
Blind Spots: Identifying Exploitable Program Inputs

Henrik Brodin
Trail of Bits

New York, USA
henrik.brodin@trailofbits.com

Marek Surovič
Trail of Bits

New York, USA
marek.surovic@trailofbits.com

Evan Sultanik
Trail of Bits

New York, USA
evan.sultanik@trailofbits.com

Abstract—A blind spot is any input to a program that can be
arbitrarily mutated without affecting the program’s output.
Blind spots can be used for steganography or to embed
malware payloads. If blind spots overlap file format keywords,
they indicate parsing bugs that can lead to exploitable differ-
entials. For example, one could craft a document that renders
one way in one viewer and a completely different way in
another viewer. They have also been used to circumvent code
signing in Android binaries, to coerce certificate authorities
to misbehave, and to execute HTTP request smuggling and
parameter pollution attacks. This paper formalizes the opera-
tional semantics of blind spots, leading to a technique based on
dynamic information flow tracking that automatically detects
blind spots. An efficient implementation is introduced and
evaluated against a corpus of over a thousand diverse PDFs
parsed through MµPDF1, revealing exploitable bugs in the
parser. All of the blind spot classifications are confirmed to be
correct and the missed detection rate is no higher than 11%.
On average, at least 5% of each PDF file is completely ignored
by the parser. Our results show promise that this technique is
an efficient automated means to detect exploitable parser bugs,
over-permissiveness and differentials. Nothing in the technique
is tied to PDF in general, so it can be immediately applied to
other notoriously difficult-to-parse formats like ELF, X.509,
and XML.

1. Introduction

We define a blind spot as any input to a program that
can be arbitrarily mutated without affecting the program’s
output. Blind spots are dangerous: they can be exploited for
steganography and embedding malware payloads. Stegano-
graphic attacks are notoriously difficult to detect automati-
cally, but a brief manual analysis of five of the most popular
archive file formats produced fifteen vulnerability disclo-
sures enabled by steganography [1]. One such bug is the
“aCropalypse” (CVE-2023-21036) [2], publicly disclosed
on March 18th, 2023. It affects images created on both
Google phones and Microsoft Windows, in which cropped
image data persists in a blind spot and can subsequently
be reconstructed. The blind spot detection technique and

1. https://mupdf.com/

tooling introduced in this paper has been used to detect
both aCropalyptic images as well as vulnerable image gen-
erators [3].

Blind spots can also be indicative of parser differentials,
for instance, if two parsers exhibit different blind spots for
the same input. Such differentials can be exploited by craft-
ing a file that renders one way in one parser and a completely
different way in another parser [4]. For example, blind spots
have been exploited to craft a PDF that can render one way
in Adobe Acrobat but have different text when printed [5].
Blind spots have also been used to circumvent code signing
in Android binaries [6], to coerce certificate authorities to
emit certificates for unauthorized Common Names [7], and
to execute HTTP request smuggling and parameter pollution
attacks [8]. Our results show that MµPDF, on average,
ignores 5% of each PDF file. Some PDFs in our corpus
had megabytes of ignored data that could be overwritten
to store a malware payload. Blind spots can also be useful:
They can potentially be excluded as candidates for mutation
when generating fuzz testing inputs, similar to the Angora
fuzzer’s branch coverage maximization strategy [9].

Blind spots are a generalization of the concept of file
cavities introduced by Albertini, et al. [10]: unused spaces
in a file format that are created due to the structure of
the surrounding data. However, unlike cavities, blind spots
may be dependent on the program itself and its execution
environment. For example, the image content of a JPEG
file will be a blind spot to a parser that only reads its EXIF
metadata. Likewise, the EXIF metadata will be a blind spot
to a program that converts JPEGs to another image format
like BMP that does not support embedded EXIF metadata.
A malware payload could be embedded within the EXIF
data without affecting the image’s rendering. Similarly, a
JPEG parser for which the EXIF data is not a blind spot
would likely render a specially crafted image differently than
a parser for which the EXIF data is a blind spot.

Since they are associated with both program input and
the program itself, blind spots can be indicators of parsing
vulnerabilities. Parsers—particularly hand-generated ones—
will often accept a superset of the grammar for which
they were designed. This manifests as a parser that accepts
some inputs that are technically invalid according to the
file format specification. Sometimes this is intentional, in
order to maximize compatibility with files generated by

175

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Henrik Brodin. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00021

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

21

other, incorrectly implemented software, or to attempt to
repair malformed documents. For example, we discovered
that an optimization in MµPDF will sometimes only check
the leading “e” in the endobj token; it will eagerly accept
eXXXXX and the PDF will still be parsed correctly, despite
the fact that the PDF standard prescribes the existence of the
full token. Such lexical permissiveness can lead to parser
differentials and so-called file format schizophrenia [4]:
when two implementations of a file format interpret the
same input file differently. A different PDF implementation
will ignore the erroneous token and parse further to find the
correct delimiter, resulting in different behavior and output.

This paper makes several contributions; it. . .
1) formalizes the concept of program input blind

spots;
2) clarifies the difference between blind spots and

file cavities: Blind spots are the set of input bytes
whose data flow never influences either control flow
that leads to an output or an output itself for a given
program;

3) proposes a novel technique based on dynamic taint
analysis to detect blind spots;

4) demonstrates how this technique can be used to au-
tomatically detect lexical permissiveness and parser
bugs;

5) evaluates the approach, providing evidence that
these blind spots are correct; and

6) analyzes the properties of naturally occurring blind
spots in PDFs parsed by MµPDF.

2. Background

Dynamic Information Flow Tracking (DIFT), also
known as Dynamic Taint Analysis (DTA), is a technique in
which the flow of information through a program is modeled
and tracked at runtime. DIFT is a challenging problem;
many modern approaches suffer from high implementation
overhead, low accuracy, and/or low fidelity [11]. Universal
taint analysis is a form of DIFT that can track all input bytes
throughout the execution of a program, mapping inputs to
outputs [12].

Our approach to detect blind spots relies on universal
taint analysis: We want to identify the input bytes that affect
neither program output nor any control flow that leads to
a program output. There are significant challenges when
performing universal taint analysis on real-world software.
If a program accepts n bytes of input, there are O(2n)
ways that each of those bytes could combine to taint each
program output. Therefore, when the cyclomatic complexity
of a program is large, the amount of combinations generated
from even a small input is enormous. For example, many
document formats such as PDF use compression to keep file
sizes small. When tracking data flow through a PDF parser,
there will be a significant number of such combinations as
the data are decompressed. This phenomenon is known as
taint explosion, which generally occurs when a function
performs a large number of combinatorial operations on
input data.

