
Metamorphic Testing of Advanced
Driver-Assistance Systems: Implementing Euro

NCAP Standards on OpenStreetMap

Muhammad Iqbal *
School of Computing and IT

University of Wollongong
Wollongong, NSW 2522, Australia

{mi759@uowmail.edu.au}

Abstract—Simulation testing is considered the supplement to
ensure the safety of Autonomous driving (AD) and advanced
driving assistance (ADAS’s) systems in terms of time and costs.
However, it is very difficult and challenging when the simulation
results are unexpected. This work presents a simulation-based
metamorphic testing (MT) approach to test the ADAS system,
implementing the European new car assessment program (Euro
NCAP) standards on OpenStreetMap (OSM). We first defined
input patterns and relations related to autonomous driving,
following the principles of MT. To assess the approach, we
executed three tests in two steps at both the design and system
levels. Our results show that none of the three (source) tests
detected any collisions. However, for follow-up test cases, the
ego vehicle failed to apply brakes to avoid a collision when the
speed changed. A real-life issue in the system was immediately
revealed and confirmed by the development team. We then
designed a mechanism and continued the test to check whether
the recorded collisions were avoidable. Our results (rate of 5.8%)
indicate the fault detection effectiveness when testing the ADAS
system. Although we applied the approach to testing the ADAS
driving performance, it can be applied to other AD systems. This
research, therefore, provides a systematic way to design and test
autonomous driving technologies and integrate testing standards
with metamorphic testing.

Index Terms—Simulation testing, Advanced driver assistance
systems (ADAS), Metamorphic testing, Metamorphic relation
pattern, Testing standards, OpenStreetMap

I. INTRODUCTION

Simulation testing is considered the cornerstone of testing

Advanced driver-assistance systems (ADASs) and autonomous

driving (AD) features [19], [32]. It can quickly produce high-

quality results at a relatively low cost among the various

available testing approaches [14], [42].

Testing the Advanced driver-assistance systems (ADASs)

involves exposing a vehicle to situations that trigger the

system to intervene, then examining the outcome to assess

the system’s performance [1]. However, dealing with such

oracles is difficult when the simulation result is unexpected.

For example, given a certain driving scenario for the system,

the performance should be stable and safe for all expected

situations. The inability to determine whether the results are

correct is known as the oracle problem [6].

Current studies show that researchers from both industry

and academia try to improve the performance of both ADAS’s

and autonomous driving (AD) systems, using different tools

and approaches [22], [23], [38]. Due to the lack of uniqueness

in the testing approaches, it is challenging to address system

performance, often involving simulations.

Also, to minimize the problem effectively, different task

assessment methods are used by combining them with varying

standards of testing like the European new car assessment

program (Euro NCAP) [19], National highway traffic safety

assessment (NHTSA) [7], ISO/PASS:214448 safety of in-

tended functionality (SOTIF) [1], ISO:26262 [20].

Metamorphic testing (MT) [11], [12], [33] is one of the

most popular approaches, alleviating the oracle problem and

has been successfully adopted in different domains [45], [8],

[13], [5], [17], [19], [35], [40], [41], [43]. Instead of focusing

on the correctness of individual outputs, MT examines the

relations called metamorphic relations (MRs), among the

multiple executions of the SUT. An MR violation typically

indicates the existence of a bug. One of the main challenges

with metamorphic testing (MT) is the identification and design

of metamorphic relations (MRs), which may require testers’

domain knowledge [12].

To test the performance of ADAS and AD systems and

to design metamorphic relations, research has also been

conducted by integrating MT with different techniques. The

combination of MT and fuzzing has been used to test the

performance of the real-life self-driving system [17], [43].

They detected the previously unknown fatal bugs in the LiDAR

obstacle perception and distinguished between genuine failures

and false alarms.

OpenStreetMap1 is one of the simplest and most user-

friendly web-based HD map databases and is used by re-

searchers to evaluate different testing approaches to testing

autonomous driving systems [3], [4], [9], [28].

This paper reports on an experiment to evaluate the ap-

proach, executing three tests based on collision. Our experi-

ment involves implementing the European New Car Assess-

1https://www.openstreetmap.org.

