
algorithms both take in public and secret keys. This
enables an asynchronous approach to decapsulating a
shared key, which forms the basis of our DerivePK and
DeriveSK algorithms. The KDFs are used in one case to
create a shared secret with appropriate distribution, i.e. a
small Gaussian distribution χ. The other allows DeriveSK
to abort since an incorrect long-term key or auxiliary
information was use, and thus Check would fail.

Our protocol makes use of rejection sampling to ensure
that output of DeriveSK follows a desired distribution. We
note that flooding techniques, e.g. [23], could also be
implemented here but at cost of increased parameter size.
Instead, rejection sampling allows us to keep the parameters
fixed and instead vary the correctness probability with
repetition rate. That is, the protocol will need to be executed
an expected M times to obtain a derived secret key.

We give a high-level description of the algorithms and
present the full algorithms in Figure 5.

Setup This algorithm takes as input a security parameter
λ and outputs public parameters pp that contains LWE
parameters n, q, χ and A ←$ Z

n×m
q .

KeyGen On input of public parameters, this algorithm
outputs a key-pair as (sk, pk) such that sk = S is a
small gaussian and pk = B = A · S + E. That is,
(A,B) form an LWE sample.

DerivePK This algorithm generates a derived public key
pk′ from input of a public key pk = B. Intuitively,
it samples an ephemeral key pair as (sk′, pk′) =
(S′,P = A · S′ + E′). It computes a shared key K
by using a split KEM with inputs (sk′, pk) = (S′,B),
and uses this to derive a credential key K. The derived
public key is computed as pk′ = B + A · K + E′.
This step also outputs ciphertext c. A second key
derivation function KDF2 is used to generate μ over
the inputs P, aux using KDF2. It builds the recovery
information as cred = (D, c, μ).

DeriveSK This algorithm takes as input sk and cred. It
recomputes the key K by executing the decapsula-
tion algorithm on its sk and with P. A candidate
μ∗ ← KDF2(K) is derived from K, and it is checked

that μ∗ ?
= μ. If this holds, then it proceeds to

recover its derived secret key as K ← KDF1(K)
and setting sk′ = S+K. Finally, rejection sampling
is performed, so that the key is only output with
probability χb,S(S

′′)/(M · χa(S)), for some M .
Check Takes as input a candidate key pair (sk, pk) =

(S,P) and returns 1 if ‖P−A · S‖ � β, where the

932

Explr-IND−CCA
sKEM,A (λ)

1 : nl, nr ← 0

2 : (D, d)← KeyGenDec(pp)

3 : (E, e)← KeyGenEnc(pp)

4 : (c∗,K∗
0)← sEncaps(e,D)

5 : K∗
1 ←$ K

6 : b←$ {0, 1}
7 : b′ ← AOsDecaps,OsEncaps(D,E, c∗,K∗

b)

8 : return b′ ?
= b

OsDecaps(E
′, c)

1 : if nl � l

2 : return ⊥
3 : nl = nl + 1

4 : if (E′, c) ?
= (E, c∗)

5 : return ⊥
6 : L← sDecaps(d,E′, c)
7 : return K

OsEncaps(D
′)

1 : if nr � r

2 : return ⊥
3 : nr = nr + 1

4 : (c,K)← sEncaps(e,D′)

5 : if (D′, c) ?
= (D, c∗)

6 : return ⊥
7 : else

8 : return (c,K)

Figure 2: Security experiments and oracles for sKEMs. The values of nl and nr are set to as either 0, 1 or k (which is
poly(λ)) according to the {n, s,m}-IND-CPA security, respectively.

KeyGenEnc(pp)

1 : S′ ←$ χm×k,E′ ←$ χn×k

2 : B′ ← AS′ +E′

3 : return (sk′, pk′) := (S′,B′)

KeyGenDec(pp)

1 : S←$ χm×k,E←$ χn×k

2 : B← SA+E

3 : return (sk, pk) := (S,B)

sEncaps(pp, pk, sk′)
1 : E′′ ← χn×k

2 : V← BS′ +E′′

3 : c← HelpRec(V)

4 : K ← Rec(V, c)

5 : return (K, c)

sDecaps(pp, pk′, sk, c)
1 : V′ ← B′S

2 : K ← Rec(V′, c)
3 : return K

Figure 3: Lattice-based sKEM with generalised Rec and HelpRec algorithms by Brendel et al [14].

ExpIND-CPA
PKE,A (λ)

1 : (sk, pk)← KeyGen(λ)

2 : m0,m1 ← A1(pk)

3 : b←$ {0, 1}
4 : c← Enc(sk,mb)

5 : b′ ← A2(c)

6 : return b′ ?
= b

Figure 4: IND-CPA security experiment for PKE.

distribution χa is bounded by β.

3.3. τ -Correctness

We observe that τ -correctness follows from correctness
of the split KEM and that P is well formed:

P = B+E+AK+E′ = AS+AK+E+E′

= A(S+K) +E′′ = AS′′ +E′′

We note that our use of rejection sampling in DeriveSK
ensures that the sum S+K is statistically close to discrete
Gaussian distribution χa, i.e. the distribution which S
follows. If this is chosen to be the distribution for a
compatible protocol, then the correctness is perfect and
t = ∞. However, this may require a high repetition rate M .
We can trade τ off against M to be most suitable for an
application, the exact relationship for which is described by
an appropriate choice of parameters and distributions. If we
instantiate the error vectors to be sampled from Gaussian
distributions as χa, χb, then the resultant distribution of the
derived key S′′ is χb,S, i.e. a Gaussian distribution with
variance b centred at S. If χa is bounded by a value β1,
and σb = αβ1 for some positive value α, then following
[17], we can compute the repetition rate M as follows:

M = e
12
α + 1

2α2

KeyGen(pp)

1 : return (sk, pk)← sKEM.KeyGenDec(pp)

DerivePK(B)

1 : (S′,B′)← sKEM.KeyGenEnc(pp)

2 : (K, c)← sKEM.sEncaps(B,S′)
3 : K← KDF1(K)