There are several tools and techniques for performing
both DIFT and universal taint analysis. Most tools are
designed for fuzz testing use cases, which do not need to
track many input bytes. For example, the LLVM compiler
framework has its own dataflow analysis instrumentation
pass, the DataFlowSanitizer (DFSan) [13], which is limited
to tracking at most 8 inputs. Even tools that were explicitly
designed for universal taint analysis are unable to scale
to input sizes sufficient for real-world inputs. We have a
further discussion of the limitations of current tooling in
Section 4.1, below.

This paper introduces a new technique that can effi-
ciently achieve universal taint analysis for megabytes of
input.

3. Definitions and Formalization

This section formalizes the concept of input blind spots.
We do this with an extension to Schwartz, Avgerinos, and
Brumley’s SIMPIL operational semantics for dynamic taint
propagation [14]. Cheney, Ahmed, and Acar’s semantics for
dependency provenance [15] could also be used to formalize
blind spots, however, the literature on provenance as depen-
dency analysis is defined generically as to be compatible
with a variety of use cases including databases, file sys-
tems, and scientific workflows. SIMPIL, on the other hand,
more explicitly defines how program instrumentation would
occur. As such, it also directly informs the data structures
necessary to achieve efficient universal taint analysis (see
Section 4, below). This is why we present the formalism
using SIMPIL’s operational semantics.

3.1. An Extension to SIMPIL

The original conception of dataflow analysis in SIMPIL
only tracks whether a given variable or memory cell is
tainted, not from whence it is tainted. In order to detect
blind spots, we need to additionally track exactly which
input bytes influence output. For example, consider the
pseudocode in Algorithm 1. The variable a is tainted by
program input on line 2. Moreover, the value of a can
indirectly cause hard-coded data (d = 5) to be written to
output on line 7 by virtue of the conditional on line 5.
Therefore, the first byte of the file cannot be a blind spot,
since its mutation can affect output—despite the fact that
the value of the first byte is never written to output. Even
if the SIMPIL taint policy (i.e., the rules by which taints
are propagated) is sufficient to detect that tainted inputs
affected the output of the program, it is insufficient to detect
which inputs were responsible. Therefore, we need to extend
SIMPIL to additionally track the provenance of a taint so
that we can map a complete data flow from inputs to outputs.

SIMPIL uses meta-syntactic variables to represent an
execution context. ∆ is a mapping of variable names to
their values and µ is a mapping from memory addresses to
their values. τ∆ and τµ map variable names and memory
addresses to booleans (T|F) defining whether or not that
value is tainted in the current execution context.

176

Algorithm 1 Tainted Control Flow
1: procedure TAINTEDCONTROLFLOW
2: a← READINPUT(1) . a is tainted by the 1st byte
3: b← READINPUT(1) . b is tainted by the 2nd byte
4: c← a+ b
5: if c ≥ 42 then
6: d← 5
7: WRITEOUTPUT(d)
8: end if
9: end procedure

In order to track taint provenance, we use the concept
of a taint label [9]: a unique identifier for each instance of a
tainted variable or memory address in an execution context.
In addition to union labels [9] we also define canonical
labels. A union taint is the result of the combination of
two previously tainted values (e.g., the result of two tainted
variables being operands in a binary operation). A canonical
taint label is the result of a variable or memory address being
assigned directly from a program input.

Let I = {〈s0, i0〉, 〈s1, i1〉, . . .} be the set of all possible
program inputs, where each s is the source (e.g., a file, pipe,
socket, or environment variable) and i is the offset within
the source. We extend the SIMPIL notation with three new
mappings to represent taint labels and track provenance2:

1) ε : ∆ ∪ µ → N that maps variable names and
memory addresses to unique taint labels3;

2) κ : N → I that maps canonical taint labels to the
information about their source; and

3) γ : N→ N×N that maps union taint labels to their
parents.

Note that the γ mapping implicitly defines a directed acyclic
graph (DAG) where the out-degree of each vertex is at most
two. However, instructions that operate on tainted values
could have an arity higher than two, causing the result
label to have more than two parents. In such cases, we add
multiple unions to the γ mapping. This is done for the sake
of notational simplicity and does not affect our results.

SIMPIL treats these mappings more like programmatic
hashmaps than set theoretic functions. As such, SIMPIL uses
the notation “κ[`]” for the value of taint label ` in mapping
κ. For brevity, we shall continue this theme by using the
notation ` ∈ κ to represent the fact that ` is a key in the
mapping κ, ` /∈ κ to mean that ` is not a key in κ, and |κ|
to mean the number of key/value pairs in the mapping.

The zero taint label is reserved to represent untainted
variables and memory. An untainted variable v will always
lack source info and descend from the zero label:

τ∆[v] =

{
F ε[v] /∈ κ ∧ γ[ε[v]] = 〈0, 0〉,
T ε[v] ∈ κ ∨ (γ[ε[v]] = 〈i, j〉 ∧ i+ j > 0).

2. The SIMPIL semantics are already replete with Greek letters. We have
chosen ε from the Greek word for “labels” (επιγραφες), κ from the word
for “canonical” (κανoνικoς), and γ from the word for “parent” (γoνευς).

3. ∆ and µ retain their original meanings from SIMPIL.

The SIMPIL taint policy (see Table III from [14]) and
semantics are modified to update these mappings on every
taint status change. For example, the updated semantics for
reading from input and for executing binary operations are
given in Figure 1.

3.2. Mapping Taint Sources to Sinks

These mappings allow us to track the entire provenance
of a taint in any execution context. As defined above, the
γ mapping implicitly creates a DAG of labels, representing
the dataflow through the program: The program inputs that
affect a tainted variable or memory address are its taint
label’s topmost ancestors in the γ DAG. A recursive function
ψ : N → 2I can map taint labels to all of their ancestral
sources:

ψ[`] =


{κ[`]} ` ∈ κ,⋃
p∈γ[`] ψ[p] γ[`] 6= 〈0, 0〉,
∅ otherwise.

When we observe that the program writes to output, we
use the ψ mapping to record which inputs, if any, tainted
the output. This can be accomplished by enumerating the
canonical ancestors of the output labels by traversing the
γ DAG. This allows us to construct a complete mapping of
taint sources to sinks. Note that any taint sources without
associated sinks can be arbitrarily mutated without affecting
the output.

