
Unsupervised clustering of file dialects according to
monotonic decompositions of mixtures

Michael Robinson
Department of Mathematics and Statistics

American University
Washington, DC

Email: michaelr@american.edu

Tate Altman
Department of Mathematics and Statistics

American University
Washington, DC

Email: ta8427a@american.edu

Denley Lam
BAE Systems FAST Labs

Arlington, VA
Email: denley.lam@baesystems.com

Letitia W. Li
BAE Systems FAST Labs

Arlington, VA
Email: letitia.li@baesystems.com

Abstract—This paper proposes an unsupervised classification
method that partitions a set of files into non-overlapping dialects
based upon their behaviors, determined by messages produced
by a collection of programs that consume them. The pattern of
messages can be used as the signature of a particular kind of
behavior, with the understanding that some messages are likely
to co-occur, while others are not.

We propose a novel definition for a file format dialect, based
upon these behavioral signatures. A dialect defines a subset of
the possible messages, called the required messages. Once files
are conditioned upon a dialect and its required messages, the
remaining messages are statistically independent.

With this definition in hand, we present a greedy algorithm
that deduces candidate dialects from a dataset consisting of a
matrix of file-message data, demonstrate its performance on
several file formats, and prove conditions under which it is
optimal. We show that an analyst needs to consider fewer dialects
than distinct message patterns, which reduces their cognitive load
when studying a complex format.

I. INTRODUCTION

While considerable effort has been expended to formalize
what compliance with a format specification means, the be-
havior of programs when files are consumed is what defines
the end-user experience of a given format. A behavioral
understanding of file formats has the advantage that it is
amenable to a statistical perspective, wherein one can ascribe
the conditional probability that a particular file will elicit a
particular behavior given that other behaviors have already
been observed.

Because behaviors are characterized by a large number
of possible features, it is important to organize them into
models that can be more easily understood by an analyst. To
organize this information most effectively, what a file format
analyst needs is not necessarily captured by the most accurate
model of these behaviors, but rather one that is both accurate
and easily explainable. We argue that explainable models are
parsimonious. They contain the minimum number of dialects
necessary to characterize the observed behavior.

The behavioral perspective aligns neatly with the discipline
of test-driven design, since files that elicit unwanted behaviors
can easily be identified as test cases. As such, curation of
format-compliant file datasets is an important task for a file
format analyst. Files that are supposed to comply with a
given ad hoc format specification may in fact fall into one
of several dialects, in which different patterns of behavior
can be observed. Managing the behavioral differences between
dialects is a source of trouble when one is attempting to
construct programs to consume files of a given format. To
obtain adequate test coverage, one must ensure that all dialects
are present in the test samples, which means that an analyst
must first know which files in their dataset comply with which
dialects. By partitioning the file format into dialects, parser
developers following the LangSec approach can develop gram-
mars covering each dialect to develop more comprehensive
parsers, or they can explicitly choose which dialects of a
format their grammar should cover.

A. Contributions

This paper proposes an unsupervised classification method
that partitions a set of files into non-overlapping dialects based
upon their behaviors, which are measured by the occurrence of
a collection of Boolean features, called messages. The pattern
of messages can be used as the signature of a particular kind
of behavior, with the understanding that some messages are
likely to co-occur, while others are not.

Our method is based upon a novel statistical definition for a
behavioral dialect. Each dialect defines a subset of messages,
called the required messages, that satisfies the following statis-
tical assumption. Once files are conditioned upon a dialect and
its required messages have occurred, the remaining messages
are statistically independent. The implications of this definition
are detailed in Section II.

Our definition of a dialect leads to a greedy algorithm
(Algorithm 1) that deduces candidate dialects from a dataset

Approved for public release; distribution unlimited. Not export controlled per ES-FL-012723-0011.

147

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Michael Robinson. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00019

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

19

consisting of a matrix of file-message data. The decomposition
of a dataset into all observed dialects is embodied by the
constructive proof of Proposition 3 in Section IV.

The method we propose is able to work with files of any
format, provided enough messages are available. To highlight
this fact, in Section III we explore our method’s performance
on three vastly different formats: a tabular data (CSV), free-
form documents (PDF), and images (NITF).