1

2023 IEEE/ACM 8th International Workshop on Metamorphic Testing (MET)

DOI 10.1109/MET59151.2023.00008

20
23

 IE
EE

/A
C

M
 8

th
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 M

et
am

or
ph

ic
 T

es
tin

g
(M

ET
) |

 9
79

-8
-3

50
3-

01
76

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

ET
59

15
1.

20
23

.0
00

08

ment Programme (Euro NCAP) and MT, utilizing the OSM

on MATLAB2 and Simulink 3 platform. Although this paper

focuses on ADASs based testing, our approach is equally

applicable to more advanced AD systems.

The key contributions of this paper are:

• In this research, we successfully designed and presented a

simulation-based MT approach to test the ADAS system

behaviors by implementing the Euro NCAP standards on

OpenStreetMap.

• We have presented a promising research direction, pre-

senting a useful framework for testing valid scenarios on

real roads. This work laid the foundation to combine MT

with testing protocols to tackle an important problem of

testing ADAS by evaluating the empirical study.

• We applied MT to test ADAS driving behavior at both

the design and system levels. Our results indicate the

approach’s effectiveness in detecting faults.

• A systematic method is presented to demonstrate the

recorded collisions as avoidable.

The rest of the paper is organized as follows: Section II

introduces the concept of testing protocols, the OSM, and

related features. Section III proposes our method to conduct

the empirical study. Section IV presents the tests executions

steps. Section V presents the experimental results and brief

discussions of our findings. Section VI reviews some related

work, and Section VII concludes the paper.

II. PRELIMINARIES

This section introduces the testing standards, and a brief

overview of the OpenStreetMap used to implement the ap-

proach.

A. Test protocols:

Testing protocols and standards are the keys to designing

the driving scenario and establishing the environment to test

the AD and ADAS systems in real-world and simulation

environments.

The European new car assessment program (Euro NCAP)

[2], is a voluntary car safety performance assessment program.

The standards provide a primary foundation, design rules, and

a driving scenario to test autonomous systems. A prebuilt

scenario catalogues are available on different platforms [26]

and tools4. Scenarios can be downloaded, categorized, and

parametrized to establish the testing environment and evaluate

the testing approaches [19].

For example, when testing the AEB function, two scenarios

can be considered based on the Euro NCAP protocols: car-

to-car (C2C) and Vulnerable Road users (VRU). For each

scenario type, a number of critical driving situations can be

considered for testing, such as a vehicle insertion in front of

the side, the sudden appearance of conflicting objects (pedes-

trians, bicyclists), etc. To evaluate the testing framework, we

considered one of the VRU driving scenarios in this work.

2urlhttps://au.mathworks.com/products/matlab.html
3https://au.mathworks.com/products/simulink.html
4https://simone.51aes.com/casemanage.

Figure 1 shows the test overview. The protocols assume that

vehicles travel on the right side of the road; therefore, the right

side is the side closest to the ego vehicle. At collision time,

the pedestrian is 50% of the way across the width of the ego

vehicle [26].

Fig. 1: An overview of a prebuilt Euro NCAP test.

The scenario has an ego vehicle (blue car) and three actors.

One of the three actors is a pedestrian, the moving target with

which the ego vehicle collides. The protocols also assume that

collision occurs only once during the design phase, which must

be avoided when executing the scenario with the AEB system.

The ego vehicle and the non-ego actors must travel at constant

speeds. Hence, the ego vehicle and the target actor must each

have a scalar speed value.

B. An OpenStreetMap (OSM):

OpenStreetMap (OSM) is a free, open geographic database

and is freely licensed under the Open Databases license

(ODbl), hosted by OpenStreetMap Foundation5 in England.

It uses a topological data structure with four elements (also

known as data primitives).

• Nodes are points with a geographic position, stored as

coordinates, representing map features such as specific

locations, mountain peaks, etc.

• Ways are ordered lists of nodes and can be polylines or

polygons (closed ways), representing streets, highways,

and parks, among others.

• Relations represent the relationship of existing nodes and

ways—for example, turn restrictions on roads, routes that

span several existing ways, etc.

• Tags are used as key or value pairs to store map objects’

properties. They provide information about the elements

of the map, especially about points of interest (POI) such

as hotels, lakes, historical places, etc. Tags also provide

5https://en.wikipedia.org/wiki/OpenStreetMap.

