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Abstract—Microarchitectural attacks typically exploit some
form of transient execution to steal sensitive data. More recently,
though, a new class of attacks has used transient execution
to (covertly) compute: Wampler et al. use Spectre primitives to
obfuscate control flow, and Evtyushkin et al. construct “weird”
logic gates that use Intel’s TSX to compute entirely using
microarchitectural side effects (i.e., in a cache side channel).
This paper generalizes weird gate constructions beyond TSX and
shows how to build such gates using any transient execution
primitive. We build logic gates using exceptions, the branch
predictor, and the branch target buffer, and we design a NOT
gate that appears to perform roughly one order of magnitude1

better than the prior state of the art. These constructions work
on AMD, Intel, and ARM machines with ≈95-99% accuracy;
a million AND gate executions take from half a second (when
built with TSX) to four and a half seconds (when built with
the branch target buffer). Our results indicate that weird gates
are more generally applicable than previously known and may
become more widely used, e.g., for malware obfuscation.

I. INTRODUCTION

The spiraling complexity of modern CPUs has driven a
steady drumbeat of microarchitectural vulnerabilities, includ-
ing Spectre, Meltdown, ZombieLoad, and more [1], [2], [3],
[4], [5]. These vulnerabilities stem from a mismatch between
the guarantees provided by the architectural abstraction (the
instruction set architecture or ISA) and the observable behavior
of the microarchitecture. Put another way: modern CPUs’ ISAs
are leaky abstractions, and the implementation details visible
through the cracks can be exploited by attackers.

At a high level, such vulnerabilities take advantage of
the fact that modern ISAs distinguish between architectural
state (e.g., the contents of registers) and microarchitectural
state (e.g., the contents of cache). Importantly, these ISAs
make (at best) weak guarantees about the consistency of
microarchitectural state with the CPU’s correct execution. For
example, when a CPU speculatively executes, the state of its
cache will often reflect operations that were executed and later
rolled back; in contrast, registers and other architectural state
are not allowed to reflect rolled-back operations. To date, most
microarchitectural vulnerabilities give attackers the power to
observe data that, according to the architectural abstraction,

1The data in the original paper reports XOR execution speed and XOR
executions per second that do not agree with one another. Taking the execution
speed at face value, our construction is two orders of magnitude faster; instead,
we calculate a faster execution speed for their reported executions per second,
and our approach only yields an order of magnitude improvement.

should be inaccessible. This is extremely serious because
even “single-user” computing devices must enforce separation
between protection domains (e.g., user vs. kernel, process
boundaries, etc.), which these vulnerabilities can sidestep.

Recently, however, a new class of issues has emerged that
leverages microarchitectural vulnerabilities for covert compu-
tation, not just data exfiltration. ExSpectre [6], for example,
makes static analysis of malware difficult by exploiting the
mismatch between the ISA’s stated behavior, e.g., “untaken
branches are not executed,” and the CPU’s actual behavior,
e.g., “untaken branches may be executed transiently depending
on the state of the branch predictor.” In particular, ExSpectre
observes that because transient execution is allowed to modify
microarchitectural state, transient execution of an “untaken”
branch can have observable (microarchitectural) side effects,
and can thus be used to execute malicious code even if that
code should never run according to the ISA specification.

Another recent example of this approach is the work
of Evtyushkin et al. on microarchitectural weird machines
(µWMs) [7]—code gadgets that perform computation using
only microarchitectural side effects. The authors use µWMs to
implement logic gates operating entirely on microarchitectural
state, without (say) using the processor’s ALU. Like ExSpec-
tre, µWMs can be used to thwart software analysis techniques:
predicting the result of running a program involving µWMs
requires an analysis tool to model the CPU’s operation at the
microarchitectural level, raising the bar to detection.

Evtyushkin et al. evaluate a proof-of-concept implementa-
tion based on Intel’s Transaction Synchronization Extensions
(TSX), which provide a convenient and easily controlled way
to induce transient execution. (The authors also briefly mention
that other methods may be possible, but do not explore
further.) Unfortunately, relying on TSX to construct µWMs
has at least two significant downsides: first, it is trivial to flag
programs using this approach simply by scanning for use of
TSX. Second, TSX support is both rare and shrinking [8], [9],
[10], dramatically limiting the applicability of this approach.
This leaves open our animating question:

Do µWMs generalize to x86 64 processors without TSX
support, and to other processor architectures?

