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Abstract—Many recent attacks such as Branch Target In-
jection (BTI, aka Spectre v2) take advantage of speculative
execution in modern processors, and in particular the inher-
ent race condition between transient execution of code at the
predicted target of a branch and the architectural resolution
of the branch. This can create a speculation window in which
code can be transiently executed at an unintended target, and
mitigations for these attacks often focus on minimizing or re-
moving such windows. By investigating the potential sources
of latency that may contribute to such a speculation window,
such as pipeline contention and simultaneous multithreading
(SMT) activity, we show that an attacker can “win the race”
despite the adoption of widely-used mitigations, on a variety
of different x86 CPUs. We also show that such speculation
windows may be present for predictions of direct branches.
This enables a new class of BTI-style attacks that do not
depend on indirect branches, and bypass the majority of
previous mitigations against such attacks.

1. Introduction

Since the disclosure of Spectre [27], there has been a
wide range of research on similar transient execution at-
tacks which rely on speculative execution of the predicted
targets of branches [9], [14], [19], [28], [31], [35], [42],
[47]. Branch target predictions allow processors to predict
the targets of branches before the actual targets are known
to the pipeline, steering speculative execution to locations
of those predicted branch targets. The resolution of in-
direct branch targets may be significantly delayed, since
they may depend on memory accesses or computation.
This latency in calculating the target of indirect branches
is a key part of attacks such as Branch Target Injection
(BTI, aka Spectre variant 2), where an attacker causes an
indirect branch to be predicted to a target of their choice.

Unlike indirect branches, direct branches do not have
any data dependency (such as register or memory con-
tents), which means that direct branch targets can be com-
puted based solely on information encoded in the branch
instruction, minimizing any potential speculation window.
However, even though the targets of direct branches can
be computed without such latency, the direction of con-
ditional branches may still be mispredicted (“taken” vs.
“not taken”), resulting in attacks such as in Bounds Check
Bypass (BCB, known as Spectre variant 1 [19]). Both
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classes of attack typically involve an attacker attempting
to cause the transient execution of code which can re-
veal sensitive information across security domains via an
incidental channel, such as the cache state.

Instructions at the predicted target of a branch may
be speculatively fetched, decoded and even executed be-
fore an incorrect target prediction can be detected and
execution can be redirected (when necessary). Mitigations
for branch target prediction attacks attempt to prevent the
transient execution of code at attacker-controlled targets.
Many of these mitigations focus on suppressing the win-
dows in which code could be transiently executed – which
we refer to as the speculation window.

Mitigations for indirect branch prediction attacks in-
clude software techniques such as retpoline [40] and
LFENCE/JMP [3], as well as hardware mitigations such
as Indirect Branch Restricted Speculation (IBRS) and the
Indirect Branch Predictor Barrier (IBPB) [2], [21]. Al-
though direct branch targets are also predicted on modern
processors [15], [24], [47], mitigations typically assume
that branch target prediction attacks using direct branches
are not possible, although researchers have previously
expressed concerns about such assumptions [37].

In this work, we argue that the design and evaluation
of existing mitigation approaches may not have assessed
whether speculation windows are sufficiently suppressed,
and that factors such as branch latency and SMT (multi-
threaded) contention must be considered by these miti-
gations. To support this claim, we present a systematic
methodology for evaluating the effectiveness of such mit-
igations. Using this methodology, we present three case
studies investigating existing BTI mitigations that have
been widely deployed on x86 processors. Each of these
studies demonstrates that – despite the use of these miti-
gations – ‘universal read gadgets’ [33] can be transiently
executed within the remaining speculation windows.

Our first case study analyzes the LFENCE/JMP soft-
ware mitigation (aka the “AMD retpoline” [7]), which was
recommended by AMD as an effective retpoline alterna-
tive and had been adopted by major OS and hypervisor
vendors. We demonstrate that the remaining window for
speculative execution on various x86 CPUs from both In-
tel and AMD, despite use of the LFENCE/JMP mitigation,
can still allow the transient execution of disclosure gad-
gets. We also show that SMT workloads can significantly
increase the size of such speculation windows.

Our second case study shows that BTI-style attacks
using direct branches – which we refer to as Direct Branch
Target Injection (DBTI) – are possible on some AMD pro-
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cessors. This new class of BTI-style attacks (which AMD
have now documented as part of Branch Type Confusion
(BTC) [8]) are outside the scope of most BTI mitigations
as they focus solely on indirect branch predictions. Again,
we show that we can expand the speculation window for
DBTI using SMT workloads, allowing transient execution
of some ‘universal read gadgets’ requiring two dependent
loads. Our analysis also provides insight into the behavior
observed by concurrent research on conditional branch
predictions on AMD CPUs [41] as well as other Branch
Type Confusion [8] attacks such as Retbleed [42] – whose
authors later observed that DBTI-style behavior can even
occur without branches being present [43].

In our third case study, we investigate the IBPB
hardware-based mitigation, and show that our systematic
approach can be valuable even in cases where a specula-
tion window is already known to be present. We find that,
on some CPUs, IBPB is insufficient to mitigate attacks us-
ing predicted return targets – potentially exposing software
to SpectreRSB [28] attacks – and that SMT workloads can
induce the same behavior, even on newer processors.

Finally, we discuss how these identified issues might
enable transient execution attacks as well as potential ob-
stacles for practical exploitation. We also present a proof-
of-concept attack against the Linux kernel when using
the LFENCE/JMP mitigation (via unprivileged eBPF), and
discuss alternative approaches for mitigating such attacks.
We engaged in coordinated disclosure for all these issues,
and updated mitigations have already been deployed.

Our work shows that, where BTI-style attacks are a
concern, mitigations for branch target prediction attacks
should be evaluated in a more systematic and comprehen-
sive manner.

Contributions. In summary, our contributions include:

• We analyze the design of branch target prediction
mitigations, identify additional factors (such as
sources of latency) which can render such miti-
gations ineffective, and propose an approach for
evaluating their effectiveness.

• We present three case studies covering different
types of branches and mitigations, and show that a
variety of branch target prediction attacks remain
possible on many x86 CPUs, despite the use of
existing mitigations.

• We describe a proof-of-concept attack on the
Linux kernel to demonstrate that such attacks are
practical, discuss the remaining obstacles for prac-
tical exploitation, and review potential alternative
mitigations (some of which are now standard).

2. Background

In this section, we provide a brief summary of branch
predictors and branch target prediction attacks. We also
describe the standard mitigations for such attacks (both
hardware- and software-based).

2.1. Branch predictors

Modern processors use several different branch target
predictors. Both indirect and direct branch targets are

usually predicted using a ‘cache’ in the form of the Branch
Target Buffer (BTB). The BTB stores previous targets
for each taken branch, and predicts that later executions
of that branch will have the same target. In practice,
the BTB is typically indexed by a hashed version of
the branch instruction’s address (‘IP-based’). The Branch
History Buffer (BHB) provides similar predictions using
a hash of branch history (‘history-based’), providing the
benefit of context for branches with dynamic targets.

Return branch targets are generally predicted using
a specialized stack-based predictor, which maintains a
record of previous callsites – when a return instruction
is encountered, the predictor ‘pops’ the target for the
corresponding call. Examples include the Return Stack
Buffer (RSB) on Intel CPUs, and the Return Address
Stack (RAS) on AMD CPUs.

These predictors are typically documented by the op-
timization guides for modern processors [4], [24], and
many of the parameters for specific processors have been
determined by previous research [9], [42], [47].

We focus on three categories of branches in this work,
all of which are typically predicted by some of these
predictors:

Indirect branches: Indirect branch instructions take
their target from a register or memory. On x86 platforms,
we consider the ‘near’ forms of JMP and CALL instruc-
tions; other forms (e.g., ‘far’ branches) are not predicted.

Return branches: Although return instructions are
typically viewed as a special-case of indirect branches, we
consider them separately since they are typically predicted
using an specialized branch predictor.

Direct branches: The target of direct branches can be
computed based on the immediate offset encoded within
the instruction. Again, on x86, we focus on JMP, Jcc
(conditional) and CALL instructions.

2.2. Branch target prediction attacks

Speculative execution is inherently not restricted by ar-
chitectural checks and conditions, and transiently executed
code can have persistent and measurable effects (such as
cache state changes). Branch prediction attacks typically
involve an attacker specifying (or influencing) the branch
prediction of a “victim” branch and then inferring data
from the victim’s domain by speculatively executing a dis-
closure gadget and leveraging a cache-timing side channel.