Finally, we establish (Theorems 1 and 2 in Section IV) that
our method is optimal in the sense that it yields the least
number of extraneous dialects once certain reasonable statis-
tical assumptions are satisfied. The proofs of these theorems
appear in the Appendix, Section VI.

B. Limitations

Our methodology relies upon good message coverage for the
format under consideration. If messages are not elicited by the
behaviors of interest, then files which exhibit these behaviors
cannot be detected. Fortunately, most available parsers for the
ad hoc formats we consider in Section III produce copious
output to stderr and stdout. This output is sufficiently
standardized that regular expressions (regexes) can be used to
collect the output into messages.

If the set of messages being used is known to a malicious
actor, our approach might be subverted by crafting files to
avoid producing certain messages. Message regexes can be
constructed in a semi-automated way, outlined in detail by [1],
so it is not difficult to obtain enough messages of sufficient
diversity to prevent files from evading proper classification.
Messages can also be made that correspond to system calls,
resulting in additional behavioral diversity [2]. Anecdotally, it
seems difficult to construct files that avoid all messages of a
certain type.

To manage the complexity of our model, we relax indepen-
dence into a monotonicity condition. As a result, instead of
obtaining the best mixture decomposition, we merely obtain
bounds upon it, see Theorem 2. Nevertheless, this kind of
bound is not generally available for the usual statistical tools
for inferring mixtures. Because our implementation uses a
greedy algorithm, there is some ambiguity that results in
our candidate dialects, though this is fairly benign. When
several messages are statistically dependent they need not all
be chosen as required for a dialect, see Lemma 8 for details.
Our algorithm scales linearly in the number of dialects and
quadratically in the number of message patterns.

We broadly assume that the dialects do not overlap even
though it is well known that files can comply with multiple un-
related formats simultaneously. Nevertheless, it seems that our
model supports overlapping dialects in practice. Specifically,
our statistical model yields probabilities that a file is of each
candidate dialect. These probabilities can be interpreted as
allowing a file to be a mixture—in itself—of several dialects.

C. Related work

This paper continues a line of work presented over the past
few years in the LangSec community that takes a statistical

look at format specifications [1; 3; 4]. In contrast to the
hypothesis in [1], that messages are independent when condi-
tioned upon dialect, the present paper additionally conditions
upon a set of messages that are required for each dialect. When
messages from different parsers are combined, some of these
messages are effectively identical features. For instance, two
parsers may emit the same kind of syntax error, resulting in
two separate but statistically dependent messages. This kind
of behavior was ignored [1] even though it is a direct violation
of the assumption of independence. By conditioning upon
one, the other, or both of these messages, we can restore
independence.

Statistical format analysis appears to be a minority view-
point, because traditional file format analysis uses the structure
of file contents rather than the responses of parsers to those
contents (for instance, see [5; 6; 7; 8; 9]). Nevertheless,
statistical features based upon file actions has also been used
to identify certain malicious behaviors [2].

We take inspiration from [10], in which 39 dialects of CSV
files were found. Our methodology was applied to a simple
random sample of the same dataset, wherein we find a some-
what coarser collection of 14 dialects being most common,
though numerous less common ones are also detected (see
Section III-A).

Our statistical model is a special case of a non-parametric
independent mixture model. Independent mixture models are
very well studied in the literature, with many algorithms that
have deep theoretical backing (for instance [11; 12] among
many others). Unfortunately, these algorithms tend to make
assumptions that are inappropriate for the context of file-
message data, such as assuming the components are of a
known distribution or that the number of mixture components
(dialects) is known from the outset.

Expectation maximization is a common tactic to avoid
making assumptions about the underlying distributions, at least
when the number of mixture components (dialects) is known
and/or small. The resulting family of techniques for inferring
the components of a mixture using expectation maximization
is generally called latent class analysis (LCA). Under broad
theoretical conditions, LCA yields a decomposition of the
empirical distribution into components. In fact, it appears that
the use of LCA for inferring file dialects would be novel.
Nevertheless, we do not use LCA in this paper to determine
dialects. LCA does not provide as much insight as the method
we present. Expectation maximization—probabilistic accuracy
of the model—is only one objective when exploring a file
format. Explainability of the results is also important, and LCA
provides no theoretical guarantees about the correspondence
between the discovered dialects and the latent ones. Addition-
ally, while LCA may be computationally feasible, it does not
scale as favorably as our greedy algorithm [11, 1.3.1].