2

Fig. 2: An example of OpenStreetMap.

helpful information about streets and highways, which

is central in OSM to describe routes from one point to

another.

Figure 2 shows one example of an OSM from the surround-

ing of Wollongong City, NSW, Australia.

The nodes are described (as in the triangle on the top) by

the node label, including the node identifier and coordinate as

attributes, together with sub-label tag (key and value) pairs to

the node. For example, the key is ‘amenity’, and the value

is ‘library.’ The ways represent the geometries (as in the

triangle in the left corner). The references to the nodes of

the geometry are stated in addition to the tags. Additionally,

relations are used to represent the sets of nodes/ways to

group them (as in the right rectangle). Relations describe more

complex structures like roads, bus stops, buildings on the same

estate, etc.

The OSM provides an interactive web-based 6 interface

editor with an online map and geo data search engine. Users

can freely sign into the editor to access its features. Figure 3

shows the editor GUI of OpenStreetMap, which can be used

to design a scenario in an OSM format interactively.

Using the editor feature of the tools in the right bar of

Figure 3, the user can set the map by accessing the background

setting, map data, and preferences. Once these instances have

been selected, further refinements can be made by choosing

the desired road or highway from the center and configuring

(e.g., speed limits, lanes, surfaces, etc.) through the left-hand

pane.

OSM uses its topology to store geographical features,

which can then be exported onto other platforms to design

driving behaviors and analysis from different perspectives.

6https://www.openstreetmap.org/edit#map=18/-34.40812/150.87892.

This feature helps us to import the real road geometry to

the driving scenario designer (DSD) to establish the testing

environment implementing the Euro NCAP standards to test

ADAS behaviors.

Fig. 3: An interective OSM editor.

III. OUR APPROACH

Quality of service metrics is the key factor in both AD and

ADASs to evaluate the driving experience [21], [37] and [5].

We considered the idea and selected the following metric to

design our MR.
Time to Collision point (TCP):
The time required for a vehicle to reach the collision point

(the position at which the ego vehicle and target actor collide)

is termed the time to the collision point (TCP). We assume

that the ego vehicle and the target actor always collide with a

point on the front edge of the ego vehicle, keeping all other

conditions the same.
We configured three tests on different road geometry (Euro

NCAP and OSM). In each test the actor dimensions, positions,

3

speed values, and trajectories are set as per the Euro NCAP

test protocol requirements. We considered the speed of the

ego vehicle as an input pattern to establish the relation and

execute the test systematically. A metamorphic relation input

pattern (MRIP) describes input relations between the source

and follow-up test cases. We define the following MRIP:

MRIP1:Increasing or decreasing the speed (±V):
This pattern represents the relation where the follow-up test

case is constructed by increasing or decreasing the speed of

the ego car. When this happens the time to the collision point

should be similar to the source test case, to avoid a collision.

MR1:

“For a given driving scenario S, in which the system
detects the target obstacle ‘O’ (which arrives at the point
“P” in time “t”), and applies a brake to avoid a collision.
The system should perform the same when the speed of
the ego car is changed to produce a follow-up scenario S′

”.
One may argue that this situation (increased speed) makes

the scenario aggressive. It should be noted, however, that

to examine the system’s behavior in high-speed situations is

exactly one of our testing purposes. In any case, the ADAS

system needs to react and drive safely.

IV. TEST EXECUTIONS

The scenario design and test execution are separate steps.

Hence, we considered both MATLAB API and the AEB

Simulink system to execute the tests. To evaluate the approach,

we performed three tests. Each test was executed in two steps.

All the source and follow-up test cases are executed in both

steps.

Stage-I
For Test 01, we have executed one of the

Euro NCAP prebuilt driving scenario, i.e.,

AEB PedestrianChild Nearside 50width. The scenario

is compatible with both MATLAB API & and with the

Simulink AEB systems. In the first stage, the source test

cases for each test were executed, then a follow-up test was

generated by increasing the speed of the ego car by 1 km/h.

When executing the follow-up test case by increasing the

speed, two types of collisions (front and side) between the

ego car and the pedestrian was recorded. A scenario where

the collision occurs on the right (missing TCP) of the ego

car instead of front-angled is critical and is considered for

further evaluation.