Such attacks can be performed using indirect branch
target predictions, which form the basis for several well-
known attacks, including Spectre Variant 2 [20] (aka BTI),
SpectreRSB [28] as well as more recent attacks such
as Branch History Injection [9] (aka BHI). We refer to
such attacks as ‘BTI-style’ attacks. A successful BTI-style
attack requires several attack primitives. We summarize
the standard terminology [34] below.

Speculation Gadget1: an indirect branch in the “vic-
tim’s” security domain, with a branch target prediction
which can be specified by the attacker. The original BTI
attacks exploited the lack of isolation to directly “inject”
indirect predictor targets, while BHI attacks instead rely
on influencing target selection based on branch history.

1. Since actual ‘gadgets’ are not required, we also refer to these
concepts more generally as speculation and windowing primitives.
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This indirect branch also needs to be invoked by the
attacker, with sufficient attacker-controlled context.

Windowing Gadget: an operation to delay the archi-
tectural execution of the victim indirect branch (typically
by delaying the resolution of the branch target), thus
opening the window for speculative execution at attacker-
controlled location. The most common approach involves
evicting the memory containing the branch target address
from the cache.

Disclosure Gadget: code which accesses data and
conveys it via a side channel. For example, a disclosure
gadget may perform a data-dependent cache load, con-
verting data read by transient execution into persistent and
measurable cache state changes.

In a typical “universal read” disclosure gadget which
can be used to infer the contents of memory, the attacker
also needs to control the memory address. This allows
such a gadget to load potentially-sensitive data from an
attacker-controlled location before transmitting the value
using a side-channel.

2.3. Hardware-based mitigations

Both software-based and hardware-based mitigation
options exist which can help mitigate attacks such as BTI.
We focus on mitigations which are commonly used within
the x86 ecosystem and relevant for mitigating BTI-style
attacks. Although other platforms (such as ARM) also
provide similar mitigations, they are less standardized and
often platform-specific.

Both modern Intel and AMD processors support
hardware-based mitigations to control the branch predic-
tion behavior of the processor, which can be enabled
or disabled by software using MSR writes [2], [21]. In
particular, three of these mitigations are widely supported:

“Indirect Branch Restricted Speculation” (IBRS) pre-
vents software from controlling indirect branch predictions
in a more privileged domain (e.g., user mode control-
ling predictions of kernel code, or guest code controlling
predictions of hypervisor code). Although this can be
implemented by isolating branch predictions in hardware
– which appears to be the approach taken by Intel’s
enhanced IBRS (eIBRS) [9] – other processors appear to
instead disable indirect branch predictions entirely [5].

“Single Thread Indirect Branch Predictors” (STIBP)
isolates indirect branch predictions between SMT threads
(logical processors), preventing one thread from control-
ling the indirect branch predictions on the sibling thread
while it is enabled.

Finally, the “Indirect Branch Predictor Barrier” (IBPB)
is intended to prevent previously executed code from con-
trolling the predicted targets of indirect branches executed
after the barrier – for example, hardware could implement
this by invalidating all branch predictor targets. IBPB is
typically used when switching between different security
domains, and applies to return branches as well as other
indirect branches.

These hardware-based mitigations continue to be im-
proved on newer processors. For example, recent Intel pro-
cessors also support additional controls which can be used
to disable specific types of indirect branch predictions,
such BHB-based predictions or alternate RET predictions,

and AMD’s Zen 4 processor is reported to have support
for ‘automatic IBRS’ [38].

2.4. Retpoline

As an alternative to hardware-based mitigations such
as IBRS, Google proposed the “retpoline” mitigation [40],
which mitigates indirect branch prediction attacks in soft-
ware by replacing indirect JMP and CALL instructions
with a software sequence. These branches are replaced
with a return instruction which is forced to be mispre-
dicted to a “safe” target. Retpoline is widely used, and
was believed to be an effective mitigation in most circum-
stances. However, there are caveats on some processors
where alternative predictors (non-RSB) can be used for
RET instructions (such as some Intel Skylake-generation
processors [22], and AMD Zen, Zen+ and Zen2 processors
[8]), and attacks on such cases were demonstrated by
recent work [42].

Other software mitigations have also been proposed,
such as “randpoline” [39], a non-deterministic software
mitigation, as well as LFENCE/JMP.

2.5. LFENCE/JMP

Another software approach for mitigating BTI-style
attacks is the “LFENCE/JMP” mitigation. This refers to
a code sequence where an LFENCE instruction is used
to serialize execution before an indirect branch with a
register operand (not a memory address), and thus can be
executed without any memory-access latency. The inten-
tion is that such a sequence will significantly reduce the
potential window for transient execution at the predicted
target of the indirect branch, since the architectural target
will always be available when the branch instruction is
allocated for execution, due to the serialization provided
by LFENCE.

As a serializing instruction, LFENCE is widely used as
a method for mitigating Spectre Variant 1 vulnerabilities
in software. Both Intel and AMD documentation describes
that instructions after LFENCE will not be executed until
the instructions before LFENCE have completed execution,
and the results of those instructions (such as memory
loads) are available. We have not observed any behavior
incompatible with this definition. We briefly discuss the
properties of LFENCE itself in Appendix A.

LFENCE/JMP is presented as an attractive software
mitigation option since it may have lower performance im-
pact in some situations, and is simpler to implement com-
pared to alternatives such as retpoline. At the time of our
research, LFENCE/JMP was recommended by AMD [3]
despite raised concerns (see Appendix B) and was the
default BTI mitigation for both the Linux kernel and
widely-used hypervisors (e.g., KVM and Xen) on AMD
processors. These factors prompted our research into the
potential for, and exploitability of, speculation windows –
in both LFENCE/JMP and other mitigations.

According to AMD’s documentation, the
LFENCE/JMP mitigation is described as “convert an
indirect branch into a dispatch serializing instruction
sequence”. It uses this example sequence:

jmp *[eax] ; load+jump to target
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Figure 1: Overview of how branch latency can induce speculation windows. (1) illustrates a case where branch latency is
high enough to allow speculative execution of instructions before misprediction is signalled, unlike example (2), where
the branch latency is low enough that the misprediction can be signalled before any speculative execution occurs.

And gives an equivalent example using LFENCE/JMP:

mov eax, [eax] ; load target address
lfence ; serialize
jmp *eax ; jump to target

Merely adding an LFENCE before the original code
sequence would be insufficient, since the load from mem-
ory could act as a windowing gadget. In this example a
memory-based indirect branch which loads its target from
memory is converted to a load and a register-based indirect
branch, with an LFENCE added between to make sure “the
load has finished before the branch is dispatched” [3].

3. Branch Latency

The branch prediction unit (BPU) is part of the fron-
tend of the pipeline and is intended to provide branch
predictions as early as possible, before the instructions
are dispatched for execution – and potentially even before
they are decoded. This is so critical to performance that
modern processors have multi-stage branch predictors,
where predictions are made immediately but may be over-
ridden one cycle later by a more accurate (but higher-
latency) predictor [26].

We claim that a key component of BTI-style attacks
is the race condition between the speculative execution
path and the architectural execution path of the branch
– and that this race condition can occur without the
need for any data dependency. For an attack to succeed,
transient execution of a disclosure gadget at the predicted
target must occur before the actual target of the branch
is resolved and the misprediction is signaled, creating a
speculation window – as illustrated in Figure 1.

3.1. Sources of latency

In our analysis, we focus on the branch latency – the
time it takes from the point a branch is fetched/predicted,
to the point that the architectural branch target is resolved
and a misprediction can be detected, the pipeline is cleared
and the frontend is steered to the correct target. For direct
branches we expect the misprediction to be detected as

soon as the branch instruction is decoded. However, for
indirect branch instructions (including RETs), a mispre-
diction may only be detected when the branch instruction
is executed. In both cases, there is always the potential for
a speculation window before a misprediction is signaled
and the pipeline is cleared.

Thus, the success of a speculative execution attack
heavily relies on branch latency. We identify four cate-
gories of possible causes of such latency:

1) Baseline execution latency: The inherent latency
needed for allocation and execution of the branch
(potentially including factors such as the branch
type or the alignment of branches).

2) Data-dependency: Caused by the delayed avail-
ability of the branch target. For indirect branches,
this latency may be significant, since it may
depend on memory accesses or computation.

3) Single-thread resource contention: Latency
caused by other instructions executed on the same
SMT thread in the out-of-order pipeline.

4) SMT resource contention: Resource contention
from the sibling thread, which we discuss in
detail in subsection 3.2.

3.1.1. Serialization. The standard mechanism to mini-
mize data dependency is to serialize previous instructions
with respect to the execution of later instructions. On x86
machines, such serialization is provided by the LFENCE

instruction. This minimizes both any data dependency as
well as any same-thread resource contention caused by
previous instructions. In particular, such serialization can
be used after a direct conditional branch to ensure that
transient execution does not continue down an unintended
path, mitigating attacks such as BCB.

