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Abstract—In little more than a decade, Go has become one
of the most popular programming languages in use today.
It is a statically-typed, compiled language with spatial and
temporal memory safety achieved by way of strong typing,
automatically inserted bounds checks, and a mark-and-sweep
garbage collector. Go developers can make immediate use of
a large set of native libraries, whether shipped as part of the
runtime or available to be imported from community code.
Alternatively Go developers can directly link to C/C++ libraries
which can be called from Go sources thanks to cgo functional-
ity. Factors that go into this decision are stability, performance,
and availability. As a result developers have a choice between
Go native libraries or non-native code. However, today there
is little understanding how to consider security implications in
this decision.

Our work is the first to investigate security implications
of choosing between native and non-native libraries for Go
programs. We first investigate to what extent popular GitHub
projects make use of cgo, revealing that this choice is in
fact quite popular. We then design and build a differential
fuzzer that can compare native and C/C++ implementations
of the same functionality. We implement the fuzzer and test its
effectiveness on four popular packages (libcrypto, libpng,
libssl, and libz), describing the results and highlighting
their security impact. Finally, we present two real-world case
studies (anti-virus evasion including the anti-virus scanner in-
cluded in Gmail plus Certificate Transparency case study) and
discuss how our differential fuzzer discovered implementation
differences with security impact. Our work has led to changes
in Golang zlib which have since shipped.

Index Terms—Computer security; Application Security;
Fuzzing; Language Security;

1. Introduction

Go is a programming language that is widely celebrated
for its security benefits and concurrency. The language is
memory safe by default and overcomes decades of security
problems by languages such as C/C++. However, when mak-
ing use of libraries to leverage commonly used functionality,
developers are faced with a difficult choice: Use native Go
libraries or non-native C/C++ (using the cgo feature of the

compiler/runtime). Factors that go into this decision today
are availability, performance, and stability.

While Go offers a wide array of libraries, not all libraries
are available in Go and developers might be required to
reimplement functionality by following specifications. This
is expensive and error-prone. Performance is also a consid-
eration when making the decision between native and non-
native libraries, as using C/C++ libraries can bring perfor-
mance advantages to programs that make heavy use of such
functionality. Stability is another factor since libraries can
have different maturity levels. Go libraries are implemented
from a clean slate but might be missing extensive testing,
whereas C/C++ libraries might have stale code, but have
gone through decades of testing.

Beyond the factors of availability, performance, stability,
security implications should also be considered when mak-
ing this decision, because there are security issues associated
with either option. In the case where the developer reuses
existing C code, they run the risk of introducing memory
safety issues that may exist in the C library. In the case of
a Go reimplementation, new defects that do not exist in the
C library version may be introduced, at the specification or
implementation level. More broadly, libraries designed and
implemented differently will likely deviate in their outputs.
From a language-theoretic point of view, we can see this
as an instance of the parse tree differential attack [38],
[30], [37]: two different parsers exist for the same proto-
cols/languages, and the differences between them may lead
to security issues. Unfortunately, formally verifying whether
two parsers are equivalent is undecidable for context-free
languages [29], which motivates pragmatic, albeit incom-
plete, approaches such as greybox fuzzing.

In this paper, we propose and implement an approach to
study the problems deriving from the use of native vs. non-
native libraries in the case of the Go programming language.
In particular, we look for differences between these two
types of libraries by making use of differential fuzzing,
focusing on commonly used libraries where differences may
lead to widespread security impact.

We take an effective approach to differential fuzzing,
by making use of an existing fuzzer targeting either of
the two library versions to generate an input corpus and
a harness. For each input, we compare the output (and
possibly other side effects) of both libraries. For instance,
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in the case of a parsing library, if the same input results in
two different parsed outputs, a potential defect may exist.
Based on the parsing results alone it is not immediately clear
which of the two parsers deviated from the specification,
if any. Specifically, security vulnerabilities can arise from
the difference alone, rather than one parser misinterpreting
input.

We develop and evaluate our differential fuzzer on four
popular libraries and explore differences between the two
implementations (native vs. non-native). We discuss the find-
ings for three libraries in detail, to reveal the root cause and
gauge security implications. For the fourth library, libpng,
our findings had no justifiable security impact.

We also present two case studies: in the first, we show
how to corrupt the headers of libz-compressed data, leading
to evasion in 19 anti-virus (AV) products and the AV scanner
included in Gmail. In the second, provided in the Appendix,
we show how parser mismatches can impact Certificate
Transparency infrastructure. For all affected products we
initiated responsible disclosure processes.

Our findings demonstrate that: (i) From the security
point of view, the choice for a Go developer between a Go
implemented or C/C++ library is not straightforward; (ii)
Differential fuzzing is an effective approach to find parser
differences between library implementations, and should
be employed systematically on Go re-implementations of
C libraries; (iii) Parser differences may lead to important
security issues.

To summarize, the contributions of this paper are the
following:

• We design a custom differential fuzzer to uncover
security relevant parsing differences in libraries used
in Go programs.

• We implement a prototype of our design, with sup-
port for widely used libraries: libcrypto, libpng,
libssl, and libz.

• We evaluate the fuzzer extensively on unique differ-
ences and analyse root cause and potential impact.

• We present two case studies where discovered parser
differences lead to security impact. One study affecting
Certificate Transparency and one bypass for 19 AV
systems tested on Virus Total, plus Gmail.

2. Analysis of GitHub Go code

In this section we describe our analysis of native
code use in popular GitHub repositories. We crawled
GitHub checking Go repositories for usage of two packages
(unsafe, C) as well as for .s files. unsafe permits cir-
cumventing some of the spatial memory safety guarantees of
Go such as C-style pointer arithmetic or casts that override
the type system. The C package contains functions that
are directly callable from Go and yet are written in C.
Furthermore, .s files are source files in the Go assembly
language which is usually lowered into analogous platform
assembly.

We implemented the crawler using astutil package to
walk the AST. We scan for function invocations rather than

imports for side effect reasons and also ignore autogenerated
code.

The analysis revealed widespread use for both unsafe
and C while .s usage was low. Further we compare usage
of unsafe and C function calls to regular Go function
calls. We found that unsafe functions are on average
shorter, while regular Go functions have on average longer
comments.

We attempted to extend the automated Go source code
analysis to report what the most common targets of non-
native invocations are in Go programs. This requires an
automated way to classify uses of cgo; one way is to extrap-
olate the target from the cgo headers (include directives and
linker flags). However, it is often the case that cgo is used as
glue code or to implement wrappers or specific functionality
which is not immediately attributable to a specific target
through metadata. We therefore leave the task of automating
the target identification of cgo invocations as an item of
future work.

2.1. Dataset

We use stars as proxy for community interest in
the projects and analysed the highest rated ones. We
scanned 1,001 projects total, ranging from 94,516 stars
to 2,312 stars1. We believe this is a representative cor-
pus to analyse, we consider repositories of widely used
code such as golang/go, kubernetes/kubernetes,
prometheus/prometheus. This experiment was per-
formed in January 2022.

2.2. Findings

Overall we found that 298 repositories use unsafe
(29.77%), 550 use C (54.95%) and 51 include .s files
(5.09%). The popularity of C and unsafe code seems sur-
prising, especially considering 23.68% of the top reposito-
ries combine both C and unsafe. The detailed breakdown
of popularity by kind of Go code is in Table 1.

