2023 IEEE Security and Privacy Workshops (SPW) | 979-8-3503-1236-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/SPW59333.2023.00018

2023 IEEE Security and Privacy Workshops (SPW)

Whole-Program Privilege and Compartmentalization Analysis with the
Object-Encapsulation Model

Yudi Yang Weijie Huang
Rice University Rice University
yudi.yang @rice.edu weijie.huang @rice.edu

Abstract—We present the object-encapsulation model, a low-
level program representation and analysis framework that ex-
poses and quantifies privilege within a program. Successfully
compartmentalizing an application today requires significant
expertise, but is an attractive goal as it reduces connectability
of attack vectors in exploit chains. The object-encapsulation
model enables understanding how a program can best be com-
partmentalized without requiring deep knowledge of program
internals. We translate a program to a new representation,
the Program Capability Graph (PCG), mapping each operation
to the code and data objects it may access. We aggregate
PCG elements into encapsulated-object groups. The resulting
encapsulated-objects PCG enables measuring program intercon-
nectedness and encapsulated-object privileges in order to explore
and compare compartmentalization strategies. Our deep dive
of parsers reveals they are well encapsulated, requiring access
to an average of 545/4902 callable interfaces and 1201/29198
external objects. This means the parsers we evaluate can be easily
compartmentalized, applying the encapsulated-objects PCG and
our analysis to facilitate automatic or manual trust boundary
placement. Overall, the object-encapsulation model provides an
essential element to language-level analysis of least-privilege in
complex systems to aid codebase understanding and refactoring.

Index Terms—program analysis, least privilege, object models

I. INTRODUCTION

Complexity and economics force applications to inte-
grate many components and diverse stakeholders’ data with-
out sufficient boundaries, leading to permiscuity: an over-
permissioning scenario where components have access to
information they should not. An attacker who can compromise
a component gains access to everything inside that component.
Even with compartmentalization in place, components still re-
quire interface-level access to code and data belonging-to other
components and dependencies. Patch Tuesday (and Exploit
Wednesday) may exist in perpetuity as vendors continue to
release incremental and insufficient patches for a neverending
stream of supply chain attacks, ransomware, and any number
of individual vulnerabilities [4].

The common notion of privilege within programs arises in
the context of compartmentalization, privilege separation, or
techniques to explore privilege. In the first two, a program
is decomposed into separate compartments that each have
access to a set of language objects and code interfaces. A few
key efforts have explored semi-automated transformations [1,
2, 5-7], where the developer annotates the program and a
compiler identifies data and code and separates. Unfortunately,
they do not define privilege so that it can be extracted and

© 2023, Yudi Yang. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00018

kelly.kaoudis @trailofbits.com

Nathan Dautenhahn
Rice University
ndd@rice.edu

Kelly Kaoudis
Trail of Bits

quantified holistically in a codebase, and only consider spe-
cialized compartmentalization strategies that sandbox a region
of buggy code or isolate some data to a small subset of the
program.

We hypothesize that while many of today’s codebases
neglect isolation, their developers had to manage increasing
complexity with modularity; and that soft modularity, even
in languages that cannot enforce it, naturally emerges in
a program’s source structure and dynamic behavior. The
objective of the Program Capability Graph (PCG) and the
complexity and security analyses we present in this work is to
expose and measure this emergent modularity, enabling future
automated least-privilege program transformations, akin to a
compiler’s ability to optimize even when program complexity
requires specialized knowledge exceeding individual developer
capacity. The PCG represents an entire program in a language-
agnostic, human-readable fashion. Analysing the PCG to
measure program interconnectedness and encapsulated-object
(aggregations of operations mapped to code and data following
lexical scoping rules) privileges requires neither substantial
security expertise nor deep context of the underlying codebase.
The novel object-encapsulation model overall enables fully
representing and analysing privilege relationships automati-
cally even in large codebases.

First, we represent every low-level program operation as
a PCG node. Since we produce the PCG via static analysis,
it represents every possible control flow and access within a
program and captures the upper bound of privileges required
for the program to operate as designed. Second, we assign each
program-level operation or object as belonging-to or operating
on-behalf-of a specific authority context (encapsulated-object).
Partitioning the PCG into encapsulated-objects represents a
unique program compartmentalization strategy. Encapsulated-
object authorities can be a simple lexical scope, like the file
where the code is located as in our evaluation, or dynamic
scopes such as the syscall context. Third, we compute the
compartmentalization’s suitability per encapsulated-object. Fi-
nally we present an interface for labeling program objects
as sensitive, labeling program operations as suspicious, and
calculating the overall exposure of sensitive objects in an
encapsulated-objects PCG.

The privilege-set of an encapsulated-object E consists of
the accessible code and data objects within it, and the ob-
jects belonging-to neighbouring encapsulated-objects that E
can access. We consider E’s percentage of exposed internal

135

state (public objects) its privilege upper bound. Additionally,
the percentage of external objects that E can access within
other encapsulated-objects represents the upper bound of all
non-local privilege E may require. Together, these quantify
E’s privilege within the system as a whole. Generally, the
lower the percentage of public objects within an encapsulated-
object, the more suitable the trust boundary partitioning that
encapsulated-object from the rest of the PCG.

In this work, we demonstrate the potential of our model
and analysis tooling by characterizing the security and inter-
connectedness of programs to evaluate how they can best be
compartmentalized. Our core contributions include:

o A novel object-oriented representation of privilege within
a program, the object-encapsulation model.

The Program Capability Graph (PCG), which enables mea-
suring program interconnectedness and encapsulated-object
privileges.

A study of parsers for complex and commonly exploited
input formats, which finds many such parsers are well en-
capsulated and can therefore be easily compartmentalized,
applying the encapsulated-objects PCG and our analysis to
facilitate automatic or manual trust boundary placement.
A detailed analysis of NGINX demonstrating that an
object-oriented PCG representation of C-based systems
leads to useful compartmentalization insights, e.g., that
more than 50% of the objects in NGINX are only internally
used in the file where they are defined.