Serialization before a branch can be used to minimize
branch latency, but it does not affect the baseline execution
latency nor any potential SMT resource contention. The
LFENCE/JMP mitigation provides an example of how this
may be a concern; instructions may still be transiently
executed in the window after the serialization of LFENCE,
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but before the branch instruction is executed and the
misprediction is signaled.

3.2. SMT resource contention

When SMT is in use, certain hardware resources are
shared between the sibling threads of the same core.
Decoded instructions from both threads are dynamically
dispatched and executed on execution ports and may result
in resource contention and cause measurable delay in
execution of certain instructions.

For analyzing branch execution latency and potential
speculation windows, we need to consider the contention
for resources which could result in the branch execution
on one thread being delayed by activity on the sibling
thread. We theorized about three broad categories:

General port contention: Instructions may need to
be executed by specific execution ports, which is a known
source of contention [1]. Executing instructions that use
the same execution ports as branch instructions may delay
the execution of a branch on the sibling thread, allowing
the speculative execution path to continue and thus ex-
panding the speculation window.

Branch-specific contention: There may be shared
execution units and/or resources that are specific to branch
instructions (or a specific type of branch instruction).
The allocation and execution of branch instructions may
depend on the availability of such resources. This means
that branches being executed on one thread may delay the
execution of the branch on the sibling thread, expanding
the speculation window.

Contention from other causes: There are likely
causes of contention which are not included above, which
we group into a single category. We will discuss concrete
examples as part of our case studies.

To analyze the impact in practice, we propose running
appropriate SMT workloads on a sibling thread. If such
workloads have an impact on branch latency, we would
expect them to effectively act as windowing gadgets.

Workloads for most categories could simply execute
a specific type of instruction in an unrolled loop – for
example, a lengthy sequence of XOR instructions in a
loop for evaluating general port contention. For branch-
specific contention, we suggest a similar approach but
using branch-focused workloads, such as direct JMPs,
direct far JMPs, indirect near JMPs and conditional JMPs.
Where branch misprediction is possible (e.g., indirect and
conditional branches), we propose evaluating workloads
with both correctly-predicted and mispredicted branches.

4. Experiment Methodology

In this section, we propose a methodology for design-
ing and running experiments to investigate the speculation
window discussed in section 3, and in particular, the effect
of branch latency on such windows.

At a high level, each experiment should consist of
the following steps, generalizing the approach of previous
research:

1) Training: executing a trainer branch to populate
the relevant branch predictor with a specific target

TABLE 1: Disclosure gadgets used in our analysis

Discloses High-resolution Dependency
memory? channel? chain size

load-once � � 1
load-load � � 2
load-shift-load � � 3

that corresponds to the location of one of the
disclosure gadgets described above.

2) Speculation: executing a “victim” branch which
is intended to consume the target prediction from
the training step, and may transiently execute the
trained disclosure gadget.

3) Measurement: probing the side effects (cache
state changes) from the fetching of the trained
target and/or the transient execution of the dis-
closure gadget.

Where possible, the training step should be executed
multiple times before the speculation step, to increase the
probability of training the branch predictor correctly and
thus observing the expected branch target prediction.

To account for any history-based branch predictors,
we normalize the branch history by executing a sequence
of branches (or aliasing branches) right before the trainer
branch in the training step, and the victim branch in the
speculation step.

For indirect branches, we can use the same branch in
both training and speculation steps (“self-training”) and
simply change the target; for direct branches, we can
either modify the instruction to change the encoded target
between the training and speculation steps, or execute a
victim branch at an aliasing branch address (as discussed
in subsection 6.1).

Attempting to observe instruction fetches at the pre-
dicted branch targets allows the occurrence of branch
predictions to be confirmed, and branch predictor address
aliasing to be identified. When branch predictions are
observed, the next step is to check for transient execution
of a minimal load-once gadget (see subsection 4.1) on
the speculative path. If successful, experiments can then
be performed to measure the speculation window size as
well as to determine whether longer disclosure gadgets
can fit in the relevant speculation window.

If instructions are fetched from the trained branch
target but cache side-channels do not observe the side-
effects of the load in the gadget, alternative disclosure
gadgets can be tested to check for speculative execution
(such as a load instruction with an immediate address,
or one of the other alternatives discussed above). Finally,
other sources (such as performance counters) may also
be useful to determine whether any instructions were
transiently executed.

In the remainder of this section, we expand upon the
details of our proposed methodology.

4.1. Observing branch predictions

When a branch prediction occurs, instructions at the
predicted target address may be speculatively fetched and
executed. Such activity may be exposed by performance
and/or sampling-based counters. However, to detect tran-
sient execution, we can simply place a disclosure gadget
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at the predicted target address and check if we see side-
effects from the execution of this gadget. For our method-
ology, we consider three forms of disclosure gadgets,
all using a cache-based side channel. As summarized in
Table 1, the speculation window needed to execute these
gadgets increases as they become more widely applicable.

“Register-disclosure” or load-once gadget: a single
load instruction, which carries out a speculative cache
load based on data which is already present in a register.
Although it does not provide a ‘universal read gadget’, it
could allow an attacker to infer some bits of such data.
Since only a single load is required, it may be possible to
execute this gadget in a very small execution window:

mov ecx, [rsi + rdi]
“Partial memory-disclosure” or load-load gadget:

two dependent loads, where the second dependent load
directly consumes the value of the first load. This style
of gadget does not provide enough resolution for a covert
channel to infer all bits, but an attacker with sufficient
control of the base address can create a ‘universal read
gadget’ by increasing that address until it crosses cache
lines (as discussed in e.g., [42]):

mov ebx, [rdi + rdx]
mov ecx, [rsi + rbx]

“Memory-disclosure” or load-shift-load gadget: two
dependent load instructions with a shift instruction, pro-
viding a full ‘universal read gadget’ and potentially al-
lowing all bits to be inferred. The first load reads a value
from a memory location using a pointer in a register
(line 1), which is then shifted to achieve a one-to-one
correspondence between data value and cache lines (line
2), and the second load performs a data-dependent load
using the shifted value (line 3), which should be visible
in the cache after the speculative execution of the gadget:

1 mov ebx, [rdi + rdx]
2 shl ebx, 0xc
3 mov ecx, [rsi + rbx]

If we do not observe any side-effects from transient
execution of any of these disclosure gadgets, we can also
consider alternative approaches. For example, we could
replace FLUSH+RELOAD with a different cache-based
side channel. Evicting cache lines from the L1 cache
(rather than flushing them from the entire cache hierarchy)
could speed up the second load. The size of the needed
speculation window could be further reduced by avoiding
evicting lines at all; for example, using cache LRU states
[45], which can provide a cache-based side channel for
data which is already present in the cache. We may even
be able to remove the need for a second dependent load
entirely by using a non-cache/memory-based side channel,
such as by training the conditional branch predictor in a
disclosure gadget and inferring data using the behavior of
an aliased branch [16]. However, we focus on the three
gadgets above in our work.

Even if no transient execution is observed, we can
still observe branch predictions by checking whether in-
structions are fetched at branch targets. Such fetches
can be observed using a cache-based incidental channel
(FLUSH+RELOAD [46]), as proposed in [15]. We flush (or
otherwise evict) the cache line containing the instructions
at the trained branch target, execute the branch, and then
measure how long it takes to reload the flushed cache line.

4.2. Speculation window size

To quantitatively characterize the branch latency where
a speculation window is present, we add 1-byte NOP
instructions to the start of the load-once gadget. These
NOPs act as spacers and delay allocation or execution of
the MOV instruction.

Iteratively adding NOPs until we no longer observe
any cache effects from the disclosure gadget’s load allows
us to determine the point where the speculation window
is no longer large enough to reach and execute the MOV
instruction. Although NOP instructions may overestimate
the size of the speculation window in terms of the “number
of instructions” (since they may not actually be allocated
or executed), this methodology provides an estimate of the
“upper bound” on the potential size of the window, and in
practice we did not observe any differences when replac-
ing the NOP instructions with (1-byte) CBW instructions.

4.3. Execution details

It is desirable for these experiments to be performed
in a kernel mode environment with interrupts disabled to
avoid possible false positives due to interrupts and other
system activity, although in practice experiment results
may be sufficiently reliable to rule out such sources.
Similarly, when SMT is not required for an experiment,
it should be run on a single thread with SMT disabled, to
avoid unintended contention. Experiment design should
also take other potential sources of speculation into ac-
count (such as prefetching and store-to-load forwarding)
when writing code; alternatively, such features can be
disabled using MSR-based controls where present.