3.3. A Definition of Program Input Blind Spots

Let Ω be the set of taint labels written to output during
execution. Then a blind spot is the set of all potential
program inputs that did not affect the output:

I¬READ = {ι ∈ I : (∀` ∈ κ : κ[`] 6= ι)}
I¬INOUTPUT = {κ[`] : ` ∈ κ ∧ (∀`′ ∈ Ω : κ[`] /∈ ψ[`′])}
IBLINDSPOT = I¬READ ∪ I¬INOUTPUT.

(1)

As we mentioned above, SIMPIL includes a taint policy
specifying the rules by which taints are propagated. The taint
policy will affect our definition of blind spots. For example,
let us again consider the pseudocode in Algorithm 1. The
variable a is tainted by program input on line 2, which we
can now specify in our SIMPIL extension as κ[ε[a]] 6= ∅.
Recall that the value of a can indirectly cause hard-coded
data (d = 5) to be written to output on line 7. Therefore, a
cannot be a blind spot, since its mutation can affect output.
However, the semantics by which the taint policy propagates
taint through conditionals will affect whether our extension
of SIMPIL will consider the output to be tainted by a,
because the value of a itself is never written to output.

We resolve this discrepancy by enforcing the following
constraint on blind spot taint policies: The taint labels of
every variable and memory address that affect the program’s
control-flow will be unioned with all labels created in the
branch they influence. In other words, in addition to the

177

SIMPIL notation for the computation performed by the INPUT operation︷ ︸︸ ︷
v is input from src ∈ I ε′ = ε[v ← |ε|+ 1] κ′ = κ[ε′[v]← src]

µ,∆, ε, κ, γ µ,∆, ε′, κ′, γ︸ ︷︷ ︸
SIMPIL notation for the

updated execution state after the operation

µ,∆ ` get_input(src) ⇓ v︸ ︷︷ ︸
SIMPIL notation for the evaluation of

expression get_input(src) to value v in context
µ,∆

INPUT

µ,∆ ` e1 ⇓ v1 µ,∆ ` e2 ⇓ v2 v′ = v1♦bv2 ε′ = ε[v′ ← |ε|+ 1] γ′ = γ
[
ε′[v′]← 〈ε[v1], ε[v2]〉

]
µ,∆, ε, κ, γ µ,∆, ε′, κ, γ′ µ,∆ ` e1♦be2 ⇓ v′

BINOP

Figure 1. SIMPIL operational semantics for reading input and executing binary operators (see Figure 1 of [14]) updated to include data flow provenance
tracking. When a value v is read from an input source src, we create a new, unique canonical taint label for v and set its taint source info in κ to src.
When a binary operator ♦b is applied to expressions e1 = v1 and e2 = v2 resulting in the value v′, we create a new, unique union taint label for v′ and
set its parents to be the taint labels associated with values v1 and v2.

definition of blind spots in Equation (1), a blind spot can-
not influence control flow that leads to a program output.
Updated operational semantics for the conditional operator
that implement this policy are given in Figure 2.

A trace of Algorithm 1 showing the iterative updates to
the execution context is given in Table 1. It demonstrates
how the blind spot taint policy propagates taints from vari-
ables in the path condition—variables that have affected
control flow leading to the current state (e.g., variable c
on line 5)—to variables that would otherwise not be tainted
(e.g., variable d). This reduces false-positive blind spot clas-
sifications, since it captures tainted variables that indirectly
cause output.

4. Implementation

Thus far we have developed formal semantics for blind
spots and discovered some necessary taint propagation poli-
cies to detect them. The next step is to automatically instru-
ment a parser to extract the data flow information necessary
to classify input byte regions as blind spots. We gather this
data flow information by performing universal taint analysis.

PolyTracker [16] is an LLVM-based dynamic analysis
tool that we have developed for extracting ground truth
information from programs. It is open-source and available
at https://github.com/trailofbits/polytracker.

PolyTracker automatically adds instrumentation to a pro-
gram such that, when the program is executed, it produces
runtime artifacts that can be analyzed to track the data
flows of all input bytes. It is an extension of the LLVM
DataFlowSanitizer (DFSan) [13], a generalized dynamic
data flow analysis instrumentation tool. PolyTracker has pre-
viously been used to label the semantic purpose of functions
in a parser [17].

Originally, DFSan supported tracking at most 216 taint
labels at a time. This limit was only sufficient to track at
most several hundred input bytes at once. Over the course
of 2021, DFSan underwent a significant refactor in order
to make its memory layout compatible with other LLVM
sanitizers [18]; this refactor reduced the effective number
of taints it could track to 23 = 8. This restriction was
acceptable for DFSan’s primary use case at the time: data

flow analysis for fuzz testing, but not for universal taint
analysis and detecting blind spots.

We forked PolyTracker off of the final, pre-refactor
version of DFSan. For the remainder of this section, our
discussion of DFSan will refer to this version. This version
of DFSan works by creating a region of “shadow” memory
that can store a taint label associated with every address on
the stack and heap. For every instruction in the program,
DFSan checks its operands to see if they have associated
taint labels in shadow memory. If the labels are different, it
means that the operands were tainted by different input data
flows, and DFSan will create a new label that represents
the union of the two. DFSan also has mechanisms for
propagating taint information across function calls (e.g., by
appending taint labels as function arguments), as well as
models for taint propagation through uninstrumented system
calls.

DFSan uses a 216 × 216 matrix to store the unions
generated when instructions mix taint labels. Element i, j
of the matrix holds the value of the label produced by
the union of labels i and j. This matrix representation is
computationally efficient but becomes prohibitively large as
the maximum number of taint labels grows. For n-bit taint
labels, the matrix will require

Θ
(

2n × 2n × n

8

)
= Θ(22n−3n)

bytes of memory. This is the reason for DFSan’s limit of
216 taint labels: Increasing the limit to 232 labels would
require over 73 exabytes of RAM to store the union matrix.
We need a way to increase this 216 limit by at least a few
orders of magnitude.

Our solution to this problem arises from the γ mapping
we added to the SIMPIL operational semantics. We create a
memory-mapped file where each taint label has a fixed-size
entry containing the indexes of its parent labels. PolyTracker
adds additional instrumentation to:

• tag input sources as canonical taints (building the κ
mapping from our semantics);

• track the taint labels that are written to output; and
• track which taint labels affect control flow.