A detailed sensitive-object analysis that labels syscalls
as sensitive and evaluates their accessibility throughout a
given program under diverse compartmentalizations.

While our representations are automatically extracted, the
resulting graphs and the metrics we derive from them are
human-readable to facilitate understanding and validation.
Beyond these concrete demonstrations, we believe the object-
encapsulation model enables analysis for many purposes:
enhancing program understanding by finding sharing anti-
patterns, understanding how code interacts, measuring how
much authority any given component should have, as well
as assessing program complexity and aiding in refactoring.

II. BACKGROUND

Our primary objective is to present a general purpose
representation and interface for analyzing reachability within
a system. Specifically, we aim to characterize the complexity
of privileges at the granularity of individual code and data
objects within a system and in the future enable automated
least-privilege program transformation. The primary challenge
is to do this without expert annotations with a concrete
representation that can be audited and understood by humans.

Program-Mandering (PM) encodes privilege metrics to ex-
plore optimal points at which to compartmentalize [9]. Unfor-
tunately, despite providing one of the first procedural methods
for representing and using a privilege metric, PM lacks the
ability to be used for custom analysis and cannot be applied
to programs in different languages.

136

USCOPE introduced a capmap representation of privilege
as a low-level access graph to enable dynamic privilege
tracing and analysis [13]. While uSCOPE applied a low-
level definition of privilege similar to that of the PCG, the
capmap is derived dynamically and can only describe the
required lower bound of privilege in a codebase. In contrast
(and complementary) to the capmap, our object-encapsulation
model enables exploring the upper bound on privilege in a
codebase.

We primarily seek to enable whole-program analysis of the
upper bound of required component privilege in large existing
codebases. Several existing intermediate representations and
object models attempt to do this [11]. While these object mod-
els can prescriptively define complexity, our goal of analysing
legacy systems requires a more holistic and descriptive way to
measure privilege across many components and dependencies.

Developers have long been able to construct and query a
program dependence graph (PDG) [3] to answer the question
of what other program components can access a particular
component in the form of graph reachability. However, this
approach to measuring privilege does not scale to granular
analysis conducted holistically over large systems. The al-
gorithmic complexity of evaluating interconnectedness and
reachability over a PDG for every low-level operation and
object in a program becomes rapidly infeasible with codebase
size and does not scale to the size of systems we analyse.

Pidgin and other recent work on authority contexts represent
and explore program privilege over a PDG [8, 12]. However,
these run into the intrinsic complexity limitations of analysis
over the PDG and either work only for explicit languages that
encode them, or merely enable the ability to inspect specific
privileges. They cannot provide whole-program privilege met-
rics for upper-bound complexity analysis. The PDG includes
information our analysis does not use, which accordingly
would require additional memory to store. Our PCG, in
contrast, is tailored to security-oriented privilege analysis over
large codebases.

III. THE OBJECT-ENCAPSULATION MODEL

Our model represents privilege throughout a program in
terms of low-level operations, objects, and how they interact.
The goodness-of-fit of encapsulation, i.e., the relative num-
ber of private objects and interfaces given the encapsulation
partitioning applied over the PCG, indicates how well the
encapsulation strategy in question realizes the principle of least
privilege.

Our approach borrows from the object-capability model
of computation [11], where a program comprises instances
of code (as computation) and data that are aggregated into
encapsulated-objects. Access rights are granted to an instance
if the data belongs-to the object or is obtained through the
program’s reference graph. Since the objective of this paper
is to analyze privilege without assuming an explicit definition
for it, we limit the scope of this design to what is necessary to
infer privilege-based relations. This leads to an intermediate
representation that captures privilege as capabilities to perform

© public
Son i
Source Code i . __> H H H H
y o Eé
Encapsulation Analysis
O&O"O Encapsulated-object PCG
O}g/ g) 00 8: o
Derived PCG 1::; >6g I :ﬁ N .

Threat Analysis
PCG with Threat Labeling

Fig. 1: The phases of PCG construction and analysis. Code
objects are mapped to nodes in the PCG that perform low-
level operations (read, write, call, return, alloc, free) on
data object nodes. Nodes are aggregated into encapsulated-
objects, which are then used to measure the degree to which
privilege is reduced under that encapsulation. Threat modeling
labels nodes as sensitive (data) or suspicious (operation) and
measures exposure under a given encapsulation.

specific operations on objects and a method for labeling each
of these by the authority context to which it belongs. Figure 1
shows the design and generation process of each major phase
of the model and approach.

A. The Program Capability Graph

Without explicit developer annotations our approach must
be descriptive, meaning derived bottom-up from readily avail-
able elements within the program itself, rather than prescrip-
tively expressed top-down. An operation is a distinct instance
of computation that can be labeled as belonging-to a lexical
scope or as operating on-behalf-of some dynamic scope and
which performs some type of access on an object. An object
is a unit of program storage as defined by the language or
runtime. An encapsulated-object is a grouping of objects (code
and data) under a single authority context.

The PCG includes primitive operations intended to rep-
resent any type access control rights. Objects are created
by computation that alloc the object (either statically or
dynamically) and are destroyed by computation that frees the
objects. Objects can receive read or write operations which
bestow privileges to the computational context performing the
operations. Objects can additionally receive a call or return
which change the overall authority context along with the
current scope.

The PCG nodes consist of all the code and data objects of
the program. The code objects include functions and function
pointers. The data objects include global variables and local
variables. Since parameters are stack objects just as local
variables. We also consider parameters as a special type of
local variables, with an inherit accessibility through function
calls. In addition, function pointers are considered both code
objects (when the program performs indirect calls) and data
objects (when the program accesses the address of the pointer,
such as assignments.) The PCG edges determine the privilege-
set of all the functions. The edges are incident from code

137

objects to all objects, representing that the function accesses
those objects through reads, writes, pointer dereferences and
aliasing, or function calls (including both direct calls and
indirect calls). There are edges from a function to all of its
local variables including parameters, edges from a function
to global variables it accesses (with annotation determining
read access or write access,) and edges from a function to
other functions that it calls. Therefore, the PCG is a map of
accessibility from code objects to code and data objects and
the maximum privilege-set required by the function.