Test 02 and Test 03 were executed by importing real-world

roads (maps) from OpenStreetMap (OSM) to the Driving

scenario designer. Both tests are performed by following the

collision strategy of the Euro NCAP protocols. The actor

dimensions, positions, speed values, and trajectories are set

accordingly. The two real roads (Foley Street & Northfield

Avenue) from the surrounding of the University of Wollon-

gong, Australia, are considered to design the tests. The same

collision was recorded with varying speeds. Figure 4 shows

the implementation of testing standards on OSM.

(a)

(b)

Fig. 4: Implementation of Euro NCAP pedestrian collision
test on OSM: (a) Foley Street and (b) Northfield Avenue.

Table I summarized parameters involved in the implemen-

tation of the test. For all tests, the initial speed of the ego car

was 20 km/h, while the speed of the target pedestrian was 5

km/h.

TABLE I: Summary of test parameters

ego car pedestrian

Test_01 highway

Euro_NCAP

Test_02 residential

Test_03 commercial

Actors
initial speed (km/h)

20

Test. No Map adoption

OpenStreetMap

Road type
(straight)

5

Stage-II:
All the source and follow-up test cases were re-executed

in this stage to see whether the recorded collision at stage-

I was avoidable. We designed and executed a script on the

MATLAB API (e.g., ABC.m) using some prebuilt helper

functions and evaluated the approach systematically. To meet

the requirement of MR1, our scripts run the same source

scenario and execute the test automatically by refreshing the

whole scenario. In each execution, for all follow-up test cases

(where speed increases or decreases), the mechanisms evaluate

4

the actor’s behaviors to keep the arrival time to the collision

point the same.

According to the MT methodology, three (euro NCAP and

OSM-based) source test cases were executed to produce three

source outputs. In each round of the test, the speed of the

ego car changed randomly to produce follow-up test cases. A

total of 85 rounds of tests were conducted (15 to 100 km/h),

giving (85*3)=255 follow-up test cases and hence producing

255 execution outputs (called follow-up outputs).

The pairs of source and follow-up outputs were auto-

matically checked against MR1. Violations of metamorphic

relations were recorded as a system failure.

V. EXPERIMENTAL RESULTS AND DISCUSIONS

When executing the three tests, no source test case reveals

any crash or collision between the actors. This is summarized

in the first two columns of Table II. In the follow-up execu-

tions, however, a collision was detected at different speeds

when the speed of the ego car was changed by 1 km/h.

The last two columns of Table II summarized the follow-up

execution results.

TABLE II: Results of experiment

(front) (side) km/h rate
Euro_NCAP

_ped_collision 4 2 40

Foley_Street
_Ped_Collision 7 9 60

NorthField_Avenue
_Ped_Collision 2 4 52

successfully
 avoided a
collision

5.80%

Minimum
speed range

 that violated MR1

Source
execution
behavior

Test_Name
No. of scenario
with collision

Scenarios can be designed/transformed programmatically

using MATLAB API or the Driving Scenario Designer app.

Figure 5 shows an example of MR1 violation. The collision

occurs on the side (missing TCP) of the ego car on MATLAB

API after changing the ego car speed to 40, 60, and 52 km/h,

respectively of the source scenarios.

Fig. 5: Voilations of MR at DSD.

When the tests were executed with the Simulink AEB

systems, the controller behavior was as expected for all source

scenarios. However, the same collision (side of ego car) was

recorded for follow-up executions. Figure 6 shows examples

of MR1 violation behaviors of AEB systems.

Hence, a relatively minor change can lead to the system’s

incorrect behavior: For example, in Test 01 the ego speed of

39 km/h passed, but the follow-up, with the increment of 1

km/h speed that is 40 km/h, failed.

In the second stage, our automated script loads and executes

the seed scenario systematically. The function executes the

source scenario to store the actor’s IDs. Once the IDs of the

ego car and target actor are specified, the new speeds have

been set to generate the follow-up scenarios. Then compared

and utilized different prebuilt functions to control the time to

collision point (TCP). The steps involved in the demonstration

are detailed in Algorithm 1.

