
Research Report: Synthesizing Intrusion Detection
System Test Data from Open-Source Attack

Signatures
Jared Chandler
Tufts University

Medford, Massachusetts
jared.chandler@tufts.edu

Adam Wick
Fastly

Portland, Oregon
awick@fastly.com

Abstract—Intrusion Detection Systems (IDS) act as a first line
of defense for network infrastructure by identifying malicious
traffic and reporting it to administrators. Signature-based IDS
identify this traffic by attempting to parse packets according to
user-supplied rules based on well-known examples of bad traffic.
However, test data can be difficult to come by (due to its sensitive
nature) which makes evaluating new rules difficult. In this work
we discuss the limitations of an existing SMT-based synthesis
approach to automatically generating malicious network traffic.
We then present a survey of how IDS rules are written in practice
using an open-source corpus of over 30,000 rules and discuss a
road-map towards extending the existing approach with the goal
of generating security test data characterizing a broad range of
threats, as well as ancillary uses assisting users in writing IDS
rules and identifying IDS implementation bugs. Finally, we share
early results from an evaluation of one such extension which
successfully generated IDS test data for over 90% of the rules
evaluated.

Index Terms—network security, intrusion detection system,
synthesis

I. Introduction

Intrusion detection systems (IDS) perform a critical security
function by identifying potentially malicious traffic moving
across the network. An IDS performs this recognition by at-
tempting to parse an incoming packet according to a collection
of user-supplied rules or signatures. These rules are written
in domain specific languages specifying the circumstances
and conditions under which a packet is successfully parsed,
with a successful parse by a rule meaning that the packet is
labeled as potentially malicious. The system can then alert an
administrator, log the traffic for further inspection, and/or take
an action (such as preventing the packet from moving across
the network).

An IDS can only identify malicious traffic when it has
a corresponding rule. Network administrators, researchers,
and cybersecurity professionals create rules in response to
malicious activity, and often share them with the security
community at large. As a result, open-source rule sets can
include a wide variety of rules that, when installed, allow
an IDS to identify a correspondingly wide range of potential
malicious activity.

However, without access to the original test cases usually
in the form of malicious traffic captures, the behavior of an
IDS rule cannot be easily verified and often must be taken on
faith by the user. These captures can be sensitive, however, as
they may contain information about the original network, or
betray particular configuration states that may be considered
critical secrets.

Since IDS rules function by parsing input packets and
determining if they match a rule, it may be tempting to think of
IDS parser security in the same way that one thinks of classic
parser security. In a classic PDF parser, for example, security
issues often stem from the parser being too permissive, and
thus triggering unforeseen behavior on a malicious input. IDS
parsers, however, offer an interesting contrast, in that risk
occurs when a malicious packet passes through unrecognized.
Instead of attempting to recognize only legitimate network
traffic, an IDS tries to recognize only potentially illegitimate
traffic. In addition, while parsers designed to handle legitimate
input, such as XML, SQL, and PDFs for example, have ready
access to examples of valid input for testing, examples of
malicious traffic to test the recognition capability of an IDS are
actually quite hard to come by. Example malicious traffic can
identify an organization whose systems were compromised,
or a system being targeted [1], [2]. Captured malicious traffic
can also divulge collection methods and sensor placement
that security organizations do not want to disclose [3], [4].
As a result, the recognition capability of an IDS rule from a
community dataset often must be taken on faith, barring some
accompanying input to test it on.

This lack of appropriate test data goes further than simply
validating that an IDS is functioning correctly. Without access
to representative test data of security threats, researchers are
limited to public captures, and thus must expend significant
effort building infrastructure to either collect / capture data on
their own, or accept publication restrictions on their research
imposed by the owner of the test data.

In this paper we propose using our SoundTheAlarm SMT-
based synthesis technique to automatically generate testing
data from open-source IDS rules [5]. We discuss the lim-
itations of our technique, how the IDS rules are used in

198

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Jared Chandler. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00023

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

23

practice, and potential solutions addressing the limitations.
Our approach takes IDS rules as input, and generates packets
satisfying the constraints of the rule, as validated by the
IDS itself. Originally developed for cyber-deception of an
adversary, we believe this technique is well suited to au-
tomatically generating representative attack data for testing
network security in a variety of contexts. This approach has the
benefit of being able to generate testing data for a wide variety
of malicious network behaviors without requiring disclosure
of sensitive or identifying data. Further, instances where our
approach fails to generate testing data can be useful for
identifying malformed IDS rules, and instances in which the
generated data fails to trigger the IDS are useful for finding
bugs in the IDS implementation.

A. Contributions

We summarize our contributions as the following:
1) A examination and discussion of the limitations of our

earlier work synthesizing malicious network traffic from
IDS rules in Section III.

2) An analysis of how IDS rules and features of the
Suricata IDS rule language are used (or not used) in
an open-source corpus of more than 30000 individual
rules spanning 12 years in Section IV.

3) A discussion of proposed extensions to our approach to
allowing greater coverage when generating synthesized
attack messages in Section V, and early results from
evaluating one such extension in Section VI.

