
Automatically Detecting Variability Bugs Through
Hybrid Control and Data Flow Analysis

Kelly Kaoudis
Trail of Bits

New York, USA

kelly.kaoudis@trailofbits.com

Henrik Brodin
Trail of Bits

New York, USA

henrik.brodin@trailofbits.com

Evan Sultanik
Trail of Bits

New York, USA

evan.sultanik@trailofbits.com

Abstract—Subtle bugs that only manifest in certain software
configurations are notoriously difficult to correctly trace. Some-
times called Heisenbugs, these runtime variability flaws can result
from invoking undefined behavior in languages like C and C++,
or from compiler flaws. In this paper, we present a novel analysis
technique for detecting and correctly diagnosing variability bugs’
impact on a program through comparing control-affecting data
flow across differently compiled program variants. Our UBet
prototype dynamically derives a runtime control flow trace
while tracing universal data flow for a program processing
a given input, operating at a level of tracing completeness
not achievable through similar dynamic instrumentation means.
Sans compiler bugs or undefined behavior, every compile-time
program configuration (i.e., compiler flags vary) should be
semantically equivalent. Thus, any input for which a program
variant produces inconsistent output indicates a variability bug.
Our analysis compares control-affecting data flow traces from
disagreeing program version runs to identify related input bytes
and determine where in the program the processing variability
originates. Though we initially demonstrate our technique on
C++ variability bugs in Nitro, the American Department of
Defense NITF (National Imagery Transmission Format) reference
implementation parser, our approach applies equally to other
programs and input types beyond NITF parsers. Finally, we
sketch a path toward completing this work and refining our
analysis, including evaluating parsers of other input formats.

Index Terms—application security, dynamic analysis, dynamic
tainting, validation, testing and debugging

INTRODUCTION

Environmental, configuration, and compilation variance can

cause unexpected deviations in program behavior. Such vari-
ability bugs encompass the colloquial class of “Heisen-

bugs” [1]—so called because they frustratingly seem to vanish

when one attempts to reproduce them. Parser developers may

also implement subtly different variations on an input file

specification, which can cause inconsistent behavior between

parsers (known as file format schizophrenia [2]), but this

problem is not our focus. In this work we concentrate on the

problem of tracing, triaging, and explaining variability bugs in

C and C++ programs. We focus on bugs that certain compiler

and build configurations exacerbate, or that only manifest in

certain configurations [3], relating to programming error(s)

like invoking undefined behavior, or to compiler-level flaws.

Identifying and eliminating variability bugs reduces program

complexity, which provides security value by shrinking poten-

tial attack surface.

Today, there are few options for debugging variability bugs

which do not require preexisting background knowledge of

the program source or additional domains. Consumer tools

like UBSan [4] and similar compiler-supported sanitizers help

detect subcategories of variability bugs [5] without specialized

knowledge, but even if all such sanitizers could instrument the

same binary simultaneously, they cannot diagnose all possible

causes of runtime program variability [3]. To apply DFSan

(the most comprehensive, thus most likely to expose relevant

program details, of such sanitizers) directly, the program-

mer must already have identified potential areas of interest

in the codebase, since DFSan does not track enough of a

program’s data flow [6] to capture diagnostically significant

information about the bug. Other common methodologies

and tools (e.g., fuzzing [7], binary disassembly and manual

assembly snippet comparison, dynamically stepping through

the program [8], or applying other dynamic data flow analysis

tools [9]) also require significant domain expertise, and can

be unacceptably slow. Much cutting-edge dynamic dataflow

analysis work [10]–[13] focuses on creating tools for pro-

duction deployment (a non-goal, as we are most interested in

aiding offline bug reproduction and diagnosis), and primarily

evaluates them against more consistently appearing bugs,

rather than Heisenbugs.

We hypothesize variability bugs could become uniquely

visible when diffing control flows extracted from sufficiently

comprehensive runtime dataflow records of input bytes’ paths

through a program to output, which we term control-affecting
data flow. Our prototype, UBet, applies differential analysis

over control-affecting data flow traces obtained from pro-

gram configuration variants to confirm and diagnose runtime

variability bugs. UBet also can surface the extent of effects

of compiler bugs (such as incorrect branch merging during

optimization) at runtime.

The main challenges we face relate to variability bug

detection and correct diagnosis. Detection means we must

know how a parser should actually evaluate a particular

input [14], [15]. Correct diagnosis means we must filter benign

differences between runtime traces from differently compiled

program variants (e.g., optimization pass function inlining or

basic block reordering), and also be able to trace back to the

start of the buggy behavior in source. Our contributions are

the following:

187

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Kelly Kaoudis. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00022

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

22

• a unique program-run representation built from granular

whole-program runtime data flow, which we term

control-affecting data flow
• a differential analysis method which surfaces actionable,

true-positive differences between control-affecting data

flows for purposes of diagnosing program variability bugs

We envision applications of this work not only as a debugging

aid for programmers tracing subtle runtime issues without

a good idea of where in memory or code to start looking,

but also in reproducing precise effects of malicious inputs on

parser data and control flow.

MOTIVATION AND RELATED WORK

Our goal is to help programmers more easily understand

and debug undesirable variability in complex programs like

parsers for underspecified formats, reducing such programs’

potential attack surface.

Parser Bugs Obscure Specification Divergence

Flaws in parsers make it more difficult to judge whether

a given parser correctly follows the implemented input for-

mat specification. While some formats have a clear context-

free grammar or ASN.1 encoding, many popular formats are

unfortunately defined with natural language specifications or

reference implementations. Worse (or, arguably, better for

an attacker) a parser implemented from an unclear or not-

backward-compatible specification may unintentionally con-

sider malicious input benign, leading to cascading application

component compromise [16] or even system level conse-

quences [17]–[19]. This is exacerbated by the relative lack

of runtime memory safety guarantees and parser compartmen-

talization in languages like C and C++ [20].