Algorithm 1: Steps to demonstrate stage-II

1 Driving scenarios (S, S′);
Input : Speed V and V ′

Output: TCP (Drive(S)) = TCP (Drive(S′))
2 Load−− >seed scenario

3 Specify actor IDs to compute the (TCP)

EgoID : 1;TargetID : 2, ...
4 Specify the new speeds

Condition1−− > V >= V ′;
Condition2−− > V <= V ′

5 Compare speeds & define methods to control the

actors

6 if V >= V ′ then
7 execute (Method−A);
8 else
9 execute (Method−B);

10 end
11 Repeat step 4 to generate a new scenario

12 Plot and inspect the behaviors

13 Finish

Simulink used graphical block diagramming tools and a

customizable set of block libraries (e.g. Scenario Reader

block) to read the driving scenario [27].

We have considered the prebuilt ADAS module to evaluate

the approach and did not know the internal mechanisms of the

model. So, all the possible transformations were only done

during the design phase and then pass to advanced driver

assistance (ADAS) or automated driving systems (resulting in

an equivalent effect).

Figure 7 shows the execution of Test 01 on the second stage.

The results also indicate that the collisions obtained in Figure 5

& Figure 6 are avoidable. Due to space limitations, we could

not include more graphical results for other tests.

Out of 255 driving scenarios, 28 collisions are detected,

each of which is checked against the MR1, indicating 15

avoidable collisions. For all violations, the pedestrian collided

with the right side of the ego car, resulting in missing the

time to the collision point. The results (5.80%) indicate the

effectiveness and efficiency of our approach to detecting faults.

5

Fig. 6: Voilations of MR at Simulink: Figures (a) Test 01, (b) Test 02 and (c) Test 03.

Fig. 7: Execution of Test 01 at Stage-II: The pedestrian
always collides in front of the ego car, keeping the TCP
constant.

We have carefully reviewed and discussed all 15 collisions

with the development team and found a common pattern,

revealing the failure root cause. When the speed of the ego

car changes, there are two possibilities for missing the time

to the collision point: The ego car will arrive at the collision

point before the actor and pass away, or the target actor will

arrive at the collision point before the ego car and pass away.

The system cannot apply brakes to avoid a collision in both

cases.

We found that inside the Simulink Decision logic block,

the value of road width is fixed (i.e., 3.6 m). The ego car is

assumed to be in the middle of its lane. This causes the call-
back function to mismatch the input values. For example, the

road width is 10 m in the prebuilt scenario. However, inside

the system, it was fixed at 3.6 m. To perform the simulation

accordingly, the user needs to change the value manually.

We understand that typically the length of a highway is 3.6

m. However, it is also possible that some roads in the real

environment have different widths where the ADAS or AD

system should behave accurately.

To verify the argument, we measured and randomly col-

lected real road data from our surroundings and found that

different widths exist and verified with the developer, who

investigated and confirmed the shortcoming in the SUT by

commenting: “The mentioned parameterization of lane width
aspect is currently not taken into consideration in the current
AEB system, and the model pre-assumes the lane width as
3.6 m. However, we believe that more analysis needs to be
done to handle the scenarios with varying lane widths that,
includes complex scenarios like junctions where we don’t have
lane markings. We will consider updating the AEB model by
handling this as an enhancement in the future.”

We are not sure if this limitation relates to the AEB systems

or the platform itself. However, to increase the reliability of the

AEB system, the development team should initiate a method

or modifies the function to control the behavior of the actors

at varying speeds.

One may argue that to avoid the collision, either increase

the speed or change the start point of the pedestrian actor in

the scenario. It should be noted. However, a change in speed

is possible in the real environment when the situations change

suddenly, and the ADAS systems behave incorrectly 7.

In conventional testing, it is difficult for the tester to

judge whether the collision is avoidable due to the lack of

a test oracle. However, utilizing MT to distinguish between

avoidable and non-avoidable collisions [17], in this work, we

can configure the collisions as avoidable and identify a failure

caused by a system’s limitations.

VI. RELATED WORK

Modeling and simulations are among the growing number

of software testing mechanisms where both verification and

validation of the system can be done to overcome the oracle

problem [18], [29]–[31] in different domains. However, it

is very challenging to know that the simulation model was

properly developed and to decide whether the test results are

reliable and trustworthy. It is also becoming more popular

7https://www.youtube.com/watch?v=uEjwLKE0cCQ

6

for testing ADAS and AD systems. Therefore, researchers

worldwide focus on finding bugs and their nature to expose

harmful driving scenarios [17], [41], [43].