5. Case Studies

To illustrate the role of branch latency and the related
speculation window in branch target prediction attacks, we
provide a detailed case study for each of the three types
of branches discussed in subsection 2.1:

• For indirect branches (JMP and CALL), we inves-
tigate the LFENCE/JMP software mitigation.

• For direct branches, we investigate whether branch
target prediction attacks are possible at all.

• For return branches, which are primarily predicted
from the RSB/RAS, we investigate the IBPB
hardware-based mitigation.

The focus of our work is to investigate mitigations
that rely on suppressing predictions by minimizing the
speculation window; as such, we did not evaluate mitiga-
tions which attempt to isolate or redirect such predictions,
such as retpoline and Intel’s enhanced IBRS. We also
exclude cases where the RET instruction may use alternate
predictors, which were covered by other recent work [42].

For each case study, we conduct experiments cor-
responding to our proposed methodology in section 3
on a variety of recent x86 CPUs from both Intel and
AMD, as listed in Table 2. Specifically, we investigate
whether branch predictions may occur and which sources
of branch latency are present, determine the size of the
corresponding speculation windows, and then explore the
impact of SMT activity.
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Figure 2: Typical effect of LFENCE/JMP on baseline execution latency

TABLE 2: Processors used in our experiments, along with
the corresponding microarchitectures.

Microarchitecture Tested processor

Goldmont Plus Intel Pentium Silver N5000
Tremont Intel Core i5-L16G7 (Lakefield)
Sunny Cove Intel Core i5-1038NG7 (Ice Lake)
Willow Cove Intel Core i7-1165G7 (Tiger Lake)
Golden Cove Intel Core i9-12900K (Alder Lake)
Gracemont Intel Core i9-12900K (Alder Lake)
Zen AMD Ryzen 5 2400G
Zen+ AMD Ryzen Threadripper 2990WX
Zen 2 AMD Ryzen 7 4700G
Zen 3 AMD Ryzen 5 5600G

As discussed, one possible issue with conducting these
experiments in userspace is that OS context switches may
occur (e.g., for LFENCE/JMP, between LFENCE and the
JMP), and instructions such as SYSRET are not docu-
mented to be serializing on AMD processors. Therefore,
we also reproduced the relevant results in a kernel mode
environment with interrupts disabled.

All the experiments which did not involve SMT port
contention were run with SMT disabled (on a single
thread), to avoid unintended contention. We also designed
our tests to rule out false positives due to prefetching and
other unexpected sources of speculation, and during our
SMT tests, we only report results which we consistently
observed for the duration of our test.

The scope of this work did not involve finding the best
possible SMT workloads for each of the cases; our goal
was to cover the instructions and cases needed to cause
the desired types of contention during execution, rather
than (for example) optimizing the size or reliability of
any resulting speculation windows.

5.1. LFENCE/JMP

Our first case study investigates the LFENCE/JMP soft-
ware mitigation, which is designed to mitigate BTI attacks
on indirect branches. While other mitigation options gen-
erally rely on restricting the Speculation Primitive of BTI-
style attacks, the LFENCE/JMP mitigation aims instead to
remove the Windowing Primitive. In other words, while
attacker-controlled transient execution can still technically
happen, the expectation is that the speculation window
will be too small for it to be exploitable.

Since the LFENCE/JMP mitigation essentially relies on
a race condition, despite the lack of data-dependency, we
still expect there to be a speculative window created by
the baseline execution latency.

Figure 2 presents an illustrative example (on Zen 2)
of the reduction in speculation window before and after
applying LFENCE/JMP to an indirect branch, measured
using the NOP method described in subsection 4.2. This
visualizes the impact that LFENCE/JMP can have on the
speculation window of an indirect branch. The number of
instructions which can be transiently executed is greatly
reduced, but a residual window clearly still remains (in
this example, allowing 23 NOPs to be executed before
the gadget).

5.1.1. LFENCE/JMP without SMT. Our first experiment
investigates whether disclosure gadgets can be transiently
executed within this speculation window. The results can
be seen in Table 3.

We see that the load-once gadget is transiently exe-
cuted on all processors (adding the LFENCE decreases the
success rate by < 1%), indicating the speculation window
is large enough to execute a one-instruction “register-
disclosure” gadget with just the baseline execution latency,
despite the use of LFENCE/JMP. This confirms our expec-
tation that such a speculation window should be present.

On the other hand, the load-load gadget requires a
significantly larger speculation window in which two de-
pendent loads can be executed. A sufficient large window
only appears to be present on some tested processors –
AMD processors prior to Zen 3, and one Intel proces-
sor (Gracemont) – supporting AMD’s own findings (see
the Disclosure section). Finally, executing the load-shift-
load gadget would require an even larger window, and
LFENCE/JMP appears to limit the window sufficiently to
mitigate such gadgets on all tested processors.

To quantify these differences between processors, we
use the technique from subsection 4.2 to measure the size
of the speculation window; specifically, we measured the
maximum number of NOPs which can be added in front
of the load-once gadget before the cache effects were
no longer visible – i.e., when we reach the limit of the
speculation window. The results are shown in Table 4.

Our experiments show that the impact of LFENCE/JMP

on the speculation window size appears to differ sig-
nificantly between processors. As expected, the window
appears to be largest on the processors where we observed
transient execution of the load-load gadget, and the re-
sults support our conclusion that such a gadget fails to
transiently execute on other processors, such as Zen 3.

5.1.2. LFENCE/JMP with SMT. We evaluated
LFENCE/JMP using different SMT workloads as
proposed in subsection 3.2. To evaluate contention from
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TABLE 3: Verification of the effectiveness of LFENCE/JMP, and confirmation of the race condition.

Microarchitecture
Load-shift-load gadget Load-load gadget Load-once gadget

No LFENCE With LFENCE No LFENCE With LFENCE No LFENCE With LFENCE

Goldmont Plus > 99% 0% > 99% 0% > 99% ∼ 10%
Tremont > 99% 0% > 99% 0% > 99% ∼ 50%
Sunny Cove (ICL) > 99% 0% > 99% 0% > 99% > 99%
Willow Cove (TGL) > 99% 0% > 99% 0% > 99% > 99%
Golden Cove (ADL) > 99% 0% > 99% 0% > 99% > 99%
Gracemont (ADL) > 99% 0% > 99% > 99% > 99% > 99%
Zen > 99% 0% > 99% > 99% > 99% > 99%
Zen+ > 99% 0% > 99% > 99% > 99% > 99%
Zen 2 > 99% 0% > 99% > 99% > 99% > 99%
Zen 3 > 99% 0% > 99% 0% > 99% > 99%

TABLE 4: NOP spacer experiment results with load-once “register-disclosure” gadget and LFENCE/JMP (without SMT).

Goldmont
Plus

Tremont Sunny
Cove

Willow
Cove

Golden
Cove

Gracemont Zen Zen+ Zen 2 Zen 3

Max # of NOPs 5 5 2 2 14 23 23 23 23 15

unknown sources, we experimented with a variety of
applications, microbenchmarks, and test cases – we
present results for the most “interesting” workload we
discovered in this category, which consists of repeated
calls to the nanosleep system call in a loop, with both
parameters set to NULL. Similarly, we only present
results for one general port contention workload (XOR),
which serves as a representative example.

We only tested a load-shift-load gadget, given that the
LFENCE/JMP window is typically large enough to allow
transient execution of the load-once gadget, even in the
absence of SMT port contention.

Table 5 shows results for all the tested processors
which support SMT; in all cases we observed at least one
SMT workload which can induce a large enough spec-
ulation window to transiently execute the load-shift-load
gadget, despite the use of the LFENCE/JMP mitigation.

On AMD microarchitectures prior to Zen 3, we have
observed that mispredicted branches (as well as far JMPs)
executed on a sibling logical processor appear to be an ef-
fective workload to increase latency in the indirect branch
execution, which may indicate contention for resources
that are specific to mispredicted branches. Similarly, suf-
ficient contention is also seen with our XOR workload on
microarchitectures prior to Zen 2, which is likely due to
general port contention.

The best SMT workload for the tested Intel CPUs
appears to be correctly-predicted indirect JMPs, which
may indicate contention for resources specific to indirect
branches. The expanded speculation window caused by
the nanosleep workload may have the same root cause,
since indirect branches will be executed in the kernel on
the sibling logical processor. However, this cannot be the
only source of contention, since we also observed hits for
some other SMT workloads.