We answer this question in the affirmative by systematically
studying the construction of µWMs based on several known
methods of inducing transient execution. We give new µWM
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designs, including a NOT gate primitive that appears to be
much higher performance than prior designs: using our NOT
gate, we build an XOR gate that is roughly two orders of
magnitude faster (in relative terms) than the design evalu-
ated by prior work.2 Since logical inversion is required to
implement universal boolean functionality, our work improves
the performance of essentially every µWM computation of
interest. In sum, we find that µWMs can be readily and
reliably constructed using a variety of trigger mechanisms
across a wide range of processor architectures (≈95–99%
accuracy on AMD, Intel, and ARM processors). They also
execute reasonably quickly: a million AND gate executions
take from half a second (when built with TSX) to four and
a half seconds (when built with the branch target buffer).
These facts combined indicate that µWMs could easily be-
come a widespread technique for camouflaging malware. To
encourage the community to further refine these techniques
and develop defenses, all of our code is available under an
open-source license.3

II. BACKGROUND AND RELATED WORK

In this section, we give background on transient execution
and weird machines, and discuss related work. This sets the
stage for our weird gate constructions in Section III.

A. Transient execution and attacks

We use the generic term transient execution to mean the
CPU’s execution of any instructions whose side effects are
allowed to modify only microarchitectural state and are not
reflected in architectural state (e.g., registers and memory).
Most of the time, the microarchitectural state we consider is
cache residency information—whether or not a given memory
location is currently cached. Observing microarchitectural
state is often an involved process. Extracting cache residency
information, for example, requires measuring the latency to
read a given memory location (low latency means the memory
location is in cache, high latency means not) or exploiting pro-
cessors’ vulnerabilities to leak microarchitectural states [11].
We treat accessing microarchitectural state abstractly: in the
case of cache residency, observations implicitly involve such
timing measurements, but we refer to them as read operations
without specifying the mechanism.

Modern CPUs have several mechanisms that induce tran-
sient execution. Essentially all of them have been used to
exfiltrate private data (e.g., to read across process boundaries
or to read kernel memory from user mode). Meltdown [2]
relies on out-of-order execution, which transiently executes
instructions after an exception. Spectre [1] variant 1 mis-
trains the branch predictor, causing transient execution of an
untaken branch, while variant 2 relies on a similar mechanism
involving the branch target buffer. ZombieLoad [5] uses In-
tel’s Transaction Synchronization Extensions (TSX) to induce

2That work did not present an implementation or results for its NOT gate
design, so we cannot compare directly, but it seems likely that the NOT gate
is the bottleneck in the XOR design.

3https://github.com/joeywang4/Transient-Weird-Machine

transient execution by causing a transaction to abort. The
high-level blueprint for exfiltrating private data using these
mechanisms is to: (1) induce the CPU to transiently execute
computations that cause the targeted data to be reflected in
microarchitectural state, then (2) read the microarchitectural
state once the transient execution finishes [12], [13], [14].

ExSpectre [6] also uses transient execution, but for the
purpose of obfuscating a program’s execution. At a high level,
it works by “hiding” instructions in untaken branches of a
program, then causing that code to be transiently executed.
Such code reads its inputs from architectural state—but since
it runs transiently, its outputs only appear in microarchitectural
state. This is a limitation because assembling complex mal-
ware from small transient code blocks requires moving each
block’s output from microarchitectural to architectural state
before the next block can execute. Microarchitectural weird
machines, discussed in the next section, address this issue by
computing entirely over microarchitectural state.

Our work builds on all of the above techniques, using tran-
sient execution to perform covert computations via transient
weird gates, which we describe in more detail in Section III.

B. Weird Machines

A weird machine (WM) is a model of a system’s uninten-
tional behavior, usually in response to adversarial input [15].
In particular, weird machines capture functionality that is not
part of a system’s intended behavior, but is part of the system’s
actual behavior. In this model, attacks on a system that cause it
to deviate from intended behavior are understood as programs
running on a “weird system” that extends the underlying
system with functionality resulting from some detail of the
system’s implementation.

Weird machines have been used to describe attacks [16],
formally analyze exploitability [15], and perform obfuscated
computation [7], [17]. There are several weird machines
that are based on operating systems mechanisms [17], [18]
and x86 instructions [19]. Their execution is visible in the
CPU’s architectural state, meaning they can be detected with
techniques like static and dynamic analysis.