4 : μ← KDF2(K)

5 : E′ ←$ χn×k
b

6 : P← B+AK+E′ mod q

7 : return (P,B′, c, μ)

Check(P,S′′)
1 : return

∥∥P−AS′′∥∥ � β′

DeriveSK(B′,S, μ, c)
1 : S′′ ← ⊥
2 : K ← sKEM.sDecaps(B′,S, c)
3 : K← KDF1(K)

4 : μ∗ ← KDF2(K)

5 : if μ∗ ?
= μ then

6 : S′′ ← K+ S

7 : u← U [0, 1]
8 : if u <

(
M · χb,S(S

′′)
χa(S′′)

)
, return S′′

9 : return ⊥
Figure 5: General Lattice-based ARKG from sKEM

933

If we consider the scenario where the error E′′ and
secret S′′ are derived from the distinct distributions, then a
repetition rate would need to be computed for each compon-
ent, denoted MS and ME. Then M , the realised repetition
rate of the protocol, would be set to max{MS,ME}.

Since the distribution of the derived secret key S′′ is
χa, then for an appropriate choice of parameters, it forms
a valid LWE instance. For composable protocols that use
Gaussian distributed keys, all that is required is to select
a and b such that χa and χb are cryptographically hard
distributions. If these conditions are met, then we can use
the composability theorem in Frymann et al. [1] to generate
keys for protocols that include many of the NIST PQC
lattice KEM and encryption schemes such as Frodo [9]
and Kyber [10], but also some signatures such as qTESLA
[7].

For schemes based on the SIS assumption [13], where
the bound β′ on the norm plays an important factor in the
security of the scheme it may be necessary or desirable
to set β′ < 2β. However, the wider distribution of the
derived key S′′ may be too large and thus Check could fail.
Nonetheless, the trade off in lower repetition rate versus
a larger value of β′ may be desirable if the composed
protocol has parameter values chosen to accommodate this.
The exact values in these cases are dependent on protocol
specific parameters, see Section 4.4 for an example using
the lattice signature Dilithium [6].

3.4. Security Analysis

Theorem 1. LARKG satisfies PK-unlinkability if sKEM is
nn-IND-CCA secure and LWEn,q,χa

is hard.

Proof. Game0: Defined to be the PK-unlinkability

experiment Exppku
LARKG(λ).

Game1 is defined as Game0 with the exception that line
6 of DerivePK is replaced with “S′,E ←G χa,B

′ ←
AS′ + E,P ← B′ + AK + E′”. It follows that B and
B′ are statistically indistinguishable from decisional LWE,
since rejection sampling ensures that the derived secret key
S′′ is distributed according to χa. Hence the probability
that an adversary wins is preserved.

|Pr[Game0 = 1]− Pr[Game1 = 1]| � Adv
LWEn,q,χa

B1
(λ)

Game2 is defined as Game1 with the exception that
line 4 of the oracle is replaced with “K∗, c∗ ←
sEncaps(B,S′),V ← BS′ + E′′,K∗

0 ← $K. That is, we
replace the shared-key K∗

0 with a uniformly random sample
from the key space K. We argue that the nn-IND-CCA
property of sKEM implies that the difference in success
probability for the adversary is negligible between games
Game1 and Game0. To see this, we construct an adversary
B against the nn-IND-CCA property of sKEM using Game2
as a distinguisher. Precisely, A plays the role of challenger
against B, and initiates the experiment as described in
Figure 2, where it sets the public parameters A, B and
B′ to be those from its nn-IND-CCA experiment. We note
that A does not have access to any oracles in aide it, other
than the challenge oracle. Instead of executing the oracle
as described, it uses the values it has obtained from its
own game. Since all values are known to B, it perfectly

simulates the game for A, in particular, if nn-IND-CCA
has been instantiated with challenge bit b = 0 then it
coincides with Game1 and if b = 1 then it coincides with
Game2. Therefore, if A can distinguish between Game2
and Game1, B can construct a correct response to the
nn-IND-CCA experiment, that succeeds if A succeeds.

|Pr[Game2 = 1]− Pr[Game1 = 1]| � Advnn-IND-CCA
B2,sKEM (λ).

Now, the output of the challenge oracle is independent of
the challenge bit b, and thus the probability that A outputs
a correct responses is 1

2 .

Pr[Game2 = 1] =
1

2
=⇒ AdvGame2

B2,sKEM
(λ) = 0.

The claimed results of the theorem then follow from Game0
to Game2, and the observation that this argument requires
KDF2 to be secure. We conclude the advantage of an

adversary against Exppku
LARKG(λ) is bound by the advantage

of an adversary against nn-IND-CCA of sKEM.

Advpku
LARKG(λ) � AdvKDF2

B3
(λ) + Advnn-IND-CCA

B2,sKEM (λ)

+ Adv
LWEn,q,χa

B1
(λ)

Hence we have shown that LARKG has PK-unlinkability
if LWE is hard and sKEM is nn-IND-CCA secure.

Theorem 2. LARKG satisfies honest strong SK-secrecy if
LWEn,q,χa is hard.

Proof. We directly embed an LWE challenge into the
protocol as follows. Line 2 of the key generation algorithm
in the experiment is replaced with “(pk, sk) ← (B∗,⊥)
where (A∗,B∗) is an LWE challenge. Since A has access
to no oracles, A can simulate the experiment to B. After
some time, B outputs a forgery S′′. A the computes
S∗ = S′′ −K, which it can do so since K was computed
by A during the DerivePK oracle call that created P.
If ‖P−AS∗‖∞ = ‖E∗‖∞ � 2β then A knows that
the challenge B∗ is an LWE sample, and thus wins
the decisional LWEn,q,χa

game, else it was a uniformly
sampled matrix. In either case, if A wins its game against
HSKS, then B wins its LWE game. This we have:

AdvhsksLARKG(λ) � Adv
LWEn,q,χa

B (λ).

We conclude the advantage of an adversary against SK-
security is bound by the advantage of an adversary against
LWE, which proves the theorem.