Rewriting existing C and C++ parsers in a safer language to

reduce exploitability may also be infeasible due to codebase

size, lack of modularity, or constraints that dependencies im-

pose [21]. Even a clean parser implementation which conforms

to relevant specification may behave subtly differently from

other conforming implementations [22], making it difficult

to determine the source of an issue afflicting a particular

parser from simply comparing its results to those of an

assumed correct reference implementation or another parser

for the same format. Comparing results of many parsers which

implement a particular specification as in [23], [24] provides

an averaged ground truth for that specification, but will not

necessarily yield specifics useful for fixing configuration-to-

configuration misbehavior of any one of the compared parsers.

Example: Undefined Behavior

Consider the following (buggy) toy parser, which accepts at

least one command-line argument.

Listing 1 According to the C++20 specification, a bitwise left

shift operation (as on line 3) results in undefined behavior if

the right operand is negative.

1 int main(int argc, char* argv[]) {
2 if(argc > 1) {
3 return (int)*argv[argc - 1] << -2;
4 } else {
5 return 0;
6 }
7 }

With optimizations disabled, Clang / LLVM 15.0.0 run on

the code in Listing 1 will produce a binary that operates

consistently dependent on input. With optimizations enabled,

Clang will optimize out the first branch of the conditional,

which invokes undefined behavior; the -O3 optimized pro-

gram always returns zero.

Listing 2 Assembly of the program in Listing 1 when com-

piled with Clang’s -O3 optimization level. All of the control

flow has been silently elided, and the program will always

return 0.
1 main:
2 xor %eax, %eax
3 retq

The clear difference in the simple examples of program con-

trol flow in Listings 1 and 2 above reflect potential effects of

optimization passes run on code invoking undefined behavior.

Example: Configuration Variability

Consider now Listing 3, for which we assume there are

distinct debug and production build configurations.

Listing 3 A bitwise left shift operation in the following toy

program results in undefined behavior if shift is greater than

the data type’s max bitwise capacity. Undefined behavior on

line 12 occurs dependent on user input and build configuration.

1 #if defined(PRODUCTION)
2 #define NDEBUG
3 #endif
4

5 #include <cassert>
6 #include <cstdlib>
7

8 int main(int argc, char* argv[]) {
9 if(argc > 1) {

10 int shift = std::atoi(argv[1]);
11 assert(shift > 0 && shift < 32);
12 return 0xff << shift;
13 } else {
14 return 0;
15 }
16 }

Suppose, as above, a particular contributor writes control

flow relying on an assertion to check the user-provided value

of shift is within size bounds of the container int type, but

another contributor later adds the NDEBUG macro to prevent

188

assertion usage (as on Listing 3 lines 1–3) when the code is

compiled with -DPRODUCTION.

Now suppose a third programmer without knowledge of

the source code observes their deployment of the production

build allows a shift value of 63 (causing integer overflow),

though all tests pass. Our third (debugging) programmer runs

the debug binary version to reproduce the issue locally, where

the assert() fails and integer overflow does not occur. If

the binary is then instrumented at compile time with a common

sanitizer such as UBSan [4] and the program receives 63 as its

argument, UBSan will warn that a shift exponent of 63 is too

large for the 32-bit int type, but will neither show that the

NDEBUG macro redefines the assert() implementation to a

no-op, nor show that an assertion guards a risky computation

accepting unsanitized user input, where a conditional should be

instead. While a static analyser could potentially provide some

of this information, particularly if the codebase under analysis

were more complex, it would be buried in a large “maybe”

state space of potentially dangerous flows to analyse [3], and

would not take into account the context that the input value 63
is problematic. If an ordinary programmer without significant

knowledge of the codebase beforehand debugging a similar

issue aims to quickly fix the real cause in a more complex

codebase, neither of these common methods applies cleanly.

Example: Compiler Flaw

Compiled with Clang with optimizations enabled, when run,

Listing 4 immediately exits after printing “Hello world!” [25].

Listing 4 A C++ program that one would expect to either enter

an infinite busy loop, or immediately exit with code zero. A

bug in the latest version of Clang/LLVM (15.0.0) causes this

program to erroneously print “Hello world!” when compiled

with optimizations enabled.

1 #include <iostream>
2

3 int main() {
4 while(true);
5 }
6

7 void unreachable() {
8 std::cout << "Hello world!" << std::endl;
9 }

When optimizing out the infinite loop (an operation the

C++ standard allows), Clang fails to add an implicit return
at the end of main(). Execution thus falls through to the

code directly after main(): unreachable(). A binary

built without optimizations does run the infinite while loop

as expected; Listing 4’s execution and output only change

when optimizations are enabled. This begs the question of

whether a commodity sanitizer such as UBSan could poten-

tially expose such an UB-adjacent issue. Yet when built with

Clang (with and without optimizations) and UBSan, via the

-fsanitize=undefined option (which includes the -
fsanitize=return check intended to alert when the end

of a value-returning function is reached without returning a

value) the missing return is not caught. Such bugs and

their full effects on program control and data flow are difficult

to diagnose, particularly in complex programs. This paper

proposes a technique to automatically trace back to the source

lines most closely related to the origins of such bugs.

Related Work

As mentioned in the previous examples, a debugging pro-

grammer today might confirm the presence of a variability

bug with sanitizers [5] like UBSan or TSan [26] integrated as

Clang or GCC flags. Although some such tools can apply to

the same binary build, adding all available LLVM or GCC-

compatible sanitizers simultaneously to the same binary at

compilation time would cause instrumentation conflicts or

even obscure the bug, since these sanitizers’ instrumentation

methodologies group to an extent, but are largely incompatible

with each other [27].

A programmer might disassemble or dynamically step

through each binary version to identify divergent represen-

tations [28] of source variables (a hallmark of variability bugs

and undefined behavior), but such an approach can be slow

even for an experienced programmer and requires specialized

knowledge to succeed. They might also black-box compare

differently optimized parser version outputs run on the same

inputs [29] or compare entirely different parsers which accept

the same input format [24] as previously mentioned as a

technique to average format ground truth over several parsing

implementations, but such an approach would not help a

programmer trace a subtle bug which only surfaces under the

right build and runtime conditions in a single parser.

Our programmer might also try fuzzing [30] but this is

more likely to expose further discrepancies and vulnerabilities

in the code rather than help trace the precise origins of an

issue relating to processing an already-known particular input.