In contrast, Evtyushkin et al. [7] construct weird machines
based on microarchitectural side effects that are never visible
in the machine’s architectural state. Using techniques similar
to ZombieLoad [5], these weird machines execute after a fault
occurs inside a TSX transaction, storing the computation’s re-
sults as cache residency information. In particular, the authors
design TSX-based AND, OR, XOR, and ASSIGN gates, which
we collectively refer to as the “TSX WM”. In Section III, we
show the TSX WM alongside our constructions, which build
on different transient execution mechanisms.

We note that Evtyushkin et al. also describe gates that do not
use TSX. These non-TSX gates are considerably less useful
than the TSX gates, however, because the non-TSX gates
use the branch predictor as a microarchitectural state input.
As the authors discuss [7, §4], this means that sequentially
composing their non-TSX designs requires repeatedly moving
data from architectural to microarchitectural state and back.
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This dramatically reduces both performance and obfuscation
potential. For this reason, we do not consider these non-TSX
designs to be full-fledged µWMs. In the rest of this paper, we
restrict our attention to gates that, like the TSX WM, can be
cascaded without round-trips to architectural state.

While the TSX WM makes standard dynamic analysis
infeasible because its execution is not visible in architectural
state, it still suffers from two drawbacks (Section I):

1) Ease of detection. Even an extremely simple static
analysis can look for uses of (otherwise very unusual)
TSX instructions.

2) Limited applicability. Only Intel machines support
TSX; Intel now defaults to disabling TSX [10], and most
operating systems provide options to disable TSX [8],
[9] (in order to protect against ZombieLoad [5]).

This paper addresses these issues by constructing weird ma-
chines from mode widely available and less readily detected
transient execution primitives.

III. DESIGN

We propose the Transient WM, a weird machine that
generalizes the TSX WM and is based on transient execu-
tion primitives (e.g., raising exceptions). A Transient WM is
composed of three ingredients:

1) A transient execution primitive: Similar to the TSX
WM, our weird machine begins execution when the CPU
is in transient execution mode—when the execution
results only affect the microarchitectural states but not
the architectural states (i.e., during speculative execution
or out-of-order execution). The Transient WM general-
izes the TSX WM to any transient execution primitive,
including raising exceptions [2], mis-training the branch
predictor (BP) [1], and mis-training the branch target
buffer (BTB) for indirect jumps [1].

2) A microarchitectural side channel: Since any architec-
tural state changes will be discarded after the transient
execution, our WM needs a microarchitectural side
channel to transmit the (transient) computation results.
While there exist different side channels [7], we use the
cache side channel as it provides larger state storage
than others; in other words, using the cache allows the
Transient WM to have more variables to compute and
store values.

3) A weird gate that computes on side channel data using a
transient execution primitive and transmits back a result
via the side channel.

In this section, we give intuition for how to construct tran-
sient weird gates using transient execution primitives and side
channels. Gate inputs and outputs are booleans represented by
whether or not a given variable is in cache. For example, an
input may be one if X[0] is in cache and zero if it is not.
Our gates compute using transient execution. The trick is to
use gate inputs to adjust the time it takes to fetch the output
into cache; if the output should be one, for example, the inputs
must ensure that the output variable can be fetched into cache
before the transient execution window ends.

The next sections walk through our gate constructions in
more detail.

A. Transient weird gate intuition: the assign gate

The simplest weird gate is assign, which assigns the value
of an input variable to an output variable. Listing 1 shows
four different assign constructions using different transient
execution primitives.

1 INIT:
2 X[0] = 0;
3 SIGFPE {
4 goto EXIT;
5 }
6

7 clflush(Y);
8 tmp /= 0;
9 Y[X[0]] = 0;

10 EXIT:
11 ...

(a) Exceptions

1 INIT:
2 X[0] = 0;
3 ptr[0] = 4096;
4

5 clflush(Y);
6 for (i = 0; i <= training; i++) {
7 mask = 0 - (i == training);
8 to_X = (X - ptr) & mask;
9 if (to_X == 0) {

10 Y[ptr[to_X]] = 0;
11 }
12 }

(b) Branch predictor

1 INIT:
2 X[0] = 0;
3 Z[0] = 4096;
4 safe(I) {}
5 gate(I) { Y[I[0]] = 0; }
6 vicitim(I) { asm("CALL ptr"); }
7

8 clflush(Y);
9 ptr = gate;

10 for (i = 0; i < training; i++)
11 vicitim(Z);
12 ptr = safe;
13 victim(X);

(c) Branch target buffer

1 INIT:
2 X[0] = 0;
3

4 clflush(Y);
5 TSX {
6 tmp /= 0;
7 Y[X[0]] = 0;
8 }

(d) TSX

Listing 1: The assign gate with different transient execution
primitives.
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a) Exceptions: Listing 1a shows the construction of the
assign gate using exceptions as the transient execution
primitive. The gate implements input and output values using
the cache side channel (as do all gates in this paper).