Theorem 3. LARKG satisfies malicious strong SK-secrecy
if sKEM is sn-IND-CCA secure and LWEn,q,χa

is hard.

Proof. Let Game0 be defined as the MSKS experiment
in Figure 1. Then, Game1 is defined as Game0 with
the exception that line 7 of DerivePK is replaced with
“(Ŝ, B̂) ← LARKG.KeyGen(),P ← B̂ + AK + E′
mod q. This change is undetectable by the adversary since
AK + E′ is uniformly distributed by LWE. Thus P is
uniformly distributed in both Game0 and in Game1 and
hence the winning probability of A is unchanged.

|Pr[Game0 = 1]− Pr[Game1 = 1]| � Adv
LWEn,q,χa

B1
(λ)

We now argue that A has negligible advantage in Game1 if
the sKEM is sn-IND-CCA secure. To see this, let B set up
the challenge as described in Game1. It obtains challenge

934

(B,B∗, c,K) and embeds B∗ into the LARKG keys in
line 2 of the experiment, i.e. replace with (⊥,B∗). We
note that B is able to answer all oracle queries made by
A since it uses the public challenge key B∗ to compute
the sKEM output K ← sKEM.KeyGenEnc(B∗,E) (where
E is the ephemeral key created by B in the DerivePK
oracle). Eventually, the adversary outputs a forgery of
the form (S∗,P∗, (c∗,B∗)). It extracts the reconciliation
data c∗ from aux∗ and uses this in its single oracle query.
It receives back the corresponding shared key K which
it used to compute K. A then constructs the response
as S∗ ← S′′ − K. It is trivial for B to then compute

K ← KDF2(K). If K
?
= K∗ then set b = 0, otherwise set

b = 1. The simulation only fails if A queries B∗ which
happens with low probability qo/p

n. Thus the advantage
of A against Game1 is bound by B against sn-IND-CCA
of sKEM.

Advmsks
LARKG(λ) � Advsn-IND-CCA

B2,sKEM (λ) + Adv
LWEn,q,χa

B1
(λ).

We conclude that LARKG has malicious key secrecy if
sKEM is sn-IND-CCA secure and LWEn,q,χa

is hard.

4. LARKG Instantiations, Usage and Perform-
ance

In this section we instantiate our generic scheme with
the sKEMs based on passively-secure versions of Frodo
and Kyber. That is, we do not perform the FO transforms
and thus are limited to IND-CPA security. Before we
can use our general results for (IND-CPA-secure) Kyber,
we first show that Kyber can be used to construct an
nn-IND-CCA secure sKEM. We discuss composability with
other cryptographic primitives and give benchmark timings
for our implementation.

The constructions for sKEM by Brendel et al. [14]
are limited to providing nn-IND-CCA security, which is
also the security property we achieve for our Kyber-based
approach. This is inherent in both designs since they
are based on KEMs that do not have adaptive security.
Indeed, as specified in their NIST submissions, both
Frodo and Kyber achieve IND-CCA security via use of
variants of the FO-transform [24], [25]. However, in the
construction by Brendel et al. and in this work, we use the
IND-CPA versions. This limits our LARKG constructions
to honest weak and honest strong key security only. In
the discrete-log setting, a similar restriction is observed
where a stronger sn-PRF-ODH assumption [14] is required
to achieve malicious security [1]. Nonetheless, malicious
security may not be required—since it models the instance
an attacker can perform (potentially arbitrary) secret key
derivation queries, which may be too strong for many
applications. This is the case for the original ARKG-based
recovery [1] and delegation mechanisms [3] for WebAuthn,
where honest strong key secrecy is sufficient.

4.1. LARKG Instantiation from FrodoKEM

We instantiate our protocol with passively-secure Fro-
doKEM, i.e. with IND-CPA security, which was shown to
be an nn-IND-CCA-secure sKEM by Brendel et al. [14].
We call our instantiation LARKG-Frodo and present it in
Figure 6. Illustrated in Figure 3, lines 1 and 2 of the

KeyGen(pp)

1 : A←$ Z
n×m
q

2 : S,E←$ χ

3 : B← AS+E

4 : return (sk, pk) = (S, (A,B))

Decapsulate(B′,S, μ,C)

1 : return rec(B′S,C)

Encapsulate(A,B)

1 : (S′,E′)←$ χ

2 : B′ ← AS′ +E′

3 : E′′ ←$ χ

4 : V← S′B+E′′

5 : C← 〈V〉2B
6 : K ← 	V
2B
7 : return (ss, C) = (K,C)

Figure 6: IND-CPA FrodoKEM [9] based on LWE paramet-
ers (n,m, χ). This implies an nn-IND-CCA-secure sKEM
as detailed in Figure 3.

Encapsulate algorithm that generates an LWE key pair
(S′,B′) are lifted into a separate algorithm KeyGenEnc.
The encapsulate algorithm must now take in the secret
key S’ to correctly compute the shared secret. FrodoKEM
has some protocol specific parameters n,m and B, which
are defined as B = (log q) − B and where n,m and
B are chosen such that n · m · B > λ, the security
parameter. The function �·�2B : Z

n×m
q → Z2B−1 is

a rounding function defined as �v�2B : v → �2−Bv
mod 2B , which partitions Zq into 2B intervals of integers
with matching B significant bits. Similarly, the function
〈·〉2B : Z

n×m
q → {0, 1} is a cross-rounding function

defined as 〈v〉2B : v → �2−B+1v mod 2, which divides
Zq into 2 partitions according to the value of the bit at
position B + 1. We can now define the reconciliation
function rec, which takes as input B′S and recovery
information C. It element-wise computes a matrix V′
such that each element is the closest which satisfies
〈Vi,j〉2B = Ci,j . It outputs the shared secret as �Vi,j�2B .
Crucially, leaking 〈V〉2B has been shown to not reveal
any information about the shared secret, we refer to Bos
et al. [9] for further details. We have chosen our notation
carefully so that parameters and variables in FrodoKEM
(Figure 6) align those used to describe our generic LARKG
construction in Figure 5. We instantiate KDF with HKDF
[22] with double length output, i.e. of length 2λ, parsed as
ρ||μ, each a bit string of length λ. To sample a Gaussian
distributed key K from ρ, we use Frodo’s algorithm
SampleG, that takes as input a uniform seed ρ, a centre
α and a standard deviation η and outputs K ∼ χη centred
at α.

