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Abstract—This report outlines the objectives, methodology,
challenges, and results of the first Fuzzing Competition held
at SBFT 2023. The competition utilized FUZZBENCH to assess
the code-coverage performance and bug-finding efficacy of eight
participating fuzzers over 23 hours. The competition was or-
ganized in three phases. In the first phase, participants were
asked to integrate their fuzzers into FUZZBENCH and allowed
them to privately run local experiments against the publicly
available benchmarks. In the second phase, we publicly ran
all submitted fuzzers on the publicly available benchmarks and
allowed participants to fix any remaining bugs in their fuzzers. In
the third phase, we publicly ran all submitted fuzzers plus three
widely-used baseline fuzzers on a hidden set and the publicly
available set of benchmark programs to establish the final results.

Index Terms—fuzzing, evaluation, open-source.

I. INTRODUCTION

We report on the organization of the first fuzzing com-
petition at the 16th International Workshop on Search-Based
and Fuzz Testing (SBFT) held on the 14th of May 2023 in
Melbourne, Australia. The objectives of this competition were
(i) to evaluate the performance of the fuzzers submitted to this
competition in terms of coverage and bug finding ability, (ii) to
gather experience and feedback on the sound benchmarking
of fuzzing tools, and (iii) to stress test the FUZZBENCH
benchmarking platform which has been built particularly for
this purpose.

Throughout the competition we paid particular attention to
the mitigation of different forms of bias. For instance, in order
to avoid overfitting to a particular set of benchmarks (confir-
mation bias), we allowed participants to develop, integrate,
and evaluate their fuzzers privately on a publically available
set of benchmarks while conducting the actual competition on
a set of benchmarks that included a large number of hidden
benchmarks. In order to avoid survivorship bias, we do not
evaluate their bug finding ability on a given set of bugs that
we already know how to find. Instead, we evaluate their bug
finding ability in terms bugs found by any fuzzer. We make
sure to use the same AddressSanitizer (ASAN) instrumented
binaries across all fuzzers.

In summary, we found that the AFLRUSTRUST fuzzer
performed well in terms of both, the coverage achieved and
bugs found. The fuzzers LIBAFL LIBFUZZER, HASTEFUZZ,
and AFL+++ excelled on coverage-based benchmarks, while

PASTIS and AFLSMART++ found more bugs than the average
fuzzer. We present the final ranking and more concrete results
live at the tool competition.

II. FUZZBENCH: FUZZER BENCHMARKING PLATFORM

FUZZBENCH [1] is a free, open source fuzzer benchmarking
service built to make fuzzer benchmarking easy and rigorous.
It allows researchers, who are interested in evaluating their
fuzzers against other state-of-the-art fuzzers, to launch large-
scale experiments in a free and reproducible manner.

The FUZZBENCH infrastructure consists of a large number
of publicly available benchmark programs taken from OSS-
FUZZ1. The benchmark programs are open source C/C++
programs carefully integrated by their maintainers, and include
programs like Curl2, OpenSSL3, PHP4, and systemd5.
Because the source code for most FUZZBENCH experiments
is made public and the specific FUZZBENCH version can be
pinned, reproducing FUZZBENCH experiments is often much
easier than reproducing bespoke experiments used in other
research.

FUZZBENCH can conduct bug-based or code coverage-
based experiments [2]. Throughout out the course of an
experiment, and upon its completion, FUZZBENCH generates
a report detailing the performance of each fuzzer. The report
compares fuzzers based on their performance across all bench-
marks as well as on individual benchmarks and shows effect
size (Vargha Delaney Â12) and statistical significance (Mann
Whitney U test). The comparison across all benchmarks
contains two rankings, one based on their average rank on
each individual benchmark and one based on their performance
relative to the best performing fuzzer on each individual
benchmark. FUZZBENCH reports include a critical difference
diagram so that users can see if differences between fuzzers
based on average rank is statistically significant. The report’s
comparison on individual benchmarks consists of graphs and
data showing, the number of crashes found and the growth of
code coverage throughout the experiment.