B. Authority Context Labels for Encapsulated Objects

Our objective with the PCG is to provide a low-level model
for building other analysis. The question now becomes that
how do we define the belongs-to or on-behalf-of relations, i.e.,
how could we partition the PCG reasonably without sufficient
codebase expertise. In fact, there is not a single “correct” way
to partition the objects: we could partition them lexically by
files; we could use a grouping by directory; we could use
dynamic on-behalf-of runtime information; and we could man-
ually construct the relation. We would like to ensure that the
encapsulation model is programmable, language-independent,
and security researchers can explore their own relations.

The Authority Context is a label on the PCG nodes (objects)
that represents a unique encapsulated-object. The labeling
of each object in the PCG determines which encapsulated-
object it belongs-to. This labeling automatically satisfies the
properties of a belongs-to relation: it is many-to-one, and it
covers every code and data object.

An encapsulated-objects PCG is a PCG with labels as-
signed to each object. For example, a file-based lexical-scoped
encapsulation has each object label assigned to be the file
it is defined within. We have designed and listed several
encapsulations in Section IV.

C. Encapsulation Analysis

With the encapsulated-objects PCG, we are able to quantify
the privilege-set (PS) of each encapsulated-object and evaluate
the degree to which the encapsulation provides information
hiding and thus reduces permiscuity. The objective of en-
capsulation analysis is to measure the degree to which a
given encapsulated-objects PCG encapsulates objects within
a program. The value is that well encapsulated systems can
be compartmentalized at those boundaries and thus lead to
improvement in whole program least-privilege. In this section
we present metrics for providing whole program analysis of
a given encapsulated-objects PCG and describe how and why
those metrics characterize meaningful least-privilege proper-
ties.

1) The Privilege Set Metric: The privilege-set (PS) is
the set of all objects that a given encapsulated-object may
access and which is given directly by both the PCG and
encapsulated-objects PCG. We quantify privilege as the num-
ber of objects accessed (|PS|). If the object-encapsulation
model analysis is field-sensitive then this number can also
capture the complexity of the objects being shared as well. To

make meaningful analysis of the metrics we examine the ratios
of internal:external object access from an encapsulated-object
and the ratio of private:public objects in the encapsulated-
object.

a) The PS-From Ratio: We can characterize the overall
privilege for a given encapsulated-object as the PS-From Ratio
(PSFR) metric, which characterizes the total number of each
of the following classes of objects relative to the total number
of object in the program: local data, local code, external
data, external code, inaccessible data, and inaccessible code.
The value of this metric is that it allows us to investigate
the privilege footprint from a given encapsulated-object and
includes the inaccessible objects so we can estimate how
localized the privileges of a given component are. The PSFR
is characterized as a percent of total and thus the ratio of the
six classes of objects relative to the total objects sum to 1.

Since the objects include objects passed as arguments to
function calls, the object number is more representative than
function number. Thus, we rank encapsulated-objects with
highest percentage of external objects as the largest, and the
object with lowest percentage of accessed external objects as
the smallest external set.

A encapsulated-object with higher rank (higher external
object references) suggests that it is worse according to the
Privilege Set metric, as they are exposed to more external
data that a security problem within an encapsulated-object is
easier to trigger violations in another encapsulated-object. We
should ensure objects with higher ranks should be hardened
as they have more access privilege.

b) The External Access Ratio Metric: We can sepa-
rate the objects and functions in a software system in a
different perspective. Some of them are used only internal
to the encapsulated object, i.e., private objects. In contrast,
objects and functions that are used inter-encapsulation are
called “Public Objects” and “Public Functions”. The External
Access Ratio (EAR) captures the total ratio of externally
accessible objects relative to the total number of objects in the
program. Thus, for better encapsulation and demonstrating less
sharing complexity this ratio should be lower. A lower sharing
complexity and ratio means that specifying policies is simpler,
transforming the system is easier, performance might be better
(depending on hot code paths), and simpler to reason about
security implications if a compromise occurs.

The exact implementation of both metrics and the
encapsulated-objects PCG are described in Section VI.

D. Threat Modeling and Analysis Interface

While encapsulation analysis gives us useful exploration
and measurement of properties we intuitively map to least-
privilege, they fall short of demonstrating real security gains.
The last element of the object-encapsulation model is an
interface for expressing and measuring the real threat under a
given encapsulated-objects PCG to sensitive data objects from
suspicious operations. In this exploration, a developer labels
sensitive objects, code interfaces or data objects, from the PCG
and optionally labels suspicious operations and then launches

a series of analysis. Whole program analysis, measures the
degree to which the sensitive objects are accessible to all
encapsulated-objects, and specific analysis determine whether
access may occur between any suspicious operations. The
overall benefit of this analysis is that it enables custom
methods that can automatically apply across any system if
the objects are common to runtimes, such as the syscalls.

1) The Access Distance Metric: The access distance metric,
measures how many and which hops must an attacker take to
get to a sensitive object given a specific encapsulated-objects
PCG. If an attacker can gain control of an encapsulated-
object, it can be used to attack sensitive objects. The closer the
encapsulated-object is to the sensitive object, the more likely
it will be exploit and used to attack the sensitive object. This
security property can be formulated as the access distance, i.e.
the shortest distance between the subject and some sensitive
object.

2) The Exposure Reduction Metric: For each object la-
beled as sensitive, we define its exposure as the number
of encapsulated-objects that may access it. If there were no
protection mechanism, the exposure of a sensitive object would
be the number of total number of encapsulated-objects in
the program because any memory corruption could allow an
attacker to access the sensitive object regardless of the code
dependency. Intuitively, reducing the exposure of sensitive
objects leads to better security properties, and it can achieved
by applying some encapsulation techniques. In this case, the
exposure is reduced to the number of encapsulated-objects that
could directly access the sensitive object. To quantify the gain
of security for a sensitive object, we measure the reduction
as the ratio of exposures after and before encapsulation. By
analyzing the exposure reduction of each sensitive object, we
can grasp a concrete attack view of an encapsulation’s security
properties.