B. Roadmap

Our paper is structured as follows: First, we provide a
brief background on intrusion detection systems, their use,
and functions. Second, we introduce the salient aspects of the
domain-specific pattern the rules are written in and provide
a summary of our approach to automatically generating mes-
sages from rules which we call SoundTheAlarm. Third, we
discuss the limitations uncovered in earlier evaluations of our
proof-of-concept tool. Next, we examine and discuss the open-
source Proofpoint Emerging Threats ruleset from different
perspectives and observed patterns of use. We then discuss
a set of proposed extensions and enhancements geared toward
allowing SoundTheAlarm to be used to generate effective test
data for IDS as well as aiding a user in the development of
new IDS rules. We then present early results from evaluating
one such extension to SoundTheAlarm. Finally, we present
relevant related work and a brief conclusion.

II. Background

Intrusion Detection Systems (IDS) function as network sen-
sors allowing network administrators to detect malicious activ-
ity, and then take action based on that detection. They perform
this task by comparing network traffic (at the packet level)
against a set of rules or signatures, with each rule/signature
tailored to detect a specific type of malware or security
vulnerability. These rules are created by security researchers,
network administrators, and analysts working with observed

instances of malicious activity. To benefit the broader commu-
nity, these rules are often shared publicly or commercially so
that network administrators can proactively identify malicious
activity and implement appropriate defenses. Similar to how
a vaccine primes an immune system to recognize a pathogen,
shared rules help prime IDS systems to recognize a threat
before it is observed on the local network.

IDS Systems are characterized by the mechanism they
use to observe potentially malicious behavior. Signature-based
systems, such as Snort 1 and Suricata 2, match observed traffic
against fixed rules to identify threats. Behavioral systems such
as Bro 3 and later Zeek 4, measure behaviors on the network
according to thresholds learned from normal activity. When
thresholds are exceeded, the system alerts the administrator
and optionally takes action.

Behavior-based systems (also called anomaly-based sys-
tems) have the advantage of being able to incorporate a
baseline of what is considered normal activity for a specific
network. This baseline allows these systems to avoid false-
positives through continual refinement of the thresholds for
normal activity. However, these baselines often vary between
networks. For example, what is considered normal on the
network at an educational institution likely differs from that of
a financial institution. Because of these differences, the metrics
and thresholds used by a behavioral IDS for one network are
of limited use to an administrator at another institution.

In contrast, signature-based IDS focus on identifying only
the threat, assuming that everything else is benign. Signature-
based intrusion detection systems use rules to identify traf-
fic, and then perform an action: logging an alert, blocking
packets from moving further on the network, etc.56 However,
because the rules used by signature-based IDS are fixed, they
may incorrectly identify benign network traffic as malicious,
creating a false positive for an administrator to investigate.
Alternatively, they may be defined too narrowly, and only
detect particular variants of a given attack. However, in con-
trast to behavioral IDS, signature-based IDS rules are readily
transferable between different networks; even if the underlying
patterns of network use differ, many of the applications and
their vulnerabilities will overlap.

For this work, we focus on signature-based network IDS
systems [6] such as Snort and Suricata. The development of
rules to identify traffic involves non-trivial effort, especially
considering the need to have concrete instances of malicious
traffic to test the rule while it is being developed and as it
is refined. The Snort IDS was first released in 1998, while
Suricata released in 2009. Suricata improved on Snort, in terms
of performance, while still being able to use the Snort rule
format. This commonality allowed Suricata users to leverage
the existing base of Snort rules, but with additional extensions

1https://www.snort.org/
2https://suricata.io/
3https://old.zeek.org/manual/2.5.5/intro/index.html
4https://zeek.org
5https://docs.snort.org/rules/
6https://suricata.readthedocs.io/en/suricata-6.0.0/rules/index.html

199

Fig. 1. Example Suricata rule (Reprinted from Chandler et al. [5]).

Fig. 2. Example Suricata rule using regular expression (shown in red).

to the Snort rule format that enable easier targeting of specific
packet attributes, such as HTTP headers and DNS query
counts. While we focus on rules written for the Suricata IDS,
we note that Snort rules use almost identical syntax. A limita-
tion of Suricata is the lack of an official grammar describing
the rule syntax despite the maturity of the platform.7 8 Users
writing rules must rely on a combination of documentation,
example rules, and repeated trial and error to develop new
rules to match malicious network traffic.

Our earlier work on automatically generating attack data
through synthesis focused on demonstrating a proof-of-
concept system: SoundTheAlarm [5]. This system was limited
to generating attack data for a subset of the Suricata rule
language. Our interest here is in generating IDS testing data
for any rule provided.

A. Suricata Rule Domain Specific Language

Suricata rules specify the properties that a candidate packet
must satisfy to be considered a match. These properties either
specify packet features that can be examined directly (such
as IP address, length, and network port), or describe search

7https://redmine.openinfosecfoundation.org/issues/4662
8https://forum.suricata.io/t/rule-grammar-specification/1664

Fig. 3. Example Suricata rule using named buffers for HTTP method
(http.method) and URL (http.uri).

conditions to be applied to the packet byte-string. Example
rules are shown in Figures 1 and 2. The search conditions,
called payload keywords 9, allow a user to specify content
values (content) that a packet byte-string must contain in
order to match a rule. For more flexible matching, users can
also provide regular expressions (pcre) to match sections of
the packet. A user can optionally specify the location where
a match must be located, either in relation to the start of
the packet (offset, depth) or relative to an earlier match
(distance, within).

Fig. 4. Example of Suricata content position constraint meanings (Reprinted
from Chandler et al. [5]).