On Zen 3, the majority of these SMT workloads do
not appear to increase the speculation window after the
LFENCE/JMP branches on the sibling logical processor,
which may indicate fewer shared resources or differences
in the way in which resources are allocated. However,
since the nanosleep workload still opens a sufficiently
large speculation window to execute the load-shift-load
gadget, there still appears to be at least some form of

resource contention between sibling logical processors on
Zen 3. Although it would presumably be possible to root-
cause the source of the contention and develop a more
focused workload, we did not consider this necessary
given the scope of this study.

Note that we did not attempt to optimize these work-
loads in terms of the effective instruction density, nor to
synchronize them with the indirect branch execution on
the sibling logical processor. In particular, the mispre-
dicted branch workloads also execute code to cause branch
mispredictions, and we did not attempt to optimize the
number of mispredicted branches.

5.2. DBTI

As documented by processor vendors [24], previous
work [15] showed that branch target prediction can also
occur for direct branches (with a IP-based prediction
algorithm) by observing instruction fetches. As such, we
investigated the potential for speculative execution due to
branch prediction of direct branches.

5.2.1. DBTI without SMT. Listing 1 shows our experi-
mental approach, using two direct JMP rel32 instructions
with addresses which are known to alias in the structure
used to store branch predictor targets (e.g., BTB). We
encoded different targets for the “trainer” branch (in this
example, an offset of +0x200) and the “victim” branch (in
this example, +0x400).

If DBTI is present, the “victim” branch will be pre-
dicted using the BTB entry created by the “trainer”
branch, and the instructions at offset +0x200 from the vic-
tim branch may be transiently executed. Our experiment
found this behavior on several AMD processors (including
Zen, Zen+ and Zen2), with a speculative window large
enough to execute at least one load instruction, allowing us
to observe the corresponding cache state change. We saw
the same behavior for both conditional and unconditional
direct branches, with both 32-bit and 8-bit relative offsets.

We again characterized the speculation window by
adding 1-byte NOP instructions before the load instruction
in the one-load gadget. We used a 3-byte load instruction
with the beginning of the gadget aligned to 64 bytes.
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TABLE 5: SMT workloads: load-shift-load “memory-disclosure” gadget success rates with LFENCE/JMP

Microarchitecture
No

LFENCE

No
workload

SMT workloads

Direct
JMP

Jcc Indirect JMP Far
JMP

XOR
nano
sleeppredicted mispred predicted mispred

Sunny Cove (ICL) > 99% 0% 0% < 1% 0% 98% 0% 0% 10% 1%
Willow Cove (TGL) > 99% 0% 0% < 1% 0% 95% 0% 0% 10% 2%
Golden Cove (ADL) > 99% 0% 0% 0% 0% 99% 0% 0% 13% 2%
Zen > 98% 0% 0% 0% 8% 0% 5% 15% 30% 6%
Zen+ > 99% 0% 0% 0% 12% 0% 5% 23% 43% 8%
Zen 2 > 99% 0% 0% 0% 21% 0% 6% 11% < 1% 5%
Zen 3 > 99% 0% 0% 0% 0% 0% 0% 0% 0% 1%

; this will create a BTB entry
; predicting a jump to +200
6020000: jmp 6020200

; intended target at +200
6020200: ret

Trainer code

; this branch will be predicted
; using a BTB entry
4000000: jmp 4000400

; target at +200
4000200: mov rax, [rax]

Victim code

Listing 1: Basic DBTI test code (using example addresses)

TABLE 6: DBTI results for different branches

Zen Zen+ Zen2 Zen3 Intel CPUs

JMP rel32/8 � � � � �
Jcc rel32/8 � � � � �
CALL rel32 � � � � �

TABLE 7: NOP spacer experiment results for DBTI

Zen Zen+ Zen2 Zen3 Intel CPUs

Max # of NOPs 7 7 7 N/A N/A

The results, without any attempt to increase the size of
the window (e.g., SMT workloads or branch predictor
contention), are shown in Table 7.

Given the lack of a windowing gadget in the single-
threaded DBTI attack, it is reasonable to observe con-
sistent numbers across different DBTI-impacted microar-
chitectures, which likely have similar design in the rel-
evant frontend pipeline stages (as also observed for
LFENCE/JMP on these processors).

However, we do not observe a speculation window on
any other tested processors. As proposed in subsection 4.1,
we can examine whether branch predictions occur by
checking for speculative fetches of the predicted target.

The results from this experiment are shown in Table 8,
based on the ratio between the time needed to load the
cache lines corresponding to both the speculative and
architectural targets; a ratio close to 1:1 indicates that a
speculative fetch has occurred. We see both branch pre-
dictor aliasing and branch predictions on all tested proces-
sors, from both AMD and Intel. However, on processors
unaffected by DBTI, the frontend appears to be able to
detect the incorrect prediction and clear the pipeline before
any transient execution can occur.

We also observed such instruction fetches without the
need for a victim direct branch, on all processors. After
our initial disclosure, we also successfully reproduced
DBTI without the presence of a victim direct branch (e.g.,
with a NOP at the target) on Zen, Zen+ and Zen2 proces-

TABLE 8: Speculative fetches due to direct branch pre-
dictions for aliased and non-aliased branches

Processor Aliased Non-aliased

Goldmont Plus � �
Tremont � �
Sunny Cove � �
Willow Cove � �
Golden Cove � �
Gracemont � �
Zen � �
Zen+ � �
Zen 2 � �
Zen 3 � �

sors; AMD describe this behavior as “BTC-NOBR” [8].
This specific case can be mitigated (on Zen 2) by setting a
specific bit in an MSR; in fact, our experiments show that
this also suppresses instruction fetches. However, this bit
appears to have no effect when a victim branch is present.

IBRS does not appear to affect the observed behavior
on any processors. AMD’s guidance for BTC states that
IBPB flushes both direct and indirect branch prediction
targets, thus it can also be used to mitigate DBTI; we
confirmed that we do not observe older predictions for
direct branches after IBPB has been invoked.

5.2.2. DBTI with SMT. Our LFENCE/JMP analysis
showed that speculation windows for indirect branches
could be expanded using SMT workloads; the natural
question is whether this also applies to direct branches. We
repeated our speculation window experiments with SMT
workloads. The results are shown in Table 9; specifically,
the maximum number of 1-byte NOP instructions that can
be added to the start of the one-load gadget and still permit
transient execution of the gadget.

Since our load instruction is 3 bytes, the best case of
13 NOPs provides 16 bytes of total speculation window.
This limit is likely imposed by the 16-byte decode win-
dow, as also mentioned in [41].

Our results show that direct branches are also affected
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TABLE 9: NOP spacer experiments with SMT workloads: load-once with DBTI

Microarchitecture
No

SMT

SMT workloads

Direct
JMP

Jcc Indirect JMP Far
JMP

XOR
nano
sleeppredicted mispred predicted mispred

Zen 7 7 7 7 8 7 9 8 13
Zen+ 7 7 7 7 8 7 9 8 13
Zen 2 7 7 7 7 8 7 9 8 13

by SMT resource contention, although in a differenct way
when compared to indirect branches. This is likely due
to different hardware components (e.g., execution units)
being used for these different branch types.

With SMT contention, we observe that (at least on
Zen 2) two dependent loads (a load-load gadget) can
be successfully executed speculatively when running the
nanosleep workload. This means that memory-disclosure
attacks may be possible (as we discuss in section 6),
despite AMD’s original analysis [8] stating that two de-
pendent loads “will not be able to execute before the
pipeline is flushed” (and thus that only register contents
can be disclosed). Since Zen and Zen+ processors do not
support STIBP, mitigating BTC-RET [8], [42] requires
disabling SMT – as such, we did not investigate SMT
workloads on these processors.

We believe the root cause of this expanded DBTI
window on Zen 2 may be pipeline resource contention due
to deep speculation; we developed an optimized workload
involving speculative execution of a chain of function calls
(including a mispredicted RET) ending in REP STOS,
all in the transiently executed shadow of a fault. Our
experiments demonstrate this workload obtains a “success
rate” of > 1% – i.e., the frequency at which we observe
result from the load-load gadget using the cache side
channel. Note that it still has a high (> 99%) signal-
to-noise ratio. We also obtained several successes per
second with a cross-mode proof-of-concept reading kernel
memory – which we believe is sufficient to show that
inferring kernel data is practical.

We do not, however, see a signal when adding another
instruction (such as a shift) to the dependency chain (as
in the load-shift-load gadget), which may indicate limits
on the speculation window size. AMD informed us that
the first load must be 32- or 64-bit sized, which signifi-
cantly limits the gadgets which fit inside the window. We
leave further investigation of the underlying cause of this
workload, as well as whether it may be possible to further
expand the speculation window, as a topic for future work.