To gauge function complexity and how well documented
different kinds of Go code are we collected metrics on the
top GitHub repositories. We use function length as proxy
for complexity and characters used to comment functions.
The average unsafe function has the least lines as well as
least characters used for comments. For C code the median
function length one line below other kinds, and on average
the functions are as long as regular Go code. The data is
broken down in detail in Table 2.

2.3. Motivation

Go provides many libraries implemented natively, but
developers often choose to include code written in C/C++,
whether for performance, to avoid re-implementation, or
otherwise. While our crawl does not allow to reason why

1. Note: we planned to analyse the top 1,000 – however, a tie between
two repositories led us to consider 1,001 repositories instead
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TABLE 1. BREAKDOWN OF UNSAFE , C, AND .S USAGE ACROSS TOP
GITHUB GO REPOSITORIES, 1,001 TOTAL. WE NOTICE THAT C CODE IS

POPULAR (54.95%) WHILE S IS ONLY USED IN 5.09%. OVERALL,
38.86% OF THE ANALYSED REPOSITORIES CONTAIN NONE OF THE

THREE PROPERTIES UNDER ANALYSIS.

Type Repositories
Unsafe 298 (29.77%)

C 550 (54.95%)
S 51 (5.09%)

C+Unsafe 237 (23.68%)
C+S 48 (4.80%)

S+Unsafe 47 (4.70%)
C+S+Unsafe 45 (4.50%)

No C or Unsafe 390 (38.96%)
No C, S, or Unsafe 389 (38.86%)

All 1,001 (100%)

developers use C and unsafe, it raises questions for in-
teroperability of Go software when interacting with other
systems. In this case, parsing problems that might occur in
distributed systems using different languages, might occur
even between systems using the same language.

The popularity of Go motivated our research in find-
ing differences between libraries which are intended to be
equivalent but often in practice are not. These discrepancies
can lead to an array of security problems where a fuzzer
can help in discovery.

3. Differential fuzzer

A differential fuzzer provides the same input to two dif-
ferent programs, and compares the outputs (or side effects)
to detect differing behaviour. In this section, we describe
the high-level design and implementation of a differential
fuzzer we built with the goal of finding differing behaviour
between C libraries invoked through cgo and the same
libraries rewritten natively in Go.

We summarise first the main challenges involved in the
design and implementation of a fuzzer with the objective
to find security-relevant implementation differences between
Go and C libraries:

• The language gap between the two worlds needs to
be fixed: Go and C do not enjoy binary compatibility,
nor do they have a common fuzzing framework. While
it is possible under certain circumstances to call C
code from Go and vice-versa, those mechanism are not
fuzzer-friendly.

• Create a meaningful notion of difference in the be-
haviour of the two libraries. This is of fundamental
importance since without such notion it is impossible to
tell whether the two libraries under investigation behave
in the same way or not. This task is rendered more
complex by the aforementioned language gap.

• Since we focus on the security aspects of the Go vs. C
choice, finding differences in the behaviour of the two
libraries is not sufficient: we must also show that these
differences have a security impact.

3.1. Design

Our differential fuzzer consists of three main compo-
nents: input generation, input/output harness, and compari-
son functionality. These last two components are specific to
a chosen library and require manual adjustments for each
target library.

Input generation This component is responsible for
creating inputs that will be provided to both libraries. We
opt for a coverage-guided fuzzer design, given the success of
existing fuzzers such as AFL, libFuzzer, or honggfuzz. The
input generation makes use of code coverage in the library
code to select inputs that are more interesting, and mutate
such inputs with higher priority over other inputs that do
not increase coverage. For the initial corpus, we reuse any
available corpus used for fuzzing the selected library.

Input/Output harness As in existing fuzzers, we write
harnesses that use the inputs from the previous phase to
invoke functions from the target libraries. In contrast with
fuzzers targeting single libraries, we need to format these
inputs differently for each of the two targets libraries, and
collect outputs from both libraries. In addition, the targeted
library functionality needs to be deterministic in the input
provided, and largely stateless.

Comparison functionality In this step, the two sets of
collected outputs are compared. For each library, a differ-
ent comparison function needs to be written to accurately
identify differences in output.

3.2. Implementation

This section describes the implementation of our dif-
ferential fuzzer, based on the coverage-guided fuzzer go-
fuzz [43]. As discussed previously, we target semantically
equivalent implementations in Go and C/C++. We assume
that the starting point is a fuzzer native to one of those
two language (e.g. AFL [46] for C/C++ or go-fuzz [43]
for Go). A first challenge lies in the fact that neither of
these fuzzers allows a harness developer to simply issue
calls to functions belonging to the implementation in the
other language: for example, it is not immediately possible
to call a function of the Go implementation of the SSL
protocol from the AFL harness of libssl. We evaluate
both options – native C/C++ fuzzer and harness with custom
Go binding, and native Go fuzzer and harness with custom
C/C++ binding – and identify the latter as the most effective
approach to prototype. The reason is that the Go runtime
includes the cgo mechanism to call C/C++ shared objects;
no such mechanism exists for the case of a C/C++ binary
calling a Go function.

Our fuzzer builds upon a native Go fuzzer and corpus,
go-fuzz [43] and go-fuzz-corpus [42]. The first
project implements the fuzzing engine and the modifications
required of the runtime to deliver code coverage information,
whereas the second contains harnesses and corpora for a
set of modules (e.g. ASN.1, png, tls. . .). The harness for a
given module is developed by implementing the following
function
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TABLE 2. SUMMARY OF THE LENGTH OF FUNCTIONS AND THE EMBEDDED CODE COMMENTS. WE FOUND THAT PLAIN GO FUNCTIONS HAVE ON
AVERAGE LONGER COMMENTS, WHILE UNSAFE FUNCTIONS ARE ON AVERAGE SHORTER. WE DO NOT CLAIM THAT THESE STATISTICS ARE RELATED
TO CODE QUALITY. NOTE THAT ONLY GO/CGO CODE IS CONSIDERED HERE, S FILES ARE EXCLUDED AS THEY CANNOT BE DIRECTLY COMPARED TO

IN TERMS OF LENGTH.

Type Function Lines Comment Characters per Function Functions
Median Average Median Average

Unsafe 7 11 61 88 67,853
C 6 16 61 150 25,122

C+Unsafe 7 12 61 105 92,975
No C or Unsafe 7 16 53 175 1,820,009

All 7 16 55 172 1,912,984

func Fuzz(data []byte) int

taking the fuzzer-generated byte slice as input and returning
an integer that signal whether the considered mutation is an
interesting one or not.

To implement a differential fuzzer for a specific module
in Go, we first need to identify a C implementation of
that module. Next, we need to implement a semantically
equivalent Go API that calls the C implementation of the
selected module. The existing harness can then be extended
by introducing – after each call to the Go module – the
equivalent call to the C one.

3.2.1. C implementation and harness. Calling the C im-
plementation from Go can be achieved using cgo. It is
a mechanism directly implemented by the Go compiler
and runtime. A developer imports a pseudo-package which
exposes callable functions included as C sources, which
then become callable from the Go sources. The compiler
automatically invokes gcc to build the C sources and it
introduces appropriate trampoline code to transition between
Go and C implementation.