1https://google.github.io/oss-fuzz/
2https://github.com/curl/curl
3https://github.com/openssl/openssl
4https://github.com/php/php-src
5https://github.com/systemd/systemd
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To request an experiment, the interested researcher submits
a pull request to the Github repository where the fuzzer
is integrated or privately emails fuzzbench@google.com. A
typical experiment in FUZZBENCH involves about 20 trials
of 10 fuzzers running on 20 benchmarks for 23 hours. This
is about 10-CPU years, which is cost prohibitive for most
researchers. Researchers can use FUZZBENCH by integrating
with a simple Python and Docker based API. This integration
usually is less than 100 lines of code.

FUZZBENCH has had an enormous impact on fuzzer devel-
opment and research. Over 900 experiments have been con-
ducted using the FUZZBENCH service. FUZZBENCH has been
discussed in over 100 academic papers. And FUZZBENCH
has been used to guide the development of popular fuzzers
such as AFL++, HONGGFUZZ and LIBFUZZER. FUZZBENCH
experiments have most desirable qualities that Klee et al. [3]
described most evaluations as lacking, including: statistically
sound comparisons and statistical tests, long timeouts and real-
world programs.

III. COMPETITION SETUP

Phases. The competition was organized in three phases.
In the first phase, participants were asked to integrate their
fuzzers into FUZZBENCH and allowed them to privately run
local experiments against the publicly available benchmarks.
In the second phase, we publicly ran all submitted fuzzers on
the publicly available benchmarks and allowed participants to
fix any remaining bugs in their fuzzers. In the third phase,
we publicly ran all submitted fuzzers plus three widely-used
baseline fuzzers on a hidden set and the publicly available set
of benchmark programs to establish the final results.

Performance metrics. In our competition, we measure both
the code coverage achieved and the bug-finding capacity to
compare the performance of the submitted fuzzers [3], [4]. As
benchmarking platform, we use FUZZBENCH which measures
line coverage across all coverage-based benchmarks and the
time it takes to generate the first crashing input across all bug-
based benchmarks. To facilitate a more intuitive comparison
of fuzzer performance in both categories, we present a relative
median score for each fuzzer.

We compute the coverage-based score for each fuzzer as
follows. As it is impractical to determine the total number of
reachable lines in each coverage-based benchmark bc [5], we
compute the relative coverage score score(bc, f) for a fuzzer f
by dividing the median value of its line coverage over 20 trials
(i.e., cov(bc, f, n) where n = 1..20) by the maximum line
coverage attained by all fuzzers F on that specific benchmark:

score(bc, f) =
cov(bc, f)

max
i∈F

max
n=1..20

cov(bc, i, n)
(1)

cov(bc, f) = Med
n=1..20(cov(bc, f, n)) (2)

We compute the bug-based score for each fuzzer as follows.
Many fuzzer-generated crashing inputs may expose the same
bug, and the same bug may yield different stack traces [6],
[7]. In order to circumvent challenges of bug deduplication,

we include only one reproducible bug in each benchmark and
measure the time it takes to generate the first input that causes
the benchmark binary to crash. Therefore, considering that
each bug-based benchmark bb comprises only one bug, we
calculate the relative score score(bb, f) of a fuzzer f using
the following method:

score(bb, f) = Med
n=1..20(bug(bb, f, n)) (3)

bug(bb, f, n) =

{
1 if f finds a bug in bb in trial n
0 otherwise

(4)

In instances where multiple fuzzers detect an equal number
of bugs across all benchmarks, we additionally provide their
average time required for bug discovery as an auxiliary metric.

Benchmarks. The 53 benchmarks employed in this study
were selected from a diverse range of real-world open-source
projects integrated into OSS-FUZZ. This approach ensures that
researchers can evaluate their fuzzers on the latest, popular,
and actively maintained real-world open-source programs.
Meanwhile, project maintainers can benefit from state-of-the-
art fuzzers.

