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Abstract—Recently, the first feature-rich NTFS implementa-
tion, NTFS3, has been upstreamed to Linux. Although ensuring
the security of NTFS3 is essential for the future of Linux, it
remains unclear, however, whether the most recent version of
NTFS for Linux contains 0-day vulnerabilities. To this end, we
implemented Papora, the first effective fuzzer for NTFS3. We
have identified and reported 3 CVE-assigned 0-day vulnerabilities
and 9 severe bugs in NTFS3. Furthermore, we have investigated
the underlying causes as well as types of these vulnerabilities
and bugs. We have conducted an empirical study on the identified
bugs while the results of our study have offered practical insights
regarding the security of NTFS3 in Linux.

Index Terms—fuzzing, file system, NTFS

I. INTRODUCTION

NTFS [1] was developed by Microsoft as the native file
system for Windows NT. Decades later, along with the rapid
growth of the market share of Windows, numerous hard disks
are formatted as NTFS, whose fully read-write support should
be taken into consideration for other operating systems, e.g.,
Linux kernel. NTFS3, as the first feature-rich implementation
of the impactful NTFS file system, landed in Linux in late
2021. Albeit the potential benefit, integrating a new compo-
nent, especially a file system, is extremely likely to introduce
bugs or even vulnerabilities. Unfortunately, to the best of our
knowledge, there is no systematic study on the found bugs
introduced by the latest NTFS3. Even worse, we find there
are even no available tools to discover these bugs. Thus,
regarding integrated NTFS3 in the Linux kernel, it is necessary
to implement a tool to detect bugs, and conduct a systematic
evaluation on them to raise the awareness of the community,
especially security researchers.

To close this gap, in this paper, we build the first effective
fuzzer, named Papora, for NTFS3. Then, we conduct the first
fuzzing-based systematic study on identified bugs. In this
whole process, we have to underline that it is particularly
challenging in engineering. Although there are several fuzzers
for file systems, such as Janus [2] and Hydra [3], they
cannot be directly applied to fuzz NTFS3 due to two issues.
First, they lack a specific parser for NTFS images to extract
metadata, correct checksums and assemble corpus. Moreover,
directly adopting existing parsers for NTFS is not feasible
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because they only validate the integrity of the given image,
which is insufficient for fuzzy testing. Lacking such a parser
will significantly decrease the performance of a fuzzer due
to the burden on I/O issues [4]–[6]. Second, they do not
support KASAN [7] on our targeting Linux kernel, making
the vulnerability hunting less effective.

Fortunately, Papora has addressed the above two tough nuts
to some extent. On the one hand, since the implementation
of NTFS is not open-sourced, it is particularly tough to build
a feasible image parser for it. Though there is a so-called
official documentation, it still lacks lots of technical details.
To this end, we manually compare multiple third-party releases
and their corresponding documentations, and cross-reference
which implementation is consistent with the expected be-
havior. On the other hand, because fuzzing an image via
virtual instances may suffer bug reproduction issues [2], we
decided to apply LKL [8], a user space application that can
emulate behaviors of the Linux kernel, to load NTFS images.
However, LKL is not maintained at all, and KASAN is not
integrated inside. Therefore, we firstly ported LKL to the latest
version, and revisited the instrumented memory subsystem of
LKL and enabled KASAN support with intensive effort. For
example, LKL adopts a special architecture, i.e., running with
a linear memory layout, which is different from other memory
management unit based (MMU-based) architectures having
KASAN support. We have to manually refactor the KASAN
codebase and make it compatible with the no-MMU LKL.

The results have proven that Papora is an effective fuzzer.
In total, we have discovered 3 CVE-assigned 0-day vulnera-
bilities and 9 severe bugs in the latest Linux kernel. We have
reported these 12 vulnerabilities/bugs to the maintainers with
patches, which have all been confirmed. Moreover, 9 out of
them have been merged into the upstream. Our study shows
that the latest version of NTFS in Linux still suffers from the
problems of out-of-bounds read bugs and null pointer deref-
erence bugs. Moreover, to ring the alarm for the community
of the security issues resulting from enabling NTFS support,
we have conducted sophisticated and meaningful case studies
on representative identified bugs. Based on the case study, we
also propose some best practices for security researchers and
Linux developers to avoid such bugs. We urge the developers
to have a deeper investigation into these two types of bugs and
improve their security awareness with our empirical study.
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We summarize our contribution as follows:
1) To the best of our knowledge, we have implemented

the first fuzzer specifically for NTFS3 in Linux. It is
able to effectively and efficiently discover new bugs and
vulnerabilities.

2) We have identified 3 CVE-assigned 0-day vulnerabilities
and 9 severe bugs in NTFS3, among which 9 were
confirmed and fixed on the upstream.

3) We have made an empirical fuzzing-based case study on
bugs of NTFS3 in Linux.

4) We have released Papora including the LKL, which is
ported to the latest version of the Linux kernel and inte-
grated with KASAN, at https://github.com/ambergroup-
labs/papora.

This paper is organized as follows: §II introduces some
basic knowledge of NTFS and fuzzing testing. In §III, we
detail the challenges for fuzzing an NTFS image, and how
we build Papora. Moreover, in §IV, we illustrate the 12
bugs/vulnerabilities we identified, and conduct case studies
on representative ones. Based on the results, we have sum-
marized some best practices for users, developers and security
researchers in §V. Finally, §VI and §VII illustrate published
related work and a discussion of some interesting issues of
this paper, respectively.

II. BACKGROUND

A. NTFS File System

A file system is one of the essential components of an oper-
ating system that manages files, folders, links, and the data to
efficiently process the read/write requests from users to those
items. In 1993, the proprietary New Technology File System
(NTFS) [1] developed by Microsoft debuted with the first
release of Windows NT. Within the last two decades, various
NTFS drivers including the legacy driver [9] and FUSE-backed
drivers, Captive [10] and NTFS-3G [11], had been contributed
to the Linux kernel for providing alternative ways to access
Windows hard drivers on Linux. In late 2021, the presence
of NTFS3 [12] developed by Paragon Software [13] finally
unleashes the power of NTFS in Linux 5.15 kernel.