Unfortunately cgo is not immediately usable since go-
fuzz does not support it directly [13]. We solve the problem
by creating a Go plugin to package the C dependency, and
invoke the plugin from the harness, thus removing the need
for go-fuzz to directly build a cgo project. This approach
is still not viable since go-fuzz builds the instrumented
binary with its own GOROOT and GOPATH environment with
an appropriately instrumented runtime to extract coverage
information. However, in order to ensure binary compatibil-
ity with the program that uses them, Go plugins must be
built against the identical runtime; the compatibility check
is executed at runtime to ensure that the link-time package
hashes in the plugin are identical to those of the current
runtime. We choose to modify the Go runtime to remove
this check and let the fuzzer binary load the plugin and
let the harness call it. While this option is not ideal from
a maintainability perspective, it is sufficient to prototype
the system and analyse the results it produces. Recently
the Go community has added native fuzzing support to the
runtime [15], which was released with Go 1.18.

The reader will notice that with this approach the fuzzer
cannot use code coverage information from the C implemen-
tation, but does obtain coverage information from the exist-
ing native Go implementation. This is a current limitation

of our fuzzer which may be improved in future releases by
enabling native code coverage in the cgo build, extracting
such information and feeding it to the fuzzer.

3.2.2. Output handling. With this approach we can develop
a set of semantically equivalent API to invoke from the
harness alongside the Go ones. Ideally, both implementa-
tions would behave identically: that is, they would either
both successfully process correct input, or both return errors
for malformed input. Errors and panics need to be handled
carefully: while traditional fuzzing mainly targets abnormal
program executions (e.g. a crash), our framework is mainly
interested in cases where the behaviour of the two imple-
mentations diverges. For example, a scenario of interest
is one where one of the two implementations successfully
handles an input whereas the other returns a processing error
(or crashes).

Towards this goal, we extend the harness of go-fuzz-
corpus (for the selected targets) to pair each call to the
fuzzed target with an equivalent call to the C implementa-
tion. Each pair of calls must behave in a semantically similar
way. The definition of semantic similarity varies from call
to call, and is best defined by example: two functions that
can only return error/no error qualify for semantic similarity
under our definition if (given identical input) they either
always both return an error or no error. For functions that
also provide a return value, semantic similarity is defined
by requiring that the returned value be deeply equal. For
instance, if we consider the ASN.1 component, its parsing
functions returns (error, interface{}). We then de-
fine semantic similarity to mean that either both functions
return an error, or they both return an interface that can be
typecast to the same structure, and that furthermore the two
structures are deeply equal.

go-fuzz lets harness developers encode the usefulness
of the mutation in the return value of the harness, so that the
fuzzer knows whether to further mutate it or whether to drop
it (a positive value encodes an interest in the mutation). An
initial attempt to return a positive value whenever the two
implementations return conflicting results caused the fuzzer
to insist on minor mutations of an input that keep exercising
the same code path (and hence, the same difference between
the two implementations). Among others – the previously
mentioned lack of coverage from the C implementation
might be a contributing factor to this behaviour. We have
modified the harness to catch panics/errors generated by
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such scenarios, report them back to the user and then return
−1 to signal no further interest in the mutation. A deeper
analysis of the root cause for the original behaviour might
reveal more effective solutions. We leave this as an item for
future work.

4. Evaluation

For our differential fuzzer prototype, we target four pop-
ular Go modules, encoding/asn1, image/png, cryp-
to/x509, and compress/zlib. The reasons for this
selection are the following: i) all usually handle security-
sensitive input; ii) each component has a stable implemen-
tation in widely used C libraries (libcrypto, libpng,
libssl, and libz); iii) native harnesses in go-fuzz-
corpus exist for all four modules; and iv) it is possible
to create C APIs that are semantically equivalent to the Go
modules. One library that is prominent but absent from this
evaluation is JSON. The reason for its exclusion, despite
its popularity, is that the JSON standard is not versioned
and inconsistent across implementations2. As such, it would
make for a poor target to evaluate as inconsistencies are
expected.

ASN.1 The existing harness for encoding/asn1 at-
tempts to unmarshal the input provided to the Fuzz function
as a pre-defined set of data types (integers, identifiers,
various types of strings, time-related object, and a custom
struct), then marshals and unmarshals them again and com-
pares the resulting output, asserting it to be equal to the
initially decoded value. Panics are not filtered and a positive
return value is returned whenever the initial unmarshalling
was successful. We create Go API for marshalling and
unmarshalling backed by libcrypto: in particular we use
ASN1_item_d2i for unmarshalling and ASN1_item_-
i2d for marshalling, paired with two sets of constructors
(Go and C) converting pointers to C types into pointers to
Go types and vice versa. Then we extend the harness by
adding a call to the C marshaller/unmarshaller whenever a
call to the Go module is issued, and assert a semantically
similar behaviour for each pair of calls.

png The existing harness for image/png interprets
the supplied bytes as a PNG image; these bytes are ini-
tially passed to png.DecodeConfig which decodes the
metadata header in the first bytes of the image, followed
by a call to png.Decode to attempt to decode the full
image. If this step succeeds, the image is encoded (using
all available compression levels), then re-decoded and the
resulting image checked for equality against the one origi-
nally decoded. We create Go API to decode PNG metadata
and data using libpng. In particular, after constructing a
read primitive from byte and setting error handling, we call
png_read_png to decode the entire image, followed by
png_get_IHDR to extract PNG metadata. We then check
that metadata extracted with the native implementation is
equal to the one extracted by the Go plugin.

2. http://seriot.ch/parsing json.php

X.509 The crypto/x509 package supports parsing
and using a number of artefacts from the X.509 standard,
that includes cryptographic material, certificates, revocation
lists and so forth. We focus on certificates and its existing
harness, FuzzCertificate, which attempts to parse the
supplied bytes as a certificate, and then performs a number
of operations on the returned object (e.g. check the CA
signature on subject). We use the certificate parser supplied
by libcrypto (in the specific, by the d2i_X509 func-
tion) to implement a certificate parser equivalent to Go’s
x509.ParseCertificate. We then extend the harness
to call both parsers and assert semantic similarity by ex-
pecting equivalent error treatment and equivalent certificate
metadata for a successfully-parsed certificate.

zlib The harness for compress/zlib interprets the
supplied bytes as DEFLATE-compressed input and attempts
a decompression; if it is successful it compresses it (for
all available compression levels), decompresses it again
and checks for bytewise equality with the outcome of the
initial decompression. We provide a Go implementation of
a reader/writer pair backed by libz, where compression
and decompression are achieved by calling deflate and
inflate, respectively. The harness is then extended by
pairing each compression and decompression with its C
counterpart, and asserting bytewise equality of compressed
and plain data. We also exercise the Go decompressor on
the C (re)compressed data and vice versa, always asserting
bytewise equality.

4.1. Experimental setup

We fuzzed all targets (libcrypto, libpng, libssl,
and libz) for 12 hours per run, go-fuzz-corpus con-
figured to restart after 10 minutes, repeating the experiment
5 times with a total fuzz time of 60 hours per target. We
used the standard corpus provided by github.com/dvyukov/g
o-fuzz-corpus with one exception. For the X.509 target we
used additional corpora3, because starting with the standard
corpus yielded no results for each of the 12 hour runs.

We execute the tests 5 times each for repeatability and
run over 12 hours each. To make tests independent we reset
state between each run. For our experiments, we use related
work on evaluation of fuzzers as a guide [31]. However, in
this work we do not compare directly against other similar
fuzzers.