The key pairs derived by our LARKG-Frodo instance
from Figure 5 are compatible with LWE and SIS-based
KEM/PKE and signature schemes. We note that the
construction of sKEM using FrodoKEM by Brendel at al.
only meets nn-IND-CCA security, our ARKG instance is
at most hsKS-secure. This property also implies LARKG-

935

KeyGen(pp)

1 : A←$Rk×k
q

2 : s, e←$ χk
η

3 : b← As+ e

4 : return (sk, pk) = (s, (A,b))

Enc(pp,b,m)

1 : r, e←$ χk
η

2 : u← AT r+ e

3 : e′ ←$ χη

4 : v ← bT r+ e′ +K

5 : return c = (u, v)

Dec(s,u, v)

1 : m← [v − sTu]q/2

2 : return m

Figure 7: Kyber PKE algorithms with MLWE parameters
(m, k, χ). This gives an nn-IND-CCA-secure sKEM shown
in Figure 8.

Frodo is PK-unlinkable.

Remark 3. We note a small error in the sKEM construction
described in Brendel et al. [14] that prevents correctness
of the protocol in the plain-LWE setting. We have presen-
ted a correction in our protocol described in Figure 3.
Their analogous RLWE-based sKEM is unaffected due to
commutativity in the ring.

4.2. LARKG Instantiation from Kyber

In this section we show how to construct LARKG
based on Kyber, which we call LARKG-Kyber. We cannot
directly use the generic construction of sKEMs as given
by Brendel et al. [14] since Kyber uses a PKE scheme
instead of the reconciliation methods used by e.g. Frodo
[9]. We first show that we can construct an sKEM based
on Kyber, the security of which relies on the IND-CPA
property of the underlying PKE scheme. Intuitively, our
sKEM is constructed by extracting some computations
(which can be viewed as creating an LWE key) in the
encapsulation algorithm into a key generation algorithm,
KeyGenEnc, for sKEM.

In particular, the encapsulation algorithm works by
generating some randomness for key generation, using
Kyber’s PKE to encrypt the shared key. In our scheme,
we separate out part of the Encryption algorithm into a
key generation algorithm for sKEM, namely, KeyGenEnc.
We base our construction on Kyber PKE which we have
recalled in Figure 7. Note that we have abstracted away
the use of compressq, decompressq, NTT and NTT−1 al-
gorithms present in the specification of Kyber [10] for
conciseness. Compression is mainly used to discard low-
order bits (which has limited impact on correctness), which
allows for smaller parameter choices. The only exception
to this during the decryption algorithm where compressq
is used to ‘round’ the decryption to 0 or � q

2. We have
modelled this behaviour with a rounding function, which
we denote by [·]q/2. Looking ahead, our implementation

will use compression and NTT techniques since this offers
fair comparisons with Kyber implementations. The security
of Kyber is based on MLWE, and so our construction is
also presented using module lattices.

Our algorithms are given in Figure 8. In Theorem 4,
we show that our construction is nn-IND-CCA secure
based on on the security of Kyber’s IND-CPA secure PKE.
We can then use the generic construction in Figure 5 to
construct an ARKG scheme based on Kyber.

The correctness of our sKEM is implied by the correct-
ness of the underlying PKE. Intuitively, we have split the
encapsulation algorithm into two algorithms for sKEM
but not changed the underlying computations. Hence,
we choose parameters to ensure PKE is correct, and
correctness of our sKEM follows.

Theorem 4. Our sKEM construction based on Kyber in
Figure 8 is nn-IND-CCA secure.

Proof. We consider the PK-Unlinkability experiment
Expnn-IND-CCA

sKEM (λ) and give a direct reduction to the IND-
CPA property of the Kyber’s PKE scheme. To do so, we
construct an adversary B that sets up the sKEM experiment
as described with the following exceptions. It invokes the
IND-CPA game to receive the matrix A, the challenge key
pk� and a challenge ciphertext (u�, v�) based on one of two
distinct messages Kb, b ∈ {0, 1}. Note that here, u� takes
the form of the keys created by KeyGenEnc. B forwards the
following sKEM challenge to A: (pk�,u�, v�,K1). Note
that the adversary cannot distinguish which key queries are
not genuine since u� is distributed properly in Rk

q . Note
that B does not need to respond to any oracle queries for
nn-IND-CCA.

A guesses a bit b′, which B forwards as a response to
its own game. It wins its IND-CPA experiment whenever
A wins its nn-IND-CCA game. Thus, we have:

Pr
[
Expnn-IND-CCA

sKEM (λ) = 1
]
= Pr

[
ExpIND-CPA

PKE (λ) = 1
]

which implies

Advnn-IND-CCA
A,sKEM (λ) = AdvIND-CPA

B,PKE (λ).

Hence, we have shown that sKEM nn-IND-CCA secure if
Kyber PKE is IND-CPA secure.

In this instantiation we use our result from Theorem 4.
The distribution of χ is chosen to be a centered binomial
distribution (CBD) instead of small discretised Gaussian,
so that our LARKG protocol outputs derived keys that are
also distributed according to a CBD. We emphasise this is
not an incompatibility with Kyber, rather the decision to
use CBD is due to the relative inefficiencies of sampling
Gaussian distributions. LWE-based encryption does not
depend on the exact distribution but rather the standard
deviation [10], thus we do not lose security of guarantees
of LWE when error and secrets are sampled from a CBD.
We instantiate KDF with HKDF [22] with double length
output, i.e. of length 2λ, parsed as ρ||μ, each a bit string
of length λ. To sample a centered binomial distributed key
K from ρ, we use Kyber’s algorithm CBD, that takes as
input a uniform seed ρ, a centre α and a standard deviation
η and outputs K ∼ χη centred at α.