The input to assign is a boolean value represented by
whether the variable X[0] is in cache: the input is one when
X[0] is in cache and zero when X[0] is not in cache. Note,
however, that the value of X[0] is always zero in architectural
state, i.e., main memory. We use Y[0] as the gate output: this
boolean output is one when Y[0] is in cache and zero when
it is not. Note, also, that Y[X[0]] (line 9 of Listing 1a) is
equivalent to Y[0], because of the value of X[0].

First, the code in Listing 1a registers a signal handler for
fatal arithmetic errors (SIGFPE). This signal handler (line
three) jumps to the end of the assign gate (the EXIT label)
when the CPU encounters such an exception. On line eight,
the CPU encounters a fatal arithmetic error in the form of a
divide-by-zero, and thus follows the signal handler’s orders—
except that transient execution continues for a while before
the signal handler’s effect is committed.

In transient execution mode, the processor encounters line
nine, the assignment of Y[X[0]] (which is equivalent to
Y[0], our output variable). If the input variable X[0] is in
cache, the CPU can quickly resolve the address of the output
variable Y[0] and fetch it into cache before the divide-by-
zero has committed; if X[0] is not in cache, however, the
CPU only has time to fetch X[0]—and Y[0] does not end
up in cache. Therefore, assign assigns: if the input variable
X[0] is in cache, so is the output Y[0]; if the input variable
is not in cache at the start of the computation, neither is the
output variable at the end of the computation.

b) Branch predictor and branch target buffer: Similar to
Spectre [1], we can construct an assign gate by mis-training
the branch target buffer (Listing 1c) or the branch predictor
(Listing 1b). Listing 1b’s assign gate first mis-trains the
branch predictor (line six): a for loop repeatedly executes
an if statement (line nine) and satisfies its condition (to_X
== 0)—except on the last iteration. On that last iteration,
the branch predictor mis-predicts because of its training, and
still executes the if block in transient execution mode. The
transiently executed code in the if block reduces to Y[X[0]]
= 0, which performs the assignment as in the prior gate.

Listing 1c shows how to mis-train the BTB to construct
an assign gate. The first for loop (line ten) trains the
BTB to assume that the victim function will call the
gate function. After the training loop, the victim function
executes again, this time calling the (useless) safe function—
but, thanks to the BTB, the CPU still transiently executes the
gate function. This function uses our standard Y[X[0]]
operation to perform the assignment. Therefore—just as in
the exception-based assign, because of the limited size of
the transient execution window—Y[0] ends up in cache only
if X[0] is in cache.

c) TSX: Listing 1d shows how to replace the exception or
mis-training transient execution primitive with a TSX block;
this is how Evtyushkin et al. [7] construct their gates. The

input and output variables to the assign gate stay the same,
represented by whether X[0] and Y[0], respectively, are
in cache. When the gate in Listing 1d executes, the CPU
clearly encounters a divide-by-zero exception (line six), and
so eventually exits the TSX transaction. Before the exit caused
by the divide-by-zero has fully committed, however, the pro-
cessor continues to execute in transient execution mode—and
encounters line seven, the assignment of Y[0]. Just as in the
other gates, this line pulls Y[0] into cache only if X[0] is
already in cache.

B. Generalizing from the assign gate

To calculate an arbitrary Boolean function, we need more
than an assign gate. This section discusses how to construct
AND, OR, NOT, XOR, and MUX gates.

a) AND and OR gates: The assign gate only contains
one line of code that actually performs the transient compu-
tation: Y[X[0]] = 0, which pulls Y[0] into cache only if
X[0] is in cache. By repeating this pattern, we can create
OR gates (Listing 2) and AND gates (Listing 3). Both the OR
gate and the AND gate work similarly to an assign gate:
the OR gate assigns the two input variables to the same output
variable, while the AND gate assigns the value one to the output
variable only when both the input variables are in cache (so
that the address of the output variable can be quickly resolved).
We can even repeat or concatenate the transient computation
more than twice to generate a multiple-input OR or AND gate.
For example, repeating line nine of the Listing 1a n times
yields an n-input OR gate.