As opposed to unique crashes which fuzzers usually
consider as metric, we use unique differences in errors dis-
covered, applying deduplication logic. We ran experiments
on a commodity hardware server (Intel i7 8 Core CPU,
32GB).

4.2. Results

In this section we discuss in depth some of the findings
reported by our differential fuzzer, with considerations about
their possible security impact. Despite implementing the

3. http://fm4dd.com/openssl/certexamples.htm
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Figure 1. We evaluated each plugin for 12 hours running 5 times each, restarting every 10 minutes with 60 hours of fuzz time per target total. To ensure
results are independent we reset state before each run, resetting corpora and crashers. Each line in this plot represents one such fuzzing run. Due to the
random nature of fuzzing, each run can perform differently, and might not discover the same differences over 12 hours.

harness and running the fuzzing campaign, we did not find
any discrepancy for which we could justify a security impact
for the libpng case; as such, no results are reported for
that target.

4.2.1. ASN.1. The ASN.1 parsers in libcrypto and en-
coding/asn1 do not handle dates and strings the same
way. To represent dates, the ASN.1 standard [9] has two
tags: UTC and generalised. The two tags are associated with
different string formats to represent time: where generalised
time accepts four characters for the year and (optional)
second fractions, UTC time only supports two digits to
represent the year and an integer number of seconds. The
fuzzer reveals that the Go parser will unmarshal generalised-
encoded time as UTC and UTC-encoded time as gener-
alised, without reporting an error. On the contrary, the
libcrypto parser will correctly report an error in these
cases. Furthermore, the Go parser will incorrectly report
an error when second fractions are encoded as part of a
generalised-encoded ASN.1 time string.

To represent strings, ASN.1 includes a number of dif-
ferent tags where the set of supported characters varies:
for example, NumericString only supports spaces and
digits, PrintableString includes the set of printable
ASCII characters and so forth. The fuzzer reveals that in
the Go parser mismatches occur between the expected field

type supplied by way of annotations of structure fields (or
through parameters directly supplied as function arguments)
and the actual field type encoded in the ASN.1 tag byte.
In contrast, libcrypto will report an error when an
unmarshalling is requested as a type that conflicts with the
one encoded in the tag byte of the input. As an example,
it is possible to create a string that contains non-ASCII
characters, encode them in an ASN.1 string payload tagged
as TagUTF8String and have the Go parser parse it as a
string of type PrintableString.

We argue here that this behaviour of the Go parser
might have security implications. For example, in the case
of ASN.1 strings, the behaviour of the Go parser might give
developers a false sense of security, since they might assume
that an ASN.1 string tagged as printable will only contain
a subset of all printable ASCII characters. An adversary
might exploit this assumption and mount an attack similar to
punycode-based spoofing, where two ASN.1 encoded strings
are visually similar, owing to the similarities of certain char-
acters across alphabets, despite not being bytewise equal.

4.2.2. X.509. Our differential fuzzer highlights several dif-
ferences between crypto/x509 and libcrypto. All
reported issues are caused by conflicts in the error model
of the two libraries, namely, given an input, situations in
which one of the two parsers returns successfully when
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the other fails and returns an error. The analysis of the
results reveals a set of false positives, stemming from the
fact that full semantic similarity (as described in Section 3)
was not achieved: for example, the Go parser performs
several semantic validity checks (e.g. it will verify whether
the modulus of an RSA public key has a length within
an admissible range), whereas the libcrypto parser will
defer such validation till when the RSA public key is used4.
After filtering out the false positives, we report a few real
cases of inconsistent error handling. One simple example is
constituted by the way the two libraries handle trailing data:
the libcrypto parser ignores trailing data whereas the Go
parser always produces an error whenever the parser identi-
fies the presence of trailing data beyond that which encodes
a valid certificate. A more interesting case is represented
by several inconsistencies in the way each implementation
interprets the ASN.1-encoded bytes into the complex data
structure defined for certificates in RFC 5280 [10]. We
provide here an example that focuses on the way standard
certificate extensions are encoded. In particular, we consider
the Authority Key Identifier extension, used to identify the
public key that signed this certificate. The standard requires
that this field be encoded as an ASN.1 sequence of three
optional octet strings (an identifier of the key, the issuer of
the certificate, and its serial number). Our fuzzer reveals that
the Go implementation abides by this requirement, whereas
the libcrypto implementation will also accept a plain
octet string for this field (notably, one not enclosed in an
ASN.1 sequence) whenever only one of the three optional
subfields defined in the standard is present.

In adversarial settings, these properties may be exploited
in a number of ways. The inconsistencies in the way trailing
bytes are handled represent a powerful primitive to build
a covert channel between two malicious entities that use
a system where libcrypto is employed to parse X.509
certificates. Another scenario of interest is represented by
consensus-critical applications: this class of applications
usually consists of a network of nodes running a program
that processes transactions in a certain order. It is paramount
that each of the nodes in the network process each of the
transactions in the same way with identical side effect;
otherwise the underlying network is said to have forked.
Multiple implementations of the program might exist in
different programming languages: it is for instance the case
for Bitcoin and Ethereum, both consensus-critical applica-
tions, having widely-adopted implementations in different
programming languages. Should X.509 parsing be required
by these applications, it would be possible to exploit the
inconsistencies described above to fork that network, achiev-
ing at least some form of denial of service, and at worst
violating some correctness properties of the network.

X.509 stands out from other tested libraries in our work.
In a relatively short amount of time operating on commod-
ity hardware we found reproducibly over 125 unique mis-

4. The reader will notice that using a purported public key without
validation might have disastrous consequences from a cryptographic stand-
point, possibly leading to a full plaintext recovery attack.

matches (Figure 1). Due to the amount of differences found
it appears there was no attempt made to match behaviour
by maintainers using differential fuzzing.

4.2.3. zlib. The libz and compress/zlib decompres-
sors are not consistent in the way they handle errors. One
difference lies in the strictness with which each library
accepts the input bytes constituting the zlib header. The
zlib standard [8] expects a 2-byte header: the 4 LSB of
the first byte encode the compression method, whereas its
4 MSB encode the compression information (the base-2
logarithm of the LZ77 window size, minus eight) – 0x78
is the value that is practically always used. The second
byte encodes the compression level, whether a dictionary is
present and a check field used for error detection. Our differ-
ential fuzzer reveals that the compress/zlib component
will accept compression information that is not compliant
with the constraints appearing in the standard, which states
that values above 7 are not allowed in this version of
the specification: indeed, we could verify that for the Go
implementation – provided that the check field is computed
correctly (that is, the two header bytes are congruent to zero
modulo 31) – the compression information field may contain
arbitrary data, since the actual value of the field does not
impact the outcome of the decompression.

From a security perspective, this feature of the Go
implementation may be used – for example – to build a
covert channel, where a malicious sender transmits bits to
a malicious receiver by encoding them in the compression
information field, in a scenario where they are both users of
a Go program that uses compress/zlib to decompress
data. As another example, consider a scenario where an In-
trusion Detection System scans malicious input, attempting
to verify whether it may contain a zlib-compressed payload,
and in that case flag it as malicious and drop it. The IDS
uses libz for its parser, and as such, concludes that an input
where the first byte of the header is not equal to 0x78 is
invalid. Downstream the IDS, a Go application using the
compress/zlib decompressor will instead successfully
decompress the malicious input and process it further, thus
successfully evading the IDS input check owing to the
inconsistencies between the two compression libraries.