We illustrate the use of these content position payload key-
words and their meanings in Figure 4.While these keywords
search anywhere in a packet for a match by default, Suricata
also allows the scope of the keywords to be limited to a
specific field or semantic region of a packet such as a HTTP
Uniform Resource Identifier (URI), or a DNS Query. Suricata

9https://suricata.readthedocs.io/en/suricata-6.0.0/rules/payload-keywords.
html

200

Fig. 5. Steps for generating payloads from signatures (Reprinted from
Chandler et al. [5]).

implements this scoping through the use of named buffers
for portions of well known protocols. The use of these is
shown in Figure 3 for buffers http.method and http.uri.
Suricata handles the parsing of a packet into protocol specific
named buffers and then applies the rules to search those buffers
which are referenced. These named buffers can be thought of
as syntactic sugar for selecting protocol specific fields and
regions of messages, allowing the user to concentrate on the
content to be matched in the buffer rather than the conditions
necessary to restrict the search to the bytes of interest.

B. Message Synthesis Approach

SoundTheAlarm’s present approach to synthesizing mes-
sages which match a rule relies on five steps shown in Figure 5.
SoundTheAlarm first generates concrete strings by directly
copying content keywords, and generating string instances
from pcre keywords. Formally, SoundTheAlarm introduces a
set of integer valued constraints describing each concrete string
as shown in Equations 1 through 6. Values which are fixed
such as the size of the content being placed in the message
(Contentwidth and Payloadstart) are shown in black. Fixed
values which are extracted directly from the rule are shown in
red and blue. Variables for the SMT-solver to determine the
integer values of are shown in purple.

Contentwidth = Contentend −Contentstart (1)

Contentstart < Contentend (2)

Payloadstart + offset <= Contentstart (3)

Payloadstart + depth >= Contentend (4)

Previousend + distance <= Contentstart (5)

Previousend + within >= Contentend (6)

In the case of a rule with multiple instances of content
or pcre, we add an appropriate set of constraints for each
instance. Finally, we ask the solver to produce a solution
satisfying all introduced constraints. If the solver is able to
find a satisfying assignment we extract the corresponding
interger valued Contentstart entries and use them to position
the generated byte strings as shown in steps (3) and (4) of
Figure 5.

III. Limitations Uncovered in Earlier Evaluation

While our research goal here is to produce network attack
test data automatically from IDS signatures, SoundTheAlarm
originated as a method to automatically create deceptive net-
work attack data for the purposes of confusing and deceiving a
network attacker [5]. As part of a proof-of-concept evaluation
for that purpose SoundTheAlarm was given a selection of
both TCP and UDP rules, and then asked to first synthesize
an attack message from the rule, and then if a message
was produced, to verify that it could trigger instances of the
Suricata and Snort IDS to validate that it was consistent with
the appearance of malicious network traffic, with evaluation by
subject matter experts planned as follow-on work. The details
of this evaluation can be found in our paper: Deceptive Self-
Attack for Cyber-Defense [7]. However, in the course of this
and subsequent evaluations, instances where SoundTheAlarm
failed to either generate a message from a rule, or failed to
trigger an IDS with the generated message proved interesting.
In this section we present a summary of those cases, followed
by a discussion of common problems we observed in writing
rules. We then discuss how SoundTheAlarm might help a user,
followed by the limitations of the present proof-of-concept
tool.

A. Mistaken Assumptions

In our earlier evaluations SoundTheAlarm was unable to
synthesize messages for some rules. These message generation
failures initially appeared to be caused by incorrectly written
rules due to what we thought was an erroneous ordering of the
content keywords, with content later in the message appear-
ing first in the rule. When re-written in the same order as their
offset values, SoundTheAlarm generated messages which
triggered an alert. We discovered that while the overwhelming
majority of rules are written with content and pcre portions
ordered as they would appear in the byte-string, there is no
strict requirement that they do so. Only instances of relative
positioning using distance and within are required to come
directly after an already matched element.

B. False Negatives

For cases where SoundTheAlarm synthesized a message
from the rule constraints, but the IDS failed to alert when
given the message (False Negatives), we examined the failures
to identify the underlying root causes. Among these were
several rules which escaped specific characters that Suricata’s
rule parser ignores, but which were a part of our generated
messages. We believe these rules were written before a bug

201

relating to escape characters in Suricata’s signature parser
was reported and subsequently fixed.1011 The result is that
the packets matched by these rules prior to the bug fix are
no longer matched afterwards. However, as the rules are
syntactically valid, they load correctly even though they will
never detect their intended threats. These rules underscore the
importance of having testing data to verify that a rule functions
as intended. In this case, the rules were likely tested only
at the time they were written, and were deemed satisfactory.
In the future, a tool like SoundTheAlarm could be used to
ensure that rules are properly validated across IDS upgrades,
as a form of continuous regression testing. An interesting
characteristic of Suricata rules is that while there is no formal
grammar, different types of keywords have been introduced
and subsequently deprecated. Having to method to verify that
rules with deprecated syntax either work as intended or not
would be useful to system administrators and rule authors.

C. Constraints Embedded in Regular Expressions

We also found multiple rules with regular expressions that
referenced the start of a line (ˆ) and end of a line ($)
characters. Suricata interprets these as positioning matches at
the start and end of a buffer byte-string, a constraint we had not
originally anticipated. We believe these constraints could be
automatically extracted from the regular expression syntax and
added to SoundTheAlarm ’s synthesis approach. Both of these
constraints can be expressed in other ways in the rule DSL;
using offset to constrain a match at the start of a payload or
buffer, and using the endswith keyword to constrain a match
at the end of a payload or buffer.