To guarantee the reproducibility of fuzzer performance, each
benchmark is anchored to a specific commit. In particular, the
commit for each bug-based benchmark are carefully chosen
such that the bug present have been fixed or published within
one year. This approach prevents security vulnerability leakage
while maintaining benchmarks up-to-date for research evalu-
ation purposes.

Benchmarks are divided into public and private sets. The
public benchmark set, consisting of 5 bug-based and 24
coverage-based benchmarks, is made available to participants
for build and runtime errors identification upon joining the
competition. In contrast, the private benchmark set, compris-
ing of 10 bug-based and 14 coverage-based benchmarks, is
withheld until the final evaluation to mitigate overfitting.

Preventing overfitting in fuzzing competitions is typically
challenging since participants usually require access to the
benchmark source code to identify and resolve compatibility
issues. However, FUZZBENCH’s design effectively addresses
this issue by separating the benchmarks and fuzzers. This
allows fuzzers to be built and run on private benchmarks using
the same code that was tested on the public ones, contributing
to a fair and impartial evaluation of fuzzer performance.

Fuzzers. The competition evaluates a total of 12 fuzzers, in-
cluding 8 fuzzers submitted by participants and 4 fuzzers used
as baseline. The participant-submitted fuzzers are AFL+++6,
AFLRUSTRUST7, AFLSMART++8, HASTEFUZZ9, LEARN-
PERFFUZZ10, LIBAFL LIBFUZZER11, PASTIS12, and SYM-

6https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/aflplusplusplus
7https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/aflrustrust
8https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/aflsmart plusplus
9https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/hastefuzz
10https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/learnperffuzz
11https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/libafl libfuzzer
12https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/pastis
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SAN13. The four baseline fuzzers encompass AFL14,
AFL++15, HONGGFUZZ16, and LIBFUZZER17. We selected
AFL and AFL++ as baselines, as most participants extended
them to construct their own. The fuzzers HONGGFUZZ and
LIBFUZZER were chosen due to their contribution to the
discovery of bugs in the bug-based benchmarks under OSS-
FUZZ production environment.

Platform and Configuration. The competition is conducted
on Google Cloud virtual machines. We concurrently measure
20 trials per fuzzer on each benchmark, with each trial
executing one fuzzer instance on one benchmark. Each trial
was run on a dedicated clean Ubuntu20.04 virtual machine
instance equipped with 1 vCPU and 3.75 GB memory. For
some benchmarks, seed corpora were available, mirroring the
production environment in OSS-FUZZ.

IV. EVALUATION RESULTS

We present and discuss the results of coverage-based and
bug-based benchmarking separately. From previous experi-
ments [4], we do not expect a strong agreement between rank-
ings established by coverage-based versus bug-based bench-
marking, but they each provide important and interesting
insights about the capabilities of the fuzzers.

A. Coverage-based Benchmarking

We first focus on the fuzzers’ ability to cover the most code
possible. Bugs cannot be found in code that is not covered.

We find that LIBAFL LIBFUZZER leads in 23 out of
38 coverage-based benchmarks, significantly more than any
other fuzzer. However, its overall performance is nega-
tively impacted by the near-zero coverage exhibited on three
benchmarks: draco, dropbear, and proj4. In particular,
LIBAFL LIBFUZZER generated merely two input cases for
draco and crashed immediately after initiating dropbear.
To facilitate debugging, FUZZBENCH has provided researchers
with the input corpora and fuzzer logs.

HASTEFUZZ consistently performs well on all coverage-
based benchmarks, securing its position as one of the best
fuzzers. Although its relative median scores ranked first on
only 16 benchmarks, it remained within the 90% relative
median range on 31 benchmarks and secured a position within
the top three on 35 benchmarks. Notably, it exhibited the low-
est standard deviation across all benchmarks (approximately
8.15), which is less than half of the second-lowest (AFL+++,
17.61).