We disclosed this finding to the Go maintainers who
created a patch to make the parser more strict and be
in line with the specification. In detail, the patch checks
whether zlibMaxWindow is larger than 7 and will emit an
error if true. Details of the patch are available in the Go
source repository https://go-review.googlesource.com/c/go/
+/395734/.

5. Case Study

In this section we select a deviation in library behaviour
reported by our differential fuzzer and construct a realis-
tic scenario where an adversary is able to exploit them.
This demonstrates that such deviations can have a security
impact. We provide a second case concerning Certificate
Transparency in the appendix, Section A.
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5.1. Anti-Virus evasion

We consider the typical signature-based anti-virus (AV)
usage scenario running on a host, where the AV scans files
for known malware prior to the file being used. This AV
could also run instead of files on the host, on incoming
or outgoing emails, or backups. We demonstrate that some
AVs can be evaded by making use of parse tree differences
between the Go and C compression libraries.

AV Scanner VictimAttacker

Figure 2. In this scenario, an attacker can evade an AV scanner by creating a
libz file with corrupted header. In detail, the attacker compresses malware
into a regular libz archive and then corrupts its headers by modifying
two bytes. Next, the attacker transmits the corrupted file to their victim.
When analysing the file, the AV scanner fails open as it cannot unpack the
archive, due to using a C library. Victim unpacks the archive with software
written in Go, delivering malware to the victim host. This evasion worked
on 19 AV systems tested on Virus Total. We reported the vulnerability to
Go maintainers and it was fixed promptly.

5.1.1. Background. A known way for attackers to bypass
such AVs is via compression. If the AV does not attempt
to decompress and scan incoming files, the AV may be
bypassed. For these reasons, many AVs have incorporated
known compression formats, and attempt to decompress po-
tentially malicious content to scan the files therein. We focus
here on the zlib [8] compression algorithm, because our
fuzzer found parser differences in the handling of this format
between the C libz library and the Go compress/zlib
library for decompression.

5.1.2. Attack scenario and exploit. The precise scenario
that we consider here is the following one. An AV uses
the C libz library to attempt to decompress files, to scan
them. The victim uses the Go compress/zlib library
for decompressing the content prior to making use of it.
The attacker’s goal is to evade AV detection while ensuring
that the victim successfully decompresses the content. The
attack exploits header handling inconsistency described in
Section 4.2.3. The AV is unable to decompress with the C
libz library, and essentially fails open. That is, the AV can
typically not afford to flag or quarantine files that are not
recognized as the compression format or do not decompress
properly, as that would lead to many false positives, which
frustrates users. However, the Go library successfully rec-
ognizes the format and decompresses the content, exposing
the user. The attack is depicted in Figure 2

5.1.3. Methodology and results. We use VirusTotal [20], a
widely used AV aggregator that comprises 66 AV products
as of our testing date (Feb 9th 2022). As malware, we use

the EICAR test file [16], a test file specifically designed
for testing AV products: 60 out of the 66 AV products on
VirusTotal detect the EICAR test file as malware. We then
prepare two files. The first is a standard zlib compressed
EICAR test file, and is used to evaluate which AV products
attempt to decompress zlib files to scan them (md5
hash: 914eec66a6a417f25c6a8188754872b1).
The second is the first file modified with the two
byte header modification explained in Section 4.2.3,
and is used to evaluate which AV products would
be successfully evaded by the attacker (md5 hash:
8ba55a94dcb6863758e1f4619e5194c1). Results
show that 19 AVs attempt to decompress the file and
successfully detect the first file, while none of the AVs are
able to detect the second file. To summarize, our evasion
strategy is 100% successful and is applicable to 19 AVs,
including many commonly used ones.

As an additional datapoint for the practical relevance of
the attack, we test both files with the AV scanner integrated
in Gmail for outbound messages. Gmail successfully detects
the first file and does not detect the second one, demonstrat-
ing the the evasion is also successful in this scenario.

5.1.4. Discussion. The prevention of this attack can be
done in two ways. The first is to remark that the Go
library is not behaving according to the specification, and
should therefore be fixed. Accordingly, the developers of
the compress/libz Go library have acknowledged this
issue and quickly fixed it after our report. The other way is
to update the zlib parser used by AV vendors to be able to
decompress non-compliant payloads. The advantage of this
approach is that, the attack would also be prevented in the
absence of upgrades to the latest Go library release with the
bugfix. If the specification had not specified the expected
behaviour, this would likely have been the only option to
mitigate the attack.

6. Related work

The areas of memory safety and fuzzing have received
tremendous research interest in the past years. In this section
we provide an overview of the body of work related to this
paper to position our contributions.

6.1. Differential fuzzing

Differential fuzzing is used in many contexts prior to
our work, however we are the first to use it to find parser
differences in native Go and C versions of a library. JVMD-
iff [26], [25] uses differential fuzzing to find crashes and
vulnerabilities in JVM implementations. DifFuzz [32] is a
fuzzer for side channels that targets timing differences on
the same program with different secrets. Frankencerts [23]
performs differential testing of TLS implementations look-
ing for disagreement between parsers. The authors crawled
certificates and used them as seed input to generate mutated
certificates to exercise uncommon paths in multiple TLS
libraries. Since libraries should generally agree to interpret
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input each library could function as an oracle, similarly to
our work. Another work that uses differential fuzzing on
libraries is NEZHA [34]. Rather than fuzzing for memory
corruption bugs, this work focuses on semantic differences
in parsers for ELF, XZ, PDF file formats, as well as X.509
certificates used in TLS. It uses the notion of δ-diversity
for feedback to drive two types of input generation mech-
anisms targeting semantic differences. Cao et al. [24] find
uninitialized kernel use vulnerabilities by using differential
replay. Yang et al. [45] find bugs in code coverage tools
via differential testing with random programs. DPIFuzz [36]
finds elusion strategies for the QUIC protocol, to evade deep
packet inspection systems.

6.2. Parse tree differential attacks

Numerous attacks exploit differences in parser behaviour
in a variety of settings, a problem coined as parse tree
differential attacks by Sassaman et al. [38], [37]. Kamin-
sky, Patterson, and Sassaman [30] exploit ASN.1 parser
differences, specifically for X.509 Common Names and null
terminators, allowing an attacker to claim a certificate for
any site. Ptacek and Newsham [35] demonstrate that net-
work intrusion detection systems can be evaded in this way.
System-call-sequence based intrusion detection systems [28]
can also be seen as parsers, and mimicry attacks [44] exploit
parse tree differences. As another example, iOS implements
multiple different ways to parse XML. Differences in XML
parsing allowed for an exploit [14] that led to a sandbox
escape.

6.3. Memory safety

Memory safety is a property of software, requiring that
all memory accesses target valid pointers [41]. A number
of protections and countermeasures have been developed
and deployed over time to block specific attack vectors that
relate to memory safety: for example, stack canaries target
linear overflow of stack buffers, DEP/W⊕X attempting to
prevent the execution of attacker-injected code, ASLR to
randomise the address space and increase the complexity
of – for instance – the discovery of gadgets useful for an
attacker, and CFI to prevent certain kinds of code-reuse
attacks. Despite these protections, attacks related to memory
corruption still exist and represent a serious threat [22].