1) NTFS Features: As the successor of the File Allocation
Table (FAT) file system, except for supporting some advanced
features like large volumes, NTFS outperforms FAT in many
aspects, especially the reliability and security. Specifically,
the reliability of NTFS file systems can be reflected from
two aspects. On the one hand, similar to other journaling file
systems, NTFS uses the logging and checkpoint mechanisms
to guarantee the consistency of the file system for dealing with
unexpected system crashes. On the other hand, a recovery
technique, named cluster remapping, can also improve the
reliability. When a bad sector, located in a cluster, is detected
in a read operation, NTFS remaps the cluster to a newly
allocated one, and marks the bad one that will no longer be
used. As for the security issue, NTFS allows granting access to
files or directories in users and groups granularity. Moreover,
the Encrypting File System (EFS) allows users to encrypt files

Fig. 1. The Layout of an NTFS File System.

on NTFS volumes. In this way, even a bad actor can physically
access the hard drive, he cannot decrypt any files in an EFS-
enabled NTFS volume without the owner’s private key [14].

2) NTFS Physical Structure: Fig. 1 illustrates the layout of
an NTFS image. The Partition Boot Sector (PBS) holds im-
portant information for bootstrapping the system. In particular,
the boot sector starts with an x86 jump instruction which skips
some non-executable metadata, e.g., OEM ID. And the PBS
is also responsible for modifying the program counter to the
Bootstrap Code. Master File Table (MFT) holds the metadata
of all files and directories, even including the metadata itself.
To ensure the integrity of MFT, NTFS maintains a Master
File Table Copy, which maintains exact identical data to
the MFT. The MFT is composed of multiple entries for
NTFS metadata, each of which has fixed functionalities and
follows strict syntax. For example, the third entry of the MFT,
named $LogFile, contains all necessary transactions for a faster
recovery when the system crashes. Moreover, the seventh
entry, dubbed as $Bitmap, maintains a bitmap for all free
and unused clusters. Most importantly, MFT also stores some
meta-information necessary to retrieve files, like the attributes
of a file. In NTFS, each file is stored in clusters that are
composed of one or multiple sectors, and structured in a list
of attributes, e.g., file name, timestamp, even the file data. The
file data that is not contained in the MFT will be stored in File
System Data [15].

B. Fuzzing

Fuzzing or fuzzy testing is an automatic software testing
paradigm that tests the target with inputs which are mutated
based on the target state and testing results. A naive practice is
randomly generating inputs to fuzz the target until it crashes. It
might work when the input space is limited but many popular
fuzzers guide the input mutation based on code coverage.
Coverage-based fuzzers such as AFL [4] and libFuzzer [16]
instrument the target in compile time and feed the target states
back to the input mutator, which leads the fuzzer to keep
exploring new execution paths in the target program.

While fuzzing a user space program, the target takes the
mutated inputs from the command line or configuration files
and executes in a loop until it crashes. But, it is a different
story to fuzz an operating system component like a file system.
Specifically, the input space becomes two dimensions, i.e., an
image with a file system, and a series of system calls. Tradi-
tional kernel fuzzers such as Trinity [17] and Syzkaller [18]
generate a series of system calls with parameters as inputs
for the target operating system. In particular, Trinity uses
the annotation to generate better-than-random parameters for
each system call to trigger unexpected behaviors more easily.
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Syzkaller uses KCOV to collect code coverage and SyzLang to
provide context for guided fuzzing. However, the file system
image is a more complicated input that cannot be efficiently
generated by kernel fuzzers.

File system fuzzing efforts such as Janus [19] and Hy-
dra [20] deal with the problem by extracting metadata from
large images with file system-specific parsers. Janus also
addresses the aging OS problem with the library OS LKL [8],
which helps the fuzzer to quickly reload a clean-slate OS and
get rid of irreproducible bugs.

III. EXPERIMENTAL SETUP

In this section, we will explain how we implement an NTFS
fuzzer and how to efficiently fuzz an NTFS file image.

A. Challenges

As we mentioned in §II-B, fuzzing a file system is chal-
lenging, which can be summarized as follows:

• C1: Disk Image. For a mainstream fuzzer, e.g., AFL [4],
its recommended size of targets is less than 1KB. An
empty file system, however, which is embedded in a disk
image, often contains more than dozens of megabytes.
Directly fuzzing a disk image, which is 1,000x larger
than fuzzer’s maximum preferred size, will dramatically
downgrade the efficiency due to the heavy I/O brought
by mutating or booting the given image.

• C2: Context-aware File Operations. Except for directly
mutating the disk image, file operation is another or-
thogonal valuable seed. In other words, a series of file
operations may also lead to system crashes. Moreover, file
operations are context-aware workloads for images. For
example, open() will actually create a new file on the
target image, based on which the following file operations
can be performed. Such context-aware file operations not
only exponentially increase the exploration space for seed
mutation, but also require the corresponding updates on
states (e.g., entries in MFT) of the image.

• C3: Reproduction. Traditional fuzzers aiming at op-
erating systems often take virtual instances as targets.
However, frequently modifying and rebooting virtual in-
stances, or reverting to specific snapshots are extremely
time-consuming. Moreover, they may reuse file systems,
leading to undetermined and unpredictable states, i.e.,
aging problems, for file systems, which seriously hinders
the reproduction of found bugs.

Janus and Hydra have addressed the above challenges to
some extent on multiple file systems, e.g., ext4 and HFS+,
except for NTFS. Compared with those targets, the biggest
obstacle of fuzzing an NTFS image is the absence of its
implementation. Except for Microsoft’s documentation where
it qualitatively describes the structure and implementation of
NTFS, all other releases as we mentioned in §I are third-party
implementations. To this end, efficiently and correctly fuzzing
an NTFS image is challenging.

B. Overview

According to challenges we introduced in §III-A, Papora
is specifically designed to tackle these problems. The overall
workflow of Papora is shown in Fig. 2.