D. Overlapping Content for Performance

Finally, we observed a limited number of rules which used
both content and pcre keywords to match overlapping sec-
tions of a message byte-string. We had initially assumed that
each content or pcre keyword matched an independent and
disjoint region of the payload. We believe these overlapping
patterns were used to enhance the performance of the rules,
as the content elements are used to match or reject a byte-
string before the computationally more expensive pcre search
is run.

content:"foo";offset:0;

pcre:"fooba+r";offset:0;
(7)

To address such overlaps, our synthesis approach could be
extended to consider constraints on which values can occur
at each byte-position in our synthesized string. Presently, the
approach simply looks for a non-overlapping layout which
respects all appropriate distance constraints. Adding such byte-
value constraints would substantially increase the complexity
of the synthesis problem, but is a worthwhile trade-off for
reasons we discuss in Section V.

10https://github.com/theY4Kman/parsuricata/issues/3
11https://redmine.openinfosecfoundation.org/issues/2626

E. What can go wrong with rules?

While we propose using SoundTheAlarm mainly to auto-
matically generate test data appropriate for an IDS, we have
identified several use-cases related to helping users writing
rules.

The opaque interface of the the IDS itself is the first
obstacle facing users when writing rules identify malicious
traffic. Given a candidate rule, and a capture of the network
traffic, the IDS only reports back whether or not the rule was
triggered by some traffic in the capture. The user must proceed
strictly through trial and error, as the system provides no
additional feedback. This limitation may be trivial when a rule
is simply matching a single piece of content, but as rules grow
in complexity it adds significant difficulty to the development
process. Compounding this difficulty is the ability to write
syntactically valid rules that are logically impossible. For
example, while rule fragment 8 is valid, rule fragments 9
and 10 can never be satisfied.

content:"a";content:"b"; (8)

content:"a";depth:1,content:"b";depth:1; (9)

content:"a";depth:1,content:"cb";depth:2; (10)

Even when a rule is written and can identify a piece of
malicious traffic, issues remain. First, the rule could be too
specific, correctly identifying some malicious packets, but
missing others. Second, the rule could be too general, in which
case it will erroneously identify benign traffic as being a threat.
These situations can be be difficult to foresee as the user is
constrained by the same trial and error interface to determine
if a rule is working correctly or needs to be adjusted.

F. How else can SoundTheAlarm help?

We believe SoundTheAlarm can help with these problems
in two ways. First, by alerting a user when their rule contains
a logical impossibility, as evidenced by SoundTheAlarm’s
inability to synthesize an example message from the rule.
This warning would allow the user to correct the problem and
move on. Second, once the user has a rule which is valid
for some message, SoundTheAlarm can generate multiple
example messages giving a user context as to what data their
rule is actually describing, such as is illustrated in Figure 10
and discussed in Section V. In the case that the rule is too
general, the user can add constraints. In the case that the
rule is too specific, constraints can be removed. We believe
that SoundTheAlarm can interactively provide useful feedback
similar to interactive tools for working with regular expres-
sions12 while improving on wizard based tools that only help
with rule input.13 We also plan to explore situations where our
synthesized test data would be useful to security practitioners,
analysts and researchers outside of testing IDS configuration,
such as with evaluating network forensics tools [8], as input

12https://regex101.com/
13https://github.com/chrisjd20/Snorpy

202

to machine learning systems [9], and for adding realism to
honeypots [10].

G. Limitations of Current Approach

While our approach has demonstrated the ability to generate
testing data using only IDS rules, it remains subject to several
limitations.

First, SoundTheAlarm’s SMT encoding only supports the
two most commonly used payload keywords: content, pcre,
and the four corresponding position keywords: offset,
depth, within, and distance. However, Suricata rules allow
a user to specify long-distance dependencies using isdataat,
byte jump, and byte extract keywords. Synthesis from
rules using these keywords is not supported at present, but
could be added to our SMT encoding. Similarly, packet
features such as IP time-to-live and various HTTP, DNS, and
TLS named buffer keywords are not presently supported. In
particular, synthesis of HTTP content is more complex due
to the size of the underlying byte-strings being generated;
the use of encryption and compression; and the number of
unique fields a request and response can include. We discuss
this complexity in Section IV, and share early results from a
proof-of-concept extension in Section VI.

At present we generate byte-strings from pcre elements
before using Z3 to solve positioning constraints. This design
choice allows us to treat regular expressions and static content
identically from the solvers perspective. In future work we plan
to explore allowing Z3’s regular expression functionality to
perform this work. Doing so will allow the strings generated
from the regular expression to take into account additional
constraints introduced by other keywords, such as when pieces
of content overlap. We discuss proposed solutions to the above
limitations in Section V.

Finally, there is no guarantee that SoundTheAlarm will be
able to synthesize test data from a rule in a reasonable amount
of time. While we were able to return useful results very
quickly in our evaluations of SoundTheAlarm–generally in
less that a second–these timings may not continue to hold
as we add new keywords to our SMT-encoding or perform
synthesis of byte-values rather than integer positions for fixed
strings.

To better understand these limitations as they relate to rules
as they are used in practice, we next turn to an examination
of a real-world Suricata data-set of over 30,000 rules.

IV. Rules in Practice

Our goal in this section is to understand rules as they are
used in practice as a means to extending the SoundTheAlarm
tool to generate appropriate traffic for any rule. Specifically,
we focus on understanding changes in rules over time, the
distributions of protocols, how different rule features are used,
and the relative complexity of the rules themselves.