Several new languages have been developed over the
decades, from Java to Go and Rust, delivering native mem-
ory safety as integral part of the language. This is achieved
with a combination of strong typing, compiler-inserted
bounds checks (or inserted by the virtual machine in the case
of Java) and various strategies to ensure temporal safety (by
means of garbage collection or language enforcement – as
is the case for Rust).

Go achieves memory safety by relying on strong typing,
bounds checks added by the compiler and garbage collec-
tion. Developers are still able to write code that bypasses
those protections. This takes place for instance when the
unsafe package is used to perform typecasts that bypass

the language’s strong typing, or to perform C-style pointer
arithmetic. Costa et al. have studied the prevalence of the
unsafe package [27], finding that one in four popular
repositories uses unsafe. Another scenario in which the
memory-safety guarantees of Go are not guaranteed is rep-
resented by cgo, a mechanism to write C code as part of a
Go project and call it at runtime. In this case, the compiler
attempts to secure the C build by deploying ASLR, RELRO
and stack canaries, which are otherwise absent from a Go
binary.

A special case in terms of memory safety are mixed
binaries, such as combining Rust and C/C++, or Go and
C/C++. Recent work on security properties of such bina-
ries [33], concluded that security guarantees achieved by one
of the compilers can be overcome by attackers by exploiting
the less secure code portion.

7. Discussion

Go is a widely used programming language that is often
used in security critical applications. Popular repositories
use a mix of native and non-Go libraries. Our analysis
focuses on the way in which native and non-Go libraries
differs, what the impact of such differences is and how to
systematically find such disagreements. We discuss the main
take-aways from our analysis.

7.1. Go or No Go: a difficult library choice

Generic statements such as “Go implementations are
more secure than C/C++ ones” are likely to be preconceived
ideas and require deeper analysis. We posit that developers
face a difficult choice, at the very least from a security
perspective, when opting for a Go-implemented library as
opposed to a C/C++-implemented library. Memory safety
guarantees are indeed better for Go native libraries, by
language design. However, other issues, such as the subtle
parsing differences we found, may negatively impact the
security of Go native libraries. In particular, the maturity of
the Go native libraries may not match that of the C/C++
libraries, leading to such issues.

7.2. Differential fuzzing of Go libraries

We found that libraries disagree on how to handle inputs,
and that this can lead to security problems. While this
is not surprising for the security community, our work is
the first that practically demonstrates the point for the Go
programming language. To address these shortcomings the
Go community should invest more effort in finding differ-
ences in libraries that are security relevant. For instance,
differential fuzzing of libraries could be performed as part
of continuous integration/testing. Another avenue to make
such testing easier is for go-fuzz to add cgo support [13].
Finally, appropriate staffing may be needed for triaging such
issues: especially in the case of parsers, processing differ-
ences are expected, and in many cases stem from unclear
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specifications in the relevant standards. Parser differences
are neither unexpected nor unheard of, and developmen-
t/debugging efforts should focus on differences that have
an impact on correctness and security.

7.3. Security impact of parser differences

As demonstrated in our two case studies, small, seem-
ingly inconsequential differences in library behaviour may
lead to security issues in complex use cases that involve
multiple components. These findings regarding the signif-
icant security impact of parser differences are consistent
with previous work, and carry over multiple decades [30],
[38], [35]. We posit that the fact that such vulnerabilities
continue to exist may be due to the complex nature of the
system and security model required for considering these
parser differences as relevant to security and having them
recognized as such, as well as the difficulty of finding them
in the first place.

7.4. Benefits for C/C++ libraries

The primary focus of our work is how differential
fuzzing may benefit Go developers, supporting their choice
between Go and C/C++ libraries and aiding the discovery of
inconsistencies between implementations. However, our de-
sign and implementation is immediately useable to support
maintainers of C/C++ libraries in their task of i) improving
compatibility of the code with the relevant standards and ii)
finding memory safety violations. Our fuzzer is immediately
useful for the first objective, since it will produce a list of
inconsistencies whose root cause may well lie in the C/C++
implementation. As for the second objective, it would be
interesting to explore how code coverage from a different
implementation combined with coverage from the library
may make a fuzzer more effective in finding inputs that
leads to memory safety violations.

8. Conclusion

Go is a modern programming language that is widely
popular with backend developers. Developers have the op-
tion of using Go-native libraries, or alternatively to use
C/C++ libraries via cgo. Using non-native libraries in Go
is popular, but choosing between the two options leads to
security implications.

This is the first work to investigate security impact
of the choice of native vs. non-native library use in Go.
We present design and implementation of our differential
fuzzer comparing these two types of libraries to find parsing
mismatches that are security relevant. Namely, we anal-
yse libcrypto, libpng, libssl, and libz. We find
parser mismatches between native and non-native imple-
mentations in all of them, and argue that developers should
take parser differences into account when choosing libraries
for Go. Further, we describe security relevant impact on
Certificate Transparency infrastructure, and evasion of 19

anti-virus products including Gmail scanning. Our work
has led to a patch of Golang libz which has since been
shipped.

Responsible Disclosure

All findings were disclosed to the affected parties. In
particular we contacted Google with respect to the Go
compress/zlib bug, and the developers quickly patched
it. The corresponding fix can be found at https://go-review.
googlesource.com/c/go/+/395734/.
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Appendix A.
Circumventing Certificate Transparency

We describe here a scenario where the inconsistent
treatment of X.509 certificates and ASN.1 marshalled data
between the Go and libssl implementations might be
exploited by a malicious (or compromised) certificate au-
thority to bypass the guarantees provided by the Certificate
Transparency (CT) framework.

A.1. A CT primer

Certificate Transparency [11] is a framework originally
proposed by Google to tackle some of the shortcomings of
the PKI infrastructure. Specifically, the problem addressed
by CT is to ensure that when a user visits a website with
TLS, the server certificate indeed belongs to the owner of
that website, and has not been issued by a compromised or
simply sloppy certificate authority to a malicious third party.
Without this guarantee, third parties in possession of rogue
server certificates might be able to intercept the traffic that
was meant to remain confidential between user and intended
target website.

The CT ecosystem consists of legacy actors and new
entities. The legacy actors in this ecosystem are end-users
browsing the web, website owners and certification author-
ities. End-users use a possibly insecure network to connect
to websites whose names they know. The DNS resolution of
those names might point them to rogue endpoints. However,
by requiring a secure channel (e.g. TLS) and the presentation
of a certificate issued by a certification authority they trust,
end-users (through their browsers) are able to verify that the
name of the website they wanted to browse and the name in
the presented server certificate match. If so, they are certain
that they have connected to the intended endpoint.
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Unfortunately, the proliferation of certificate authorities
implies a wider attack surface, given that attackers have
higher chances to compromise (or collude with) at least one
CA, at which point the previously mentioned guarantees are
entirely voided. This is where CT and its new entities step
in. In order to thwart the aforementioned attack scenario,
CT requires that all issued certificates be publicly auditable.
This achieves two important goals: on the one hand, website
owners can audit all newly issued certificate to discover
whether any certificates were issued matching features (e.g.
DNS name) on which they claim ownership without their
consent. Public auditability thus enables prompt discovery of
these attack scenarios and gives websites owners a chance to
request revocation of these rogue certificates. On the other
hand, by requiring that only certificates carrying a proof
that they have been publicly audited be used by browsers,
end users have the assurance about the integrity and correct
origin of the certificate they use in their TLS session.