Similar to our approach, Klück et al. investigated a testing

approach that could identify critical scenarios that may lead

to unsafe SUT behavior [24]. Using genetic algorithms and a

search-based approach, they identified specific configurations

that could cause the AEB system to fail. However, only rely

on limited factors, which gave us to carry out the system as a

case with more factors following the principles of MT.

By combining metamorphic testing with another method, i.e

fuzzing (scene switching), research was also conducted to test

the performance of autonomous systems to distinguish critical

and noncritical situations [17], [43]. The idea was inspirational

and was adopted to demonstrate the approach in this empirical

study.

Toohey et al. [36], focused on the transformations of images

to train the neurons to investigate the impact of transformed

inputs and to predict the steering angle (SA). This study was

limited to the deep neural network (DNN) model with the

two selected metrics for evaluation; however, the use of the

transformation technique with MT was inspiring to indicate

the system’s weaknesses.

Zhou et al., applied geometric transformations to test soft-

ware in completely different domains and noticed the great re-

search serendipity in there studies [44].They further investigate

and propose a more general concept of a symmetry metamor-

phic relation pattern to guide MR identification. The symmetry

pattern refers to the existence of different viewpoints from

which the system appears the same.

Tian et al. [35]; and Zhang et al. [41] generated MT-

based synthetic driving scenes to test autonomous systems.

However, their work is limited to the verification of ADAS or

autonomous systems or subsystems. This helps us enhance

the MT approach’s effectiveness by integrating the safety

standards to classify the identified scenarios to verify and

validate the system performance.

The driving attributes can be extracted from high-definition

(HD) maps data available on high digital map databases (e.g.,

Google Map, HERE Map, OpenStreetMap, etc.) [16]. These

maps provide rich environmental information, such as static

roads, buildings, and traffic infrastructures. The environmental

information is useful for machine learning approaches [15],

and for the vehicle to understand the driving functionalities,

therefore contributing to accessing the automated vehicle be-

haviors.

Recent studies show that researchers are also trying to

evaluate the safety of ADAS and AD systems using formal

verification methods, which require a lot of effort in terms of

time and cost [10], [25], [34], [39] but have a lack of empirical

evaluations.

Our method in this paper shows the effectiveness of MT

implementing Euro NCAP standards utilizing OpenStreetMap

to test driving behaviors. We assessed the approach, executing

the tests on both design and system levels and providing a

way to replicate the real environment tests.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a simulation-based MT

testing framework to observe driving behaviors. The approach

is evaluated at both system and design levels. We executed

three tests, implementing the Euro NCAP standards to design

the scenaros. In each test, an “avoidable collision” was

recorded.

A mechanism was designed at the design phase and satisfied

the metamorphic relation. However, MR satisfaction at the

system level is expected in future releases.

We used the real road from OSM to design the test,

presenting an effective and novel approach to replicating the

real road driving test. We also discuss the property of the

failures, which may or may not be a real-life issue for the

system, but it helps us to understand the system more in-depth,

referring to the concept of metamorphic exploration (ME) [44].

A threat to the validity of our conclusion is that we have

evaluated the approach with the closed simulation platform,

However, our results indicate the simplicity and effectiveness

of the approach and are platform-independent; hence, it can be

applied to verify and validate other ADAS and AD systems.

To increase the proposed approach’s effectiveness, we plan

to design more MRs and implement the approach with open-

source driving platforms (e,g. Carla, AirSim, Baidu Apollo,

esmini, etc.).

In the future, we plan to implement the approach in a real

testing environment, collaborating with industries (like Euro

NCAP, ANCAP8, tfNSW9, etc.). This research, therefore, also

provides a cost-efficient and beneficial gateway for industries

to integrate and evaluate MT principles with the safety stan-

dards and protocols for V&V of ADAS and AD systems.

ACKNOWLEDGMENTS

This work was supported in part by the Higher Education

Commission Pakistan through the University of Wollongong,

Australia, under project HRD/UESTPs/UETs/Batch-VI-2018,

under award number 4995, a linkage grant of the Australian

Research Council (project ID: LP160101691), an Australian

Government Research Training Program Scholarship, and a

Western River entrepreneurship grant. We wish to thank Mor-

phick Solutions Pty Ltd, Australia, and the MATLAB team

for their support.