936

Setup(pp)

1 : A←$Rk×k
q

2 : return pp = A

KeyGenDec(pp)

1 : s, e←$ χk
η

2 : b← As+ e

3 : return (sk, pk) = (s, (A,b))

KeyGenEnc(pp)

1 : r, e←$ χk
η

2 : u← AT r+ e

3 : return (sk, pk) = (r,u)

Encapsulate(pp,b)

1 : K ←$Rq

2 : e′ ←$ χη

3 : v ← bT r+ e′ +K

4 : return (ss, C) = (K, v)

Decapsulate(u, s,C)

1 : Parse C as v

2 : K ← v − sTu

3 : return K

Figure 8: sKEM based on Kyber with MLWE parameters (m, k, χ).

Remark 4. We observe that our approach could be applied
to other lattice-based KEMs that use the PKE method of
computing a shared secret. In particular, the team behind
Frodo made changes in their submission to Round 3 of
the NIST PQC standardisation process. They shifted away
from reconciliation techniques in favour of a PKE based
solution4, which we distinguish from Frodo by calling this
variant FrodoKEM. Thus both Frodo (proof by Brendel et
al. [14]) and FrodoKEM (analogous to Theorem 4) are
sKEMs and therefore can be used to construct LARKG.

4.3. LARKG usage in KEMs and PKE

KEMs are an important primitive used in many cryp-
tographic protocols, including for challenge-response for
authentication. Instead of requiring a user to sign a chal-
lenge string, the user must decrypt a challenge KEM issued
by the relying party. The user sends back the decrypted
plaintext, and the sever accepts if the plaintexts match.
This is the approach proposed in KEMTLS [26], which is
a post-quantum replacement for TLS1.3. The benefit over
more traditional signature-based solutions is that lattice
KEMs typically offer more efficient constructions. For this
reason, we conjecture that KEM based challenge-response
protocols (such as WebAuthn) are likely to become more
wide spread as post-quantum protocols are adopted.

Our lattice ARKG has been designed to produce key
pairs that are compatible with lattice-based KEMs and
signature schemes. Furthermore, security of the composed
protocol is maintained when used with keys generated
by LARKG. This follows from the general composability
theorem in [1] which states that ARKG can be securely
composed with arbitrary public-key protocols provided the
key distributions match, and ARKG is PK-unlinkable.

We first consider LARKG-Frodo, presented in Sec-
tion 4.1, with Frodo [9] as a KEM. This composition
of protocols follows form the fact that our LARKG-Frodo
outputs derived keys that have a small Gaussian distribution
(if χ is also a small Gaussian), which is exactly the
structure of secret keys of Frodo. All that remains is to
select parameters to meet cryptographic requirements. It
is sufficient to instantiate the protocol with the parameters
from Frodo directly. This follows because the long term and
ephemeral public key forms a cryptographically hard LWE
instances, and the derived key has the same dimensions

4. https://frodokem.org/files/FrodoKEM-specification-20210604.pdf

with an error distribution that has standard deviation (s.d.)
σ = 2σ, where σ is the standard deviation from the Frodo
parameters. Therefore the derived keys are secure since
σ > 2

√
n if σ > 2

√
n, which ensures cryptographic

hardness [12]. Note that this does not impact correctness
since the KEM correctly decrypts the ciphertext since

‖E′′‖ � 2B−2.

We next consider the LARKG-Kyber instance in Sec-
tion 4.2. To select parameters to meet cryptographic require-
ments, we follow the parameter levels included in the round
3 Kyber specification 5. Intuitviely, because the security
of our construction for an sKEM based on Kyber relies
the underlying PKE, parameters that ensure a secure PKE
instance also imply a secure sKEM. Thus we are assured
the keys used in sKEM form cryptographically hard LWE
instances if we instantiate with secure Kyber parameters.
The resulting LARKG instance outputs keys with a wider
error distribution. However this does not affect correctness
provided

∥∥eT r+ e2 + cv + cTt r− sT e1 − sT cu
∥∥
∞ �

�q/4, where e and r are CBD error vectors, e2 is a
small scalar, ct,Cu are (small Gaussian) rounding error
vectors, and s is the derived secret key. The only term
that changes from the original correctness analysis is that
s is now distributed according to a centered binomial
distribution with variance η, rather than with variance η/2
that s would typically have. The exact amount this changes
will depend on the selected parameter choices. To give
an example, if we consider Kyber Level 5 parameter sets
then the probability of failure is 2−174. When composed
with LARKG-Kyber also instantiated with Kyber’s level 5
parameter set, then we estimate using a security estimator
for Kyber [27]. This gives a value of M = 9 (at the
expense of additional derived public keys) we are able
to obtain correctness values of 1− 2−174, or equivalently
τ = 274, when the distribution χb is instantiated with
standard deviation σb = 5σa. Further optimisation of
parameter choices may improve correctness or reduce M
yet retain the desired security level may be possible, but
we leave identifying such parameters future work as it will
be application and security level dependent.hat tr

Furthermore, we note that since many lattice KEMs can
be extended to PKE algorithms by replacing the sampling
of a shared key with the message to be encrypted, we
conclude that our LARKG construction is also compatible

5. https://www.pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf

937

Table 1: Parameter trade-offs for our Lattice-ARKG based
on Dilithium level 5 parameters.

β′ Pr
[‖S‖∞ � β′] τ

5 0 0
6 6× 10−5 0.0009
7 0.1 0.15
8 0.63 1.43
9 0.92 3.64
10 1 ∞

with corresponding lattice PKE schemes. Concrete ex-
amples of this include FrodoPKE and KyberPKE. Finally,
our LARKG construction is compatible with many lattice
KEMs that achieve chosen ciphertext security via (variants
of) the FO-transform [24], [25], again such examples
include Frodo, FrodoKEM or Kyber.