As we can see, firstly, an NTFS parser scans the whole given
image, and builds a corpus that will be sent to Papora. Our
fuzzer tries to mutate both the metadata of the given image
and the program consisting of file operations, and updates the
status field accordingly (Step 2 & 3). Then, the NTFS parser
assembles the updated corpus as an intact mutated image (Step
4), which will be mounted by Linux Kernel Library (LKL)
and executed according to the program (Step 5). Finally, the
corresponding result of the current round will be outputted
(Step 6), and the feedback information will be sent back to
Papora to guide the following mutations (Step 7). Technical
details are illustrated from the following §III-C to §III-G.

C. Corpus Building

As we can see from §III-B, a corpus is composed of
three parts: extracted metadata of the given image, a program
consisting of a series of file operations, and a status file.
Specifically, a specifically-designed NTFS parser (see §III-D)
will extract the metadata, i.e., entries in PBS and MFT, out of
the image, and condense them into a bulk of data. In this way,
the meaningless part for finding new bugs, i.e., File System
Data (see Fig. 1), contributing more than 99% of space to
the image, will not be included into the corpus. As for the
second part, the initial program is an empty sequence of file
operations. Last, as we mentioned in §II-A2, attributes of files
and directories are stored in the MFT. During scanning the
image, these attributes will be packed and maintained in the
third part, i.e., the status file, of the corpus. Papora will take
the assembled corpus as input, mutate either the metadata or
the file operations, mount the image, and execute the program
to see if any bugs are triggered. If it is not, the corresponding
field of the input corpus will be updated (like the status field
should be updated due to file creations), and the corpus will
be sent to Papora for the next round fuzzing.

D. NTFS Parser

As we mentioned in C1, directly fuzzing an image will
face an extreme efficiency problem. Therefore, like previous
work [2], [3], we develop a parser specifically targeting NTFS
to tackle this problem. The responsibility of the parser can be
divided into three-folds.

First, the parser can extract all metadata and compress them
into a dense bulk of data. For a file system, an image crash
after mounting is only due to buggy metadata, accounting
for less than 1% space of the image. This indicates that
mutating the other 99% space (mainly composed of files’
content) is meaningless. As for an NTFS image, metadata is
mainly composed of fields in Partition Boot Sector (PBS) and
Master File Table (MFT) (see §II-A2). Therefore, condensing
metadata in PBS and MFT where the mutation plays on will
not only increase the efficiency for both mutation and the
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Fig. 2. Overall workflow of Papora.

following fuzzing, but also increase the possibility of finding
corrupted metadata related new bugs.

Second, the parser will automatically fix checksums after
mutating metadata. For file systems, including NTFS, they all
adopt checksums to ensure the integrity and usability of the
metadata. A mismatch between checksum literals and in-time
calculated checksums will raise an error, resulting in the image
cannot be loaded properly. Therefore, after mutating metadata,
the parser will re-calculate all the corresponding checksums to
guarantee the mutated NTFS file system can pass the static
verification on checksums. From §II-A2, we can see that
the PBS and MFT are NTFS-specific structures. Papora has
some specific checksum fixups on these two data structures.
Specifically, the PBS holds important information for boot (see
§II-A2). For example, its second field, i.e., OEM ID, is fixed
as “NTFS” followed by 4 space characters. Though this field
is mutated by Papora accidentally, the parser will recover its
original value to make sure mutation has no negative effects
on booting. Additionally, MFT stores metadata of all files and
directories. The header of each file record contains a Update
Sequence Number (USN) and a buffer. NTFS requires the last
two bytes of each sector of records are copied into the buffer
and the USN is written in their place. After booting, NTFS
will compare the USN from the header with the last two bytes
of each sector. To this end, if Papora mutates headers in MFT,
it will modify the corresponding fields to pass sanity checks.

Third, the fuzzing process still performs on an intact image,
thus the parser should also be responsible for mapping the
mutated metadata in corpus back to the image. To achieve
such a goal, during the extracting, the parser will maintain a
bitmap in which the offsets of each piece of metadata are kept.
Based on the bitmap, the mutated metadata can be filled back
into the original slots.

Note that, instead of directly adopting traditional and well-
maintained NTFS parsers, like NTFS-3G, implementing our
own parser does not mean reinventing a wheel. Although
traditional parsers can parse and load NTFS images, they only
validate if the given image is valid, or the image will not
be loaded successfully. However, as we mentioned above, our
parser is responsible for correcting checksums and assembling
corpus for the following process. In other words, our parser
conducts an extra fixup process based on verifying the validity.
Moreover, NTFS-3G is too heavy and inefficient for fuzzing
analysis. In summary, it is necessary to implement our own
parser in implementing Papora.

E. Fuzzing Image

Papora applies several strategies, e.g., bit/byte flip, and
arithmetic operations, on the metadata part of a corpus to
mutate it. The strategies can be summarized as follows:

• Flip a bit at random offset, or set an interesting byte/-
word/dword value (like min/max valid number, 0, ±1,
and power of 2) at random offset in random endian.

• Randomly add/subtract a random value at random byte/-
word/dword offset.

• Overwrite bytes by a random chunk or a random byte
for random length at random offset, or by user specified
tokens if provided.

After mutating the metadata, the NTFS parser recalculates
necessary checksums.

F. Fuzzing File Operations

Except for mutating metadata, Papora also mutates the
second part of corpus, i.e., the program consisting of a series of
file operations. Papora mutates the program in two strategies:
mutation and generation.
Mutation. Papora prefers this strategy. It randomly picks one
file operation in the seed program, then replaces some of its
arguments with heuristic values instead of random ones. As we
stated in C2, these file operations are context-aware. Thus, the
selected values should be meaningful for the current image.
For example, if the mutated file operation is fsync(), which
takes a file descriptor as its argument to synchronize its in-
core state with the storage device. Papora will pick one of the
opened file descriptors of proper type. Such a heuristic and
context-aware strategy also applies for mutating system calls
related to path and extend attributes.
Generation. If Papora cannot increase coverage through mu-
tating the program, it will try to append new file operations to
the program with proper arguments. Moreover, the potential
side effects of each file operation are taken into consideration,
and the program context will be updated accordingly. For
instance, link() and mkdir() may create a new file and
directory, while unlink() and rmdir() have the opposite
effects. The program context will record changes introduced
by these system calls in the status file of corpus.