Interestingly, a fuzzing-based approach to control and data

flow tracing as in [31], [32] will try to expand the aspects of

control flow covered to a broad subset of the possibilities one

might otherwise obtain through static analysis, in contrast to a

dynamic taint tracking approach, which aims to reduce control

and data flow under consideration to just what is relevant at

runtime for a particular input.

Dynamic Information Flow Tracking (DIFT), also known

as Dynamic Taint Analysis (DTA), is a technique which

tracks the flow of information through a program at runtime

for later replay and analysis [10]. DIFT is a challenging

technique to implement precisely; many modern approaches

suffer from high implementation overhead, low accuracy,

and/or low fidelity [11]. Prior work establishes precedent for

using control-flow to complete the data-flow representation of

a program’s execution [10], and exploring data-flow which

affects control flow [12], [13], but primarily improves DIFT

representation accuracy and technique overhead, instead of

applying and improving on DIFT tooling to help programmers

debug runtime program variance issues.

To prevent undertainting, i.e. not capturing enough of the

program data flow to enable the programmer to accurately

189

draw conclusions about runtime behavior, ReCFI and many

similar works attempt to complete the program representa-

tion which DIFT tooling obtains through including control

flow [10], [12], [13], [27], [33]. These approaches often incor-

porate fuzzing or even short applications of slower techniques

like static analysis or symbolic execution at control flow points

to then avoid overtainting, i.e. creating false positive data

relations in the resulting program trace by including many

branches the tainted data flow did not actually pass through at

runtime, in the quest for achieving complete-enough program

data flow coverage. Yet such approaches introduce significant

runtime overhead and can still lack precision.

Many such DIFT tools generally are not universal, and

only track a subset of relevant data through the program [34].

Whole-program, all-the-data DIFT tools e.g. Taintgrind [9] do

exist, but most lack the performance [35] an universal DIFT

approach needs to help a programmer more quickly debug

code which accepts real-world-sized input without a good prior

idea of what particular parts of that input could interact with

buggy portions of the program, or are not directly applicable

to C and C++ programs [36].

Further work applies a hybrid control- and data-flow ap-

proach over static program representations specifically to

detect variability bugs [37]. However, since this approach does

not execute the underlying program variants, it is unfortunately

prone to false positives.

To reduce overtainting when producing dynamic program

traces, Conflux, DTA++, and others limit aspects of control

flow considered instead of applying a full dominance-based

control flow definition [33], [38], [39]. We find that reducing

the examined aspects of control flow correspondingly limits

the possible granularity of analysis too much to be useful for

detecting variability bugs. Therefore, we use a more traditional

dominance-relationship definition of control flow [40].

While our analysis has superficial similarity to some control

flow integrity (CFI) schemes, these generally check only

indirect jumps at runtime, and abort the running program if

anything unexpected happens, since many low-level exploits

require control flow modification [41]–[43].

There is additionally interesting and recent precedent for

tracing attack origins in C and C++ programs with DIFT [13],

[35], but DRTaint only evaluates performance compared to

libdft when recording the effects of WannaCry on a Windows

machine and does not evaluate accuracy, and ReCFI only

evaluates the accuracy and runtime overhead of instrument-

ing a live old-version NGINX instance to detect exploits

of a single buffer overflow vulnerability, CVE-2013-2028.

In contrast to these works’ goal (which many DIFT works

share) of eventually improving data flow tracking and analysis

performance to a suitable level for deployment in live pro-

duction distributed systems, our goals and therefore eventual

performance considerations differ: we simply want to give a

programmer better local debugging tools for variability bug

tracing or attack reproduction.

PolyTracker [44], [45] and SymCC [46] produce some of

the most complete program representations over a given input

available today through dynamic analysis, but SymCC’s eval-

uation indicates that tool is best used in a tight feedback loop

with a fuzzer, without having any particular known-bad input.

PolyTracker is intended to make runtime dataflow exploration

via DFSan [6] not only simpler but more comprehensive, goals

which are attractive for an analysis intended to help ordinary

debugging programmers. We currently base our analysis on

top of PolyTracker, though to improve program coverage we

may also take cues from SymCC’s usage of fuzzing for input

generation as we refine our approach.

DESIGN

Our approach to detecting and diagnosing variability bugs is

based on differential analysis over dynamic data flow program

traces. The key factors our design must balance are: obtaining

sufficiently detailed data for detection purposes, and not get-

ting lost in fine-grained details which differ between program

variants’ runtime traces but are unrelated to the variability bug

we seek, for correct diagnosis when we compare the traces.

Approach Overview

Fig. 1: A high-level overview of the control-affecting data flow differential
process. First, we discover a program input that causes unexpected output.
Then, we produce at least two different program compile-time configurations,
and instrument them with PolyTracker and an additional pre-IR-optimization
LLVM pass (PolyTracker instruments following IR optimization). We run each
program variant on the same input that we found to initially produce the
incorrect output, and PolyTracker’s instrumentation plus our additional pass
produce a TDAG (Tainted Directed Acyclic Graph) binary file containing a full
data flow trace and also the much simpler control-affecting data flow trace that
the additional pass produces. UBet’s analysis phase then merges (compares)
these control-affecting data flow logs to produce the final differential.

For this early version of UBet, we exploit a handy property

of parsers: many only perform operations involving input, and

such operations are often at least sketched in specification, thus

the majority of a parser’s functionality should be exercised

given input close enough to specification to not cause an

early processing abort. Finding one input producing an output

differential is the minimum prerequisite to try our analysis

prototype, which should provide enough information to create

regression test case(s) and also address the issue. Since we

are primarily concerned in this paper with reproducing and

190

understanding the effects of a particular known-bad input on

program behavior, the process of finding or generating inputs

is out of scope here.

Diffing program-run outputs, or diffing outputs of distinct

parsers implementing the same specification as in [24], [29]

enables better variability bug detection, but does not help

with achieving our debugging programmer’s goal: identifying

the line(s) of source where the unwanted effects originate.

Differences between our more granular DIFT program traces,

in contrast, are likely to either be due to the methodology used

to generate the program variants (e.g., differing optimization

pass sets) thus possible to elide, or actually related to the

bug, and can be mapped back to specific lines of IR. With

some additional runtime information, specific IR markers can

be mapped back to source-level symbols.