178

the conditional expression e evaluates to v︷ ︸︸ ︷
µ,∆ ` e ⇓ v

create a new taint label for every existing label︷ ︸︸ ︷
ε′ = ε[u← |ε|+ ε[u] : ∀u ∈ ε]

union every existing label with the taints of v︷ ︸︸ ︷
γ′ = γ

[
ε′[u]← 〈ε[u], ε[v]〉 : ∀u ∈ ε

]
µ,∆, ε, κ, γ µ,∆, ε′, κ, γ′

PRECOND

Figure 2. Updated SIMPIL operational semantics to enforce the taint policy that every input that affects control-flow will be unioned with all labels created
in the branch they influence. The PRECOND rule is executed before every conditional rule (TCOND and FCOND in Figure 1 of [14]).

Line STATEMENT ∆ τ∆ ε κ γ

1 start {} {} {} {} {}
2 a← READINPUT(1) {a→ 40} {a→ T} {a→ 1} {1 → 〈1st byte of input〉} {}

3 b← READINPUT(1)
a→ 40,
b→ 12
{

}
a→ T,
b→ T
{

}
a→ 1,
b→ 2
{

}
1→ 〈1st byte of input〉,
2→ 〈2nd byte of input〉
{

} {}

4 c← a+ b b→ 12,
a→ 40,

c→ 52

{

}
b→ T,
a→ T,

c→ T

{

}
b→ 2,
a→ 1,

c→ 3

{

}
1→ 〈1st byte of input〉,
2→ 〈2nd byte of input〉
{

} {3→ 〈1, 2〉}

5 if c ≥ 42 then b→ 12,
a→ 40,

c→ 52

{

}
b→ T,
a→ T,

c→ T

{

}
b→ 2,
a→ 1,

c→ 3

{

}
1→ 〈1st byte of input〉,
2→ 〈2nd byte of input〉
{

} {3→ 〈1, 2〉}

6 d← 5
b→ 12,
a→ 40,

c→ 52,
d→ 5

{

}

b→ T,
a→ T,

c→ T,
d→ T

{

}

b→ 2,
a→ 1,

c→ 3,
d→ 4

{

}

1→ 〈1st byte of input〉,
2→ 〈2nd byte of input〉
{

}
3→ 〈1, 2〉,
4→ 〈3, 0〉
{

}

TABLE 1. EXECUTION CONTEXT TRACE FOR ALGORITHM 1. NOTE ON LINE 6 THAT, DESPITE BEING ASSIGNED A CONSTANT VALUE OF 5, THE d
VARIABLE (TAINT LABEL 4) IS IN FACT TAINTED BY VARIABLE c (TAINT LABEL 3). THIS IS BECAUSE THE PATH CONDITION TO LINE 6 DEPENDS ON c

FROM THE CONDITIONAL BRANCH ON LINE 5. THEREFORE, NEITHER OF THE FIRST TWO BYTES OF INPUT ARE BLIND SPOTS.

The algorithm for determining blind spots from a pro-
gram trace is given in Algorithm 2. Set L denotes the set
of all taint labels in a program trace. Consequently set B
denotes all taint labels that did not affect control flow. The
algorithm iterates through labels in L in descending order.
On line 5, ` /∈ B means that taint label ` or its descendant
affected control flow, while ` ∈ Ω means that taint label
` was written to output. If either of these is true ` and its
parents are removed from B on line 6. Finally on line 9,
the set all blind spots IBLINDSPOT is the set of all inputs
which have their associated taint label in B. The algorithm
runs in O(n) time where n is the number of taint labels
created during the trace. This has proven sufficient to detect
blind spots in all programs and inputs on which we have
experimented.

4.1. Related Work

There are several existing projects that achieve univer-
sal taint tracking, using various methods. Two of the best
maintained and easiest to use are AUTOGRAM [19] and
TaintGrind [20]. However, the former is limited to analysis
within the Java virtual machine and the latter suffers from
unacceptable runtime overhead when tracking as few as
several bytes at a time. For example, we ran mutool,
a utility in the MµPDF project, using TaintGrind over a
corpus of medium sized PDFs, and in every case the tool
had to be halted after over twenty-four hours of execution
for operations that would normally complete in milliseconds
without instrumentation.

Algorithm 2 Enumerate Blind Spots
Ensure: IBLINDSPOT is the set of blind spots in the trace

1: procedure BLINDSPOTS(Ω, ε, κ, γ)
2: L← {ε[v] : v ∈ ε} ∪ {` : ` ∈ κ} . the set of all

taint labels in the trace
3: B ← {` ∈ L : ¬AFFECTEDCONTROLFLOW(`)} .

the set of all labels that did not affect control flow
4: for each ` ∈ SORTDESCENDING(L) do
5: if ` /∈ B ∨ ` ∈ Ω then . ` cannot be a

blind spot because it or one of its descendants affected
output

6: B ← B \ ({`} ∪ γ[`])
7: end if
8: end for
9: IBLINDSPOT ← {κ[`] : ` ∈ B}

10: end procedure

There are also existing tools for performing dynamic
program analysis via QEMU [21], such as PANDA [22]
and DECAF(++) [23], both of which have taint tracking
extensions. However, being an emulation framework rather
than virtualization, QEMU incurs a runtime overhead of
about 15% just to execute a binary, not including any instru-
mentation [24]. After adding the program instrumentation
necessary to enable fuzz testing, QEMU was observed to
have over three times the runtime overhead of equivalent
compile-time instrumentation [25].

Symbolic execution engines like Triton [26] and
SymCC [27] have also been used for data flow analysis.
Symbolic execution could be extended to detect blind spots,

179

e.g., by making all input bytes symbolic and observing all
data that is written. The input bytes associated with any
symbolic data that is either written or included in the path
condition during a write is not a blind spot.

DRTaint [12] is a recently published tool that can also
perform universal taint tracking. It adds a minimal amount
of runtime instrumentation to create runtime artifacts that
can be post-processed to extract any data flow. The authors
do not quantify the exact overhead of DRTaint, but Figure 5
from their paper suggests at least a 60x slowdown compared
to the uninstrumented program. It is also unclear whether
this instrumentation was sufficient to reconstruct all data
flows. This is consistent with earlier techniques such as
Dytan [28] that reported a 50x slowdown when tracking
as few as 64 taint labels.

5. Evaluation

The previous sections introduced a method for identi-
fying the blind spots of a program input. How accurate is
this blind spot classifier? Since we do not have pre-labeled
ground truth for the blind spots of an input, we need to
develop statistical estimates for the confusion matrix of our
classifier.