G. Linux Kernel Library (LKL)

C3 has stated that if Papora adopts virtual instances to
mount the image and execute the program, it will face effi-
ciency and reproduction problems. To this end, Papora builds
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its target program, i.e., the executor, with Linux Kernel Library
(LKL) [8], as a user space program. LKL provides a way
for emulating the Linux kernel by compiling the kernel into
an object file that can be directly linked by applications. To
discover potential vulnerabilities in the latest version, we have
upgraded LKL to v6.01. Moreover, to enable detection of
illegal memory accesses, we also integrated the KASAN [7]
provided by [3] into the LKL with several necessary fixups.

Porting the LKL to the latest Linux kernel and integrating
KASAN into it are challenging. On the one hand, some inter-
faces have been introduced, changed or even deprecated. For
example, the interface of copy_thread is changed, leading
to a rewriting of the corresponding function to guarantee the
logic correctness. Moreover, header files rearrangement often
happens in the upstream. Thus, subsystem maintainers may
choose to move some structures or macro definitions to new
headers, which may lead to merge conflicts or build errors
while porting LKL to the latest kernel. On the other hand,
integrating KASAN into LKL needs lots of effort. This is
because LKL can be regarded as an architecture with no-MMU
(memory management unit) support. In other words, LKL
only supports linear memory address, which is conflicted with
KASAN initialization flow. Therefore, we have to manually
review the flow, adjust or comment out related codes or
structures, while maintaining the functionalities of KASAN.

After resolving problems of porting LKL to the latest ver-
sion, it can bring in several advantages over mounting images
through a virtual machine. First, user-space applications are
much lighter than the emulator in terms of rebooting. Restart-
ing an application only introduces negligible time compared
to resetting a VM instance. Second, VM-based fuzzers may
choose to keep running their target programs until the aging
kernel crashes or hangs. To this end, the initial status of the
image is undetermined, which results in irreproducible bugs
even with full kernel dump. For security researchers, it is
also difficult to obtain the root cause in such indeterministic
situations. Papora, however, can restart its executor for every
corpus with little overhead, providing a stable and determined
kernel state. Third, such a LKL assisted method requires much
less computing resources, so it is easy to scale up the fuzzing
process by deploying more instances.

IV. EXPERIMENT RESULTS

In this section, we will first list all bugs identified by
Papora. Then, we will delve deeper and conduct case studies to
illustrate the reason behind system crashes. The results show
that some severe vulnerabilities may even be used in privilege
escalation.

A. Results

We run Papora on a VMware virtual machine with an 8-
core CPU and 16GB memory running Ubuntu 16.04. The
experiment is conducted intermittently for about 3 months. As
the results listed in Table I, Papora has successfully discovered

1At the time of writing, v6.0 is the latest version for Linux. Moreover, the
LKL project was inactive and the supported kernel version stayed at v5.3.

TABLE I
IDENTIFIED BUGS AND VULNERABILITIES (HIGHLIGHTED ROWS) BY

PAPORA, WHERE NPD AND OOB REFER TO NULL POINTER
DEREFERENCES AND OUT-OF-BOUND, RESPECTIVELY.

Commit Bug Type Root Cause Upstreamed

Type I
0b66046 NPD Sanity check miss !

e19c627 OOB Read Arithmetic overflow !

6db6208 OOB Read Sanity check miss !

2681631 NPD Sanity check miss !

c1ca8ef NPD Implementation flaw !
4f1dc7d

(CVE-2022-48424) Heap Corruption Sanity check miss !

bfcdbae OOB Read Sanity check miss !
e6ffad3 OOB Read Sanity check miss
467333a

(CVE-2022-48425) Heap Corruption Type confusion

f64633f OOB Read Sanity check miss

Type II
4d42ecd OOB Read Sanity check miss !
54e4570

(CVE-2022-48423) OOB Write Sanity check miss !

9 severe bugs and 3 CVE-assigned vulnerabilities (highlighted
rows) in the NTFS3 implementation2. All identified bugs
as well as the corresponding patches have been reported
to maintainers, and 9 of them have been merged into the
upstream. Additionally, we have categorized these identified
bugs into two types. The Type I refers to the situation that
once the NTFS image is mounted, the system crashes. While
the ones under Type II can only be triggered by invoking the
corresponding system calls after mounting the image.

1) Categorized by Bug Type: Over 60% of the bugs identi-
fied by Papora are out-of-bounds read bugs. Those bugs are the
most dangerous species which could be exploited for leaking
kernel information or even corrupting kernel memory. For
example, an out-of-bounds read could be used to export the
addresses of critical kernel data structures to be corrupted.
By exploiting an out-of-bounds write, a process with the
mounting capability could escalate its privileges by corrupting
function pointers, hijacking the control flow (e.g., jumping
to the shellcode or JOP gadgets), and eventually changing
credentials data in the task_struct.

Around 25% of the bugs identified by Papora are null
pointer dereference (NPD) bugs. Those bugs directly crash the
target system and make the target hang or reboot depending on
the system configuration. By exploiting an NPD, a bad actor
could launch denial-of-services attacks on target systems with
the mounting capability or the auto-mounting feature enabled.

Except for OOB access and NPD bugs, Papora identified
2 heap corruption bugs which could be developed into use-
after-free (UAF) exploits. Specifically, when a memory chunk
is allocated in the Linux kernel, a reference pointer is returned
by the slab system and all upcoming access would go through
that pointer. A typical exploit is filling another victim mem-
ory chunk containing function pointers into the intentionally

2For simplicity, all these 12 identified issues will be referred by bugs if
they are mentioned as a whole.
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released spot and corrupting the victim memory chunk through
the old reference pointer.