Control-Affecting Data Flow Log

A program trace TDAG (Tainted Directed Acyclic

Graph) [45] produced through PolyTracker’s dynamic infor-

mation flow tracking contains significant runtime dataflow

detail. Early experiments that led to the UBet design com-

pared the effects of blind spots, which are the set of input

bytes whose data flow never influences either control flow

that leads to an output or an output itself (don’t-cares in

the Karnaugh [47] sense) between TDAGs generated from

distinct parsers run on the same input using the technique

from [45] to try to debug a particular parser. Unfortunately,

we found that blind-spots differential analysis, while useful for

understanding differences in distinct parsers’ implementations

of the same format, obscured the run-to-run single-program

variability we wanted to diagnose.

We iterated on our program representation, taking inspira-

tion from the Not So Fast [29] program optimization study,

which compares versions of the same program differing only

in compile-time options to find ROP gadgets that optimiza-

tion passes create or make more effective for an attacker.

Sans compiler bugs or undefined behavior, every compile-

time program configuration (i.e., compiler flags vary) should

be semantically equivalent. Encountering an input which the

program seems to handle differently run-to-run, we produce

at least two compile-time configuration parser variants with

e.g., different optimization levels (-O0 vs -O3) and instrument

those variants to produce TDAGs when run on the same input.

But optimization passes can inline functions, reorder basic

blocks, and remove conditionals. Assertions can add condi-

tionals and system calls to control flow. Unexported functions’

symbols could change. To account for these benign changes,

we match up not only input bytes between runtime traces, but

also high-level features of the same control flow, similar to

the way we previously tried comparing execution at different

parsers’ blind spots. We set possible program waypoints via

instrumentation before optimization to allow for the greatest

possible waypoint similarity across compiled program ver-

sions. These higher-level waypoint traces help us interpret the

finer detail from a given pair of TDAGs’ data flow traces.

Each entry E in a higher-level trace is constructed from

information relative to a particular taint label, tj . We add an

entry for any tj that is an operand in a branch condition.

During program execution we record additional events for

entering and leaving functions, information that later allows

us to reconstruct a call stack at each entry. E consists of

the identifier f()id of that function, and the list of input byte

offsets bi...bn which influenced tj prior to that point:

tj ← taint label descended from bi...bn

bi...bn ← input byte offset(s) i...n

f()id ← nearest function identifier

E :=< bi...n, f()id >

We call the hybrid control and data flow program-trace repre-

sentation consisting of such entries control-affecting data flow.

This representation naturally cannot include all possible paths

through a program like a static analyser would produce; rather,

it consists of only the dynamic (unique to a particular input)

subset of program control flow paths that tainted values affect.

Differential Analysis

The next stage of our process following control-affecting

data flow log creation builds the differential between control-

affecting data flow logs. The first question we must answer to

compare two control-affecting data flow logs is whether they

generally include the same input byte offsets. A variability

bug could cause even the sets of input bytes each parser-run

actually evaluated to differ, even if we created both TDAGs

with the same program input. Considering each entry in the

control-affecting data flow logs of TDAGA and TDAGB in

input-byte evaluation order, if EA and EB do not match, we

construct a differential entry. If input-byte offsets match, the

corresponding differential entry has the form

< biA...bnA, f()idA, biB...bnB, f()idB >

where f()idA does not equal f()idB. This means the same

taint label, implicitly represented by the set of input byte

offsets bi...bn which influenced it for ease of comparison as

previously mentioned, was an operand to different function

identifiers at the same approximate point in control flow. If

input-byte offsets in EA and EB do not match, we include

either a differential entry comprised only of EA or only of EB

to avoid creating a snowballing series of unintentional differ-

ential entries where input-byte offsets are incorrectly matched;

further details on accounting for optimization-introduced dif-

ferences will be discussed in the Implementation section.

At this point, we map symbols to function identifiers

(including recorded call stack) in the differential output to aid

human readability. If after this step it is still unclear whether

there are any remaining benign differences, to confirm our

evaluation of data-affecting control flow we can easily obtain

another set of TDAGs from running the same program variants

over the same input, or obtain another set of TDAGs to diff

from another substantially similar input, and then compare

across differentials.

191

IMPLEMENTATION

In this section, we describe how our UBet prototype

addresses the implementation-level challenges of gathering

enough information to sufficiently cover a variability bug’s

effects, and eliding false positives to allow for diagnosis.

Universal Taint Analysis

For two program variants which differ in output, we re-

compile each with added instrumentation for universal taint
analysis. This form of DIFT tracks all input bytes throughout

the execution of a program, mapping inputs to outputs. To

create such runtime records, we use PolyTracker [22], [44],

[45]: an LLVM-based dynamic analysis tool that automatically

instruments a program to produce a dataflow trace as the

program executes over a particular input. Treating each input

byte offset as a source of taint, PolyTracker tags the output

of any computation involving an input byte as (or part of)

an operand as tainted by that particular operand, until a sink

(an output such as printf, or ultimately even the end of

the main function) is reached. The resulting trace contains

labels representing the results of all program computations

descending from any input byte. In this way, each taint label

in a runtime dataflow trace can be considered the effective

composition of every input byte offset which interacted with

that label, or parent operands of that label.

TDAG Modifications

PolyTracker is built on the DFSan dynamic data flow

framework; but DFSan requires [6] the debugging programmer

to already have at least an idea of what regions of memory and

source they would like to explore, since it only provides eight

labels, which users are responsible for managing. PolyTracker

overcomes DFSan’s input-tracking limitations primarily by

replacing DFSan’s dense matrix representation for taint unions

with a new graph data structure, the TDAG [45]. Each taint

label tj which PolyTracker assigns at runtime has a fixed-

size entry in the TDAG, which links to tj’s parent labels, and

eventually back to particular input bytes bi...bn.