5.3. IBPB

Our final case study investigates return branches,
which are typically predicted using the RSB/RAS. IBPB is
recommended when switching between security domains
to prevent predictions using previous RSB/RAS entries,
to mitigate potential SpectreRSB attacks [28].

However, Intel recently documented “post-barrier RSB
predictions”, an issue with some Intel processors where
a single RSB prediction may be made corresponding to
the most recent RSB entry created prior to the IBPB
barrier, creating an unexpected speculation window. Un-
like LFENCE/JMP and DBTI, the data dependency can

contribute to the latency of the branch, since the RET
instruction will not be executed until the return address
(on the stack) is known.

Since IBPB is only accessible to supervisor mode, this
issue is unlikely to be exploitable in practice, since the last
RSB entry prior to IBPB will usually be controlled by
the OS kernel, rather than an attacker. However, given the
existence of this corner case, we applied our methodology
to investigate whether there could still be a race condition
which could result in a speculation window for predictions
based on these ‘stale’ RSB entries that are expected to be
invalidated by the invocation of IBPB.

5.3.1. IBPB without SMT. Unlike previous experiments,
the RSB/RAS predictors are based on the most recent
CALL instructions, therefore a different “training” step is
required. We use a sequence of CALL instructions to pop-
ulate the RSB with designated speculative return targets
(after the CALL instruction). One of them corresponds
to a disclosure gadget, and the remainder contain only
RET instructions. This results in a speculatively executed
RET instruction descending through the targets (from RSB
entries) on its speculative path, while allowed by the
speculation window.

For our experiment, we first execute this CALL se-
quence (our training step), and then invoke IBPB (using
an MSR write) and switch to an alternate stack (previously
flushed from the cache, to cause data dependency) with a
different set of return addresses. We then execute a RET
instruction, potentially causing speculative execution, and
observe (using FLUSH+RELOAD) whether our gadget was
transiently executed. By increasing the depth of the CALL
instruction corresponding to the disclosure gadget, we can
determine the depths at which targets are predicted from
the RSB. We performed most of our experiments in kernel
code, since only privileged code can execute the WRMSR
instruction needed to invoke IBPB.

The results are shown in Table 10. As expected,
we observe a single RSB entry on some Intel parts;
we confirmed that this is mitigated by Intel’s suggested
sequence [25]. However, on Zen, Zen+ and Zen2, we
observe transient execution for multiple RSB entries; in
fact, RSB predictions do not appear to be affected by IBPB
at all. This behavior was later confirmed by AMD.

5.3.2. IBPB with SMT. Since the speculation window
for RET predictions after IBPB is large on the affected
processors, unlike our LFENCE/JMP and DBTI studies,
there appears to be little value in investigating whether
this window could be expanded further using SMT work-
loads. On other tested processors we did not observe any
branch predictions across IBPB. However, the question
remains whether SMT workloads could somehow induce
a speculation window on these processors.
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TABLE 10: Observed RET predictions after IBPB

Processor RET predictions

Goldmont Plus None
Tremont None
Sunny Cove Most recent
Willow Cove Most recent
Golden Cove Most recent
Gracemont None
Zen Multiple
Zen+ Multiple
Zen 2 Multiple
Zen 3 None (without SMT)

We ran experiments using the SMT workloads de-
scribed above, and discovered that a workload consisting
of usleep(1) in a loop results in branch target prediction
of RETs on Zen3 across IBPB. Although such predictions
only occur for a portion of the time (we currently observe
∼ 1%), this would be sufficient to mount an attack since
there are few false positives (i.e. there is a high signal-
to-noise ratio). Moreover, we observe a large speculation
window, similar to the results on other affected AMD
processors (Zen, Zen+ and Zen2).

Our analysis suggests that this may be caused by sleep
state transitions of the sibling logical thread. Success rates
are correlated with MWAITX invocations on this sibling
thread, and we have not observed this behavior when SMT
is disabled. Since AMD state that “Return instructions
are always immune to influence by the other thread” [3],
we did not investigate potential cross-thread predictions.
Given that the root cause appears to be unrelated to branch
latency, we leave further analysis to future work.

6. Exploitability

The results presented above alone do not necessar-
ily mean that the demonstrated speculation windows are
exploitable by an attacker. In this section, we discuss
how practical exploitability may depend on many other
factors, even assuming that an attacker has arbitrary code
execution in userspace. In particular, we propose po-
tential avenues for exploiting DBTI as well as a full
proof-of-concept attack against the Linux kernel using
LFENCE/JMP, to demonstrate that the branch latency we
have discussed can be a real-world problem. For RET-
related attacks that bypass IBPB on AMD processors, we
refer to previous work [28] on such attacks.

Limits on the speculation window size may also have
other implications; for example, page walks may not be
possible, which may limit speculative memory accesses
to pages which have their address translations in the
Translation Lookaside Buffer (TLB). Similarly, it may not
be practical to execute some instructions due to conflicting
needs for pipeline resources.

On the other hand, a speculation window which can
contain multiple dependent loads – potentially allowing
transient execution of a cache-based “universal read” gad-
get – may raise a higher level of concern. We have shown
that – at least in some circumstances – such gadgets can
be transiently executed despite the use of LFENCE/JMP,
DBTI, or IBPB. Additional results related to alternative
disclosure gadgets are provided in Appendix C.

Exploitation in practice also depends on which indirect
call sites and disclosure gadgets could be used by an
attacker. Assuming a scenario where a userspace attacker
attempts to obtain data from kernel mode, we assume
Supervisor-Mode Execution Prevention (SMEP) is en-
abled, which requires the disclosure gadgets to be located
in executable kernel memory. If predicted targets are not
isolated between modes, such as on older Intel CPUs
as well as current AMD CPUs (see below), a userspace
attacker can inject targets into indirect branch predictor
entries: any bytes in executable kernel code may be a
potential gadget. Defenses such as fine-grained Address
Space Layout Randomization (ASLR) can be bypassed
with the use of cache-timing side channels.

If the userspace attacker cannot directly specify pre-
dicted targets for the kernel indirect branches (as may be
the case with Intel’s eIBRS), and potential locations for
transient execution are limited to existing kernel targets,
then exploitation also requires identifying a suitable dis-
closure gadget within this more restricted scope.

6.1. Predictor target aliasing

Our experiments demonstrated (as a side effect) that
branch target aliasing is possible on both Intel and AMD
processors. However, cross-mode attacks against OS ker-
nels and/or hypervisors are only possible on processors
which do not isolate predicted targets between modes. Pre-
vious work has shown that older (pre-eIBRS) Intel CPUs
do not have such isolation, allowing simple injection of
targets, and this is also true on Zen [27]. Such aliasing was
also recently documented on Zen 2 processors [42]. Our
experiments show that all recent AMD CPUs (including
Zen 3) seem to lack mode-based target isolation.

In particular, we experimented with cross-mode alias-
ing of short indirect branch predictor targets on AMD
processors, which was the approach used by the original
Spectre Variant 2 attacks on older Intel CPUs without
eIBRS [18]. A simpler approach (as discussed in [27])
is to branch to an illegal target and suppress the fault.

Our cross-mode aliasing experiments confirmed that a
userspace attacker without the ability to execute code at
a linear address with bit 47 set can instead toggle other
address bits of a userspace branch to cause collisions with
kernel branches due to aliasing in the branch predictor
entries. The branches contributing to the BHB (Branch
History Buffer, following the terminology from [18]),
the trainer indirect branch as well as the branch target
itself, can thus be implemented in userspace, allowing an
attacker to control the lower bits of the predicted targets
of kernel indirect branch addresses. The specific aliasing
behavior (and the number of controllable lower bits of the
predicted targets) varies between CPU generations, but we
reproduced similar aliasing behavior for short targets on
all the AMD CPUs tested.

On AMD processors affected by DBTI, we also ob-
serve similar cross-mode aliasing behavior and demon-
strate that the predicted targets of direct branches in OS
kernel (or in a hypervisor) can be trained using aliasing
branches from user space (or a guest). This allows DBTI
attacks to be performed across security domains, even with
SMEP enabled.
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; bounds check
cmp rax, rbx
; conditional branch; can be trained
ja out_of_bounds
; speculatively load arbitrary memory
mov rbx, [rcx + rax]
; intervening instructions
nop
nop
nop
nop
; DBTI predicts this to a 2nd load
jmp somewhere

Listing 2: Bounds Check Bypass example

6.2. Thread isolation

BTI-style attacks are known to be possible across
threads. We also observed that the BTB entries for di-
rect branches are shared between threads when SMT is
enabled, allowing DBTI attacks to be performed from
a sibling thread. As mentioned earlier, STIBP provides
thread isolation for indirect branch predictions, which also
applies to our test cases with LFENCE/JMP mitigation;
we found that STIBP also applies to direct branches,
and mitigates DBTI attacks performed across threads.
However, STIBP does not prevent SMT workloads from
expanding the DBTI speculation window.