IV. EXPLORING ENCAPSULATIONS

The interface for constructing the encapsulated-objects PCG
enables first of its kind analysis based on exploring encapsula-
tion boundaries and measuring how well they minimize public
access to objects. In this section we present three methods for
labeling encapsulated-objects.

A. File-Based Lexically Scoped Encapsulation

In file-based scoping, each object is automatically assigned
to an encapsulated-object based on where the line of code
allocating the object resides. By assigning objects according
to this belongs-to rule, we can evaluate the degree to which a
codebase follows this pattern and whether or not it provides
meaningful encapsulation boundaries for minimizing privilege.
Heap objects are labeled based on the file of the allocation site,
treating the allocation site as a defacto type (even for void *
objects). All objects defined in header and implementation
files with matching base names are labeled with the basename
of the file. Objects defined in header files without associated
implementation files are labeled as belonging-to the header file
encapsulated-object.

138

B. Manual Encapsulation

To show off a directed encapsulation, we manually assign
encapsulated-objects based on labeling a set of source files. For
example, we could devise a parser encapsulation by labeling
all parser files and then using the lexically scoped model to
assign all associated objects to the parser encapsulated-object.
We apply this to explore and compare parsers in Section VII-B.

C. Dynamic Syscall Encapsulation

In contrast to the lexically scoped belongs-to assignment
we can also explore dynamically scoped on-behalf-of as-
signments. We dynamically trace the PCG operations in the
Linux Kernel and label each operation with the active system
call context. This means that all operations and objects are
labeled by the syscall context at the time of the operation.
Just as the file-based lexical scopes create encapsulated-objects
under the belongs-to relation, so too does the dynamic syscall
context assignment under the on-behalf-of relation. Accesses
from non-allocating syscalls make the accessed object public
and therefore expose privilege across that dynamic context
boundary.

V. EXPLORING THREAT MODELS

To demonstrate attack specific analysis, we model threats by
labeling syscall interfaces as sensitive and measure their ac-
cessibility under the file-based belongs-to assignment. Syscalls
are a common attack target. They enable an attacker to
progress to other parts of a system using the privileges of the
exploited process. By labeling syscalls we enable automated
analysis of the widely targeted syscall attack surface common
in all Posix processes, meaning it can be reused beyond a
single application threat analysis. For example, a common
security policy is to debloat or apply seccomp filters to reduce
the use of syscalls for further propagating an attack. With
our syscall labels and analysis methodology, these evaluations
could be automated, systematically measuring any such miti-
gation while enabling comparison to alternatives.

VI. PCG CONSTRUCTION

We present the design and implementation of translating
C to the PCG. While we demonstrate for C, the PCG can
be derived from any source language including via binary
instrumentation (as demonstrated with our on-behalf-of syscall
contexts). We use LLVM to build the PCG [10]. The analysis
translates a program from its LLVM bitcode to PCG, exported
in JSON format.

a) Deriving Code Objects: A node is created in the PCG
for each function declaration.

b) Data Object Extraction: A node is created for each of
three types of objects: Global Objects are defined in the global
scope of the program and can be obtained by iterating through
the LLVM globals list; Local Objects are defined by debug in-
formation attached to LLVM instructions (11vm.dbg.declare
instructions) and obtained by iterating over the instructions;
Function Parameter Objects and Pointer Values are located
through the 11vm.dbg.declare instructions.

TABLE I. Read / Write Relation for LLVM Instructions and
Operations

Instruction Read / Write

LoadlInst read

Storelnst write

GetElementPtrInst Depends on forward uses
CallInst read

CallBrlnst read

ICmplnst read

AtomicRMWInst write
AtomicCmpXchglnst | write

ReturnInst read

SelectInst read

PtrToIntInst read

PtrToIntOpr read

GEPOperator Depends on forward uses
BitCastOperator read

PHINode read

Constant N/A

c) Authority-Context Labeling: We label each object
with the absolute file path based on the debug information. The
local and parameter variables belong to the same encapsulated-
objects as their parent functions.

d) Privilege Set Extraction: Operations are labeled by
the full path and source line of the code the occur in. An edge
is created in the PCG when an operation may access a given
object, which occurs in the following scenarios:

« Functions Access Global Variables: We iterate through
every use of global variable and mark it as either a read or
a write. We map the relation to separate LLVM instruction
types and operator types in Table 1. Specifically, when we
meet a GEP instruction or operator, we need to check the
uses of the GEP: if those uses contain a store instruction,
then the GEP instruction or operator is an write operation;
otherwise, it is an read operation.

« Functions Access Local Variables: Local variables in-
cluding parameters are accessible to a function if they are
defined within the function, or they are indirectly used
(aliased). The indirection will be discussed later.

« Object Aliasing: If an object is in the alias-set of a data
object, it is accessible from the other data object. We
extract the alias set using the SVF alias analysis [14]. A
function is accessible to every object which is in the alias
set of the object it is accessible to.

« Function Calls: Direct and indirect function calls means
the caller gain the accessibility of callee. If there are
multiple callee from the indirect calls from the alias
analysis, all callee are accessible from the caller to model
the maximum privilege-set.

A. Metric Evaluation

The evaluation program is written in Python. It takes in the
Program Capability Graph in JSON format as input, which
is directly passed from the PCG construction program, and
outputs the evaluation results in CSV format.

a) The Accessibility Algorithm: We calculate the acces-
sibility of each encapsulated-object in the subject program. It
is calculated by the following steps:

139

1) For each function, extract the required code and data
objects.

2) Deduce the set of external encapsulated-objects required
for each function.

3) Calculate each object’s field count.

4) For each encapsulated-object, union all of the sets above,
and calculate the required capabilities in terms of three
metrics: Encapsulated Object Count, Object and Func-
tion Count, and Field Count.

b) The PS-From Ratio Algorithm: We identify the parser
encapsulated-object by manually inspection and matching files
with parser or non-parser encapsulated-object.