We augment PolyTracker’s instrumentation (which fol-

lows IR compile-time optimization) with an additional pre-

optimization instrumentation pass which will record all control

flow decisions that tainted values affected at runtime. Both

these compatible sets of instrumentation write to a single

TDAG. We select function identifiers prior to IR optimization,

so they have the greatest chance of matching across program

variants which differ in optimization level. Yet we do not

record every function in the source like a static analyser would;

rather, as we are tracing the complete data flow record of the

program at runtime, if a tainted value affects control flow, as

previously mentioned in the Design section, we add an entry

to the control flow log in the TDAG representing the related

taint label and nearest-scope function identifier.

If we assign a particular identifier f()id for a function

operating on taint labels descended from particular input

bytes in an unoptimized program variant TDAGA, in general,

f()idB will handle taint labels descended from the same

Fig. 2: The modified TDAG format including control-affecting data flow.
Control-affecting data flow consists of taint labels that provide a valid index
into the overall program dataflow trace, mapped to the nearest-scope function
identifier. We add an entry to the Control Flow Log section if at least one of
the values in a conditional within function scope was tainted; or, if control
flow enters or leaves a function. Briefly, the Metadata section describes the
overall layout of the file; the source index bitmap links the sources section
and the labels sections together; the strings table contains symbols from
the instrumented binary. From the tainted data flow propagation record and
this additional control-affecting data flow trace, our UBet analysis phase
reconstructs each tainted conditional, falling back to callstack information
as needed.

input bytes in an optimized program variant TDAGB that

f()idA handled in TDAGA, even if the actual labels f()id
is associated with differ between the control flow logs of

TDAGA and TDAGB . The primary exception to the above

is if a function is elided completely by optimization; the other

exception is in the case of function inlining, in which case

we fall back to comparing the call stack information. This

reduces false positive differences due to standard compiler

optimizations when comparing program variant TDAGs. A

further refinement to the differential format in future work will

be to automatically associate and replace function identifiers

with the nearest-scope symbol.

Our updated version of the TDAG format includes both

PolyTracker’s data flow log and a new section which stores the

information generated by our additional instrumentation pass.

This enables filtering for relevancy without loss of ability to

trace each control flow affecting label back to its source input

byte-set via PolyTracker’s full data flow graph.

Observer Effect

Recording data flow from instrumentation placed before and

after LLVM optimizations run has a secondary benefit: we can

check if the pre and post-optimization sections in a TDAG

from a program run are consistent. If these records are con-

sistent, this provides some evidence our instrumentation was

transparent [15], meaning that the compiler did not transform

locations where we inserted pre-optimization instrumentation

192

in a way resulting in our instrumentation changing program

control and data flow, and also meaning our post-optimization

instrumentation pass did not affect execution. We can ad-

ditionally check an instrumented program variant’s regular

output against the uninstrumented program output for the

same input to prove our dynamic instrumentation in aggregate
does not observably influence the expected program result.

If these checks succeed, we conclude our instrumentation

did not change the instrumented program variant binary in

a semantically meaningful way.

Differential Analysis

Generally, PolyTracker-assigned labels will differ between

program variant traces, but the input bytes those labels stem

from should be identical for semantically equivalent execu-

tions. We therefore initially check that input bytes (but not

taint value labels) recorded as control-flow-affecting match up

across the compared TDAGs. Then, if the function reference

at a given point in TDAGA matches that in TDAGB , we

can reasonably compare those points in control-affecting data

flow across the TDAGs.

Comparing optimized and unoptimized variants might result

in a differential similar to Table I in the Initial Results section,

where we clearly see functions in the unoptimized program

variant (left) encountered by same input bytes’ tainted data

flows more times than in the optimized variant, but our

representation allows a TDAGA entry which does not map to

a TDAGB entry if the previous entry has the same function

name or input bytes (respectively, a B-side entry can be

included without having a direct A-side mapping). Since input-

byte evaluation guides the order in which we consider and

compare taint labels (therefore, entries in the control-affecting

data flow logs), only producing entries with unequal control-

flow-point identifiers would result in a differential with clearly

staggered discrepancies, as optimization might result in fewer

branching operations or function calls on the same values, for

example.

Though we select function and basic-block identifiers se-

quentially when we instrument the program prior to IR

optimization, in optimized program variants, some function

identifiers may not appear due to function inlining. To avoid

this staggering, we include two other types of differential

entry:

• if a branch condition occurs on a taint label in

A but not in B, we include an entry of the form

< biA...bnA, f()idA >

• respectively, if a branch condition occurs on a taint label

in B but not in A, we include an entry of the form <
biB...bnB, f()idB >

This helps us cleanly represent optimization and inlining-

related differences where both variants process the same input

bytes, but the TDAG diff after that point might otherwise be

misaligned.

Now, we can see precisely the input bytes whose tainted data

flows pass through problematic areas of program control flow.

Our method for differentially comparing TDAGs can not only

trace output-influencing behavior which causes differences in

control flow back to the sections of source code which likely

caused it, it can also help a programmer debug largely internal

program behavior with security impact such as integer over-

flow or underflow which typically occurs only in the presence

of certain inputs. To date, to check we account reasonably

for inlining, we have experimented with constructing extra

differentials (such as -O0 vs -O1, -O1 vs -O2) and then

differentiating between those, though as our work matures, we

may turn off all inlining at compile time when constructing

program variants to better expose true-positive differences. Our

additions to PolyTracker to support UBet analysis are hosted

on GitHub1.

INITIAL RESULTS

Applying our UBet prototype to the US Department of

Defense National Imagery Transmission Format (NITF) [48]

reference parser Nitro [49], we obtain preliminary results

which demonstrate that our approach is worthy of further

development and refinement.

NITF

NITF is a binary image file format. Each NITF packages one

or more visual data representations (video, fingerprints, CAT

scan, JPEG, etc.) with extra metadata and other conditionally

included information e.g., captions, information for rendering

visual redactions, or geo-reference data. Nitro parses multiple

mutually incompatible versions of the NITF specification. To

simulate the effects of running in production and encountering

a particular bad input we would like reproduce the effects of,

we apply Nitro instrumented with UBet to a corpus of 148

valid and known-invalid NITF files.

Differential Analysis

Table I contains an excerpt of the differential between two

TDAGs obtained respectively from the instrumented Debug

and Release versions of Nitro run on a single NITF 2.0 [50]

file. The byte offsets are the locations within the program

input stream that affected the control flow within each function

in the trace. Note that each variant has differing function

sequences, e.g., due to optimization and function inlining.