6.3. Bounds Check Bypass + DBTI

BCB vulnerabilities require code that executes (a) a
speculative out-of-bounds load of data from memory, and
(b) instructions which convey that data using a side-
channel. Mitigating BCB depends on identifying such
code patterns and adding serialization.

However, with DBTI, we can replace (b) with any
branch instruction, since DBTI can be used to transiently
redirect such a branch to a suitable instruction of the
attacker’s choosing. If BTC-NOBR has not been mitigated
– such as on Zen and Zen+ processors which cannot be
configured to suppress predictions for non-branch instruc-
tions – this could even be a non-branch instruction. This
technique (also mentioned in [43]) provides “universal
read” gadgets within a small speculation window, showing
that attacks may be possible even without SMT workloads.

Listing 2 shows an example of code which we con-
firmed is vulnerable to DBTI attacks (with DBTI used to
direct prediction to a load using rbx as an offset).

Since such patterns do not require a second load (or
other side-channel transmission instruction), but only a
code path consisting of a speculative load followed by a
direct branch, we found suitable code patterns to be com-
mon in OS kernel code. In fact, previous work [36] has
shown that kernel code which speculatively dereferences
memory specified by userspace-controlled register values
may be transiently executed during system calls without
the need for deliberate targeting. As such, even disabling
SMT may be insufficient to mitigate DBTI attacks. AMD’s
guidance [8] refers to code which may be vulnerable
to these attacks as ‘half-v1 gadgets’, and recommends
mitigating such code using existing techniques.

6.4. Exploiting Unprivileged eBPF

Finally, we describe a proof-of-concept attack against
the Linux kernel for one case – LFENCE/JMP – as a
demonstration that the speculation windows we found can
be a potential issue in real-world scenarios.

After BHI was disclosed to the Linux community,
the upstream Linux kernel was updated to inline the
indirect branch “thunk” calls where possible, including in
JITed eBPF code. At the time of our research, this meant
that the default configuration for AMD processors used
LFENCE/JMP to protect indirect branches in unprivileged
eBPF. To confirm whether the speculation window opened
by LFENCE/JMP can be used in a realistic attack, we wrote
a proof-of-concept (PoC) exploit which demonstrates that
kernel memory contents can be inferred using eBPF on
an AMD Zen 2 processor.

The eBPF JIT translates code in a fairly direct manner
from eBPF bytecode to x86 assembly, which gives us a
certain amount of predictable control over register con-
tents and memory contents. We developed an unprivileged
eBPF program which contained an appropriate indirect
branch; technical details are provided in Appendix D.

Although the aliasing on AMD CPUs allows a wide
range of kernel code bytes to be used as targets, our goal
was to create a simple proof-of-concept which did not rely
on a specific kernel binary; as such, we did not search
existing kernels for bytes to use as disclosure gadgets (as
done by similar work [42]). Instead, we created our own
disclosure gadgets by embedding constant values inside
eBPF code which would be interpreted and executed as
x86 code when reached directly from a jump. Although
Linux’s eBPF constant blinding can mitigate this, it is
disabled by default as an optional hardening feature.

We used these constants to construct “universal read”
gadgets which would infer a single bit of information
from an arbitrary kernel address, and access a cache line
based on whether that bit is 0 or 1. By creating one such
gadget for every bit, we successfully used this PoC to
infer the contents of kernel memory despite the use of
the LFENCE/JMP mitigation, on Zen 2 with a suitable
SMT workload. Since the technique described above can
be used by an attacker to construct arbitrary disclosure
gadgets, our experiments imply that exploitation may also
be possible without SMT.

We expect that the proof-of-concept BHI attacks [9],
which use unprivileged eBPF, would also not be mitigated
by LFENCE/JMP on Intel CPUs despite the use of eIBRS;
these specific attacks seem likely to require an SMT
workload due to the need for a larger speculation window
(and 3 dependent loads), but this may not be the case for
other BHI attacks.

Note that LFENCE/JMP is no longer the default option
even on AMD processors due to our work, and that unpriv-
ileged eBPF has been disabled by default in recent kernels
as a consequence of the BHI disclosure [9]. Therefore,
reproducing this PoC on current Linux kernels would only
be possible where unprivileged eBPF has been explicitly
enabled, and where the kernel is configured to use the
LFENCE/JMP mitigation.
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6.5. Mitigations

Finally, we present some options for mitigating or
reducing the security impact of the cases we identified
where current mitigations may not be (fully) effective.

Alternative mitigations may be an option;
LFENCE/JMP can be replaced with other BTI mitigations,
such as retpoline or IBRS, and for processors where
IBPB does not clear the RSB/RAS by IBPB, software
can apply “RSB stuffing” to steer RET predictions to safe
targets which prevent attacker-controlled speculation.

DBTI, however, may be more complicated to miti-
gate. Enabling STIBP (where available) appears to prevent
cross-thread control of predictions, but does not prevent an
attacker from using an SMT workload to expand the DBTI
speculation window. AMD has released updated guidance
for BTC which documents that a load-load gadget cannot
fit in the ‘early redirect’ speculation window after setting a
specific MSR bit (only available on Zen 2). We repeated
the relevant experiments with it set, and confirmed that
a load-load gadget can no longer execute in the DBTI
speculation window, even with SMT workloads.

However, neither disabling SMT nor use of this ad-
ditional MSR bit address scenarios where a load-once
gadget may be of concern, such as in combination with
BCB attacks. AMD recommend developers should “in-
spect their code for any unmitigated cases”, but adding
serialization to all locations of concern may not be a
practical solution in all cases. Invoking IBPB on domain
transitions can be an alternative, but may impact per-
formance; AMD measure IBPB as 10k cycles on Zen,
although it is significantly faster on newer processors [8].

An alternative approach is to ensure that secrets be-
longing to other security domains are not mapped into the
address space of privileged code, ensuring that transient
execution attacks cannot access them – and thus rendering
these mitigations largely unnecessary. Recent research has
shown not only that this can be done with low overhead,
but also that it can be deployed in practice in a commercial
cloud (Azure) [44].

7. Related Work

Our research builds upon the original work on Spec-
tre [27], including the detailed Google Project Zero
writeup [18], as well as research on newer variants of BTI-
style attacks such as SpectreRSB [28] (aka ret2spec [31])
and Branch History Injection [9] (BHI). The possibility
of a speculation window despite use of serialization, as
in LFENCE/JMP, was suggested by Paul Turner as part
of the motivation for retpoline [40]. Other mitigations for
such attacks include randpoline [39] as well as a variety
of more targeted software and hardware defenses [12].
As discussed above, Retbleed [42] showed that a specu-
lation window was present for RET instructions on AMD
processors due to Branch Type Confusion, and a later
addendum [43] briefly discussed the BTC-NOBR case
(similar to DBTI) and the potential for BCB-style attacks.
Pawel Wieczorkiewicz also published some analysis of the
speculation window provided by ‘fall-through’ transient
execution across direct branches [41], which discusses
how store-to-load forwarding may provide an alternative
method of exploiting small windows.

Research analyzing how BTI-style attacks and other
building blocks can be used in practice also provides an
improved understanding of how hardware works, what
software expects, and what protection mitigations may
need to provide. In particular, SGXpectre [14] investigated
BTI attacks against SGX enclaves, Zhang et al. [47]
provided a detailed analysis of branch predictors and other
related microarchitecture details of Intel CPUs, and Mcil-
roy et al. [33] analyze transient execution vulnerabilities
and argue that, at least for Chrome, process isolation is
the only realistic mitigation. Speculator [32] presents a
framework and case studies using performance counters
to analyze processor behavior related to speculative ex-
ecution. Some formal approaches for analyzing branch
target predictor attacks [13], [17] also consider speculation
windows, but typically from a different perspective – to
determine the maximum number of instructions which may
be speculatively executed.

Finally, there is a range of recent research focusing on
microarchitectural side channels, and how they could be
used in disclosure gadgets, such as BranchScope [16] and
the LRU work by Xiong et al. [45], which we discussed
in subsection 4.1. Other key recent research includes
SMoTherSpectre [10] which uses SMT port contention
as a side-channel rather than as an attack, and NetSpec-
tre [35], which uses timing differences due to use of
AVX2 instructions. For a fairly comprehensive summary,
we refer to the survey of transient execution attacks and
defenses by Canella et al. [11].