Both AFL+++ and AFLRUSTRUST display competitive
performance across the majority of benchmarks. Their relative
scores ranked first on 16 and 12 benchmarks, respectively,
achieved within the 90% range on 31 and 29 benchmarks,
and secured top three positions on 33 and 22 benchmarks.

13https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/symsan
14https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/afl
15https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/aflplusplusff
16https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/honggfuzz
17https://github.com/google/fuzzbench/tree/SBFT’23/fuzzers/libfuzzer

As for baseline fuzzers, AFL++ emerged as the best-
performing and outperformed most other fuzzers on the major-
ity of benchmarks. Its average relative score is 92.67, whereas
the highest average score among the remaining participant
fuzzers is below 90.

A notable observation is that many top-performing fuzzers
exhibit a high degree of similarity in their coverage perfor-
mance, primarily due to their shared underlying fuzzer ar-
chitecture. To measure ”coverage similarity”, we consider the
coverage achieved by two fuzzers across different benchmarks
and compute the cosine similarity. We find that the cosine
similarity between AFLRUSTRUST and AFL+++ surpasses
0.99, signifying their nearly identical relative median scores
across all benchmarks. Likewise, the cosine similarities among
AFLRUSTRUST and HASTEFUZZ, HASTEFUZZ and AFL++,
AFL++ and AFL+++ are all above 0.98. In contrast, the
cosine similarities between LIBFUZZER and AFL++, LIB-
FUZZER and AFLRUSTRUST, LIBFUZZER and AFL+++ are
approximately 0.93.

Our analysis reveals that certain benchmarks are adept at
distinguish the coverage performance of fuzzers. For instance,
after excluding outliers, the openthread benchmark ex-
hibits the highest interquartile range of 22.25, along with a
standard deviation of 18.91. The range of fuzzer scores on
this benchmark spans from 98 to 49, indicating that the top-
performing fuzzer achieves approximately double the relative
coverage of the lowest-performing one.

Similarly, the scores on the lcms benchmark range from
95 to 19, yielding a standard deviation of 22.79 and an
interquartile range of 18.50. For the freetype2 benchmark,
the standard deviation is 19.98, with an interquartile range of
21.75 and fuzzer scores ranging from 22 to 95. Furthermore,
no fuzzer’s relative median score exceeds 68 on the botan
benchmark, suggesting that the maximum of median scores
of all fuzzers is approximately two-thirds of the highest line
coverage across all trials.

Conversely, some benchmarks display a high degree of sim-
ilarity in performance across fuzzers, thereby offering limited
utility in differentiating and ranking them. For example, all
fuzzers are within 98% of the top-performing fuzzer’s score
on the libjpeg benchmark, and almost all of them achieve
the same line coverage on the firestore benchmark.

B. Bug-based Benchmarking

In terms of bug finding, many fuzzers display similar per-
formance on bug-based benchmarks. For instance, AFLRUST-
RUST and PASTIS both have the highest relative median score
(53.33), indicating that their median-performing fuzzer trials
covered 8 out of 15 bugs across all benchmarks. Likewise,
participant-submitted fuzzers AFL+++ and HASTEFUZZ cov-
ered 6 bugs, equal to the performance of baseline fuzzers
AFL++ and LIBFUZZER.

Seven benchmarks were found to be particularly useful
in differentiating fuzzers in this competition, as they exhib-
ited diverse performance among fuzzers: aspell, assimp,
file, bloaty, ffmpeg, libaom, and libxml2. Both
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AFLRUSTRUST and PASTIS discovered 6 out of the 7 bugs
in these benchmarks, outperforming other fuzzers. However,
AFLRUSTRUST and PASTIS had slightly different bug-finding
patterns; AFLRUSTRUST covered a comparatively rare bug in
file but missed a more commonly found bug in ffmpeg.