1 INIT:
2 X[0] = Y[0] = 0;
3 SIGFPE {
4 goto EXIT;
5 }
6

7 clflush(Z);
8 tmp /= 0;
9 Z[X[0]] = 0;

10 Z[Y[0]] = 0;
11 EXIT:
12 ...

Listing 2: An OR gate construction using exceptions.

1 INIT:
2 X[0] = Y[0] = 0;
3 SIGFPE {
4 goto EXIT;
5 }
6

7 clflush(Z);
8 tmp /= 0;
9 Z[Y[X[0]]] = 0;

10 EXIT:
11 ...

Listing 3: An AND gate construction using exceptions.
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b) NOT gate: Building a NOT gate is less straightforward.
A NOT gate only fetches the output variable into cache when
the input variable is not in cache, which behaves like an
inverse of an assign gate, and we cannot simply extend an
assign gate to build a NOT gate. While TSX WM supports a
NOT gate, the implementation is not available, and we instead
construct a NOT gate independently.

Our NOT gate construction is inspired by the fact that the
complexity of an instruction that leads to transient execution
can affect the capacity of transient execution [6]. In other
words, when an instruction causing the CPU to enter the
transient execution mode takes more time to execute, then
the CPU can execute more instructions in transient execution
mode. If we can make an instruction more complex when the
input variable is not in cache, then we can keep the CPU
in transient execution mode longer—allowing it to fetch the
output variable into cache.

Listing 4 shows our NOT gate construction (using exceptions
as the transient execution primitive). The input and output
variables are X[0] and Z[0], respectively, and Y[0] is an
auxiliary variable. By replacing the line from earlier, tmp /=
0, with tmp /= X[0], we can extend the execution time
needed to raise a divide by zero exception. In other words,
when X[0] is in cache, the CPU can quickly retrieve the
value of X[0] (which is set to zero) and raise an exception.
Since Y[0] is not in cache, it is not possible to fetch Z[0]
into cache before the transient execution ends. Thus, when
X[0] is in cache before the gate executes, Z[0] ends up not
in cache after the gate executes.

On the other hand, when X[0] is not in cache before the
gate executes, the CPU needs to wait until the value of X[0]
is fetched from memory and until it can raise an exception.
This allows the output variable Z[0] to be fetched into cache
during the (longer) transient execution window. Thus, if X[0]
is not in cache before the gate executes, Z[0] ends up in cache
after the gate executes.

1 INIT:
2 X[0] = Y[0] = 0;
3 SIGFPE {
4 goto EXIT;
5 }
6

7 clflush(Y);
8 clflush(Z);
9

10 tmp /= X[0];
11 Z[Y[0]] = 0;
12 EXIT:
13 ...

Listing 4: A NOT gate construction using exceptions.

c) XOR and MUX gates: With the AND, OR, and NOT
gates in place, we can compose a more complex logic gate.
Because they’re helpful for program obfuscation, we imple-
ment both the XOR gate and the MUX gate. The two gates are
constructed as follows:

• XOR: AND(OR(X, Y), NOT(AND(X, Y)))

• MUX: OR(AND(X, NOT(Z)), AND(Y, Z))
X, Y, and Z are the input variables, while the AND, OR,

and NOT are the gates described in previous sections. In
Listings 2 and 3, we show how to construct gates by repeating
or concatenating existing gates. The XOR and the MUX gates
can be constructed using similar methods.4

Using XOR and MUX, we can obfuscate control flow and
cryptographic operations. Figure 1 shows a simplified exam-
ple, using a Transient WM to obfuscate password checking
with the XOR gate and the MUX gate. By constructing larger
circuits using these gates, it is also possible to obfuscate a
more complicated cryptographic algorithm; Evtyushkin et al.,
for example, implement SHA-1 [7].

if (input ^ password) {
fail();

} else {
success();

}

XOR

MUX

input password

success fail

Function pointer

Obfuscation with 
Transient WM

Fig. 1: An example of obfuscating a password checking
program with Transient WM.