We calculate the PS-From Ratio of the subject program by
the following:

1) Local Data: All global variables and local variables (in-
cluding parameters) declared in the parser encapsulated-
object.

2) External Data: All accesses to global variables and all
variables in the alias set of local objects declared in the
non-parser encapsulated-object.

3) Inaccessible Data: Calculated through subtracting local
data and external data from total data objects (all global
variables and local variables).

4) Local Code: All functions declared in the parser
encapsulated-object.

5) External Code: All functions declared in the non-parser
encapsulated-object called by functions declared in the
parser encapsulated-object. Includes both direct and indi-
rect calls.

6) Inaccessible Code: Calculated through subtracting local
code and external code from all code objects declared in
the subject program.

c¢) The External Access Ratio Algorithm: We calculate
the EAR of the subject program by the following steps:

1) For each function, if they are called by functions belongs
to other encapsulated-objects, we add the function to the
public function set. Otherwise, we add the function to the
private function set.

For each global variable, if in the PCG, there is a
reference by any function or its alias set contains any
variable belongs to other encapsulated-objects, we add
the global variable to the public global variable set.
Otherwise, we add the global variable to the private
global variable set.

For each local variable. If it is a parameter or its alias
set contains any variable belongs to other encapsulated-
objects, we add it to the public local variable set.
Otherwise, we add it to the private local variable set.

2)

3)

d) The Exposure Algorithm: For a given encapsulated-
objects PCG, we first label all sensitive objects, then do a
tiny modification on the encapsulated-objects PCG so that
the sensitive objects and the rest of the encapsulated-objects
are regarded as vertices. Since the modified graph is still
directed, we can obtain the exposure of these objects trivially
by calculating the in-degree of the corresponding vertices.

140

TABLE II: Evaluated Programs and Libraries

Parsing Libraries | Software System
libroxml Nginx

jansson CPython

facil.io PHP

libxml2 MuPDF

json-c gimp

TABLE III: PCG Generation Runtime

Target Program | Generation Runtime
libroxml 0.854s
jansson 0.824s
facil.io 8.290s
libxml2 2m58.852s
json-c 0.884s

Nginx 6m3.503s
CPython 119m24.766s
PHP 180m44.243s
MuPDF 60m43.136s
gimp 1m26.717s

VII. EVALUATION

With the object-encapsulation model, we would be able
to create the encapsulated-objects PCG for every software
written in C with a suitable Authority Context Label. We apply
the object-encapsulation model to explore the upper-bound
privileges required for the programs listed in Table II using
the Lexical Encapsulation Model compared to the privileges
they have without encapsulation.

We measure the runtime for PCG generation program, the
result is shown in Table III. The runtime is still significant due
to the inclusion of SVF alias analysis during generation.

The accessibility statistics result is shown in Table IV. It
provides statistics on the average number of encapsulated-
objects, objects, and scalars accessible and accessed per each
encapsulated-object. In the metric, the object counts include
code objects (number of functions), global variables, and
local variables including parameter objects. The scalar counts
expand each compound data structure (structs and pointer to
structs in specific) by its correlated field numbers recursively.
For example, a struct with 3 fields and each field is a struct
with 2 fields, the scalar count is 3 x2 = 6. For recursively
defined data structures, we solve the recursive issue by only
counting the top-level pointer fields. In subsequent pointer
fields, we only count the pointer as one scalar. The Percentage
Reducible row calculates how many unnecessary accessibility
of encapsulated-objects can be removed by applying the Lex-
ical Encapsulation Model.

For example, Nginx has 129 encapsulated-objects. As a
software system written in C, Nginx currently has its total
count of capabilities equals 129 x 128 = 16512. The object-
encapsulation model suggests that only 129 x 61 = 7869 of the
16512 capabilities are directly required. Thus, in an object-
encapsulation model, we can remove 16512 — 7869 = 8643
capabilities, which is 52.60%. This means that if we apply
automatic transformation on Nginx based on the encapsulated-
objects PCG, we would reduce the jump targets and exposed
data to 47.40% of the original program. Thus, if the Nginx

= public objects ® private objects

100%

75%

50%

Percent of Total Object Count

25%

Nginx libroxml PHP libexpat gimp facil.io CPython json-c libxml2 jansson MuPDF

Fig. 2: EAR Analysis: showing public vs. private data objects
for all encapsulated-objects. More than 50% of data objects
are private.

® public functions ® private functions

100%.

50%

25%

Percent of Total Function Count

Nginx libroxml PHP

libexpat gimp facil.io CPython json-c libxml2 jansson MuPDF

Fig. 3: EAR Analysis: showing public vs. private code objects
for all encapsulated-objects.

program exposes an ROP attack or a buffer overflow, it could
only directly returns to or modify an average of 47.40% of
the functions and data.

In general, we observe that more than 50% of the
encapsulated-object capabilities are reducible. This is a
tremendous step given that we are only using fully automatic
transformation without requiring an expert developer, compiler
engineer, or security engineer. Another result from Table IV
is that the larger the project is (as respective to file numbers
and lines of code,) the more percentage of capabilities can be
automatically reduced. This is because the required capabilities
is linearly correlated to the size of the project, while the total
capability number is a quadratic correlation. This suggests that
the object-encapsulation model is useful in trimming unused
capabilities, especially in large software systems.

A. EAR Analysis

Figure 2 and 3 show the EAR for the systems and libraries
we analysis.

In a software system with more private objects and private
functions, the system would be better encapsulated by expos-

141

L
b

S
;

H

]

i

o mg;;%ig gggsigiuigggEzs;ﬁggéﬁgz%ﬁgg;sEssgég{zEgg!!gfﬁgggggggg;g;gggigg‘ggmg{;g%m

Hi
E

FHURIIY
Fig. 4: EAR Analysis for dynamic objects System calls alone
are a bad context for encapsulation.

ing fewer interfaces and global variables. For example, in the
EAR graph for objects, more than 50% of total objects are pri-
vate for all programs, indicating that compartmentalization can
be made for the programs and we automatically have at least
50% objects invisible to other encapsulated-objects. In Nginx,
almost 75% functions are publicly used in other encapsulated-
objects. This means that if we provide a sanitation for those
interface functions, the sanitation would be abundantly used
and might affect the performance.