A. The Proofpoint Emerging Threats Community Ruleset

In this analysis we focus on one open-source ruleset: started
in 2003, the Proofpoint Emerging Threats Community Ruleset

Fig. 6. Quantity of rules added to Emerging Threats dataset by year and
protocol. Rules for 2010 were a basis set of Snort rules.

is the largest public collection of signatures available for
both Snort and Suricata.14 Our interest in these rules is two-
fold. First, these rules characterize actual threats of concern
to network administrators and security professionals. Second,
when thought of as individual parser programs written by
users in a domain specific language, these rules illustrate
which language constructs are most commonly used to identify
malicious network traffic, and how these language constructs
are used in practice. For our analysis we used the Suricata
version of the rule-set containing more than 30,000 signatures
spanning more than 12 years.15

B. Rules over Time

In Figure 6 we show the the quantity of new rules added
each year. A key feature of Suricata was the ability to use
Snort rules, which is reflected by the 6333 rules initially ported
from Snort. The significant increase in the number of rules
for 2022 is due to organic growth in the number of rules
combined with the addition of rules identifying domain names
and specific TLS certificates. These DNS and certificate rules
individually name specific domains and certificates which have
been observed engaging in malicious activity. These rules were
automatically generated from threat intelligence feeds by DNS
hosting providers and security researchers for inclusion in the
community ruleset. Figure 6 further illustrates the distribution
of rules by protocol for year. This data shows growth of DNS
and TLS rules in 2022 relative to earlier years. Overall, the
growth in new rules from 2011 through 2022 is indicative,
unsurprisingly, of new threats being uncovered and network
administrators increasingly interested in detecting them. A ma-
jor advantage of automatically generating appropriate network
security test data from rules is that it can keep current with
threats as the rules describing them are released.

C. Rules by Protocol

Overall, the majority of IDS rules focus on web traffic, as
shown in Figure 7, with 18,321 rules for HTTP, compared to

14https://doc.emergingthreats.net/bin/view/Main/AboutEmergingThreats
15https://rules.emergingthreats.net/open/suricata-5.0/

203

Fig. 7. Quantity of rules by protocol.

Fig. 8. Quantity of rules using payload features (content, pcre). 27 rules had
no payload features.

6,143 rules for DNS and 6,246 rules for all other protocols
combined. The quantities and distribution of rules reflect
where network administrators are looking for malicious traffic.
For example, it appears that generic UDP traffic is scruti-
nized less heavily than HTTP which comprised approximate
60% of the rules in the dataset. A significant limitation of
SoundTheAlarm is the ability to synthesize payloads only for
payload portions of TCP and UDP rules. Rules for protocols
such as HTTP, DNS, and TLS make use of named buffers
to match against specific fields or packet regions. Generating
useful and representative IDS test data requires handling these
protocols, both from a completeness perspective, and because
they are clearly the focus of network administrator concerns.

D. How many pieces of Content?

In Figure 8 we show the frequency of content elements
(content and pcre) in individual rules. While the highest
frequency 13,429 (44%) is for a single element. 17,254 rules
(56%) use two or more content elements, in which case
relative positioning between elements becomes an important
consideration as to whether a rule is overly general, or overly
specific. We observed 84,601 individual instances of content,
compared to only 6,448 instances pcre. Writing regular ex-
pressions is known to be difficult in spite of their expressive
power [11], [12]. This difference between content and pcre
may be due to user discomfort with writing and testing regular
expressions in this context, This is a use case SoundTheAlarm

Fig. 9. Bytes examined using payload features (content, pcre)

can help address by automatically generating example packets
from a signature to assist a user with the process of writing
and refining rules.

E. How much data is being Examined?

We show an estimate as to the quantity of packet bytes
described by these elements in Figure 9. For each rule we
calculated the total size of all (content) elements. To estimate
the quantity of packet bytes for each pcre element, we
used an open-source library to generated 100 strings from
the regular expression, and then averaged the lengths.16 On
average content elements described 33.3 packet bytes, while
pcre elements described 65.6 packet bytes. Taken together,
each rule in the dataset described 45.8 packet bytes on average.
This data is useful as an estimate of that the scale of any byte-
value synthesis we may wish to perform in excess of resolving
positioning constraints. We discuss these cases in Section V.

F. Use of Payload Keywords

Next, we examined the use of the four content position
payload keywords–offset, depth, distance, and within–
to understand how they are used in practice. We show these
results in Table I. 18,019 rules did not use any content position
keywords, instead using only content and pcre to specify
matches that could appear anywhere in the packet. This is
notable as without ordering constraints the rules may be overly
general, allowing for matches the author did not intend. 12,691
rules used one or more content position keywords. The most
frequent keyword was distance, used 19,026 times, while
the least frequent was offset, used only 995 times.

G. Use of Named Buffers

Finally, we examined buffer use for rules focusing on
HTTP, DNS, and TLS protocols which comprise 86% of
the total rules in the dataset. A significant limitation of
SoundTheAlarm is the lack of handling for named buffers.
To characterize buffers use we counted the number of times
each buffer was used in a rule for these protocols as shown
in Table II. For HTTP there were 24 distinct buffers with a
total 31521 uses. Among them the http.uri buffer for the

16https://github.com/asciimoo/exrex

204

TABLE I
Quantities of rules using payload position keywords. •Used ◦Not Used.