IV. EVALUATION

Our evaluation answers the following questions:
1) How do the speed and accuracy of weird gate designs

based on different transient execution mechanisms com-
pare to one another and to prior work?

2) How well do transient weird gate designs generalize
across different processor architectures?

In sum, we find that exception-based weird gates enjoy the
best accuracy (≈99%), but are slower (≈5×) than TSX-based
weird gates. We also measure the speed and accuracy of
exception-based weird gates on three different processors and
discover that all of them have similar accuracy, while the speed
depends strongly on the single-threaded performance of the
processor.

A. Implementation and experimental setup

We implement our Transient WM using exceptions, TSX,
BP, and BTB as the transient execution primitives (for TSX,
BP, and BTB, we use only AND gates in this evaluation). Our
implementation is written in 1,379 lines of C/C++ and x86 64
and ARM assembly. Our BP, BTB, and ARM implementations
are based on existing Meltdown and Spectre attack implemen-
tations [20], [21], [22], and we reuse 198 lines of code from
them.

We evaluate on x86 64 machines with CPUs from AMD
and Intel, and on an ARM machine. All these machines are
available on the AWS EC2 cloud platform. Our testbeds have
the following specifications:

4https://github.com/joeywang4/Transient-Weird-Machine/blob/main/
exceptions/gates/compose.cpp
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• AMD EPYC 7R13 Processor (AWS EC2 c6a.large),
Ubuntu 22.04

• Intel Xeon CPU E7-8880 v3 @ 2.30GHz (AWS EC2
x1e.xlarge), Ubuntu 22.04

• ARM-based AWS Graviton Processors (AWS EC2
a1.large), Ubuntu 22.04

For the different processors, we calibrate the construction
of the XOR and the MUX gates to adjust for different capacities
of transient execution; we discuss in Section V.

B. Speed and accuracy of different transient weird gates

To compare speed and accuracy across transient execution
primitives, we implement our AND gate using TSX, exceptions,
the branch predictor (BP), and the branch target buffer (BTB).
We evaluate on our Intel E7-8880 v3 testbed. The branch
predictor and branch target buffer versions of our AND gate
implementations use 5 and 10 training iterations to mis-train
the branch predictor and branch target buffer, respectively.
Below, we describe how we calculate speed and accuracy, then
discuss results.

a) Measuring speed and accuracy: We run each AND
variant one million times with inputs uniformly sampled from
{0, 1}, reading the output from the cache after each iteration
by timing the access latency of the output variable. Listing 5
shows our timing code, which is written in x86 64 assembly.

To compute speed, we measure the total execution time
of one million iterations. (We note that this is a pessimistic
estimate of the speed, since it includes the time to set the
inputs and read the output in each iteration.) To compute
accuracy, we divide the number of correct iterations by the
total number of iterations, where an iteration is correct if the
AND gate produces the same output as a logical and operation.
We repeat this measurement one thousand times to generate
the cumulative distribution function of the accuracy, i.e., the
portion of the execution that exceeds a certain amount of
accuracy, in Figure 2, and we report the median values of
the speed and the accuracy in Table I.

1 rdtscp
2 shl rdx, 32
3 mov rsi, rdx
4 or esi, eax
5 mov al, [ptr]
6 rdtscp
7 shl rdx, 32
8 or edx, eax
9 sub rdx, rsi

10 mov [clk], rdx

Listing 5: The timing function to read from the cache side
channel for x86 64 processors. This code calculates the la-
tency to access the ptr variable and output the number of
cycles to the clk variable.

b) Comparison of transient execution primitives: Table I
shows the speed and accuracy of different implementations of
the AND gate on the Intel processor. TSX is the fastest, while
the branch target buffer is the slowest. This is because TSX

TSX Exception BP BTB
Runtime 0.556s 2.628s 2.931s 4.570s
Accuracy 99.56% 99.99% 94.79% 93.52%

TABLE I: The median of the AND gate speed and accuracy
when using different transient execution modes (§IV-B). Run-
time is the time to execute 1M operations.

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Accuracy (%)

0

20

40

60

80

100

CD
F 

(%
)

AND gate (Exception) 
Median: 99.99%
AND gate (Branch predictor) 
Median: 94.79%
AND gate (Branch target buffer) 
Median: 93.52%
AND gate (TSX) 
Median: 99.56%

Fig. 2: The cumulative distribution function (CDF) of the
accuracy of the AND gate using different transient execution
modes.

does not rely on any training (which is required for the BP
and the BTB) or switching between the kernel and user modes
(which is required for handling exceptions).