1) EAR Analysis with Dynamic Syscall Encapsulation: Fig-
ure 4 show the EAR for dynamic system call encapsulations
for data objects, while the code objects exhibit a similar pattern
that most objects captured in the dynamic analysis are public
objects.

We observe from the result that most of the objects
from system calls are public, and that system calls are not
suitable targets for choosing encapsulation boundaries. The
result explains that using the EAR Analysis, we can evaluate
encapsulation models and determine whether the encapsulation
boundary is suitable.

B. Parser Evaluation with PSFR

We can use the PSFR metric to analyze different parsers and
provide comparisons on parsing libraries. For the parser eval-
uation, we require a modified Lexical Encapsulation Model:
in the Parser Model, we manually select files in the Lexical
Encapsulation Model that contain parsing functionality to
form, together, a “parser” encapsulated-object; all other files
form the “external” encapsulated-object. The analysis focus on
the availability of external encapsulated-object to the parser
encapsulated-object.

Figure 5 shows the normalized parser compartmentalization
statistics for the software systems and libraries we have
analyzed. In each program, the parser compartment comprises
one or more files annotated as the parser. Figure 5 depicts the
PSFR.

The PSFR analysis shows that most parsers only has access
to a limited amount of external code and data objects. This
gives us an idea that the parser is a suitable encapsulation
boundary to be used for compartmentalization.

C. Threat Analysis

We adopt the metric discussed in Section III-D to analyze
the systems listed in Table II. We label the system interfaces

TABLE IV: Accessibility for an Average Encapsulated-Object with Object-Encapsulation Model

System # of Files CLOC (in C) Encobjs.* Objects* Scalars* % Reducible
libxmlI2 43 215,796 22 176 31,292 48.12%
jansson 14 7,529 4 15 607 70.88%
libroxml 12 7,205 3 10 1,199 74.24%
libexpat 8 25,452 2 13 1,259 76.79%
facil.io 30 22,602 6 39 851 78.28%
json-c 14 8,501 2 11 127 82.97%
Nginx 129 138,467 61 484 96,464 52.60%
CPython 262 530,504 106 6,327 394,867 59.53%
MuPDF 542 860,824 175 1,045 62,128 67.62%
PHP 479 1,162,182 144 2,167 236,744 69.82%
gimp 1,103 894,939 8 21 138 99.29%

* Accessiblity per encapsulated-object in Average

100%

75%

50%

25%

0%

cJSON libxml2 gimp libroxml libexpat

W external functions M external objects

facil.io

json-c jansson Nginx PHP MuPDF CPython

parser functions M parser object M inaccessible functions M inaccessible objects

Fig. 5: Comparative analysis of parsers using PSFR.

(i.e. glibc wrappers for system calls) that are associated with
process execution, file system access, and memory manage-
ment as sensitive. Some system calls have several variants (e.g.
execve, execv, execveat, etc.), and we group them together as
one system interface (like exec*).

Table V shows the exposure reduction of the programs.
The number of encapsulated-objects vary among the programs,
from 16 to 4086. However, only a few of them are directly
related to the system interfaces. This shows that given file-
based encapsulation, we could mitigate most threats to sensi-
tive syscall objects.

Most privilege-escalation attacks focus on leveraging execve
for loading arbitrary code. In this experiment, we analyze the
access distances of encapsulated-objects to execve in Nginx,
which are shown in Figure 6. The red vertex on the left
is execve itself, and the blue ones are the encapsulated-
objects grouped by the access distance (ascending from left
to right). Although there are 111 encapsulated-objects that
may indirectly rely on sensitive interfaces, only one of them
(src/os/unix/ngx_process.c) may invokes it directly. With file-
based encapsulation policies, we could disallow any malicious
calls to execve except that file, and hence mitigate most
privilege-escalation threats.

e
e — e
e
execve Distance: 1 Distance: 2 Distance: 3 Distance: 4 Distance: 5
#Files: 1 #Files: 10 #Files: 47 #Files: 50 #Files: 3

Fig. 6: Access Distance of encapsulated-objects to execve in
Nginx, where execve is also encapsulated

142

TABLE V: Exposure Reduction of System Interfaces (After / Before Encapsulation)

System System Interfaces

system fork exec* popen open® read* write* ioctl dup mmap mprotect
libexpat 0/16 0/16 0/16 0/16 1/16 1/16 0/16 0/16 0/16 0/16 0/16
libroxml 0/40 07/40 0740 0/40 2740 1740 1740 0/40 1740 0740 0/40
jansson 0737 0737 0737 0/37 3737 21737 1737 0737 0/37 0737 0/37
json-c 0/56 0/56 0/56 0/56 21756 2/56 1756 0/56 0/56 0/56 0/56
facil.io 0/102 17102 0/102 0/102 47102 57102 47102 0/102 0/102 17102 0/102
libxml2 0/ 141 0/ 141 0/ 141 0/ 141 3/ 141 3/ 141 4/ 141 0/ 141 1/141 0/ 141 0/ 141
Nginx 0/260 2 /260 17260 07260 10 /260 417260 417260 47260 27260 2/260 07260
CPython 1/ 600 1 /600 1/ 600 0/ 600 4/ 600 6 / 600 4/ 600 2/ 600 1/ 600 2/ 600 1/ 600
MuPDF 17613 0/613 0/613 0/613 8/613 8/613 57613 0/613 0/613 0/613 0/613
PHP 0/1056 2/1056 1/1056 4/1056 16/1056 8/1056 7/1056 0/1056 2/1056 5/1056 1/1056
gimp 0/4086 1/4086 1/4086 0/4086 4/4086 4/4086 1/4086 0/4086 0/4086 0/4086 0 /4086

Fig. 7: Nginx Object-Encapsulation Model

D. Use Cases of object-encapsulation model

1) Nginx Analysis: Figure 7 is a overview visualization of
the encapsulated-objects Program Capability Graph to apply
the object-encapsulation model on Nginx. We have analyzed
the Nginx system based on the encapsulated-objects PCG,
without manually looking at its actual code, assuming that we
are security programmers with no knowledge of Nginx source
code that would like to analyze and harden the software.