2) Categorized by Root Cause: While analyzing those bugs
identified by Papora, most of them are due to missed sanity
checks on user-controllable data. Specifically, any data field re-
trieved from a file system image is a chunk of user-controllable
data which should always be strictly checked as it would be
used as the input of the NTFS3 implementation. For example,
a crafted offset field could simply lead to an out-of-bounds
read if it is not bounded by the size of the allocated memory
to cache the metadata. Furthermore, if the offset is derived
from another number-of-entries field, an overflowed offset
could be crafted when number-of-entries × size-of-entry is
large enough. That overflowed offset would bypass the
sanity check for the bounding offset itself. As a result, all
arithmetic operations related to user-controllable data should
be carefully validated as well.

Papora also identified bugs caused by type confusion [21].
We believe that it is a common type of bug in Linux file system
implementations due to the design of inode. In particular, each
inode could be interpreted in various ways depending on the
states or flags. As shown in Listing 1, the union in struct
ntfs_inode makes each ntfs_inode represent either a
dir or a file. Commit 467333a [22] demonstrates a type
confusion case in which the NTFS3 implementation wrongly
interprets an MFT_REC_MFT file as a directory and corrupts
the heap by kfree()-ing an invalid pointer.

1 union {
2 struct ntfs_index dir;
3 struct {
4 struct rw_semaphore run_lock;
5 struct runs_tree run;
6 #ifdef CONFIG_NTFS3_LZX_XPRESS
7 struct page *offs_page;
8 #endif
9 } file;

10 };

Listing 1. A code snippet of struct ntfs_inode

The root cause of c1ca8ef bug identified by Papora
could be categorized in the Always-Incorrect Control Flow
Implementation class [23]. In other words, instead of preparing
a malicious input, a bad actor could trigger the crash with
a normal test case which is missed due to incomplete test
coverage. That is exactly the problem we need a customized
fuzzer like Papora to cope with.

B. Case Study on Type I

Type I bugs occur during mounting an NTFS disk, whose
traces are shown in Fig. 3. As we can see, once invoking the
mount, the Linux system will trap into the kernel space. Most
of the mounting processes are handled by Linux’s VFS layer.
Because files in Linux are arranged in a tree-like hierarchi-
cal structure, the vfs_get_tree will call the specialized
ntfs_fs_get_tree to get its mountable root. Within the
implementation of NTFS, the function ntfs_fill_super
plays a vital role. Specifically, it parses the partition boot sector
(see §II-A2) and reads parametric data, e.g., cluster size and
maximum size of normal files. It also loads all metadata files

Fig. 3. The simplified trace of mounting an NTFS disk.

from the master file table. Finally, it reads the root directory
of the NTFS file system from disk. All these loaded data will
be filled into a superblock structure, i.e., ntfs_sb_info.

In this section, we conduct case studies against three repre-
sentative Type I bugs, i.e., 0b6604, c1ca8e, and e19c62.
The root causes for these three bugs are different. However,
the system will crash once the image is mounted. We will
delve deeper in the following.

1) 0b66046: This bug results from a null pointer deref-
erence due to an implementation error. Specifically, as we
mentioned in Fig. IV-B, the first step of ntfs_fill_super
is parsing the partition parse boot, which is implemented
through a function named ntfs_init_from_boot, which
is implemented in Listing 2.

1 static int ntfs_init_from_boot(struct super_block
* sb, u32 sector_size, u64 dev_size) {

2 // some operations
3 sbi -> record_size = record_size = boot ->

record_size < 0 ?
4 1 << (-boot -> record_size) :
5 (u32) boot -> record_size << sbi -> cluster_bits

;
6
7 if (record_size > MAXIMUM_BYTES_PER_MFT)
8 goto out;
9

10 sbi -> record_bits = blksize_bits(record_size);
11 // some operations
12 }
13
14 /* assumes size > 256 */
15 static inline unsigned int blksize_bits(unsigned

int size) {
16 unsigned int bits = 8;
17 do {
18 bits++;
19 size >>= 1;
20 } while (size > 256);
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21 return bits;
22 }

Listing 2. The implementation of ntfs_init_from_boot

As we can see, the boot record size
(boot->record_size) is read from disk at L3, which
will then be passed to function blksize_bits through a
variable named record_size. The comment at L14 says
that record_size should be larger than 256. However,
before passing record_size to blksize_bits, there
is only a verification to identify if it is greater than a
maximum limit (L7). In other words, if record_size is
less than 256, function blksize_bits will only return 8 to
record_size (L10), smaller than the ordinary situations.
In the following stages during mounting the disk, a pointer
will be shifted left record_bits bits and shifted right
several bits. Because the variable record_bits will be
only 8 when record_size is smaller than 256, the value
of the pointer will be so small that it will point to a invalid
address, leading to a null pointer dereference. According to
the log file, the value of the pointer, i.e., the address, is only
0000000000000158, which is an invalid memory address.

Therefore, the patch will limit the range of record_size.
In other words, its acceptable range should be limited by not
only a maximum value (MAXIMUM_BYTES_PER_MFT at L7
in Listing 2), but also by a minimum value. Listing 3 shows the
corresponding patch. As we can see, we set a minimum limit
as SECTOR_SIZE, because a boot record in NTFS always
includes the first sector of the disk image, whose size is
SECTOR_SIZE, i.e., 512 bytes.

1 diff --git a/fs/ntfs3/super.c b/fs/ntfs3/super.c
2 index d72a27abf1c83..af9b7947df64e 100644
3 --- a/fs/ntfs3/super.c
4 +++ b/fs/ntfs3/super.c
5 @@ -814,7 +814,7 @@ static int ntfs_init_from_boot

(struct super_block *sb, u32 sector_size,
6 : (u32)boot->record_size
7 << sbi->

cluster_bits;
8
9 - if (record_size > MAXIMUM_BYTES_PER_MFT)

10 + if (record_size > MAXIMUM_BYTES_PER_MFT ||
record_size < SECTOR_SIZE)

11 goto out;
12
13 sbi->record_bits = blksize_bits(record_size);

Listing 3. Patch to the bug in §IV-B1

2) e19c627: Commit e19c627 is related to another
Type I bug. It will eventually lead to an out-of-bound access
due to a missing on integer overflow check.