We focus our evaluation on the PDF file format, for
several reasons.

1) The PDF file format is old and complex, has had
many revisions, and enjoys numerous independent
implementations. This has led to differentials that
necessitate lexical permissiveness for interoperabil-
ity [29].

2) PDF is a container format that allows embedding
of other formats like JPEG, providing more oppor-
tunity for blind spots.

3) The GovDocs corpus [30] provides thousands of
real-world PDFs generated by a diversity of soft-
ware.

We instrumented mutool, a utility in the popular
MµPDF project, using PolyTracker to detect blind spots.
Next, we ran the instrumented utility on 1,087 PDFs sam-
pled from the GovDocs corpus to render the PDFs to
PostScript. The PDFs totaled over 622 MB and averaged
572 KB each. The largest file was 9.6 MB. We discovered
a total of 33.5 MB of blind spots, averaging 30.8 KB per
file, some files having zero, and one file having 1.07 MB of
blind spots.

PostScript, a vector image format, was chosen rather
than a raster format like JPEG or PNG because the relative
lack of compression would help prevent explosion of taint
union labels and thereby reduce runtime. Runtime of the in-
strumented program was less than one minute for each PDF.
We would expect to get similar results when rendering to
JPEG or PNG, however, since blind spots are dependent on
execution, there could be some discrepancies. For example,
since fonts can be embedded in both PDF and PostScript but
cannot be embedded in JPEG or PNG, one might expect to

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna
aliqua. Ut enim ad minim veniam,
quis nostrud exercitation
ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis
aute irure dolor in reprehenderit
in voluptate velit esse cillum
dolore eu fugiat nulla pariatur.

Detected Blind Spot

Figure 3. Notional example of validating detected blind spots. Underlined
bytes are iteratively mutated and re-parsed. Bytes outside of blind spots
are randomly selected for mutation, but all bytes within a blind spot are
mutated. If a byte inside a blind spot is mutated and produces a different
result, then that blind spot classification was a false-positive (Type I error).
If a byte outside a blind spot can be arbitrarily mutated, then it is a missed
detection (Type II error).

see more blind spots related to fonts if one were to have
rendered to a different file format.

5.1. Classification Error

We validate blind spots by iteratively mutating each
classified blind spot byte in the input file and re-running the
original, uninstrumented program again. See Figure 3 for a
notional example of this mutation process. If the PostScript
output produced from the mutated input is different from
the output of the unmodified file, then our classified blind
spot is incorrect (Type I error), since any mutation inside a
blind spot should, by definition, not affect program output.

We also sample bytes from outside of our classified blind
spots and mutate them, similarly. If a byte outside a blind
spot can be arbitrarily mutated, it is likely a missed detection
(Type II error). However, it is not tractable to mutate and
verify all possible combinations of input bytes, since this
would amount to testing the power set of all bytes, running
in Θ(2n) time. While detecting blind spots was relatively
quick—several hours to process the 1,087 PDF corpus—,
validating the blind spots by mutating the inputs required
about a month of computation.

It might be the case that a byte outside a blind spot is
in fact a byte that can be almost arbitrarily mutated, but
has some undetected data dependency on another byte. For
example, a source code comment is this form of input to
a compiler, since the bytes within the comment can be
arbitrarily changed without affecting the behavior of the
compiler as long as the bytes do not contain the comment
delimiter. Therefore our reported Type I error rate is a tight
bound on the actual Type I error, but our Type II error rate
is a loose upper bound on the true Type II error.

We mutated all 33.5 million blind spot bytes classified in
the corpus, and all mutated blind spots produced identical
output to the original file for a 0% false-positive rate. Of
the bytes not classified as blind spots, 89% did affect the
output. Therefore, the false-negative rate is bounded above
by 11%. A significant number of these missed detections
are likely data that can be mutated almost arbitrarily, but

180

BYTES # Blind Spots Total Frequency

\r 561451 6745095
\n 52175 4996436
\x20 47752 17967270
\x00 9504 7658663
\x11 5232 3325230
\x08 3930 3611559
\x06 3629 3104109
\x09 3572 2981341
% 3145 3041586

\x12 2932 2847588
2859 3399908

\x05 2772 2873564
\x02 2640 3007837
\x0F 2607 2944161
\x14 2594 3132850
\xF0 2351 2930162
a 2348 4959732
! 2271 3172472

\xA3 2108 2783202
4 2074 4848767

\x13 2024 2788459

TABLE 2. THE TWENTY MOST COMMON BLIND SPOT PREFIXES OF
LENGTH AT MOST SEVEN BYTES.

have some data dependency that can affect output that our
random mutations did not exercise.

5.2. Blind Spot Content

What is the content of PDF blind spots for MµPDF?
In the GovDocs PDF corpus parsed by MµPDF, we

detect 63,194 unique blind spot prefixes of length at most
seven bytes, and 338,943 unique byte sequences of length
at most seven that precede blind spots.

Consider the bytes that occur at the start of a blind
spot; the most common of these are listed in Table 2. They
are all one byte long, meaning that there is a diversity of
content at the start of blind spots. The most common byte
sequences that precede a blind spot, listed in Table 3, are
more interesting: most are multi-byte, and they comprise
many PDF tokens like endobj. This means that bytes
following certain tokens are often or always ignored by the
parser.

Now let us consider the unique suffix/prefix pairs that oc-
cur adjacent to the start of a blind spot. There are 1,029,129
unique pairs of these byte sequences. If we sort them by
frequency, the pair

not a blind spot︷︸︸︷
. . .endobj . . .︸ ︷︷ ︸

blind spot

is in the top 0.01% of such pairs. “endobj” is a PDF token
used to delimit the end of an object in the document model.
The fact that this token is split across a blind spot boundary
so frequently is indicative of, at best, intentional lexical
permissiveness on the part of the parser, and, at worst, a
bug. Other interesting blind spot contexts within the top
hundredth of the first percentile include the entire endobj
token, if preceded by a carriage return. Any whitespace after
the stream token is ignored. The obj token is completely

BYTES # Blind Spots Total Frequency

n 300057 5811224
\ n 299785 629959

00000\ n 299621 555279
f 236173 3738217
\ f 235736 552315

65535\ f 205564 470855
m 66860 4242668

dstream 66588 189282
00001\ f 26343 44612

\r 12839 6745095
endobj\r 11001 527199

e 7056 7495303
be 6419 41673

Adobe 6418 11545
\x00\x0EAdobe 6417 9142

\x02 5533 3007837
\x08 4185 3611559

\x00\x02 3787 82034
00000\ f 3770 6838

\x01\x00\x02 3707 29366

TABLE 3. THE TWENTY MOST COMMON BYTE SEQUENCES OF LENGTH
AT MOST SEVEN PRECEDING A BLIND SPOT.

ignored if preceded by a space. Similarly, the PDF dictionary
delimiters << and >> are frequently skipped, e.g., at the
beginning of a PDF object. This simple contextual blind
spot frequency analysis can discover parsing errors and
differentials.