Position Keyword Qty.
offset depth distance within Rules
◦ ◦ ◦ ◦ 18019
◦ ◦ ◦ • 520
◦ ◦ • ◦ 5565
◦ ◦ • • 1189
◦ • ◦ ◦ 2763
◦ • ◦ • 102
◦ • • ◦ 1184
◦ • • • 469
• ◦ ◦ ◦ 114
• ◦ ◦ • 1
• ◦ • ◦ 14
• ◦ • • 23
• • ◦ ◦ 281
• • ◦ • 19
• • • ◦ 77
• • • • 370

Total Rules Using Position Keywords
899 5265 8891 2693 12691

Individual Uses of Position Keywords
995 5823 19026 7740

URL portion of a request was used 10426 times, and the
http.method buffer referencing the type of HTTP request
(commonly GET or POST) was used 6449 times. For DNS
only a single buffer (dns.query) was used a total 5959 times,
and for TLS, 7 buffers were used a total of 2109 times.
This data indicates that handling named buffers, especially for
HTTP, is essential to generate testing data covering these three
protocols.

V. Proposed Extensions & Enhancements

We now discuss proposed extensions and enhancements to
SoundTheAlarm with the goal of allowing it to generate test-
ing data for the majority of rules in the Proofpoint Emerging
Threats Community Ruleset, as well as to provide meaningful
feedback to a user while they write rules describing malicious
traffic.

A. Generating Data for Named Buffers

At present SoundTheAlarm is unable to synthesize attack
traffic from rules which leverage named buffers. A named
buffer specifies a region of a parsed packet for Suricata to
examine. In order for a packet to even be considered by a
rule with a named buffer such as those shown in Table II, the
message must at the very least be parsed as the an instance
of the specified protocol format such as HTTP or DNS. This
constraint requires that any synthesized content be embedded
at the appropriate location in a parsable packet.

The most direct approach to this constraint is to generate
an appropriate parsable instance of the required message and

TABLE II
Instances of named buffer use by protocol.

Protocol Named Buffer Qty of Uses
HTTP http.uri 10426

http.method 6449
http.request body 2916
http.host 2668
http.header names 2550
http.user agent 2354
http.header 1251
http.stat code 813
http.content type 605
http.request line 326
http.cookie 271
http.accept 126
http.start 121
http.response body 120
http.content len 110
http.connection 109
http.referer 102
http.accept enc 56
http.protocol 36
http.location 33
http.accept lang 28
http.server 22
http.response line 21
http.stat msg 8
HTTP Total 31521

DNS dns.query 5959
DNS Total 5959

TLS tls.sni 929
tls.cert subject 816
tls.cert issuer 279
tls.cert serial 69
tls.certs 9
tls.version 6
tls.cert fingerprint 1
TLS Total 2109

to insert to synthesized content in the appropriate locations as
illustrated in Figure 10. Our analysis of the Proofpoint Emerg-
ing Threats Community Ruleset indicates that developing
templates for three protocols (HTTP, DNS, and TLS) would
enable coverage for the vast majority of the rules which were
excluded from our earlier evaluations of SoundTheAlarm. We
share early results from evaluating an approach to handle these
buffers in Section VI.

B. Data Dependencies

The next limitation we seek to to address are those instances
of rule keywords which look at data dependencies within
messages. These include isdataat which looks to see if
there is data at a specific byte location, byte jump which
interprets a location as a dynamic pointer to another location
in a message, and byte test which performs a computation
such as xor or shift on bytes extracted at a location from the
message and compares them to a known value. A synthesized
message must ensure that the byte-values referenced by these

205

Fig. 10. Illustration of Suricata rule (1) using HTTP named buffers (2) to generate content and as reference points for constraint solving (3). Example
synthesized byte-strings matched by the rule are shown in (4) with synthesized filler characters shown in white.

dependency keywords reflect the appropriate data and compu-
tational relationships.

C. Overlapping Content Constraints

As described previously in Section III-D, some rule in-
stances explicitly reference the same portion of a message
twice to reduce the resources required to scan large volumes
of traffic. A synthesized message must respect that the overlap-
ping regions take on byte-values which satisfy both references.

We believe encoding constraints on a byte-value level will
allow SoundTheAlarm to address both data dependencies and
overlapping content constraints. Additionally, we believe this
extension will allow two useful enhancements related to the
utility of the generated messages.

D. Minimization & Diversity

At present, SoundTheAlarm only solves constraints to
position generated content as shown in Figure 5. Any gaps
or unspecified bytes are either filled with random values, or
copied from a user supplied example message.

We plan to explore performing synthesis such that a the
generated message adheres closely to a template message.
One way of expressing this is in terms of Levenshtein or
edit-distance [13]. Levenshtein distance describes the number
of transformations (insertions,deletions, and swaps) required
to transform one string into another.17 By attempting to
synthesize a string with a minimum edit distance from a given
example message, the synthesized message would both satisfy
the constraints of the Suricata rule while incorporating as much
of the existing content as possible: a desirable characteristic
for producing human-readable and human-believable security
test data. However, the major risk with this approach is that

17https://en.wikipedia.org/wiki/Levenshtein distance

it may substantially increase the time required to generate a
message.