Specifically, this bug lies in the function mi_enum_attr.
It is an enumerator on file attributes of the disk image. As
we mentioned in §II-A2, the MFT data structure centrally
maintains attributes of files, whose detailed implementation
is upon a struct, named ATTRIB, which is implemented in
Listing 4.

1 struct ATTRIB {
2 enum ATTR_TYPE type; // 0x00: The type of this

attribute.
3 __le32 size; // 0x04: The size of this

attribute.
4 u8 non_res; // 0x08: Is this attribute non-

resident?

5 u8 name_len; // 0x09: This attribute name
length.

6 __le16 name_off; // 0x0A: Offset to the
attribute name.

7 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
8 __le16 id; // 0x0E: Unique id (per record).
9

10 union {
11 struct ATTR_RESIDENT res; // 0x10
12 struct ATTR_NONRESIDENT nres; // 0x10
13 };
14 };

Listing 4. The data structure maintains attributes of files

The field named size (L3) records the size of this struct.
Because this struct lies on the disk one by one adjacently,
through reading the field size of the current struct, the system
is able to get the address of the next struct. Intuitively, an
illegal access tends to happen if the size is too big. In
mi_enum_attr, the size of a struct will be directly assigned
to a variable named asize. To get the next struct’s offset on
disk, asize is added with the offset of the current struct,
dubbed off. If size is too big, accessing the next struct
tends to fall out of the disk image. This case is considered
and checked in L7 of Listing 5.

1 struct ATTRIB *mi_enum_attr(struct mft_inode *mi,
struct ATTRIB *attr)

2 {
3 u32 t32, off, asize;
4 asize = le32_to_cpu(attr->size);
5
6 /* Check boundary. */
7 if (off + asize > used)
8 return NULL;
9 ...

10 }

Listing 5. Boundary check of asize

But if size is big enough, off + asize will overflow
and generate a quite small number, leading to a failure on such
a boundary check. Thus, there will be an out-of-bound read.

The patch for this bug is straightforward. It adds another
check if an integer overflow happens on the addition as shown
in Listing 6.

1 diff --git a/fs/ntfs3/record.c b/fs/ntfs3/record.c
2 index c8741cfa421fe..66eb11e0965ef 100644
3 --- a/fs/ntfs3/record.c
4 +++ b/fs/ntfs3/record.c
5 @@ -220,6 +220,11 @@ struct ATTRIB *mi_enum_attr(

struct mft_inode *mi, struct ATTRIB *attr)
6 return NULL;
7 }
8
9 + if (off + asize < off) {

10 + /* overflow check */
11 + return NULL;
12 + }
13 +
14 attr = Add2Ptr(attr, asize);
15 off += asize;
16 }

Listing 6. Patch to the bug in §IV-B2

3) c1ca8ef: Differing from the above two cases that are
logical bugs, this one is an unhandled corner case.

Specifically, this bug also happens in the function
ntfs_fill_super, part of which is shown in Listing 7.
As we can see, at L1, it invokes ntfs_iget5 to retrieve an
inode, which will then be dispatched into d_make_root
(an API of Linux kernel’s VFS subsystem) to create the root
directory of the mounting disk.
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1 inode = ntfs_iget5(sb, &ref, &NAME_ROOT);
2 if (IS_ERR(inode)) {
3 ntfs_err(sb, "Failed to load root.");
4 err = PTR_ERR(inode);
5 goto out;
6 }
7
8 sb->s_root = d_make_root(inode);

Listing 7. A code snippet of ntfs_fill_super

The inode is a kernel struct that represents a file or a
directory in Linux kernel. One of the fields of this struct is
named i_op. It is a pointer pointing to a function table that
is composed of file operation handlers like rename, mkdir
and unlink. When initiating an inode, the i_op will be
firstly initiated as a NULL pointer. Then, there is a verification
that can be jumped over by constructing arguments. If it is,
the control flow will be directed to a label where the inode
will be returned directly, without assigning a concrete value
for i_op. Thus, the returned inode will carry an empty
i_op and be passed to d_make_root (L8 of Listing 7),
within which some file operations will be performed by
dereferencing i_op, the NULL pointer. An invalid memory
access is exploited.

The bug fix takes the value of i_op into consideration, as
illustrated in Listing 8.

1 diff --git a/fs/ntfs3/super.c b/fs/ntfs3/super.c
2 index ff70e2a5f3acb..1e2c04e48f98f 100644
3 --- a/fs/ntfs3/super.c
4 +++ b/fs/ntfs3/super.c
5 @@ -1286,9 +1286,9 @@ load_root:
6 ref.low = cpu_to_le32(MFT_REC_ROOT);
7 ref.seq = cpu_to_le16(MFT_REC_ROOT);
8 inode = ntfs_iget5(sb, &ref, &NAME_ROOT);
9 - if (IS_ERR(inode)) {

10 + if (IS_ERR(inode) || !inode->i_op) {
11 ntfs_err(sb, "Failed to load root.");
12 - err = PTR_ERR(inode);
13 + err = IS_ERR(inode) ? PTR_ERR(inode) : -

EINVAL;
14 goto out;
15 }

Listing 8. Patch to the bug in §IV-B3

C. Case Study on Type II

As we mentioned in §IV-B, when mounting an NTFS
image, Linux parses some structures and loads metadata which
will then be filled into an NTFS superblock. However, the
attributes of files will only be read during the corresponding
file operations (like open or renaming). Therefore, even if a
disk is mounted successfully, the system may also crash when
some specific file operations are invoked. We categorize these
bugs as Type II ones. Papora has successfully identified two
Type II bugs, which are detailed in the following.

1) 54e4570: Commit 54e4570 is related to a Type II
vulnerability3, which will be triggered once updating attributes
of a specific file, whose metadata is mutated by Papora. Fig. 4
shows the mutated attributes of the file. We can see that an
attribute, named NameLength, has a value of 255.

The function ni_create_attr_list iterates file at-
tributes in an NTFS image with mi_enum_attr in a for-
loop, as shown at L9 of Listing 9. Then, it will copy the

3This one is not a bug because it can lead to an out-of-bound write.