5.3. Blind Spot Context

How frequent are blind spots, and where do they occur
in PDFs?

Figure 4 plots the number of blind spots in the PDF
corpus as a function of file size. This suggests that the
number of blind spot bytes in a typical PDF is constant.
Note, however, that blind spots in PDFs can be arbitrarily
large, since the PDF format permits the inclusion of arbi-
trary binary blobs that do not have to be connected to the
document object model (DOM) [29].

Figure 5 plots a histogram of the contiguous size of blind
spot regions in the corpus. The majority of blind spots are
small, but a nontrivial number of blind spots are over 1 KB.
The average blind spot is 42 bytes long with a standard
deviation of 1.72 KB. This demonstrates the fact that PDF
is a container format that can contain arbitrarily large binary
blobs that do not have to contribute to PDF rendering.

Figure 6 is a histogram of the normalized position of
blind spot bytes in their files: the blind spot’s byte offset
divided by the file size. In our experiments with the MµPDF
renderer translating to PostScript, the majority of PDF blind
spots are at the beginning and ends of the files. This is not
surprising since the beginning of a PDF typically includes
metadata that is not necessary for rendering, and the end
of the PDF typically includes an XREF table that can be
ignored, particularly if the PDF is not malformed. Anecdo-
tally, we have observed in the GovDocs corpus that PDF
generators often add additional metadata objects that do not
contribute to rendering, typically toward the end of the file.

Figure 7 combines the two previous figures by compar-
ing the mean contiguous blind spot size to the normalized

181

0.01%

0.1%

1%

10%

50%
100%

1 kB 5 kB 10 kB 100 kB 1 MB 5 MB

B
yt

es
in

B
lin

d
Sp

ot
s

File Size

files tested

best fit: f(x) = log(a)
bx

Figure 4. Proportion of PDF bytes parsed by MµPDF that are in blind spots as a function of file size. This suggests that the number of blind spot bytes
in a typical MµPDF-parsed PDF is constant.

1

10

100

1000

10000

100000

1× 106

1 B 10 B 100 B 1 kB 10 kB 100 kB 1 MB

N
um

be
r

of
B

lin
d

Sp
ot

s

Contiguous Blind Spot Size

Figure 5. Histogram of the sizes of contiguous PDF blind spots for MµPDF. The majority of blind spots are single bytes, but a nontrivial number of blind
spots are over 1 kilobyte. The average blind spot is 42 bytes long with a standard deviation of 1.72 kilobytes. This demonstrates the fact that PDF is a
container format that can contain arbitrarily large binary blobs that do not have to contribute to PDF rendering.

position in the PDF. Despite the most blind spot bytes being
at the beginning and ends of the PDFs, the longest blind
spots tend to be in the first 10–20% of the file, but not
immediately at the beginning. The abundance of blind spots
toward the end of the document tend to be small. In order to
explain them, we need to look for patterns in their semantic
context.

In order to assign a semantic context to each byte of
input, we generate a parse tree for each PDF using Poly-
Tracker’s sister tool, PolyFile4 [16]. Each byte in the input
PDF corresponds to one or more parse tree derivations:
unique paths through the PDF parse tree. A byte could have
more than one derivation, for instance, if the input file is
a polyglot—a file that is valid in two or more formats [4].
PDFs are particularly easy to turn into polyglots, and many

4. Open-source and available at https://github.com/trailofbits/polyfile.

legitimate PDF generators exploit this fact. For example, it
is common to produce valid PDFs that are also valid ZIP
archives that, when extracted, contain additional files related
to the document. Therefore, a byte might have one derivation
in the PDF parse tree and have a different but completely
valid derivation in the ZIP parse tree. An example of a parse
tree derivation is given in Figure 8.

For each unique parse tree derivation, we count the num-
ber of blind spot bytes that occur in that derivation. The most
frequent derivation containing blind spots is application/pdf ,
the root of the PDF parse tree. This means that the majority
of PDF blind spots occur in portions of the file that have no
semantic purpose. Blind spot locality might be explained by
the fact that PDF parsers are resilient to both leading and
trailing garbage bytes before and after the PDF file. Also,
as we saw above, the majority of naturally occurring blind
spot bytes are at the beginning and end of the file.

182

0

20000

40000

60000

80000

100000

120000

140000

160000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
um

be
r

of
B

lin
d

Sp
ot

B
yt

es
in

th
e

C
or

pu
s

Normalized File Position (Byte Offset ÷ File Size)

Figure 6. Normalized position of blind spots in PDF files. With the MµPDF renderer, blind spots are most frequent at the beginning and end of PDF files.
The large number of blind spots toward the end of files can be explained by their context within the PDF cross-reference (XREF) table (q.v. Table 4),
which is not strictly necessary for rendering.

0

20

40

60

80

100

120

140

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ea

n
C

on
tig

uo
us

B
lin

d
Sp

ot
Si

ze
(B

yt
es

)

Normalized Blind Spot Start Position (Byte Offset ÷ File Size)

Average Blind Spot Length

Figure 7. Contiguous blind spot size as a function of its position in the PDF file parsed by MµPDF. Error bars correspond to the standard deviation of
blind spot sizes in that portion of the file. The longest blind spots tend to be in the second tenth of the file.

application/pdf → PDFObject → PDFDictionary → KeyValuePair →

Value → PDFList → PDFList → PSInt .

Figure 8. MµPDF’s parse tree derivation of a byte representing an integer
in a list of lists that is a value in a PDF dictionary in a PDF object.

The frequency of every unique parse tree derivation is
presented in Figure 9. Blind spots overwhelmingly occur
in a small number of derivations. However, the long tail
demonstrates that blind spots can and do occur in many
diverse derivations.