Exception-based weird gates have the highest accuracy,
closely followed by TSX ones; the BP and BTB gates have
slightly worse accuracy. According to Figure 2, BP and BTB
gates also have higher variation in their accuracy. We believe
that the lower and variable accuracy of the BP and the BTB are
due to correct predictions in spite of our mis-training process,
though other effects may also contribute.

C. Portability of exception-based weird gates

This section compares speed and accuracy of our exception-
based weird gates across different processor architectures; we
also briefly compare with the (non-portable) TSX-based gates
given in prior work. We choose exception-based gates because
they are portable and because the prior experiment showed
that they give good performance; BTB- and BP-based gates
are also portable, but we do not evaluate them because they
are slower than exception-based gates.

a) Measuring speed and accuracy: We measure speed
and accuracy as described in the prior experiment. For the
AMD and Intel machines, we use the timing code from
Listing 5. Our ARM implementation uses a different timing
mechanism because the system register that provides the
current CPU cycle is not readable from user space by default.
Instead, we use a multi-threaded timer [23]. Listing 6 shows
the timing function for the ARM processor.
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1 INIT:
2 volatile uint64_t counter = 0;
3 void* inc_counter(void* a) {
4 while(1) {
5 counter++;
6 asm volatile ("DMB SY");
7 }
8 }
9 pthread_t t;

10 pthread_create(
11 &t, NULL, inc_counter, NULL);
12

13 uint64_t timed_read(uint8_t *addr) {
14 uint64_t ns = counter;
15

16 asm volatile (
17 "DSB SY\n"
18 "LDR X5, [%[ptr]]\n"
19 "DSB SY\n"
20 : : [ptr] "r" (addr) : "x5"
21 );
22

23 return counter - ns;
24 }

Listing 6: The timing function (timed_read) to read from
the cache side channel for ARM processors.

WG AMD Intel ARM
AND 1.801 2.628 32.521
OR 1.756 (0.98×) 2.551 (0.97×) 32.506 (1.00×)
assign 1.751 (0.97×) 2.637 (1.00×) 32.378 (1.00×)
NOT 1.779 (0.99×) 2.741 (1.04×) 32.573 (1.00×)
XOR 7.403 (4.11×) 15.648 (5.95×) 130.898 (4.03×)
MUX 5.870 (3.26×) 11.975 (4.56×) 131.150 (4.03×)

TABLE II: Weird gate speed across processor architectures
(seconds/1M operations) and ratio to AND gate speed.

b) Speed comparison across architectures: Table II
shows the speed of the Transient WM. When comparing the
speed of different gates on the same processor, more complex
gates (i.e., XOR and MUX) are usually three to four times
slower than simpler gates (e.g., AND and NOT). This is because
the XOR and MUX gates are composed of simpler gates like
NOT. When comparing the speed of the Transient WM across
different processors, the AMD CPU has the best performance
while the ARM CPU is much slower. This is because the AMD
CPU has the best single-threaded performance, while the ARM
CPU in our testbed system is optimized for efficiency at the
cost of lower performance.

We now briefly compare speed to the prior work’s TSX
WM, which reports speeds of 0.42 (assign), 0.591 (AND
and OR), and 16.6 (XOR) seconds per million operations.5 This
comparison is imperfect: we do not have access to that work’s
gate implementations, nor do we have access to a machine
like the one used in that work’s evaluation (an Intel i7-6660U
running Ubuntu 18.04.4). Moreover, the method used in that
work to measure speed is not described in detail.

Nevertheless, we can make some very general observations:
first, besides XOR, absolute times are very roughly in line

5This is the best-case value for prior work; see Footnote 1.

with the performance of our portable designs (ignoring XOR,
TSX WM is ≈3× faster than our AMD implementations).
Likewise, the speed of OR and assign normalized to the
speed of AND is very close to the same as in our results. The
speed of XOR is an outlier: whereas our XOR implementations
are ≈4–5× slower than the corresponding AND, the prior
XOR implementation’s performance is ≈28× worse than that
work’s AND. It is unclear why the prior XOR gate is so slow;
we speculate that this gate includes some error correction
mechanism to increase its accuracy at the cost of performance.