REFERENCES

[1] ISO/PASS:21448 Road vehicles - Safety of intended functionality
(SOTIF). Reference Number: ISO/PASS 21448:2019 (E), Accessed:
January, 2019. [Online]. Available: https://www.iso.org/standard/70939.
html.

[2] The European New Assessment Programme (Euro NCAP). Accessed:
2023. [Online]. Available: https://www.euroncap.com/en.

8urlhttps://www.ancap.com.au/
9https://www.transport.nsw.gov.au/

7

[3] J. M. Almendros-Jimenez, A. Becerra-Terón, M. Merayo, and M. Núnez,
“Using metamorphic testing to improve the quality of tags in Open-
StreetMap,” IEEE Transactions on Software Engineering, 2022.

[4] J. M. Almendros-Jiménez, A. Becerra-Terón, M. G. Merayo, and
M. Núñez, “Metamorphic testing of OpenStreetMap,” Information and
Software Technology, vol. 138, p. 106631, 2021.

[5] J. Ayerdi, S. Segura, A. Arrieta, G. Sagardui, and M. Arratibel, “QoS-
aware metamorphic testing: An elevation case study,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 104–114.

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[7] C. Becker, J. C. Brewer, L. Yount et al., “Safety of the intended
functionality of lane-centering and lane-changing maneuvers of a generic
level 3 highway chauffeur system,” United States. National Highway
Traffic Safety Administration. Electronic, Tech. Rep., 2020.

[8] J. Brown, Z. Q. Zhou, and Y.-W. Chow, “Metamorphic testing of
navigation software: A pilot study with Google Maps,” in Proceed-
ings of the 51st Annual Hawaii International Conference on System
Sciences (HICSS-51), 2018, pp. 5687–5696, available: http://hdl.handle.
net/10125/50602.

[9] G. Cao, F. Damerow, B. Flade, M. Helmling, and J. Eggert, “Camera to
map alignment for accurate low-cost lane-level scene interpretation,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2016, pp. 498–504.

[10] L. Capito and K. A. Redmill, “Methodology for hazard identification
and mitigation strategies applied to an overtaking assistant ADAS,” in
2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), 2021, pp. 3972–3977.

[11] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without the
need of oracles,” Information and Software Technology, vol. 45, no. 1,
pp. 1–9, 2003.

[12] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27, 2018.

[13] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49, no. 6,
pp. 48–55, 2016.

[14] D. L. Fisher, J. K. Caird, M. Rizzo, and J. D. Lee, “Handbook
of driving simulation for engineering, medicine and psychology: an
overview,” Handbook of driving simulation for engineering, medicine,
and psychology, 2011.

[15] M. Hacar, “Analyzing the behaviors of OpenStreetMap volunteers in
mapping building polygons using a machine learning approach,” ISPRS
International Journal of Geo-Information, vol. 11, no. 1, p. 70, 2022.

[16] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[17] J. C. Han and Z. Q. Zhou, “Metamorphic fuzz testing of Autonomous
Vehicles,” in Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops (ICSEW ’20). ACM, 2020.

[18] M. Iqbal, J. C. Han, Z. Q. Zhou, and D. Towey, “Enhancing Euro NCAP
Standards with Metamorphic Testing for Verification of Advanced
Driver-Assistance Systems,” in 2021 IEEE/ACM 6th International Work-
shop on Metamorphic Testing (MET). IEEE, 2021, pp. 37–41.

[19] M. Iqbal, J. C. Han, Z. Q. Zhou, D. Towey, and T. Y. Chen, “Metamor-
phic testing of Advanced Driver-Assistance System (ADAS) simulation
platforms: Lane keeping Assist System (LKAS) case studies,” Informa-
tion and Software Technology, vol. 155, p. 107104, 2023.

[20] ISO. ISO:26262 Road vehicles - functional safety. Accessed: December,
2018. [Online]. Available: https://www.iso.org/standard/68383.html.

[21] G. Jahangirova, A. Stocco, and P. Tonella, “Quality metrics and oracles
for autonomous vehicles testing,” in 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2021, pp.
194–204.