8. Conclusion

We have shown that mitigations against branch target
prediction attacks can be compromised due to speculation
windows arising from sources of latency which had not
previously been considered. Our case studies have demon-
strated that several standard mitigations are ineffective, or
incomplete in some circumstances.

First, we proved that branch latency can be an issue in
practice, demonstrating that the resulting speculation win-
dows can break the LFENCE/JMP mitigation for BTI-style
attacks. We then showed that issues with branch latency
are not limited to indirect branches, discovering that BTI-
style attacks can be possible in the absence of indirect
branches on some processors. And finally, we demon-
strated that it is also valuable to evaluate mitigations that
do not appear to rely on suppressing speculation windows,
by finding that some implementations of IBPB may be
ineffective for mitigating SpectreRSB-style attacks. The
affected vendors have updated (or plan to update) their
mitigation guidance for all three of these cases.

In practice, the exploitability of branch target pre-
diction attacks depends on a range of factors beyond
the existence of a speculation window, such as whether
an attacker is able to execute code locally, as well as
the availability of suitable call sites (where relevant) and
disclosure gadgets. However, in cases where such attacks
are a real concern, our work shows that mitigations for
these branch target prediction attacks should be evaluated
in a more systematic and comprehensive manner.
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A. LFENCE

Intel’s Software Developer Manual [23] states that
“LFENCE does not execute until all prior instructions
have completed locally, and no later instruction be-
gins execution until LFENCE completes”. Although the
AMD64 Architecture Programmer’s Manual [6] states
that LFENCE only “assures that the system completes
all previous loads before executing subsequent loads”,
AMD’s software guidance [3] documents an MSR which
makes LFENCE dispatch-serializing: “upon encountering
an LFENCE when the MSR bit is set, dispatch will stop
until the LFENCE instruction becomes the oldest instruc-
tion in the machine”. AMD also documents a CPUID
enumeration for processors where LFENCE is dispatch-
serializing by default.

We confirmed that the documented MSR bit is set by
default on Linux on the relevant AMD CPUs, and that it
was set during our experiments.

B. LFENCE/JMP history

Google’s motivation for retpoline explicitly pointed
out that serialization was insufficient, since “the specu-
lative execution here is a property of the hardware it-
self” [40]. This is likely the reason that LFENCE/JMP

mitigation was not recommended by Intel, due to the
lack of architectural guarantees and the availability of
alternative mitigations.

AMD’s guidance [3], on the other hand, stated that
LFENCE/JMP (“mitigation V2-2”) is a suitable mitigation
for BTI attacks on “all AMD processors” since “the
speculative execution window is not large enough to be
exploited”. Despite concerns from the Linux community
given that LFENCE/JMP was “not *quite* good enough”
[29] on Intel CPUs, AMD confirmed that the mitigation
is sufficient [29].

C. LFENCE/JMP: alternative disclosure gad-
gets

Our results show that – even when SMT is disabled
or unavailable – LFENCE/JMP permits a relatively large
speculation window on some processors. However, this
window does not appear large enough to execute larger
gadgets on many processors. Table 11 show results when
attempting to transiently execute some other alternative
disclosure gadgets within the LFENCE/JMP window (with-
out SMT). Although we also attempted to implement a
BPU-based side channel (as in [16]), we were not able to
create a channel within the LFENCE/JMP window.

With SMT workloads, the speculative execution win-
dow beyond a LFENCE/JMP sequence and IBPB can be
significantly larger than the window needed for a “univer-
sal read” disclosure gadget. For these larger speculation
windows, a key question remains: whether an attacker
would need to control register values at the indirect
branch. If a speculation window is large enough to permit
a third dependent load, such control would not be nec-
essary, which could significantly increase the number of
viable disclosure gadgets. This would allow, for example,
forms of “universal read” gadgets which read the address
of the desired data by the gadget from the stack, rather
than needing it to be in a register.

We implemented an artificial proof-of-concept attack
which infers the contents of a string from memory, byte-
by-byte, using FLUSH+RELOAD to observe the resulting
cache effects. The gadget used is shown below; it is simi-
lar to the “memory-disclosure” gadget evaluated above,
but the target address is read indirectly from memory
rather than taken directly from an attacker-controlled reg-
ister. We also mask the value with 0xFF, which allows
easier inference of memory contents on a per-byte basis
(similar results could be obtained in a smaller window by
just using one instruction such as MOVZBQ):

1 mov rbx, [rbx]
2 mov rdx, [rbx]
3 and rdx, 0xff
4 shl rdx, 0xc
5 mov rax, [rdx+rcx]

We combined this attack with the “best-performing”
SMT workload (from Table 5) for each processor; Ta-
ble 12 shows the results for LFENCE/JMP. As can be seen,
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TABLE 11: Test success rate for minimal variants of the “memory-disclosure” gadget (without SMT).

Goldmont
Plus

Tremont Sunny
Cove

Willow
Cove

Golden
Cove

Gracemont Zen Zen+ Zen 2 Zen 3

Minimal load 0% 0% 0% 0% 0% > 99% > 99% > 99% > 99% 0%
Store 0% 0% 0% 0% 0% 0% > 99% > 99% > 99% 0%
Prefetch 0% 0% 0% 0% 0% > 99% > 99% > 99% > 99% 0%
Flush 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Complex load 0% 0% 0% 0% 0% > 99% > 99% > 99% > 99% 0%

TABLE 12: Proof-of-concept three-load variant results: does the PoC obtain the secret?

Goldmont
Plus

Tremont Sunny
Cove

Willow
Cove

Golden
Cove

Gracemont Zen Zen+ Zen 2 Zen 3

No SMT � � � � � � � � � �
SMT workload N/A N/A � � � N/A � � � �

TABLE 13: Common mitigations for BTI-style attacks.

Mitigation Summary Notes

LFENCE/JMP Minimize speculation window
Retpoline Redirect speculation using RET Software-based.
IBRS Restrict indirect branch predictions
Enhanced IBRS Isolate indirect branch predictions between modes Supported by recent Intel processors.
IBPB Barrier to isolate predictions between security domains
Predictor controls Fine-grained disables for specific indirect predictors Supported by newer Intel processors.

"Tail call"
branch

Aliased
branch

① In userspace: Train 
branch predictor

Aliased
target

Disclosure
gadget

Intended
target

Aliased
addresses

Aliased
addresses

② In kernel: eBPF branch
predicted to trained target

Figure 3: The eBPF proof-of-concept first uses a userspace
branch for training, then executes a branch in kernel mode
which (due to aliasing) is predicted to a disclosure gadget.

even in the Zen 3 case (where we have yet to isolate the
effective instructions in the SMT workload), this more
generic disclosure gadget can fit in the speculation win-
dow despite the use of the LFENCE/JMP mitigation.

D. eBPF PoC

We obtain the needed indirect branch for the PoC
described in Section 6.4 using the “tail call” mechanism,
which transfers execution to another eBPF program. Be-
fore this indirect branch, a series of branches are executed
in eBPF code so that the BHB at the indirect branch
is constant, which is used by the indirect predictor to
predict the target of the indirect branch. The target of the
kernel branch is trained by executing an identical set of
branches in a userspace application, with their addresses
aliased to the corresponding kernel branches, as shown in

Figure 3. We considered obtaining kernel addresses to be
out-of-scope (recent academic work [30] has shown that
fine-grained KASLR can be bypassed on AMD CPUs,
and presumably cache side channels can be used for this
on Intel CPUs), and instead used a small setuid program
which printed the kernel address of our eBPF program.

When the kernel branch is executed, the JITed code
can store any value accessible to our eBPF program (in-
cluding a kernel pointer) in R8 (eBPF r5), and an arbitrary
user-controlled value in R11. In our PoC, R8 contains a
pointer to an eBPF map – used as an FLUSH+RELOAD

area for our cache-timing side channel – and R11 contains
the kernel pointer to transiently read from.

E. Mitigations

Table 13 summarizes common mitigations for BTI-
style attacks, as discussed in Section 2.

F. Example SMT workload

Listing 3 shows the core loop used by our XOR SMT
workload. Source for this and other workloads can be
found in our code repository.

1 xorloop:
2 xor eax, 0x11111111
3 xor ebx, 0x22222222
4 xor ecx, 0x33333333
5 xor edx, 0x44444444
6 xor eax, 0x55555555
7 xor ebx, 0x66666666
8 xor ecx, 0x77777777
9 xor edx, 0x88888888

10 xor eax, 0x99999999
11 xor ebx, 0xaaaaaaaa
12 jmp xorloop

Listing 3: XOR SMT workload
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