The most frequent parse tree derivations for PDF blind
spots are given in Table 4. Almost all of the derivations

descend from the PDFObject node. This is unsurprising,
since PDF objects can contain streams of arbitrary binary
data. PDF objects also do not need to be connected to
the root of the PDF document object model, nor do they
need to be used in any way for rendering. The third most
common context in which blind spots occur is within the
cross-reference (XREF) table. The XREF table is used
by the parser to quickly look up the file offsets of PDF
objects, decreasing load times. However, the XREF table
is not strictly necessary to parse a PDF, and almost all
parsers are resilient to errors or omissions in the XREF
table. Therefore, it is unsurprising that there would be many
blind spots within the XREF table. The XREF table usually
occurs toward the end of the PDF, explaining the positional

183

1

10

100

1000

10000

100000

1× 106

M
os

t Freq
ue

nt

M
ed

ian

Lea
st

Freq
ue

nt

N
um

be
r

of
B

lin
d

Sp
ot

B
yt

es
Unique Parse Tree Derivations Sorted by Blind Spot Frequency

Figure 9. Each point is a parse tree derivation—a unique path through a MµPDF PDF parse tree—whose y-axis value is the number of times a blind spot
occurred in that derivation. Blind spots overwhelmingly occur in a small number of derivations, yet there is a long tail demonstrating that blind spots can
and do occur in many diverse derivations.

distribution in Figure 6.
The second most frequent derivation for blind spots are

in PDF dictionaries. PDF dictionaries can contain arbitrary
key/value pairs which are often used for metadata that is not
necessary for rendering (e.g., timestamps). Dictionaries can
and often do contain redundant information. For example,
the length of a PDF object stream can either be specified
as a key/value pair in the preceding object dictionary or
implicitly defined by the location of a required termination
token. If both are specified, then they must agree. However,
if a length is specified in the dictionary which does not
agree with the position of the termination token, then most
parsers will ignore the specified length and defer to the token
position [31], making the dictionary entry a blind spot.

6. Conclusions

This paper defined the concept of blind spots: inputs to
a program that can be arbitrarily mutated without affecting
the program’s output. Operational semantics for blind spots
were formalized by extending SIMPIL [14]. An efficient
implementation capable of automatically detecting blind
spots, PolyTracker, was introduced. It works by adding
instrumentation for performing dynamic information flow
tracking (DIFT) to a program.

The technique was evaluated by detecting blind spots in
the popular MµPDF parser over a corpus of over a thousand
diverse PDFs [30]. There were zero false-positive blind spot
classifications, and the missed detection rate was bounded
above by 11%. On average, at least 5% of each PDF file
was completely ignored by the parser; blind spots that could
be repurposed for steganography or embedding malware
payloads.

Future work includes extending the approach to detect
inputs that can almost arbitrarily be mutated without affect-
ing output, like source code comments. Using the revealed
blinds spots to identify parser differentials, by comparing

the blind spots of different instrumented parsers, would
provide insight into vulnerabilities stemming from parsers
interpreting the same file differently. The current implemen-
tation injects its DIFT instrumentation at the LLVM/IR level.
Therefore, it is limited to programs that can be compiled
using LLVM, or binaries that can be lifted to LLVM/IR. It
would be useful to apply the technique to runtime instru-
mentation that could be applied to a black-box binary.

Our results show promise that this technique could be an
efficient automated means to detect parser bugs and differen-
tials. Nothing in the technique is tied to PDF in general, so
it can be immediately applied to other notoriously difficult-
to-parse formats like ELF, X.509, and XML.

Acknowledgments

This research was supported in part by the Defense
Advanced Research Projects Agency (DARPA) SafeDocs
program as a subcontractor to Galois under HR0011-19-
C-0073. Many thanks to Michael Brown, Trent Brunson,
Filipe Casal, Peter Goodman, Kelly Kaoudis, Lisa Overall,
Stefan Nagy, Bill Harris, Nichole Schimanski, Mark Tullsen,
Walt Woods, Peter Wyatt, Ange Albertini, and Sergey
Bratus for their invaluable feedback on the approach and
tooling. Thanks to Ange Albertini for suggesting «angles
morts»—French for “blind spots”—to name the concept.
Special thanks to Carson Harmon, the original creator of
PolyTracker, whose ideas and discussions germinated this
research.

References

[1] M. Vuksan, T. Pericin, and B. Karney, “Hiding in the familiar:
Steganography and vulnerabilities in popular archives formats,” in
Proceedings of Black Hat Europe, 2010.

[2] D. Buchanan, “Exploiting aCropalypse: Recovering truncated PNGs,”
https://www.da.vidbuchanan.co.uk/blog/exploiting-acropalypse.html,
March 18, 2023, accessed: 2023-03-18.

184

DERIVATION # BYTES

application/pdf 559430
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Key 346492
application/pdf → XRefTable 303713
application/pdf → PDFObject → PSBytes → image/jpeg 120125
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFObjRef 112948
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFLiteral 101912
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PSInt 56427
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFObjRef 54860
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PSInt 49158
application/pdf → PDFObject → PDFList → PDFObjRef 37978
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFLiteral 30841
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFDictionary → KeyValuePair → Key 26643
application/pdf → PDFObject → FlateDecode → DecodedStream → PSBytes → application/zlib 25803
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PSFloat 17474
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFList → PSInt 14489
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PSBytes → text/plain 12653
application/pdf → PDFObject → FlateDecode 11446
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PSFloat 10991
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFDictionary → KeyValuePair → Value → PDFLiteral 10052
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFDictionary → KeyValuePair → Key 8250
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFDictionary → KeyValuePair → Value → PSFloat 7743
application/pdf → PDFObject → PSBytes → application/octet-stream 7328
application/pdf → PDFObject → PSBytes → image/jp2 6147
application/pdf → PDFObject → PSBytes → text/plain 5748
application/pdf → PDFObject → PDFDeciphered → image/jpeg 4900
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PSBytes → text/plain 4845
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFDictionary → KeyValuePair → Value → PSInt 4722
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFDictionary → KeyValuePair → Value → PDFLiteral 3518
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFDictionary → KeyValuePair → Value → PDFList → PSInt 3439
application/pdf → PDFObject → PDFDeciphered → text/plain 3361
application/pdf → PDFObject → PDFDictionary → KeyValuePair → Value → PDFList → PDFList → PDFObjRef 2936
application/pdf → PDFObject → PSBytes → image/x-portable-bitmap 2806

TABLE 4. THE PDF PARSE TREE DERIVATIONS FOR MµPDF CONTAINING THE MOST BLIND SPOT BYTES. THESE PRIMARILY DESCEND FROM
PDFOBJECT. ALMOST ALL OF THE DERIVATIONS DESCEND FROM THE PDFOBJECT NODE. THIS IS UNSURPRISING, SINCE PDF OBJECTS CAN

CONTAIN STREAMS OF ARBITRARY BINARY DATA. PDF OBJECTS ALSO DO NOT NEED TO BE CONNECTED TO THE ROOT OF THE PDF DOCUMENT
OBJECT MODEL, NOR DO THEY NEED TO BE USED IN ANY WAY FOR RENDERING.