For example, the debug build does not make the final call to

std::__1::basic_stringbuf<...>::overflow(int).

UBet resolves these differences and matches equivalent

function calls based off of data-flow similarities and function

symbols. It is immediately evident from this UBet output

that the causal variability bug has something to do with byte

offset 756 of the input file, since this was the last offset

affecting control flow before the variants’ traces ultimately

diverged. The Debug trace (left side) stops after reaching

labels 42 and 1860, which were affected by input byte 756.

Since the function log each TDAG contains is ordered by

data flow over the course of program execution, from the

Debug Nitro UBet function log we easily obtain the last

1https://github.com/trailofbits/polytracker/

193

TABLE I: Excerpt of a data-flow differential between two program traces. Offsets are the locations within the program input

stream that affected control flow within each function. It is clear from this differential that its causal variability bug has

something to do with byte offset 756 of the input file, since it was the last offset before the traces ultimately diverge.

Debug Offsets Function Release Offsets
.
.
.

.

.

.
.
.
.

{360, 361, 362} DBG: int Gsl::details::narrow2_(...) != REL: showImages(...) {360, 361, 362}
{360, 361, 362} nitf::INVALID_NUM_SEGMENTS(unsigned int)

Functions
optimized out of
the Release build

{360, 361, 362} int Gsl::details::narrow1_<int, unsigned int>(int, unsigned int)

{360, 361, 362} int Gsl::details::narrow<int, unsigned int>(int, unsigned int)

{360, 361, 362} int Gsl::details::narrow2_<int, unsigned int>(int, unsigned int)

{360, 361, 362} nitf::Record::getNumImages() const

.

.

.
.
.
.

.

.

.

{717}

showImages(nitf::Record const&)

{717}
{717} {717}
{737} {737}
{737} {737}
{745} {745}
{745} {745}
{753} {753}
{753} {753}
{756} {756}
{756} {756}

X
Debug trace
diverges here

std::__1::basic_stringbuf<...>::overflow(int)

{764}
{764}
{772}
{772}
{774}
{774}
{775}
{775}
{777}

.

.

.
.
.
.

d
ir

ec
ti

o
n

o
f

ex
ec

u
ti

o
n

function influenced by input byte 756 during execution of

showImages(nitf::Record const&) (and can cross

check it against the Release Nitro log) before the program

aborted:

TRY_SHOW(imsub.imageRepresentation());

Not only does UBet help us find the approximate final function

executed in Debug Nitro, we can now determine the exact

problematic input byte’s value: “Y”.

UBet’s control-affecting data flow differential results show

why Nitro incorrectly processes some NITFs in its Release

build configuration (with compiler optimizations), but aborts

during processing when built with Debug options (compiled

with -O0), as shown in Table I. This was accomplished with

only a superficial understanding of the software and NITF

specification and did not require interactive debugging or

reverse engineering. We then referenced the UBet-indicated

function definitions in the Nitro source code and annotated

our test NITF file with the NITF 2.0 specification to double-

check our instrumented Nitro results against specification and

determine if our input file was actually valid. To contrast our

results with what can be achieved with commodity sanitizers,

we also instrumented the Nitro binary using both UBSan [4]

and ASan [51] and processed the offending file. Neither

sanitizer produced any error.

194

Listing 5 Lines 68–72 of ImageSubheader.hpp in

the Nitro codebase as of git commit 466534fd. The

ImageRepresentation enumeration is missing an entry

for YCbCr601.
enum class ImageRepresentation {
MONO,
RGB,
RGB_LUT,
MULTI,
NODISPLY

};

NITF_ENUM_define_string_to_enum_begin(
ImageRepresentation
)
// need to do this manually because of "RGB/LUT"
{ "MONO", ImageRepresentation::MONO },
{ "RGB", ImageRepresentation::RGB },
{ "RGB/LUT", ImageRepresentation::RGB_LUT },
{ "MULTI", ImageRepresentation::MULTI },
{ "NODISPLY", ImageRepresentation::NODISPLY }
NITF_ENUM_define_string_to_end

Debugging Outcome

The offending header field starts at offset 756 in our test

input file. UBet data flow associations tell us it is 8 bytes

long; manual analysis confirmed that “Y” is an acceptable

first byte value for this field. The NITF 2.0 IREP (Image

Representation) header field describes the color system and

other bands of attribute values to use in interpreting the

embedded image data. Supported by all publicly available

NITF specification versions [48], [50], [52], the YCbCr601
JPEG representation records signal brightness in the Y band,

blue chrominance in the Cb band, and red chrominance in the

Cr band. All three MIL-STD-2500x NITF specifications allow

IREP to contain the value YCbCr601, but Nitro evidently

does not. Our test NITF file embeds a JPEG compressed in

the CCIR 601 color space, therefore using the YCbCr601
representation.

Nitro uniformly uses an ImageRepresentation enu-

meration to describe and extract from the IREP field. The

relevant lines of Nitro source code are reproduced in List-

ing 5. Note that the enum definition is missing an entry for

YCbCr601. Running our instrumented builds on further NITF

files which embed YCbCr601 JPEGs, we confirmed Nitro

Debug and Release versions consistently fail on such files

when processing the IREP field. We disclosed this bug to the

Nitro developers [53].

CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced our UBet prototype, a dynamic

analysis tool to help programmers debug subtle issues related

to or resulting in undefined behavior, run-to-run, and build-to-

build program behavior differences. This approach has already

successfully identified variability bugs in the Nitro NITF

parser [53]. Nothing in UBet is specific to the NITF format

itself. UBet can immediately be applied to any C or C++

program compilable with Clang/LLVM.