[22] S. Khastgir, S. Brewerton, J. Thomas, and P. Jennings, “Systems
Approach to Creating Test Scenarios for Automated Driving Systems,”
Reliability Engineering & System Safety, vol. 215, p. 107610, 2021.

[23] D. Kibalama, P. Tulpule, and B.-S. Chen, “AV/ADAS Safety Critical
Testing Scenario Generation from Vehicle Crash Data,” SAE Technical
Paper, Tech. Rep., 2022.

[24] F. Klück, M. Zimmermann, F. Wotawa, and M. Nica, “Genetic
algorithm-based test parameter optimization for ADAS system testing,”

in IEEE 19th International Conference on Software Quality, Reliability
and Security (QRS), 2019, pp. 418–425.

[25] A. Lyamani, T. Hajji, I. Elhassani, and T. Masrour, “Scenarios for ADAS
Testing: Modeling and Design,” in International Conference on Digital
Technologies and Applications. Springer, 2022, pp. 753–762.

[26] MathWork. Euro NCAP Driving Scenarios in
Driving Scenario Designer. Accessed: 1994-2022.
[Online]. Available: https://au.mathworks.com/help/driving/ug/
euro-ncap-driving-scenarios-in-driving-scenario-designer.html.

[27] Mathworks and Simulink. Math.Graphic.Programming. Accessed: 1994-
2022. [Online]. Available: https://au.mathworks.com/products/matlab.
html.

[28] P. Mooney, M. Minghini et al., “A review of OpenStreetMap data,”
2017.

[29] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano, G. Kaiser,
I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil, “On effective testing
of health care simulation software,” in Proceedings of the 3rd workshop
on software engineering in health care, 2011, pp. 40–47.

[30] M. Olsen and M. Raunak, “Increasing validity of simulation models
through metamorphic testing,” IEEE Transactions on Reliability, vol. 68,
no. 1, pp. 91–108, 2018.

[31] M. S. Raunak and M. M. Olsen, “Metamorphic Testing on the Con-
tinuum of Verification and Validation of Simulation Models,” in 2021
IEEE/ACM 6th International Workshop on Metamorphic Testing (MET).
IEEE, 2021, pp. 47–52.

[32] F. A. Schiegg, J. Krost, S. Jesenski, and J. Frye, “A novel simulation
framework for the design and testing of advanced driver assistance sys-
tems,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-
Fall). IEEE, 2019, pp. 1–6.

[33] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[34] J. Sini, M. Violante, V. Dodde, R. Gnaniah, and L. Pecorella, “A
novel simulation-based approach for ISO 26262 hazard analysis and risk
assessment,” in 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, 2019, pp. 253–254.

[35] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of
the IEEE/ACM 40th International Conference on Software Engineering
(ICSE ’18). ACM, 2018, pp. 303–314.

[36] J. R. Toohey, M. S. Raunak, and D. Binkley, “From neuron coverage
to steering angle: Testing autonomous vehicles effectively,” Computer,
vol. 54, no. 8, pp. 77–85, 2021.

[37] P. Valle, “Metamorphic testing of autonomous vehicles: a case study on
Simulink,” in 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion). IEEE,
2021, pp. 105–107.

[38] M. Waltz and O. Okhrin, “Two-Sample Testing in Reinforcement
Learning,” arXiv preprint arXiv:2201.08078, 2022.

[39] X. Xing, T. Zhou, J. Chen, L. Xiong, and Z. Yu, “A Hazard Analysis
Approach based on STPA and Finite State Machine for Autonomous
Vehicles,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp.
150–156.

[40] Y. Xu, Z. Q. Zhou, X. Zhang, J. Wang, and M. Jiang, “Metamorphic
testing of named entity recognition systems: A case study,” IET Software,
pp. 386–404, 2022.

[41] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18).
ACM, 2018, pp. 132–142.

[42] J. Zhou, R. Schmied, A. Sandalek, H. Kokal, and L. del Re, “A
framework for virtual testing of ADAS,” SAE International Journal of
Passenger Cars-Electronic and Electrical Systems, vol. 9, no. 1, pp.
66–74, 2016.

[43] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Communications of the ACM, vol. 62, no. 3, pp. 61–67, March 2019.

[44] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, vol. 46, no. 10, pp. 1120–1154, 2018.

[45] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 264–284, 2016.

8