An observation on Figure IV suggests that some encap-
sulated objects are more referenced by other encapsulated
objects, and some reference more encapsulated objects. In both
cases, we should take extra effort hardening the objects as they
bear more security implication. For example, Table VI and
Table VII show the encapsulated-objects with highest number
of reads and writes to global variables. Therefore, the Nginx
engineer would probably put more effort ensuring the security
of the listed files, such as core/ngx_process_cycle.c. Thus,
we could define a metric for each encapsulated object by rank-
ing the degree of read-only and read-write global variables.

In order to further understand the number of capabilities
among each encapsulated-objects in Nginx, we collect the

TABLE VI: Nginx External Read-Only Global Variable Rank

Encapsulated-Object Ext. R/O 1
1 os/unix/ngx_process_cycle.c 47
2 event/ngx_event_timer.h 43
3 event/ngx_event.c 41
4 http/ngx_http_core_module.c 40
5 http/ngx_http_upstream.c 39
6 http/ngx_http_request.c 38
7 core/nginx.c 30
8 event/modules/ngx_epoll_module.c 27
9 http/modules/ngx_http_proxy_module.c 27
10 http/ngx_http_variables.c 25

TABLE VII: Nginx External Writable Global Variable Rank

Encapsulated-Object Ext. R'W 1
1 os/unix/ngx_process_cycle.c 36
2 core/ngx_times.c 30
3 core/nginx.c 26
4 os/unix/ngx_process.c 20
5 event/ngx_event.c 17
6 event/modules/ngx_epoll_module.c 16
7 core/ngx_regex.c 9
8 core/ngx_cycle.c 7
9 event/ngx_event_accept.c 6
10 http/modules/ngx_http_ssi_filter_module.c 6

number of external code and data object accessible to each
encapsulated-object. We draw two bar charts of the absolute
numbers in Figure 8a and 8c. We also draw two cumulative
distributions of encapsulated-objects for the number of acces-
sible code and data objects in Figure 8b and 8d.

The result shows a bipolar structure: a large number of
encapsulated-objects is accessible to less than 10 data objects
and less than 40 code objects; in contrary, there is still a large
portion accessible to more than 300 data objects and more than
600 code objects. A further discovery on the encapsulated-
objects PCG shows that the encapsulated-objects with large
external code and object accessible counts are common in
object within a single large alias set.

Overall, our analysis on Nginx showed that we could
automatically reduce a high 52.60% of capabilities in terms
of lexical encapsulation. It showed that there is a significant
portion of encapsulated-objects requiring as high as 1000
external objects, that we have automatically identified and
could set methods to sanitize and sandbox them.

2) JSON Library Evaluation: Specifically, all JSON li-
braries parse and convert JSON to an in-memory data struc-

N
ad

-
©

-
o

-
~

©

of Encapsulated-objects

o

w

50 100 150 200 250 300 350
of External Data Objects

(a) # of External Data Objects for each Encapsulated-Object

12

of Encapsulated-objects

0 100 200 500 600 700

300 400
of External Code Objects

(c) # of External Code Objects for each Encapsulated-Object

100%

60%

Cumulative % of Encapsulated-objects

50 100 150 200 250 300 350
of External Data Objects

(b) Cumulative Percentage Distribution of External Data Objects

100%

80%

60%

Cumulative % of Encapsulated-objects

100 200 500 600 700

300 400
of External Code Objects

(d) Cumulative Percentage Distribution of External Code Objects

Fig. 8: The Statistics of External Calls and Objects Accessible in each Encapsulated-Object in Nginx

ture. The similarity in the libraries allows us to compare and
choose JSON libraries in terms of privilege set. We have
analyzed json-c, facil.io, jansson, and cJSON as the JSON
libraries written in C. Among them, cJSON is a mono file
project that only consists of a source file (cJSON.c) and a
header file (cJSON.h). Thus, it is unsuitable to be analyzed by
the lexical encapsulation model.

Table VIII shows the PSFR of the four JSON library.
In terms of the view of object-encapsulation, the single-file
library cJSON is not a suitable target that the parser object is
hard to be encapsulated and sandboxed. In terms of the metric,
we observe that the json-c library accesses the least external
objects, making the json-c library the most suitable in terms
of parser encapsulation.

3) XML Library Evaluation: Likewise, three XML parsing
libraries, libxml2, libroxml, and libexpat, are collected and
compared. The results are shown in Table IX. All three
libraries are similar, that there is little external or inaccessible
objects. Almost every object belongs to the parser encapsula-
tion. This indicates that the three xml libraries are composed
of parsers only, indicating that the manual encapsulation
with parsers might not be the most suitable way to set the
encapsulation boundaries.

As we have applied the metric on the JSON and XML pars-
ing libraries, we have a basic concept of how much data may-
be accessed by the parsers in terms of the object-encapsulation
model. We are able to conclude that whether the encapsulation
boundary is suitable. If so, we can choose a single library that
is the best for parser security in terms of accessing less external
data objects from the object-encapsulation model.

VIII. CONCLUSION

This paper introduced the Object-Encapsulation Model, a
new program representation and static analysis framework
to measure privilege-sets of encapsulated-objects. We define
the encapsulated-objects PCG to capture encapsulation mod-
els from source code. We also provide threat labeling to
measure concrete threats to the program. Then, based on
the encapsulated-objects PCG, we setup the Encapsulation
Analysis and the Threat Analysis. We analyzed a set of parsers
and software systems using our analysis metrics including
the Accessibility Analysis, the EAR, and the PSFR. We
conclude that for many parsers, they are well encapsulated
and can be easily compartmentalized by applying our Object-
Encapsulation Model and with the help of automatic or manual
encapsulation boundary placement. Our Dynamic Syscall En-

144

TABLE VIII: Comparative study of JSON libraries using PSFR.