4.4. LARKG usage in Signatures

Some lattice digital signatures, such as qTESLA [7]
also support small Gaussian keys, and are compatible with
the previous techniques described for KEMs. However,
other schemes based on SIS use short vectors as secret keys
(provided they meet some min-entropy [28]). We consider
Dilithium [29], which was selected for standardisation
in the NIST post quantum process and takes this form.
The key structure consists of two short vectors s1 and s2,
bounded by a value β that satisfy As1+s2 = b. Since our
protocol outputs keys with Gaussian distribution χ2σ , we
need to ensure that the parameters selected for Dilithium
remain secure, despite the wider error distribution. To
achieve this, one could select a tighter distribution for the
long term keys. This corresponds to a potentially higher-
security level, and therefore larger key sizes, to ensure the
derived keys meet their desired minimum security level.

Alternatively, another approach would be to choose
β′ < 2β for the composed signature, where there is
some probability that a derived secret key has norm > β′
and therefore would be an invalid key. However, as this
process is interactive, it is not possible to simply repeat the
procedure as required until a ‘good’ key is found. Instead,
it must be somehow accounted for during execution of
DerivePK and before the values of (S1,S2) are known.
To achieve this one could provide t candidate keys, that
probabilistically, at least one of t will create a valid derived
key pair. We illustrate this trade off in Table 1, based
on parameters for Dilithium level 5 (where β = 3). We
vary the value of β′ to show how this affects correctness
of our protocol and corresponding τ value. Intuitively,
increased failure rate allows for higher security since the
norm bound is smaller. We emphasise that the value of
β′ must be selected based on security analysis of the
composed signature.

4.5. LARKG Implementation, Parameters and
Performance

In our code repository [30], we provide implementa-
tions of our LARKG-Frodo and LARKG-Kyber schemes,
and we present the benchmarking of these in Table 2,
as well as respective sKEM instantiations. We taken as
the mean of 100 invocations on a Intel i7-8700 processor,

Table 2: Performance of Frodo- and Kyber-based KEM and
LARKG primitives for a single call, in seconds, calculated
as the mean of 10 invocations.

Instantiation

Primitive Algorithm Frodo Kyber

KEM KeyGen 3.412 0.011
Encaps 3.624 0.016
Decaps 3.546 0.024

LARKG KeyGen 1.146 0.010
DerivePK 2.536 0.027
DeriveSK 1.641 0.014

with a clock speed of 3.20GHz. Note that the libraries we
used are not optimised or side-channel secure, instead we
illustrate here the relative performance of LARKG versus
the underlying KEMs.

For LARKG-Frodo, we instantiate the scheme with
parameter set FrodoKEM-976-AES, i.e., n = 976,
m = k = 8, q = 216, with the error distribution χ
having σ = 2.3. This matches parameter choices for NIST
Level 3 of FrodoKEM. We used a Python implementation
of FrodoKEM6. Compared to FrodoKEM’s KeyGen, the
figures in Table 2 give an overall performance cost of 56%
for LARKG-Frodo when generating a derived key pair,
i.e., calling KeyGen, then DerivePK, and finally DeriveSK.
Note that our LARKG-Frodo.KeyGen is 298% faster than
FrodoKEM’s KeyGen as we fix the matrix A as part of our
public parameters, whereas FrodoKEM must recompute
this matrix from a seed on each invocation.

For LARKG-Kyber, we instantiated Kyber with the
Level 5 parameter set, Kyber1024, using a Python lib-
rary7. Precisely, the parameters we use are: n = 256, k =
4, q = 3329, n1 = n2 = 2, du = 11, dv = 5. Note that we
also used the number theoretic transform (NTT) to perform
polynomial multiplication to give a fair comparison to
the base Kyber implementation. We also demonstrate the
correctness of our implementation in our code repository
[30] by running an instance of Kyber’s IND-CPA PKE
using LARKG-Kyber keys, as well as give a Kyber with
split KEM functionality based on the required changes
presented in Figure 8.

We present timings given in Table 2 that do not account
for repeat executions required by rejection sampling, and an
example whereby we do consider the probability of failure.
We do so because the rejection sampling parameters are
highly dependent on scheme and security level, whereas
a single run demonstrates the relative performance of the
underlying computations with the understanding that it
would most likely require repeated executions. By setting
the distribution χb to have standard deviation σb = 5σa,
then we get M = 9 (which is similar to other works
[17]), then we instead measure a full correctness value
of 2−174 which corresponds to τ = 174, still targeting
256-bit security. In particular, the wider distribution of
LARKG-Kyber keys has increased the difficulty in solving
MLWE, where the optimal block size of dual and primal
attacks has increased from 868 to 953, which gives an
estimated classical bit security of 278 versus the 253 of
Kyber1024 [27].

6. github.com/microsoft/PQCrypto-LWEKE/tree/master/python3

7. github.com/jack4818/kyber-py

938

As an illustrative example, we measure the average time
for a successful run of the complete LARKG primitive (i.e.,
KeyGen, followed by DerivePK, then DeriveSK), when
using rejection sampling and instantiating χa and χb to
be the same CBD distributions with η = 2. The total run
time of LARKG-Kyber is then 0.19s with an acceptance
rate of 0.32—measured over 1000 runs on an i7-8700.
This is an increase in execution time of 272.5%, compared
to the average without rejection sampling—which, for
Kyber, is 0.051s. This means that, for these particular
parameters, a successful run of DeriveSK requires around
three executions of LARKG. These measurements vary
considerably based on parameter selection.

Looking at Table 2, we note that, similarly to
LARKG-Frodo, LARKG-Kyber’s DeriveSK takes 92% less
time than DerivePK. Without any optimisations, we see an
overall cost of 51ms for LARKG-Kyber when generating
derived key pairs compared to Kyber’s 11ms for standalone
key generation. We note that currently existing Python
libraries behind Frodo and Kyber which we implement
upon, differ in that the Kyber library is optimised whereas
Frodo library not. This explains why in our measurements
in Table 2 Frodo appear much slower (with values being
in s range) in comparison to Kyber (in ms range) than one
would expect. We anticipate that an optimised underlying
Python library for Frodo might yield a somewhat slower
implementation (based on similar security levels) than
Kyber albeit not at the same magnitude. We emphasise
this does not affect our claim of practicality since we
compare relative performance.