Public auditability is guaranteed by CT log servers, the
entities in the CT ecosystem tasked with maintaining a pub-
lic, highly available, authenticated and append-only log of
all issued certificates. Website or domain owners monitor the
logs, matching newly issued certificate against interesting
features (e.g. DNS name of the Subject matching the
own domain name) to ensure prompt revocation of all rogue
certificates. Proof of inclusion in a log is achieved by way
of the Signed Certificate Timestamp (SCT), a signature over
the certificate by the log server that gets appended to a
publicly visible log. Modern browsers such as Chrome and
Safari [18] will reject certificates that lack such proof of
inclusion; the latter can be embedded in the certificate or
exchanged in the course of the TLS handshake.

All actors in the CT ecosystem rely – to different degrees
and for different reasons – on the ability to parse X.509
artefacts, which often make use of ASN.1 encoding: The
user-agent parses the purported certificate to conduct the
TLS exchange and to establish a set of security properties
of the end-point, among which the match between the
requested domain and the certified one, the expiration/re-
vocation status of the certificate and whether the certificate
is included in sufficiently many CT log servers. The log
server parses the incoming certificates and must establish
a valid certificate chain from the submitted leaf to one of
the trusted roots. Beyond that, log servers can verify the
overall well-formedness of the certificates, but according
to the letter [11] and spirit [19] of the standard, they are
not tasked with performing any other verification and may
accept improperly structured objects: after all, presence of
a certificate in the log only means that the certificate is
bound to get the broadest possible scrutiny. Finally, log
monitors must parse all certificates to detect attacks such as
the issuance (to a malicious third party) of a certificate for a
domain that the monitor owns. For this reason, the monitor
must use a parser that is not too strict: a strict parser might
dismiss a malicious certificate which may be accepted by
a user-agent with a more lax parser. Next, we investigate
this scenario and how the inconsistent behaviour of parsers
revealed by our differential fuzzer play a role.

A.2. Monitor evasion scenario

We consider a scenario where a malicious entity compro-
mises (or colludes with) a certificate authority, and succeeds
in obtaining a certificate that refers to a domain Dtarget

the attacker does not own: in particular, the Subject of
this certificate identifies an entity (and a DNS domain) over
which the attacker has no control. We also assume that the
certificate authority is one of the root CAs that is trusted
by the end user’s browser. The end-user uses the browser
to access resources at Dtarget. We assume the attacker
controls the network and can – for instance – cause the name
resolution for Dtarget to return an IP address the attacker
controls. We assume the user’s browser supports CT and will
only allow connections to servers that present certificates
with an embedded SCT: this is the case for commonly used
browsers today. We consider here a simplified CT ecosystem
with a single log server and a single scanner acting on behalf
of the rightful owner of Dtarget. We discuss a more general
scenario with multiple servers and scanners below.

The scenario proceeds with the following steps:
1) The CA generates a certificate C for domain Dtarget

for the attacker. The certificate is generated in such
a way that all browsers will consider it well-formed,
whereas the CT monitor will consider it unparsable and
as such, will fail to flag it as a certificate for Dtarget.

2) To obtain proof of inclusion in the form of an SCT, the
CA (or the attacker) submits the pre-certificate version
of C (identical to C except for the poisoning extension)
and obtains the SCT. The latter is then embedded in C.

3) Inclusion in the log prompts the monitor to download
the certificate and attempt to match it against features
of the monitored domain Dtarget (e.g. Dtarget’s DNS
name). However, due to its unparseability, the monitor
skips it and – crucially - does not register the fact that
it refers to domain Dtarget.

4) The user connects to domain Dtarget. DNS resolution
points them to an IP address controlled by the attacker,
and certificate C is presented as the server certificate as
part of the TLS handshake. The user’s browser parses
C with no issue and accepts it as valid given that it
embeds an SCT from the CT log server.

To successfully evade monitoring, a certificate needs
to enjoy the three following properties: it should i) be
successfully parseable by the parser in the browser; ii) be
accepted in the CT log; and iii) it should be flagged as
malformed by the parser of the scanner. We show next
how our differential fuzzer could be adapted to find such
encoding property.

A.3. Fuzzer-aided search for parser deviations

Section 4.2.2 shows how the differential fuzzer could
find differences in the way Go and libssl parse X.509
certificates. The scenario is applicable since most browsers
use C/C++ libraries to parse certificates (Firefox uses
NSS [7], Chrome uses BoringSSL [1]) whereas most CT
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Figure 3. We fuzz a specialized target to find certificates that fulfil the
special constraints of the monitor evasion scenario, namely, that they be
accepted by the Chrome parser and rejected by the scanlog parser. We ran
our experiments 5 times for 12 hours each, with 60 hours total fuzz time.
Each line in this plot represents one independent fuzzing run for which
we reset corpora and crashers. Since each run can differ, we perform this
experiment multiple times to test whether results are comparable.

monitors are projects based on Go [5], [2]. The results
from section 4.2.2 are however not directly applicable for
two reasons: on the one hand, the Chrome parser applies a
multi-tiered parsing, and as such, certificates that seem to be
accepted by the libssl parser (BoringSSL is an OpenSSL
clone) are not accepted by Chrome. On the other hand, the
Go CT monitor code (scanlog [5]) relies on local forks of
the relevant parser packages (ASN.1, X.509, pkix).

To adapt to this situation, we modify the fuzzing setup
of Section 4.2.2 in the following way: we use the pars-
ing function from the Go CT monitor code (scanlog [5])
instead of the runtime’s parsing function. We also replace
the invocation of the certificate parser from libssl with
a subset of the parser code from Chrome. Chrome appears
to have a multi-level parsing of certificates: a certificate is
first parsed by the BoringSSL layer to establish the TLS
session; it is then further parsed by the parsing code in the
net/cert package5 and to be accepted, a certificate must
be successfully parsed by both layers.

We evaluate our fuzzer against this custom target with
the same methodology applied in Section 4.1: we execute 5
times for 12 hours restarting in 10 minute intervals, resetting
corpus and crashes for each run, with a total fuzz time of 60
hours. Each fuzz run finds over 150 unique error responses,
see Figure 3.

After modifying the fuzzer configuration, we are able to
identify several differences between the two parsers that are
interesting in the context of our considered threat model.
We verify that one in particular can be used to recreate
the scenario described above. This difference relates to

5. Relevant functions are x509_util::CreateX509Certificate-
FromBuffers and ParsedCertificate::Create.

TABLE 3. BEHAVIOUR OF VARIOUS PARSERS WHEN PARSING
MALFORMED CERTIFICATES. THE FIRST COLUMN IDENTIFIES AN X.509
EXTENSION. FOR EACH OF THE TESTED CERTIFICATES, THE VALUE OF
EACH EXTENSION CONTAINS NON-ASCII UTF-8 CHARACTERS. THE

SECOND COLUMN DETERMINES WHETHER THE VALUE OF THE
EXTENSION IS ENCODED AS AN ASN.1 NUMERICSTRING (IDENTIFIED

AS NUMERIC IN THE TABLE) OR AS AN ASN.1 PRINTABLESTRING
(IDENTIFIED AS PRINTABLE IN THE TABLE). 33CORRESPONDS TO THE

PARSER ACCEPTING THE INPUT. 3CORRESPONDS TO THE PARSER
ACCEPTING THE INPUT BUT RETURNING A WARNING, WHEREAS

7CORRESPONDS TO THE PARSER REJECTING THE INPUT.
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C numeric 33 7 7
printable 33 7 3