Fig. 4. The mutated file attributes of the vulnerability in §IV-C1.

attributes one by one to the heap memory. All attributes of
a file are read by mi_enum_attr, but it fails to check the
attribute NameLength. If NameLength is larger than the
remaining allocated heap memory, a heap out-of-bound access
will happen.

1 int ni_create_attr_list(struct ntfs_inode * ni) {
2 ...
3 le = kmalloc(al_aligned(rs), GFP_NOFS);
4 if (!le) {
5 err = -ENOMEM;
6 goto out;
7 }
8 ...
9 for (; (attr = mi_enum_attr( & ni -> mi, attr)

); le = Add2Ptr(le, sz)) {
10 sz = le_size(attr -> name_len);
11 le -> type = attr -> type;
12 le -> size = cpu_to_le16(sz);
13 le -> name_len = attr -> name_len;
14 le -> name_off = offsetof(struct

ATTR_LIST_ENTRY, name);
15
16 if (attr -> name_len)
17 memcpy(le -> name, attr_name(attr), sizeof

(short) * attr -> name_len);
18 }
19 }
20 }

Listing 9. The implementation of ni_create_attr_list

To trigger this vulnerability, the program shown in List-
ing 10 provides a feasible exploit. Specifically, the program
invokes setxattr at L16, setting attributes of a file, which
eventually invokes the ni_create_attr_list to exploit
the vulnerability.

1 v9 = syscall(SYS_open, (long)v8, 2, 0);
2 syscall(SYS_read, (long)v9, (long)v0, 5195);
3 syscall(SYS_unlink, (long)v3);
4 syscall(SYS_truncate, (long)v6, 4367);
5 syscall(SYS_unlink, (long)v7);
6 syscall(SYS_symlink, (long)v2, (long)v10);
7 syscall(SYS_lstat, (long)v2, (long)v1);
8 syscall(SYS_setxattr, (long)v2, (long)v12, (long)

v11, 127, 1);
9 syscall(SYS_pread64, (long)v9, (long)v0, 6806,

299);
10 syscall(SYS_listxattr, (long)v10, (long)v1, 5210);
11 syscall(SYS_removexattr, (long)v4, (long)v13);
12 syscall(SYS_removexattr, (long)v2, (long)v14);
13 v15 = syscall(SYS_open, (long)v4, 2, 0);
14 syscall(SYS_listxattr, (long)v5, (long)v1, 5836);
15 syscall(SYS_utimes, (long)v5, (long)v1);
16 syscall(SYS_setxattr, (long)v2, (long)v17, (long)

v16, 11, 1);
17 syscall(SYS_lstat, (long)v2, (long)v1);
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Fig. 5. The trace of the exploitation on the bug in §IV-C2.

18 syscall(SYS_pwrite64, (long)v9, (long)v1, 1772,
434);

Listing 10. The program to exploit the vulnerability in §IV-C1

To fix this bug, as we mentioned above, we should pay
attention to the NameLength field. The corresponding patch
is shown in Listing 11.

1 diff --git a/fs/ntfs3/record.c b/fs/ntfs3/record.c
2 index 66eb11e0965ef..a952cd7aa7a4b 100644
3 --- a/fs/ntfs3/record.c
4 +++ b/fs/ntfs3/record.c
5 @@ -265,6 +265,11 @@ struct ATTRIB *mi_enum_attr(

struct mft_inode *mi, struct ATTRIB *attr)
6 if (t16 + t32 > asize)
7 return NULL;
8
9 + if (attr->name_len &&

10 + le16_to_cpu(attr->name_off) + sizeof(short
) * attr->name_len > t16) {

11 + return NULL;
12 + }
13 +
14 return attr;
15 }

Listing 11. The patch to the vulnerability in §IV-C1

2) 4d42ecd: This bug is an out-of-bound read that is
triggered by an open system call. From the log file, we can
conclude the trace as shown in Fig. 5. The bug is triggered in
hdr_find_e.

There is a structure named index buffer in the NTFS disk
image. It is composed of a header and several entries. The
header is defined by a struct, named INDEX_BUFFER, as
shown in Listing 12. The field ihdr holds some metadata
of the buffer itself, like the length of the buffer and how many
entries are used already.

1 struct INDEX_BUFFER {
2 struct NTFS_RECORD_HEADER rhdr; // ’INDX’
3 ...
4 struct INDEX_HDR ihdr; // stores metadata
5 };

Listing 12. A code snippet of INDEX_BUFFER struct

The function hdr_find_e conducts a binary search in
the index buffer to find a certain entry, i.e., a specific file
index. Note that the buffer is allocated by the kernel and
its size is calculated from a variable read from disk, named

as index_block_size. Specifically, the binary search
adopts ihdr->used to calculate the end of the buffer. If
it’s inconsistent with the result buffer size calculated from
index_block_size, e.g., larger than the allocated size of
index buffer, the binary search will access the outside.

The aim of the corresponding patch is to make sure
the search cannot access the outside. As we can see from
Listing 13, the bytes at L10 is the index buffer alloca-
tion size. offsetof(struct INDEX_BUFFER, ihdr)
+ ib->ihdr.used calculates the index buffer size from
used. To this end, it guarantees the access should always be
limited within the allocated buffer.

1 diff --git a/fs/ntfs3/index.c b/fs/ntfs3/index.c
2 index 613036f9c6e66..bc656868cf8a8 100644
3 --- a/fs/ntfs3/index.c
4 +++ b/fs/ntfs3/index.c
5 @@ -1017,6 +1017,12 @@ ok:
6 err = 0;
7 }
8
9 + /* check for index header length */

10 + if (offsetof(struct INDEX_BUFFER, ihdr) + ib->
ihdr.used > bytes) {

11 + err = -EINVAL;
12 + goto out;
13 + }
14 +
15 in->index = ib;
16 *node = in;

Listing 13. Patch to the bug in §IV-C2

V. LESSONS LEARNED

As we categorize the root causes of bugs identified by
Papora in §IV-A2, there are a couple of things we learned from
those findings, which we recommend file system developers
to follow.