[3] H. Brodin, “How to avoid the aCropalypse,” https://blog.trailofbits.
com/2023/03/30/acropalypse-polytracker-blind-spots/, March 29,
2023, accessed: March 29, 2023.

[4] A. Albertini, “Abusing file formats; or, Corkami, the novella,” The
International Journal of Proof of Concept or GTFO, vol. 0x07, no. 6,
pp. 18–41, March 2015.

[5] E. Sultanik and P. Teuwen, “Post scriptum: A schizophrenic ghost,”
The International Journal of Proof of Concept or GTFO, vol. 0x13,
no. 10, p. 71, October 2016.

[6] J. Forristal, “Android fake ID vulnerability,” in Proceedings of Black-
Hat US, August 2014.

[7] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI layer cake:
New collision attacks against the global X.509 infrastructure,” in
Financial Cryptography and Data Security, R. Sion, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 289–303.

[8] M. Balduzzi, C. Torrano-Gimenez, D. Balzarotti, and E. Kirda,
“Automated discovery of parameter pollution vulnerabilities in web
applications,” in Proceedings of the Network and Distributed System
Security Symposium, February 2011.

[9] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2018, pp. 711–725.

[10] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx,
and S. Schmieg, “How to abuse and fix authenticated
encryption without key commitment,” in Proceedings of
the 31st USENIX Security Symposium. Boston, MA:
USENIX Association, August 2022. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/albertini

[11] C. Brant, P. Shrestha, B. Mixon-Baca, K. Chen, S. Varlioglu, N. El-
sayed, Y. Jin, J. Crandall, and D. Oliveira, “Challenges and opportu-
nities for practical and effective dynamic information flow tracking,”
ACM Computing Surveys, vol. 55, no. 1, November 2021.

[12] P. Yang, F. Kang, Y. Zhao, and H. Shu, “DRTaint: A dynamic taint
analysis framework supporting correlation analysis between data
regions,” Journal of Physics: Conference Series, vol. 1856, no. 1,
p. 012013, April 2021. [Online]. Available: https://doi.org/10.1088/
1742-6596/1856/1/012013

[13] “DataFlowSanitizer,” https://clang.llvm.org/docs/DataFlowSanitizer.
html, accessed: 2020-07-26.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Proceedings of the IEEE
Symposium on Security and Privacy, 2010, pp. 317–331.

[15] J. Cheney, A. Ahmed, and U. A. Acar, “Provenance as dependency
analysis,” in Database Programming Languages, M. Arenas and M. I.
Schwartzbach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 138–152.

[16] E. Sultanik, B. Larsen, and C. Harmon, “Two new tools that
tame the treachery of files,” https://blog.trailofbits.com/2019/11/01/
two-new-tools-that-tame-the-treachery-of-files/, November 1, 2019,
accessed: January 12, 2020.

[17] C. Harmon, B. Larsen, and E. Sultanik, “Toward automated gram-
mar extraction via semantic labeling of parser implementations,” in
Proceedings of the Sixth Workshop on Language-Theoretic Secu-
rity (LangSec). IEEE Symposium on Security and Privacy, 2021.

185

[18] “[DFSan] change shadow and origin memory layouts to match
MSan.” LLVM commit 45f6d5522f8d, https://reviews.llvm.org/
D104896?id=354633, accessed: 2020-07-26.

[19] M. Höschele and A. Zeller, “Mining input grammars from dynamic
taints,” in Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ser. ASE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, pp. 720–725.

[20] W. M. Khoo, “Taintgrind: a Valgrind taint analysis tool,” https:
//github.com/wmkhoo/taintgrind, accessed: March 2, 2020.

[21] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of the Annual USENIX Technical Conference, ser. ATEC
’05. USA: USENIX Association, 2005, p. 41.

[22] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan,
“Repeatable reverse engineering with PANDA,” in Proceedings of
the 5th Program Protection and Reverse Engineering Workshop,
ser. PPREW-5. New York, NY, USA: Association for Computing
Machinery, 2015.

[23] A. Davanian, Z. Qi, Y. Qu, and H. Yin, “DECAF++: Elastic Whole-
System dynamic taint analysis,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019).
Chaoyang District, Beijing: USENIX Association, September 2019,
pp. 31–45.

[24] A. Karaman, “Measuring QEMU emulation efficiency,”
https://ahmedkrmn.github.io/TCG-Continuous-Benchmarking/
Measuring-QEMU-Emulation-Efficiency/, August 2020, accessed:
2020-07-26.

[25] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson,
and M. Hicks, “Breaking through binaries: Compiler-quality

instrumentation for better binary-only fuzzing,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
August 2021, pp. 1683–1700. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity21/presentation/nagy

[26] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution
framework,” in Symposium sur la sécurité des technologies de
l’information et des communications, ser. SSTIC, Rennes, France,
June 2015, pp. 31–54.

[27] S. Poeplau and A. Francillon, “Symbolic execution with SymCC:
Don’t interpret, compile!” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
181–198. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[28] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analy-
sis framework,” in Proceedings of the 2007 International Symposium
on Software Testing and Analysis, ser. ISSTA ’07. New York, NY,
USA: Association for Computing Machinery, 2007, pp. 196–206.

[29] P. Wyatt, “Work in progress: Demystifying PDF through a machine-
readable definition,” in Proceedings of the Seventh Workshop on
Language-Theoretic Security (LangSec). IEEE Symposium on Se-
curity and Privacy, 2021.

[30] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing
science to digital forensics with standardized forensic corpora,”
Digital Investigation, vol. 6, pp. S2–S11, 2009, proceedings of
the Ninth Annual DFRWS Conference. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1742287609000346

[31] J. Wolf, “OMG WTF PDF—PDF ambiguity and obfuscation,” in
Proceedings of TROOPERS, Heidelberg, Germany, March 2011.

186