WG Prior Work AMD Intel ARM
AND 98.5% 99.96% 99.99% 98.89%
OR 97.9% 100.00% 99.99% 99.46%
assign 98.5% 99.99% 99.99% 99.42%
NOT - 99.51% 99.99% 99.29%
XOR 99.2% 94.36% 95.58% 97.97%
MUX - 98.17% 99.93% 97.64%

TABLE III: Accuracy of weird gates across CPU architectures
and compared to prior work (§IV-C). Prior work [7] gives two
different accuracy figures for its XOR gate: 99.2% (Table 2)
and 92.59% (Table 8). The cause for this discrepancy is
unclear; we assume the higher accuracy is correct.
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Fig. 3: The CDF of the accuracy of the AMD weird gates.

c) Accuracy comparison results: Table III compares ac-
curacy of the Transient WM across architectures, and with
the prior work’s TSX WM. Figures 3–5 show the CDFs of
the accuracy on the AMD, Intel, and ARM testbeds. For the
Transient WM, all the basic gates (assign, AND, OR, NOT)
have accuracy higher than 99% on all processors. For the XOR
and MUX gates, the accuracy is slightly lower—roughly 95%
and 98%, respectively, and their CDFs also have lower slopes
and longer tails—indicating that their accuracy is less stable
than other gates. This is because these gates combine several
other basic gates, and noise in the side channel (e.g., cache
collisions generated by other processes) has increasing effect
as more gates are combined.

The only TSX weird gate with higher accuracy than an
exception weird gate is XOR. Unlike our XOR gates, which
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Fig. 4: The CDF of the accuracy of the Intel weird gates.
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Fig. 5: The CDF of the accuracy of the ARM weird gates.

have lower accuracy than basic gates, prior work’s XOR gate
has higher accuracy than its components. As discussed above,
this may be because that XOR includes some error correction
mechanism that also extends its runtime.

V. FUTURE WORK AND CONCLUSION

In this section, we discuss future research directions for
µWM attacks and defenses. Finally, we conclude.

A. Defense against µWMs

While there are no existing defense schemes that focus
on detecting or mitigating µWM execution, simple static
analysis can detect the existence of a TSX WM, and excessive
occurrences of exceptions during dynamic analysis might
indicate the use of an exception-based WM. Branch predictor
and branch target buffer constructions are more difficult to
detect using static and dynamic analysis, but they still require
further improvements on their performance and accuracy.
Future work can improve these constructions or discover other

transient execution primitives to provide better stealthiness,
performance, and accuracy.

Protections against microarchitectural attacks may also pre-
vent µWM execution. For example, several hardware-based
protections [24], [25] try to block the cache side channel,
and there are software-based protections for Spectre and other
attacks [26], [27]. Unfortunately, though, hardware changes
can be difficult to deploy, and existing software schemes
cannot protect programs that use microarchitectural effects
on purpose. We believe that µWM detection may be a more
feasible short-term research direction. Still, detecting Transient
WM is non-trivial, since attackers can mix-and-match several
different constructions to try to evade detection (§III).

B. Attack development for µWMs

We find that some of the more complex weird gate con-
structions can have high variation in their accuracy, especially
when the processors are using different microarchitectures
(Figure 3–5). To address this, we manually adjust our con-
structions very slightly to maintain high accuracy across
different processors (§IV-A). Avoiding this limitation (e.g., by
automatically calibrating weird gates for different execution
environments) is an important step towards making µWM-
based attacks more widely applicable. More broadly, it would
be interesting to understand the applicability of µWM-based
constructions to processors that are unlike current mainstream
CPU designs (for example, we do not know whether these
attacks can be made to work on processors that allow out-of-
order execution but are not superscalar).

Another possible research direction is to build a compiler
that transforms high-level code into an obfuscated program
built from Transient WMs. This compiler could build on
existing infrastructure that targets boolean circuits from high-
level languages [28], [29], [30], and would reduce the manual
effort involved in obfuscation. An important first step is to
understand the number of gates that can be executed reliably
within the speculation window on a given processor; this will
drive the compiler’s strategy for chaining gates together.

C. Conclusion

This paper presents Transient Weird Machines, WMs that
generalize µWMs to different transient execution primitives.
Our Transient WMs apply across different processors, offer
greater accuracy than TSX-based WMs, and show better NOT
gate performance. Our work suggests that computing with
microarchitectural state is a promising and general approach
for malware and attack obfuscation.
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