First of all, user-controllable data should always be
treated as untrusted input. When a file system image is
mounted, the Linux VFS routes the mount request to the
corresponding file system handler which reads data from the
disk and parses them in the memory. If the file system image
contains fields which would be used to derive an array index
or memory pointer, those fields could be easily crafted to
trigger out-of-bounds access in kernel space, which leads to
system crash or even local privilege escalation. Fortunately,
the specifications of most file systems are well-documented. A
file system developer could follow the specification to strictly
check every single chunk of data read from the disk.

Secondly, type confusion issues should be paid more at-
tention. In all Unix-like systems, an inode is used to describe
a file, a directory, or other file system objects. However, the
handling logic to processing a file could be totally different
to process a directory. If an object is wrongly interpreted as
another, unexpected behaviors occur. Actually, programming
languages without memory safety (e.g., C and C++) are prone
to weaknesses in this type. The Linux kernel is also evolving
into an operating system with languages enforcing memory
safety [24].

Last but not least, conducting a high code coverage
fuzzing testing for file systems is necessary. To the best
of our knowledge, no off-the-shelf fuzzer can efficiently fuzz
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a new file system in the Linux kernel. Meanwhile, this also
indicates that new file systems could be great targets for
security researchers but not the best choices for users. In
particular, the get_tree() handler of each file system (e.g.,
ntfs_fs_get_tree() of NTFS3) would be a good entry
point for testing funny file system images. As illustrated in
Fig. 3, the functions to parse data retrieved from disk (e.g.,
ntfs_init_from_boot()) may miss some important val-
idation logic. Moreover, each file system has a handler (e.g.,
ntfs_lookup() of NTFS3) to search a file while handling
an open system call (see Fig. 5). Security researchers could
craft data related to the lookup procedure in a mutated disk
image and see if that would cause out-of-bounds access.

VI. RELATED WORK

Fuzzing has been proven effective in finding vulnerabilities
in various softwares and kernel binaries, including file systems.
Vulnerabilities in file systems can be exploited due to two
orthogonal root causes, which are often taken as targets for
fuzzers, i.e., disk images and file operation-specific system
calls. Most existing fuzzers against file systems target either
the former one [4]–[6], or the later one [17], [18], [25], [26].
For example, kAFL implemented by S. Schumilo et al. [6]
has improved the AFL [4] to specifically target kernels. They
have evaluated the kAFL across multiple operating systems by
only mutating the disk images. Contrarily, the KRACE focuses
on multi-thread vulnerabilities, which must be triggered by a
certain sequence of file operations. Some work [19], [20], [27],
[28], including Papora, takes both factors into consideration.
However, Papora targets another critical but close-source file
system, NTFS, and identifies a dozen of vulnerabilities that
are acknowledged by the Linux kernel.

VII. DISCUSSION

Unique Challenges in Fuzzing NTFS File Systems. Com-
pared to fuzzing other file systems, fuzzing NTFS images has
some unique challenges, which can be concluded mainly in
twofold. On the one hand, non-transparency in both terms
of implementation and documentation hinders implementing
a fuzzer. There is no official implementation released, and its
so-called official documentation lacks lots of technical details.
Therefore, we have to manually compare multiple third-party
releases and their corresponding documentations, and cross-
reference which implementation is adopted by Microsoft.
On the other hand, such a non-transparency still occurs in
checksum validation. For example, the OEM field of the BPS
should start with “NTFS ” (NTFS + 4 spaces). However,
NTFS still requires the bytes per sector must be greater than
512 bytes and be a power of 2. Such constraints are not well
documented in any documentation and we have to manually
dig them up from source code of third-party releases.
Necessity of Implementing the Parser. There were several
NTFS parsers, e.g., NTFS-3G and Linux legacy NTFS. How-
ever, they are not sufficient for supporting a fuzzer like Papora.
Specifically, traditional parsers like NTFS-3G is responsible

for validating the integrity of the given NTFS image. If some-
thing goes wrong, like a piece of problematic checksum, the
parser will not parse and load the image at all. Fuzzing, how-
ever, will constantly mutate the metadata of the image to try to
figure out new bugs. Such deliberately introducing corrupted
metadata will invalidate traditional parsers. Therefore, the
parser in Papora can not only parse the given image, but also
automatically recover corrupted metadata, like recalculating
checksums. Moreover, it is lighter than traditional ones which
are typically maintained for several years. Therefore, the parser
in Papora is not the reinvented wheel.
Advantages over Other Fuzzers. Papora has more advantages
than other potential fuzzers against file systems. For example,
fuzzers specifically designed for file systems, like Janus and
Hydra, cannot parse an NTFS image and conduct the following
analysis. Syzkaller could be usable in testing an NTFS image,
because it mutates the program consisting of file operations
to examine if any vulnerabilities can be triggered. However,
under the same environment as Papora, we ran Syzkaller, with
advanced options (like KCOV and SyzLang) enabled, for 3
weeks and no valid results could be obtained. We speculate
that this phenomenon can be explained by the experimental
results shown in Table I. For bugs we have identified, 10 out
of 12 are due to buggy images. Only 2 of them can be triggered
by a certain program, while it still requires a mutated disk as
prerequisites. Therefore, only composing a series of random
file operations cannot effectively identify bugs embedded in
NTFS images, which forces us to find alternative methods and
develop Papora.

VIII. CONCLUSION

In summary, we have proposed a fuzzer, named Papora,
specifically targeting NTFS images. We have released the two
core components of Papora, i.e., the NTFS parser, and the LKL
that has been ported to the latest Linux kernel with KASAN
integrated. Based on the efficiency and effectiveness of Papora,
we have identified 3 assigned CVE 0-day vulnerabilities and
9 severe bugs within the latest release of the Linux kernel.
All of them are confirmed by Linux maintainers and the
corresponding patches of 9 out of them are merged into up-
streams. For these identified bugs and vulnerabilities, we have
conducted a thorough empirical study including case studies
on representative cases. Finally, based on our investigations
on those loopholes and exploits, we summarized a set of best
practices for developers and security researchers.
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