5. Conclusion

In this paper we have given the first Asynchronous
Remote Key Generation scheme for use with lattice-
based public key cryptosystems that use either SIS or
LWE-based keys. We have given a general lattice ARKG
(LARKG) using Split KEMs which we prove is PK-
unlinkable under the nn-IND-CCA property of the sKEM.
We showed that if LWE is hard, then our construction
has hsKS security, which is extended to msKS security
under the sn-IND-CCA property of the underlying sKEM.
We gave two instantiations of our hsKS-secure protocol,
LARKG-Frodo and LARKG-Kyber, which are based on
popular KEMs. To use Kyber in LARKG-Kyber, we first
had to show that it could be used to realise an sKEM and
showed that it satisfies the nn-IND-CCA security property.
Other KEMs based on an IND-CPA PKE could also be
used to create sKEMs in a similar way.

To capture the need to restrict the norm of the derived
secret key, we have defined a relaxed notion of ARKG
correctness to account for inherent noise of our underlying
lattice building blocks. Our constructions support lattice
schemes that use both LWE and SIS style keys, and thus
are compatible with several KEMs, PKE and signatures
selected for standardisation by NIST, or that appear in
round 3 as alternative candidate. We discussed integration
details with selected primitives Frodo, Kyber and Dilithium.
We highlighted the necessary the parameter selections
needed to ensure that ARKG keys are compatible with
the selected primitive, without compromising security or
correctness.

Additionally, we have presented publicly-accessible
implementations in Python of our LARKG based on both
FrodoKEM and Kyber, along with timings and a discussion
of our results. We note that, despite our unoptimised
implementations, our performance metrics show that our
protocols are practical.
Future Work. A future direction for this work could be to
develop sKEMs that are secure against adaptive adversaries,
in particular, to satisfy the sn-IND-CCA security. This
would allow LARKG schemes with stronger key secrecy
properties, i.e. msKS and mwKS, that would allow for
use in wider applications with stronger adversarial models.
The difficulty in existing techniques to construct sKEMs
lies in the use of the FO transform to achieve IND-CCA
security in the corresponding KEM, e.g. Kyber or Frodo. In
particular, the decapsulation requires reconstruction of the
ciphertext using the same randomness to ensure consistency.
However, when translated to the sKEM setting using either
the techniques by Brendel et al. [14] or Theorem 4, some of
this ‘randomness’ forms the secret key of the encapsulator
and thus is not known during decapsulation. This prevents
use of the FO-like transform to achieve adaptive security
in sKEMs, i.e. sn-IND-CCA security. Overcoming these
challenges would be interesting future work.

We also observe that the original discrete-log construc-
tion of ARKG was previously used to enable anonymous
payments in cryptocurrencies. Coined stealth addresses
[31], [32], a payer can generate an ephemeral address for
the receiver based on its long term key. This corresponds
to the DerivePK, and DeriveSK corresponds to the receiver
computing the secret key for the ephemeral address. The
only known constructions are based on the group-theoretic
cryptography, and we speculate that lattice ARKG could
be used to give a post-quantum construction for stealth
addresses.

References

[1] N. Frymann, D. Gardham, F. Kiefer, E. Lundberg,
M. Manulis and D. Nilsson, ‘Asynchronous remote
key generation: An analysis of yubico’s proposal for
w3c webauthn’, Proceedings of the 2020 ACM SIG-
SAC Conference on Computer and Communications
Security, 2020.

[2] D. Balfanz, A. Czeskis, J. Hodges et al., ‘Web
authentication: An API for accessing public key
credentials level 1’, Tech. Rep., 2019. [Online].
Available: https://www.w3.org/TR/webauthn.

[3] N. Frymann, D. Gardham and M. Manulis, ‘Un-
linkable delegation of webauthn credentials’, in
Computer Security – ESORICS 2022, V. Atluri,
R. Di Pietro, C. D. Jensen and W. Meng, Eds., Cham:
Springer Nature Switzerland, 2022, pp. 125–144,
ISBN: 978-3-031-17143-7.

[4] N. Frymann, D. Gardham, M. Manulis and H. Nartz,
Generalised asynchronous remote key generation
for pairing-based cryptosystems, Cryptology ePrint
Archive, Paper 2023/456, https:/ /eprint . iacr.org/
2023/456, 2023. [Online]. Available: https://eprint.
iacr.org/2023/456.

[5] P. W. Shor, ‘Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer’, SIAM J. Comput., vol. 26, no. 5,

939

pp. 1484–1509, 1997, ISSN: 0097-5397. DOI: 10.
1137 / S0097539795293172. [Online]. Available:
https://doi.org/10.1137/S0097539795293172.

[6] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler and D. Stehle, Crystals – dilithium: Digital
signatures from module lattices, Cryptology ePrint
Archive, Report 2017/633, https://eprint.iacr.org/
2017/633, 2017.

[7] E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Krämer,
P. Longa and J. E. Ricardini, ‘The lattice-based
digital signature scheme qtesla’, in Applied Cryp-
tography and Network Security: 18th International
Conference, ACNS 2020, Rome, Italy, October
19–22, 2020, Proceedings, Part I, Rome, Italy:
Springer-Verlag, 2020, pp. 441–460, ISBN: 978-3-
030-57807-7.

[8] P.-A. Fouque, J. Hoffstein, P. Kirchner et al., Falcon:
Fast-fourier lattice-based compact signatures over
ntru. 2017.

[9] J. Bos, C. Costello, L. Ducas et al., ‘Frodo: Take off
the ring! practical, quantum-secure key exchange
from lwe’, in Proceedings of the 2016 ACM SIG-
SAC Conference on Computer and Communications
Security, ser. CCS ’16, Vienna, Austria: Association
for Computing Machinery, 2016, pp. 1006–1018,
ISBN: 9781450341394. DOI: 10 . 1145 / 2976749 .
2978425. [Online]. Available: https://doi.org/10.
1145/2976749.2978425.