We see a number of possibilities for automating the final

manual specification-checking step of our test process. Firstly,

for an input that we have identified as triggering a differential,

we could produce an abstract syntax tree annotated with lexical

source information, e.g., using a tool like PolyFile [54]. We

could then incorporate PolyFile into UBet’s analysis phase to

automatically map offending input bytes back to specification

fields, similar to the approach used in [22]. This will eliminate

manually cross-checking byte offsets and function calls against

the parser source and specification, making UBet’s results

more digestible. UBet’s diffing method, while functional,

could also be improved to resolve more control-flow edge

cases. We plan on replacing our initial proof-of-concept efforts

with Graphtage [55] to produce an optimal matching between

program traces. In addition to exploring Nitro and other binary

file format parsers further, we plan to expand our analysis

efforts to other historically difficult-to-parse formats like ELF,

X.509, XML, and multimedia processors. The UBet approach

is embarrassingly parallel, insofar as each input can be run on

each variant independently. We are also in the process of inte-

grating UBet into the Format Analysis Workbench2 [23], [24]

to exploit this parallelism and provide automated differential

analysis of parsers over large corpora.

I. ACKNOWLEDGMENTS

This research was supported in part by the DARPA Safe-

Docs program as a subcontractor to Galois under HR0011-19-

C-0073. Many thanks to our shepherd Sergey Bratus, to our

anonymous reviewers, and to Marek Surovic, Nathan Daut-

enhahn, Michael Brown, Peter Goodman, Dominik Czarnota,

and Lisa Overall for invaluable discussion and feedback.

REFERENCES

[1] M. Grottke and K. Trivedi, “A classification of software faults,” in Pro-
ceedings of the IEEE Reliability Society Series on Rethinking Software
Fault Tolerance, Jan. 2005.

[2] A. Albertini, “Abusing file formats; or, Corkami, the novella,” The
International Journal of Proof of Concept or GTFO, no. 0x07, pp.
18–41, Mar. 2015.

[3] A. Mordahl, J. Oh, U. Koc, S. Wei, and P. Gazzillo, “An empirical study
of real-world variability bugs detected by variability-oblivious tools,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 5061.

[4] “UndefinedBehaviorSanitizer,” accessed: January 13, 2023. [Online].
Available: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

[5] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1275–1295.

[6] P. C. et al., “DataFlowSanitizer design discussion,” 2013, accessed:
January 12, 2020. [Online]. Available: https://lists.llvm.org/pipermail/
llvm-dev/2013-June/062877.html

[7] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2014, accessed: January 12, 2020.

[8] “GDB: The GNU project debugger,” https://sourceware.org/gdb/, ac-
cessed: March 16, 2023.

[9] “Taintgrind: a Valgrind taint analysis tool,” https://github.com/wmkhoo/
taintgrind, accessed: March 2, 2020.

2https://github.com/galoisinc/faw

195

[10] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP 10. USA: IEEE Computer
Society, 2010, pp. 317–331.

[11] C. Brant, P. Shrestha, B. Mixon-Baca, K. Chen, S. Varlioglu, N. Elsayed,
Y. Jin, J. Crandall, and D. Oliveira, “Challenges and opportunities
for practical and effective dynamic information flow tracking,” ACM
Computing Surveys, vol. 55, no. 1, November 2021.

[12] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy, “Iodine:
fast dynamic taint tracking using rollback-free optimistic hybrid analy-
sis,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 490–504.

[13] O. Braunsdorf, S. Sessinghaus, and J. Horsch, “Compiler-based attack
origin tracking with dynamic taint analysis,” in International Conference
on Information Security and Cryptology. Springer, 2022, pp. 175–191.

[14] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[15] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, 2012, pp. 133–144.

[16] H. Lefeuvre, V.-A. Bădoiu, Y. Chien, F. Huici, N. Dautenhahn, and
P. Olivier, “Assessing the impact of interface vulnerabilities in compart-
mentalized software,” in Proceedings of 30th Network and Distributed
System Security (NDSS’23). Internet Society, 2022.

[17] CAPEC-113: Interface manipulation. Available from MITRE. An
adversary manipulates the use or processing of an interface (e.g.
Application Programming Interface (API) or System-on-Chip (SoC))
resulting in an adverse impact upon the security of the system
implementing the interface. This can allow the adversary to bypass
access control and/or execute functionality not intended by the
interface implementation, possibly compromising the system which
integrates the interface. Interface manipulation can take on a number
of forms including forcing the unexpected use of an interface or
the use of an interface in an unintended way. [Online]. Available:
https://capec.mitre.org/data/definitions/113.html

[18] CAPEC-554: Functionality bypass. Available from MITRE. An
adversary attacks a system by bypassing some or all functionality
intended to protect it. Often, a system user will think that
protection is in place, but the functionality behind those protections
has been disabled by the adversary. [Online]. Available: https:
//capec.mitre.org/data/definitions/554.html

[19] CAPEC-33: HTTP request smuggling. Available from MITRE. An
adversary abuses the flexibility and discrepancies in the parsing
and interpretation of HTTP Request messages using various HTTP
headers, request-line and body parameters as well as message
sizes (denoted by the end of message signaled by a given
HTTP header) by different intermediary HTTP agents (e.g., load
balancer, reverse proxy, web caching proxies, application firewalls,
etc.) to secretly send unauthorized and malicious HTTP requests
to a back-end HTTP agent (e.g., web server). [Online]. Available:
https://capec.mitre.org/data/definitions/33.html

[20] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean application
compartmentalization with SOAAP,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1016–1031.

[21] A. Bikineev, M. Lippautz, and H. Payer, “Retrofitting
temporal memory safety on C++,” https://v8.dev/blog/
retrofitting-temporal-memory-safety-on-c++, Jun. 2022, accessed:
January 13, 2023.

[22] C. Harmon, B. Larsen, and E. Sultanik, “Toward automated grammar
extraction via semantic labeling of parser implementations,” in Proceed-
ings of the Sixth Workshop on Language-Theoretic Security (LangSec).
IEEE Symposium on Security and Privacy, 2021, pp. 276–283.

[23] S. Cowger, Y. Lee, N. Schimanski, M. Tullsen, W. Woods, R. Jones,
E. Davis, W. Harris, T. Brunson, C. Harmon, B. Larsen, and E. Sultanik,
“Research report: Icarus: Understanding de facto formats by way of
feathers and wax,” in 2020 IEEE Security and Privacy Workshops
(SPW), 2020, pp. 327–334.