While half of the fuzzers found more than 4 bugs over-
all, the symbolic-based fuzzer SYMSAN discovered only 1
bug in assimp. Interestingly, LIBAFL LIBFUZZER, which
performed well across coverage-based benchmarks and found
bugs in 5 benchmarks, was the only fuzzer that missed the bug
in assimp. This result could be attributed to its relatively low
coverage on this specific benchmark.

We also examined the average time required for fuzzers to
discover a bug. PASTIS proved to be the fastest in detecting
bugs on average, with AFLRUSTRUST and AFLSMART++
following closely behind. Notably, the cosine similarity be-
tween AFL++ and AFL+++ exceeds 0.98, suggesting that
they frequently identify bugs at approximately the same
time. Likewise, the cosine similarity between HONGGFUZZ
and PASTIS surpasses 0.9, indicating a comparable speed in
causing crashes within the benchmark. LIBAFL LIBFUZZER
appears to possess a distinct design, resulting in the lowest
similarity score when compared to any other fuzzers.

The bug-based benchmarks in this competition also un-
derscore the ”asymmetry” between coverage-based and bug-
based rankings, as highlighted by Böhme et al. [4]. For
instance, HASTEFUZZ excelled in coverage-based benchmarks
yet discovered fewer bugs. Conversely, AFL identified more
bugs than AFL++, despite covering less code. Although code
coverage is a well-established and easily measurable bench-
marking metric, these findings stress the significance of taking
bug-finding capabilities into consideration when optimizing for
higher coverage and evaluating fuzzers. Essentially, fuzzers are
intended to detect bugs, with coverage serving as a heuristic
to estimate their bug-finding potential.

Bug-based benchmarking presents several challenges that
we tackled in different ways. Firstly, acquiring the source
code of real-world bugs is arduous, and the performance
measured by artificial bugs might not accurately reflect reality.
FUZZBENCH addresses this issue by using bugs filed by OSS-
FUZZ when fuzzing actual open-source projects, providing a
ground truth for bugs that had been and need to be discovered
in production.

Secondly, a systematic approach for selecting appropriate
bug benchmarks for evaluation remains absent. For instance, if
all fuzzers exhibit similar performance on certain benchmarks,
those bugs offer limited value into fuzzer assessment. To
mitigate this concern, we incorporated benchmarks that were
hidden during development and only revealing during final
evaluation, culminating in nine benchmarks that demonstrate
varying bug-discovery performances among fuzzers in this
competition.

Thirdly, determining the superior fuzzer performance be-
comes difficult when multiple fuzzers can discover the same
bug. To address this, we employ an auxiliary metric, i.e.,
measuing the average time required by each fuzzer to discover

a bug. While FUZZBENCH evaluates this metric at 15-minute
intervals, which may occasionally compromise accuracy, we
highlight that this potential risk does not unfairly benefit any
specific fuzzer.

Finally, ascertaining whether multiple crashes correspond
to the same bug by grouping backtraces poses a considerable
challenge. To tackle this issue, the competition restricts each
benchmark to include only one known bug. Each associated
open-source project is subjected to rigorous testing using
multiple fuzzers over an extended period to minimize the
likelihood of multiple reproducible bugs coexisting within a
single benchmark.

V. CONCLUSION AND FUTURE WORK

In this competition, FUZZBENCH evaluates participant
fuzzers and common baselines, comparing them using a vari-
ety of statistical tools. The assessment encompasses two key
metrics: code coverage and bug-finding. Benchmarks for both
metrics are derived from real-world open-source projects, and
all fuzzers are tested under uniform production-like environ-
ment.

Moving forward, FUZZBENCH aims to enhance the statisti-
cal analysis by providing more detailed information, particu-
larly concerning lines or bugs that fuzzers failed to cover. Ad-
ditionally, FUZZBENCH plans to incorporate a larger collection
of bug-based benchmarks to facilitate more comprehensive
statistical reasoning.
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