Name Parser Data Parser Code External Data External Code Inaccessible Data Inaccessible Code
json-c 67 (7.70%) 16 (1.84%) 8 (0.92%) 19 (2.18%) 580 (66.67%) 180 (20.69%)
facilio | 3284 (73.63%) 1078 (24.17%) 45 (1.01%) 0 (0.00%) 53 (1.19%) 0 (0.00%)

jansson | 138 (13.5%) 32 (3.14%) 14 (1.37%) 26 (2.55%) 650 (63.79%) 159 (15.60%)
cJSON | 325 (74.37%) 112 (25.63%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

* The sum of the six percentages equals to 1.

TABLE IX: Comparative study of XML libraries using PSFR.

Name Parser Data Parser Code External Data External Code Inaccessible Data Inaccessible Code
libxmlI2 13155 (81.82%) 2915 (18.13%) 7 (0.04%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
libroxml | 739 (81.93%) 160 (17.74%) 3 (0.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
libexpat 1785 (82.79%) 357 (16.56%) 14 (0.65%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
* The sum of the six percentages equals to 1.
capsulation shows the ability to select and evaluate authority [5] Adrien Ghosn, Marios Kogias, Mathias Payer, James R.

context. The Threat Analysis and the Access Distance Metric
allows a reduction in exposure of sensitive objects automati-
cally given appropriate permission control.

ACKNOWLEDGMENTS

We would like to acknowledge the anonymous reviewers
and LangSec for providing instructive feedback that improved
this paper. This research was supported in part by National
Science Foundation Awards #2146537 and #2008867. This
research was supported in part by the DARPA SafeDocs
program as a subcontractor to Galois under HR0011-19-C-
0073.

REFERENCES

Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. “Wedge: Splitting Applications into
Reduced-Privilege Compartments”. In: Proceedings of
the 5th USENIX Symposium on Networked Systems De-
sign and Implementation. NSDI’08. San Francisco, Cal-
ifornia: USENIX Association, Apr. 16, 2008, pp. 309—
322.

Yaohui Chen, Sebassujeen =~ Reymondjohnson,
Zhichuang Sun, and Long Lu. “Shreds: Fine-Grained
Execution Units with Private Memory”. In: [EEE
Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016. IEEE Computer
Society, 2016, pp. 56-71.

Jeanne Ferrante, Karl J Ottenstein, and Joe D War-
ren. “The program dependence graph and its use in
optimization”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 9.3 (July 1987),
pp. 319-349.

Andrada Fiscutean. How patch Tuesday keeps the beat
after 20 years. Mar. 2023. URL: https : / / www .
darkreading . com/edge - articles/how - patch - tuesday -
keeps-the-beat-after-20-years.

(1]

(2]

(3]

(4]

145

(6]

(7]

(8]

[9]

Larus, and Edouard Bugnion. “Enclosure: Language-
Based Restriction of Untrusted Libraries”. In: Proceed-
ings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems. ASPLOS 2021. Virtual, USA: As-
sociation for Computing Machinery, 2021, pp. 255-267.
URL: https://doi.org/10.1145/3445814.3446728.

Khilan Gudka, Robert N.M. Watson, Jonathan An-
derson, David Chisnall, Brooks Davis, Ben Laurie,
Ilias Marinos, Peter G. Neumann, and Alex Richard-
son. “Clean Application Compartmentalization with
SOAAP”. In: Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security.
CCS ’15. New York, NY, USA: ACM, 2015, pp. 1016-
1031. URL: http://doi.acm.org/10.1145/2810103.
2813611.

Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael
LeMay, Anjo Vahldiek-Oberwagner, and Nathan Daut-
enhahn. “The Endokernel: Fast, Secure, and Pro-
grammable Subprocess Virtualization”. In: CoRR
abs/2108.03705 (2021). arXiv: 2108.03705. URL: https:
/larxiv.org/abs/2108.03705.

Andrew Johnson, Lucas Waye, Scott Moore, and
Stephen Chong. “Exploring and Enforcing Security
Guarantees via Program Dependence Graphs™. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation.
PLDI ’15. New York, NY, USA: ACM, 2015, pp. 291-—
302.

Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capo-
bianco, Stephen McCamant, Trent Jaeger, and Gang
Tan. “Program-Mandering: Quantitative Privilege Sep-
aration”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security.
CCS ’19. London, United Kingdom: Association for
Computing Machinery, Nov. 2019, pp. 1023-1040.
LLVM. LLVM Testing Infrastructure Guide — LLVM
3.6 Documentation. 2014. URL: http://llvm.org/docs/
TestingGuide.html.

Mark Samuel Miller. “Robust Composition: Towards a
Unified Approach to Access Control and Concurrency

[12]

[13]

Control”. AAI3245526. PhD thesis. Baltimore, MD,
USA: Johns Hopkins University, 2006.

Scott Moore, Christos Dimoulas, Robert Bruce Findler,
Matthew Flatt, and Stephen Chong. “Extensible Access
Control with Authorization Contracts”. In: Proceedings
of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA 2016. New York, NY, USA:
ACM, 2016, pp. 214-233. URL: http://doi.acm.org/10.
1145/2983990.2984021.

Nick Roessler, Lucas Atayde, Imani Palmer, Derrick
McKee, Jai Pandey, Vasileios P Kemerlis, Mathias

146

[14]

Payer, Adam Bates, André DeHon, Jonathan M Smith,
and Nathan Dautenhahn. “uSCOPE: A Methodology
for Analyzing Least-Privilege Compartmentalization in
Large Software Artifacts”. en. In: In 24th International
Symposium on Research in Attacks, Intrusions and
Defenses (RAID '21). ACM, 2021, p. 16.

Yulei Sui and Jingling Xue. “SVF: interprocedural static
value-flow analysis in LLVM”. In: Proceedings of the
25th international conference on compiler construction.

2016, pp. 265-266.