[24] “FAW: Galois Format Analysis Workbench,” https://github.com/
GaloisInc/FAW/, accessed: January 12, 2023.

[25] FrankHB, “Over-aggressively optimization [sic] on infinite loops,” https:

//github.com/llvm/llvm-project/issues/60622, 2023, accessed: March 8,
2023.

[26] “ThreadSanitizer,” accessed: January 10, 2023. [Online]. Available:
https://clang.llvm.org/docs/ThreadSanitizer.html

[27] Y. Rong, P. Chen, and H. Chen, “Integrity: Finding integer errors by
targeted fuzzing,” in International Conference on Security and Privacy
in Communication Systems. Springer, 2020, pp. 360–380.

[28] A. Kellas, “Look out! divergent representations are
everywhere!” https://blog.trailofbits.com/2022/11/10/
divergent-representations-variable-overflows-c-compiler/, Nov. 2022,
accessed: January 6, 2023.

[29] M. D. Brown, M. Pruett, R. Bigelow, G. Mururu, and S. Pande, “Not
so fast: understanding and mitigating negative impacts of compiler
optimizations on code reuse gadget sets,” Proceedings of the ACM on
Programming Languages, vol. 5, no. OOPSLA, pp. 1–30, 2021.

[30] M. Zalewski, “Automatically inferring file syntax with afl-analyze,”
https://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html,
Feb. 2016, accessed: January 12, 2020.

[31] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
“ProFuzzer: On-the-fly input type probing for better zero-day vulnera-
bility discovery,” in Proceedings of the IEEE Symposium on Security
and Privacy, May 2019, pp. 769–786.

[32] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo,
S. Wörner, and T. Holz, “GRIMOIRE: Synthesizing structure while
fuzzing,” in Proceedings of the 28th USENIX Security Symposium.
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1985–2002.

[33] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++:
dynamic taint analysis with targeted control-flow propagation.” in NDSS,
2011.

[34] “DataFlowSanitizer,” accessed: January 12, 2020. [Online]. Available:
https://clang.llvm.org/docs/DataFlowSanitizer.html

[35] P. Yang, F. Kang, Y. Zhao, and H. Shu, “DRTaint: A dynamic
taint analysis framework supporting correlation analysis between data
regions,” Journal of Physics: Conference Series, vol. 1856, no. 1,
p. 012013, April 2021. [Online]. Available: https://doi.org/10.1088/
1742-6596/1856/1/012013

[36] M. Höschele and A. Zeller, “Mining input grammars from dynamic
taints,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, pp. 720–725.

[37] A. V. Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel, “Variability-
aware static analysis at scale: An empirical study,” ACM Trans. Softw.
Eng. Methodol., vol. 27, no. 4, nov 2018.

[38] K. Hough and J. Bell, “A practical approach for dynamic taint tracking
with control-flow relationships,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 31, no. 2, pp. 1–43, 2021.

[39] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict control
dependence and its effect on dynamic information flow analyses,”
in Proceedings of the 19th International Symposium on Software
Testing and Analysis, ser. ISSTA ’10. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1831708.1831711

[40] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[41] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1–40, 2009.

[42] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[43] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina,
“Exploit programming: From buffer overflows to “weird machines” and
theory of computation,” ;login:, vol. 36, 2011.

[44] “PolyTracker: An LLVM-based instrumentation tool for universal taint
tracking, dataflow analysis, and tracing.” https://github.com/trailofbits/
polytracker, accessed: January 12, 2023.

[45] H. Brodin, E. Sultanik, and M. Surovič, “Blind spots: Identifying
exploitable program inputs,” in Proceedings of the Ninth Workshop on
Language-Theoretic Security (LangSec). IEEE Symposium on Security
and Privacy, 2023.

[46] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in Proceedings of the 29th USENIX Conference on
Security Symposium, 2020, pp. 181–198.

196

[47] M. Karnaugh, “The map method for synthesis of combinational logic
circuits,” Transactions of the American Institute of Electrical Engineers,
Part I: Communication and Electronics, vol. 72, no. 5, pp. 593–599,
1953.

[48] “National Imagery Transmission Format (NITF version 2.1) for
the national imagery transmission format standard, MIL-STD-
2500C,” https://web.archive.org/web/20210918070130/https://gwg.nga.
mil/ntb/baseline/docs/2500c/2500C.pdf, Geospatial Intelligence Stan-
dards Working Group, Reston, VA, Standard, May 2006, accessed:
January 12, 2023.

[49] “Nitro: a C cross-platform, full-fledged, extensible library solution for
reading and writing the National Imagery Transmission Format (NITF),
a U.S. DoD standard format,” https://github.com/mdaus/nitro, accessed:
February 2, 2023.

[50] “National Imagery Transmission Format (NITF version 2.1) for
the national imagery transmission format standard, MIL-STD-
2500B,” https://web.archive.org/web/20201025132514/https://gwg.nga.
mil/ntb/baseline/docs/2500b/2500b.pdf, Geospatial Intelligence Stan-

dards Working Group, Reston, VA, Standard, Aug. 1997, accessed:
January 12, 2023.

[51] “AddressSanitizer,” accessed: March 17, 2023. [Online]. Available:
https://clang.llvm.org/docs/AddressSanitizer.html

[52] “National Imagery Transmission Format (NITF version 2.0) for
the national imagery transmission format standard, MIL-STD-
2500A,” https://web.archive.org/web/20130217004018/https://gwg.nga.
mil/ntb/baseline/docs/2500a/2500a.pdf, Geospatial Intelligence Stan-
dards Working Group, Reston, VA, Standard, Oct. 1994, accessed:
January 12, 2023.

[53] “Missing support for YCbCr601,” accessed: February 3, 2023.
[Online]. Available: https://github.com/mdaus/nitro/issues/528

[54] “PolyFile: a pure Python cleanroom implementation of libmagic, with
instrumented parsing from Kaitai struct and an interactive hex viewer.”
https://github.com/trailofbits/polytracker, accessed: January 12, 2023.

[55] E. Sultanik, “Graphtage: A new semantic diffing tool,” https://
blog.trailofbits.com/2020/08/28/graphtage/, August 28, 2020, accessed:
February 3, 2023.

197