Similarly, another desirable property of synthesized mes-
sages is representative diversity. Consider the following rule
fragment.

content:"foo";content:"oobar"; (11)

The following strings all are matched by the rule.

foobar

fooobar

foooobar

fooabcoobar

oobarfoo

oobarabcfooxyz

(12)

However, for assisting a user writing or debugging a rule
synthesized examples which differ greatly from one another
may be more useful than examples which simply increasingly
repeat a single character through pumping. We propose using
Levenshtein distance as a means to increase diversity in
synthesized messages, such that all messages produced must
exhibit a minimum edit distance from each other in the set.
We plan to explore this in future work.

VI. Early Results
As a first step toward evaluating our proposed ap-

proach to handling named buffers, we implemented exten-
sions to SoundTheAlarm to enable proof-of-concept support
for the three most widely used named buffers: http.uri,
http.method, and http.host. Our goal is to characterize
the effort required to support named buffers across the three
main protocols of interest from our analysis of rule use: HTTP,
DNS, and TLS.

206

We conducted our evaluation in the same manner as our
earlier work [5]. We selected rules from the Proofpoint
Emerging Threats community rule-set which used instances of
the http.uri, http.method, or http.host named buffers,
excluding those rules using keywords which SoundTheAlarm
does not currently support. Our resulting evaluation set con-
tained 6689 rules. All experiments were run on an instance
of Google Colaboratory18 with 2 Intel® Xeon® 2.20Ghz
CPUs and 12GB of RAM. With our named buffer extensions,
SoundTheAlarm was able to synthesize and trigger the Suri-
cata IDS for 6145 rules (91.8 %). We consider this early
result a strong positive indicator that SoundTheAlarm can be
extended to handle named buffers in general. We plan a more
detailed evaluation in future work, however we again noted
interesting failure cases. In particular we observed rules which
attempted to match white-space characters in the http.uri
buffer generated messages successfully, but failed to trigger
the IDS. An example fragment illustrating such white-space
usage is shown below.

http.uri; content:"Flash Player.exe"; (13)

On deeper examination we confirmed that this is in fact a
known bug in the Suricata IDS currently under review.1920 At
present all rules using white-space in the http.uri named
buffer will fail to match, allowing the malicious traffic to slip
by undetected. This case in particular underscores the utility
of our approach to help uncover bugs which might otherwise
go unnoticed in critical security infrastructure.

VII. RelatedWork

Related work on evaluating IDS rules focuses on testing
whether an IDS configuration [14] or measuring its ability
to detect malicious network behavior [15], [16]. While some
techniques replay packets, others generate entirely new mes-
sages. Approaches using these techniques include Erlacher
et al.’s HTTP focused idsEventGenerator [17], Nidsbench21,
MUCUS [18], and IDSwakeup22. Cordero et al.’s ID2T [19]–
[21] combines both approaches. ID2T 23 focuses on altering
an existing network traffic capture to create testing data for
an IDS. ID2T does this in two ways, first by adjusting the
frequency of messages in order to trigger behavior based IDS
systems. Second, ID2T can inject attack signatures into a
PCAP, but is limited to approximately 13 different attacks
coded by hand. Our approach, by contrast, generates attack
data for thousands of attack rules, and with proposed exten-
sions we believe can generate attack data for the majority of
IDS rules. Other approaches to generated realistic IDS test data
simply add and remove flows from a network stream [22] or
use fixed profiles to generate network traffic, both benign and
malicious [23]. SoundTheAlarm’s synthesis approach uses a

18https://colab.research.google.com
19https://redmine.openinfosecfoundation.org/issues/2881
20https://github.com/OISF/suricata/pull/8509
21https://packetstormsecurity.com/UNIX/IDS/nidsbench
22https://github.com/SavSanta/idswakeup
23https://github.com/tklab-tud/ID2T

SMT-solver to automatically generate messages by leveraging
positioning constraints extracted from Suricata rules. This
approach differs from other works which simply copy content
directly from the signature into a packet without considering
order, or simply adjust overall packet frequency duplicating
some packets while omitting others. SoundTheAlarm creates
stateful sequences of packets by automatically wrapping gen-
erated messages in transport layer protocols. Other tools are
less flexible. SoundTheAlarm was originally developed as a
proof-of-concept cyber-deception tool [5] meant to deceive
adversaries as to the presence of competitors on the network.

Other work related to generating network traffic focuses on
creating realistic network messages, either for the purposes
of deceiving of adversaries [24] or to skew trends in traffic
flow data [25]. While these are instances of malicious traffic,
they are more appropriate for testing either a human analyst’s
ability to uncover a covert channel, or testing a behavioral
system’s ability to detect flow data departing from a base-
line. Another approach, focusing on embedding an encrypted
channel in otherwise innocuous messages is Dyer et al.’s work
on format-tranforming encryption [26]. Yu et al’s work [27]
takes an executable program and regular expression describ-
ing malicious input–similar in concept to IDS signatures–
to generate new attack strings as malicious input. Finally,
Chandler et al.’s work [7] on botnet cyber-deception introduces
a network approach for generating deceptive command and
control traffic for a single botnet protocol. SoundTheAlarm
instead focuses on generating test traffic for a wider variety of
threats, behaviors, and protocols.

VIII. Conclusion

In this paper, we discussed results from earlier evaluations
of SoundTheAlarm, a proof-of-concept, SMT-based synthesis
technique to generate network traffic from IDS signatures. We
propose using SoundTheAlarm to help network administrators
validate that an IDS rule will function as expected and that an
IDS is properly configured. We examined a corpus of over
30,000 rules written for the Suricata IDS over the course
of 12 years. Finally, we outlined proposed extensions to our
synthesis technique to make it suitable to generate network
security testing data for a larger set of rules and presented
early results from one such extension.