[10] J. W. Bos, L. Ducas, E. Kiltz et al., ‘CRYSTALS -
kyber: A cca-secure module-lattice-based KEM’, in
2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018, London, United Kingdom,
April 24-26, 2018, IEEE, 2018, pp. 353–367. DOI:
10.1109/EuroSP.2018.00032. [Online]. Available:
https://doi.org/10.1109/EuroSP.2018.00032.

[11] E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe,
‘Post-quantum key exchange: A new hope’, in
Proceedings of the 25th USENIX Conference on
Security Symposium, ser. SEC’16, Austin, TX, USA:
USENIX Association, 2016, pp. 327–343, ISBN:
9781931971324.

[12] O. Regev, ‘On lattices, learning with errors, random
linear codes, and cryptography’, in STOC, 2005.

[13] M. Ajtai, ‘Generating hard instances of lattice
problems (extended abstract)’, in STOC ’96, 1996.

[14] J. Brendel, M. Fischlin, F. Gunther, C. Janson and D.
Stebila, ‘Towards post-quantum security for signal’s
x3dh handshake’, in Proceedings of the Selected
Areas in Cryptography, 27th InternationalnConfer-
ence., ser. SAC 2020, Springer, 2020.

[15] J. Brendel, M. Fischlin, F. Günther and C. Janson,
‘Prf-odh: Relations, instantiations, and impossibility
results’, in Advances in Cryptology – CRYPTO 2017,
J. Katz and H. Shacham, Eds., Cham: Springer
International Publishing, 2017, pp. 651–681, ISBN:
978-3-319-63697-9.

[16] Z. Brakerski, C. Gentry and V. Vaikuntanathan,
‘(leveled) fully homomorphic encryption without
bootstrapping’, in Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference,
ser. ITCS ’12, Cambridge, Massachusetts: Associ-
ation for Computing Machinery, 2012, pp. 309–325,
ISBN: 9781450311151. DOI: 10 . 1145 / 2090236 .

2090262. [Online]. Available: https://doi.org/10.
1145/2090236.2090262.

[17] V. Lyubashevsky, ‘Lattice signatures without trap-
doors’, in Advances in Cryptology – EUROCRYPT
2012, D. Pointcheval and T. Johansson, Eds., Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 738–755, ISBN: 978-3-642-29011-4.

[18] J. Brendel, R. Fiedler, F. Günther, C. Janson and D.
Stebila, ‘Post-quantum asynchronous deniable key
exchange and the signal handshake’, in Public-Key
Cryptography – PKC 2022, G. Hanaoka, J. Shikata
and Y. Watanabe, Eds., Cham: Springer International
Publishing, 2022, pp. 3–34, ISBN: 978-3-030-97131-
1.

[19] J. Ding, X. Xie and X. Lin, A simple provably secure
key exchange scheme based on the learning with
errors problem, Cryptology ePrint Archive, Paper
2012/688, https://eprint.iacr.org/2012/688, 2012.
[Online]. Available: https://eprint.iacr.org/2012/688.

[20] R. Lindner and C. Peikert, ‘Better key sizes (and
attacks) for lwe-based encryption’, in Topics in
Cryptology – CT-RSA 2011, A. Kiayias, Ed., Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 319–339, ISBN: 978-3-642-19074-2.

[21] C. Peikert, ‘Lattice cryptography for the internet’,
in Post-Quantum Cryptography, Cham: Springer
International Publishing, 2014, pp. 197–219, ISBN:
978-3-319-11659-4.

[22] H. Krawczyk, ‘Cryptographic extraction and key
derivation: The hkdf scheme’, in Advances in
Cryptology – CRYPTO 2010, T. Rabin, Ed., Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 631–648, ISBN: 978-3-642-14623-7.

[23] C. Gentry, ‘A fully homomorphic encryption
scheme’, crypto.stanford.edu/craig, Ph.D. disser-
tation, Stanford University, 2009.

[24] E. Fujisaki and T. Okamoto, ‘Secure integration
of asymmetric and symmetric encryption schemes’,
in Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology,
ser. CRYPTO ’99, Berlin, Heidelberg: Springer-
Verlag, 1999, pp. 537–554, ISBN: 3540663479.

[25] E. Fujisaki and T. Okamoto, ‘Secure integration
of asymmetric and symmetric encryption schemes’,
J. Cryptol., vol. 26, no. 1, pp. 80–101, 2013. DOI:
10.1007/s00145-011-9114-1. [Online]. Available:
https://doi.org/10.1007/s00145-011-9114-1.

[26] P. Schwabe, D. Stebila and T. Wiggers, ‘Post-
quantum tls without handshake signatures’, in Pro-
ceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. New York,
NY, USA: Association for Computing Machinery,
2020, pp. 1461–1480, ISBN: 9781450370899. [On-
line]. Available: https://doi.org/10.1145/3372297.
3423350.

[27] Github - pq-crystals/security-estimates: Security
estimation scripts for kyber and dilithium. https://
github.com/pq-crystals/security-estimates, Accessed:
2022-08-01.

[28] S. Agrawal, C. Gentry, S. Halevi and A. Sahai,
‘Discrete gaussian leftover hash lemma over infinite
domains’, in Advances in Cryptology - ASIACRYPT
2013, K. Sako and P. Sarkar, Eds., Berlin, Heidel-

940

berg: Springer Berlin Heidelberg, 2013, pp. 97–116,
ISBN: 978-3-642-42033-7.

[29] L. Ducas, E. Kiltz, T. Lepoint et al., ‘Crystals-
dilithium: A lattice-based digital signature scheme’,
IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 1, pp. 238–268,
2018. DOI: 10 . 13154 / tches . v2018 . i1 . 238 - 268.
[Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/839.

[30] Source code for FrodoKEM- and Kyber-based
LARKG implementations, https://gitlab.surrey.ac.uk/
sccs/larkg.

[31] P. Todd, Stealth addresses, https : / / lists .
linuxfoundation.org/pipermail/bitcoin- dev/2014-
January/004020.html, 2014.

[32] N. van Saberhagen, Cryptonote v2.0, https : / /
cryptonote.org/whitepaper.pdf, 2013.

941