ST numeric 33 7 7
printable 33 7 3

L numeric 33 7 7
printable 33 7 3

street numeric 33 7 7
printable 33 7 3

postalCode numeric 33 33 7
printable 33 7 3

O numeric 33 7 7
printable 33 7 3

OU numeric 33 7 7
printable 33 7 3

CN numeric 33 7 7
printable 33 7 3

emailAddress numeric 33 33 7
printable 33 7 3

an overall inconsistent handling of strings containing non-
ASCII characters encoded as either NumericString or
PrintableString. This constitutes a violation of the
ASN.1 standard since both string types must contain only a
subset of ASCII symbols. In Table 3 we show the results of
parsing certificates that contain these encoding violation in
a selection of fields of the certificate Subject. The table
shows that Firefox will accept all such certificates, scanlog
(which is used as a CT monitor) will reject all cases where
the value is encoded as a NumericString, but it will
accept (with a warning) all cases where the value is en-
coded as a PrintableString, and Chrome will reject all
certificates except for those where the postalCode (OID
2.5.4.17) or emailAddress (OID 1.2.840.113549.1.9.1)
extension is encoded as a NumericString. As a result
we obtain a certificate that is accepted by user agents and
yet not detectable by a monitor.

A.4. Prototype

After we identified a suitable parser deviation, we pro-
ceed to prototype the scenario. Figure 4 describes how the
four steps that we identified above can be tested in practice.
In particular:

1) We use the popular mkcert utility [6] to generate a
correctly formed root CA certificate. We then modify
the code of the tool to introduce the necessary encoding
deviation when generating a leaf certificate whose Sub-
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Figure 4. The four steps of the monitor evasion prototype. First, we set up a new trusted root CA and use it to issue a certificate for example.org, with
a corrupted emailAdress field. Second, we configure the SuperDuper CT log to trust our CA and submit the previously generated certificate to retrieve an
SCT. Third, we attempt to monitor the log with scanlog, a process that the owner of example.org might perform. Scanlog cannot parse the corrupted
emailAdress field and will not detect the issuance of a certificate for example.org. Finally, when performing a network attack, the corrupted cert can
be used to impersonate example.org with a certificate that possesses an SCT and is accepted by major browser vendors.

ject Alternative Name points to the example.org do-
main. In particular, we introduce the emailAddress
extension in the ExtraNames field of the Subject.
We then set the value of the extension to contain non-
ASCII characters. We use a local fork of the ASN.1
and X.509 packages to force the NumericString
tag for the value, despite it containing symbols other
than digits.

2) We spin up a vanilla instance of the SuperDuper [3]
CT log server6. We configure it to trust the root CA
certificate generated in the previous step. We then
submit the certificate chain (root and leaf) generated
in the previous step. The certificate is accepted in the
log and an SCT is returned to the caller.

3) We monitor the log after insertion of the certificate
with the scanlog tool [5]. This tool is built in Go
and uses the parser whose behaviour we analysed with
the fuzzer. In accordance with the results produced by
the fuzzer, the parser fails to parse the certificate. The
tool is designed to just log parsing errors and move on
to the next log entry. The tool thus fails to observe the
distinguished name encoded in the certificate and match
it against the search terms specifying example.org.
This emulates the inability of the CT monitor to detect
issuance of a certificate with features under observa-
tion.

4) We set up a Go TLS server that uses the certificate
generated in step 1 as the server certificate. The server
process needs to operate on local forks of the Go
TLS (and related) packages in order to accept the
improperly-encoded certificate as the server certificate.
We then simulate control of the network by overriding
name lookups for example.org and return the IP
address of the TLS server. We then test Safari (version
15.3 (17612.4.9.1.5)) on MacOS 12.2 and Chrome (ver-
sion 99.0.4844.51), Firefox (version 98.0) on Ubuntu
18.04.6 LTS, by adding the root CA certificate as one of
the trusted roots and by then attempting to browse ex-

6. We discuss other servers in the next section

ample.org. We confirm successful browsing of the
rogue example.org without any certificate warning
in all three cases.

A.5. Discussion

Parsers and the CT ecosystem The main issue with
this scenario lies in the security implications of inconsistent
parsing. Such inconsistencies however must be expected for
a standard as complex and as rich of de-facto accepted
variations as the X.509 one. From a security perspective, the
two relevant sets of parsers are those running in the browsers
and those running at the monitors. Ideally those two sets
would interpret certificates identically. Alternatively, moni-
tor parsers should be laxer so that they might (unnecessar-
ily) accept and analyse certificates which browsers would
anyway refuse to process. Achieving equivalent parsing
between browsers and monitors is not simple, given the
high number of different implementations of both, and the
different programming languages and dependencies that are
used when building either. The set of parsers used by the
most popular browsers might be used to augment the parser
of monitors, in an attempt to present to the monitor entity
the same “view” that a user-agent is able to construct, and
reason about the artefacts generated by the consuming entity.
We tested another monitor, SSLmate’s certspotter [2]
which successfully parsed the certificate and was able to flag
it as referencing example.org despite the unparseable
extension. This speaks in favour of minimalistic parsing on
the part of the monitor code [40] – accepting as wide a set
of certificates as possible in order to catch as many rogue
certificates as possible, even if browsers wouldn’t be able
to parse them.

Multiple CT log servers and different implementa-
tions thereof The SuperDuper [3] CT log server that
we use in our prototype is deprecated in favour of its Go
version [5] based on Trillian. However: i) SuperDuper
is still in use by production servers [4]; ii) the core issue
behind the vulnerability is not that the CT log server is
too accepting, rather, that CT monitor and browsers do not
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have a consistent view of what a well-formed certificate is;
furthermore iii) CT log servers are not meant to be policing
entities since this role is reserved to monitors. Indeed CT
log servers are simply tasked with the creation of an append-
only, highly available log of certificates. The syntactic and
semantic inspection of this log is delegated to monitors. In
our prototype we considered a single server. Having multiple
servers alone would not solve the issue: as long as a critical
mass of servers accepts certificate C, the latter would obtain
an SCT. At this point, its ability to evade detection of the
rightful domain owner is not affected by the number of
available log servers, rather, by the ability of its monitor’s
parser to observe its existence in at least one log.

Mitigating factors The CT RFC [11] does not clearly
specify what monitors should do beyond watching certifi-
cates of interest. In particular, it does not specify how
monitors should handle certificates they are unable to parse.
An RFC draft that analyses the threat model of Certificate
Transparency [12] discusses in Section 4.2 our threat model

as part of the analysis of syntactic mis-issuance with a
malicious CA context. However the authors do not cover
our exact scenario, namely, the case in which mis-issuance
is intentional as part of an attempt to evade scrutiny of
a monitor (syntactic mis-issuance to evade discovery of
semantic mis-issuance). Fortunately the way in which the
CT ecosystem operates in practice7 leads to parser failures
by monitors being flagged and manually investigated in
public issue trackers such as the bugzilla CA bugs [17].
This investigation carries the threat for the issuing CA of
de-listing from the set of trusted CAs. The combination of
manual investigation by the community and the negative
incentive to issue such certificates to begin with represents
a powerful mitigation for this scenario.

7. We discovered these real-world operational details by interacting with
prominent operators in the CT ecosystem and by reading mail threads [21],
[39] related to the RFC draft.
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