Acknowledgments

This material is based upon work partly supported by the
Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-19-C-0073. The views, opinions, and/or
findings expressed are those of the author(s) and should not
be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

References

[1] A. Albakri, E. Boiten, and R. De Lemos, “Risks of sharing cyber incident
information,” in Proceedings of the 13th International Conference on
Availability, Reliability and Security, pp. 1–10, 2018.

207

[2] L. O. Nweke and S. Wolthusen, “Legal issues related to cyber threat
information sharing among private entities for critical infrastructure
protection,” in 2020 12th International Conference on Cyber Conflict
(CyCon), vol. 1300, pp. 63–78, IEEE, 2020.

[3] A. Albakri, E. Boiten, and R. De Lemos, “Sharing cyber threat in-
telligence under the general data protection regulation,” in Privacy
Technologies and Policy: 7th Annual Privacy Forum, APF 2019, Rome,
Italy, June 13–14, 2019, Proceedings 7, pp. 28–41, Springer, 2019.

[4] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion
detection systems: Taxonomy, solutions and open issues,” Information
Sciences, vol. 239, pp. 201–225, 2013.

[5] J. Chandler and A. Wick, “Deceptive Self-Attack for Cyber Defense,”
in Proceedings of the 56th Hawaii International Conference on System
Sciences, 2023.

[6] J. S. White, T. Fitzsimmons, and J. N. Matthews, “Quantitative Analysis
of Intrusion Detection Systems: Snort and Suricata,” in Cyber sensing
2013, vol. 8757, pp. 10–21, SPIE, 2013.

[7] J. Chandler, K. Fisher, E. Chapman, E. Davis, and A. Wick, “Invasion
of the Botnet Snatchers: A Case Study in Applied Malware Cyberde-
ception,” in Proceedings of the 53rd Hawaii International Conference
on System Sciences, 2020.

[8] V. Corey, C. Peterman, S. Shearin, M. S. Greenberg, and J. Van Bokke-
len, “Network forensics analysis,” IEEE Internet Computing, vol. 6,
no. 6, pp. 60–66, 2002.

[9] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Netflow
datasets for machine learning-based network intrusion detection sys-
tems,” in Big Data Technologies and Applications: 10th EAI Interna-
tional Conference, BDTA 2020, and 13th EAI International Conference
on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020,
Proceedings 10, pp. 117–135, Springer, 2021.

[10] L. Spitzner, Honeypots: Tracking Hackers. Addison-Wesley Profes-
sional, 2002.

[11] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, “Regexes
are hard: Decision-making, difficulties, and risks in programming regular
expressions,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 415–426, IEEE, 2019.

[12] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 405–416, IEEE, 2017.

[13] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, pp. 707–
710, Soviet Union, 1966.

[14] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson,
“A Methodology for Testing Intrusion Detection Systems,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 10, pp. 719–729, 1996.

[15] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-
Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham,
et al., “Evaluating intrusion detection systems: The 1998 DARPA off-
line intrusion detection evaluation,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00, vol. 2, pp. 12–26,
IEEE, 2000.

[16] J. McHugh, “Testing Intrusion Detection Systems: A Critique of the
1998 and 1999 DARPA Intrusion Detection System Evaluations as
performed by Lincoln Laboratory,” ACM Transactions on Information
and System Security (TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[17] F. Erlacher and F. Dressler, “How to test an ids? genesids: An auto-
mated system for generating attack traffic,” in Proceedings of the 2018
Workshop on Traffic Measurements for Cybersecurity, pp. 46–51, 2018.

[18] D. Mutz, G. Vigna, and R. Kemmerer, “An experience developing an
ids stimulator for the black-box testing of network intrusion detection
systems,” in 19th Annual Computer Security Applications Conference,
2003. Proceedings., pp. 374–383, IEEE, 2003.

[19] C. G. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer,
and M. Mühlhäuser, “Id2t: A diy dataset creation toolkit for intrusion
detection systems,” in 2015 IEEE Conference on Communications and
Network Security (CNS), pp. 739–740, IEEE, 2015.

[20] E. Vasilomanolakis, C. G. Cordero, N. Milanov, and M. Mühlhäuser,
“Towards the creation of synthetic, yet realistic, intrusion detection
datasets,” in NOMS 2016-2016 IEEE/IFIP Network Operations and
Management Symposium, pp. 1209–1214, IEEE, 2016.

[21] C. G. Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser, and
S. Nadjm-Tehrani, “On generating network traffic datasets with synthetic
attacks for intrusion detection,” ACM Transactions on Privacy and
Security (TOPS), vol. 24, no. 2, pp. 1–39, 2021.

[22] D. Brauckhoff, A. Wagner, and M. May, “Flame: A flow-level anomaly
modeling engine.,” in CSET, 2008.

[23] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[24] S. Maucione, “Loose lips may better Air Force security with ‘Prattle’,”
Federal News Network, 2017.

[25] A. Wick, “I Want Your Flow To Be Lies,” in FloCon, 2017.
[26] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol

Misidentification Made Easy with Format-Transforming Encryption,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pp. 61–72, 2013.

[27] F. Yu, M. Alkhalaf, and T. Bultan, “Generating Vulnerability Signatures
for String Manipulating Programs using Automata-Based Forward and
Backward Symbolic Analyses,” in 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 605–609, IEEE, 2009.

208