Our problem involves hundreds of features (messages) with
an unknown and potentially large number of classes (dialects).
This means that the problem of inferring dialects using LCA
is underdetermined. Our methodology is able to turn the
underdetermined nature of the problem into an advantage be-

148

cause we take a unique mathematical perspective, based upon
partially ordered sets and the Dowker complex [13]. Recent
work has connected the Dowker complex to tabular data [14]
and to formal concept analysis [15]. We show that there is an
ordering among the candidate dialect decompositions that are
consistent with the data. Moreover, there is a unique coarsest
decomposition of the data into dialects which can be found by
a greedy algorithm.

Expectation maximization can be applied to the monotonic
decompositions described in this paper as well. Our method
finds the decomposition that simultaneously has the largest
dialects (Theorem 1) and the fewest number of dialects (The-
orem 2). Together, these two properties make the resulting
decomposition the easiest to explain. Unfortunately, expecta-
tion maximization can only find one decomposition with no
guarantees about the dialects it finds.

II. STATISTICAL MODEL OF FILE FORMAT DIALECTS AND
THEIR BEHAVIORS

Our data consist of a set of files F , which when parsed
by a variety of programs may yield any of a certain set of
messages M . For each file, each message m ∈ M either
does occur (in which case we say that m = 1), or does
not occur (expressed as m = 0). Although parsing a given
file is (usually!) deterministic, we can model the likelihood
of a given message occurring as a probability P (m = 1). A
probabilistic model avoids handling specific files individually,
so we rarely need to handle the set F of files directly.

In [1; 3], it was shown that the joint probability distribution
of a set of messages can identify certain files of interest. In this
probabilistic setting, an event consists of a message pattern,
which is a subset K ⊆ M of messages that might occur. We
notate the joint probability of obtaining exactly the messages
in K as P (K).

Studying arbitrary joint probabilities on their own is fraught,
though the data often support useful statistical assumptions
that provide theoretical traction. In [1], it was assumed that
messages for files within a given subset A ⊆ F were inde-
pendent. While this is a reasonable assumption when messages
are semantically unrelated, it is not appropriate when some of
the messages are related to each other. In this article, we take a
more refined approach. Specifically, each dialect specifies a set
of required messages that must occur for a file to be considered
part of that dialect. In each dialect, non-required messages
may be correlated with each other only in so far as they are
correlated with the required messages. Non-required messages
in a dialect may be correlated in the joint distribution for the
whole data, though they become independent once conditioned
upon the required messages.

Definition 1. A dialect is a subset of files A ⊆ F , to which
one can ascribe a subset of messages RA ⊆ M , such that
once conditioned on both RA and A, the remaining messages
are independent. The subset RA is called the set of required
messages for dialect A. We will call the subset of all message
patterns that contain RA the support of the dialect A.

If a message pattern K is not in the support of the dialect
A, then P (K|A) = 0, which asserts that no files in dialect A
will exhibit the message pattern K.

Explicitly, the probability of obtaining message pattern K ⊆
M for a file in A is of the form

P (K|A) =


0 if RA ̸⊆ K,

P (RA|A)
∏

k∈(K∩Rc
A) P ({k}|A)×∏

k′∈(Kc∩Rc
A)(1− P ({k′}|A)) otherwise.

(1)
Not every subset of files will yield a subset of messages that

can serve as the required messages for a dialect. Additionally,
required messages can be overlapping even if the files are
disjoint. Our Algorithm 1 will have trouble discerning between
two dialects with identical sets of required messages, though
this is not likely to happen if message sets are diverse enough.

Conversely, there may be several ways to partition the set of
files F into a collection of disjoint dialects. Our methodology
exploits this ambiguity by organizing all of the possible ways
to decompose F into disjoint dialects into a partial order,
a favorable situation that is proven in Proposition 4 in the
Appendix Section VI-B.

If two messages really mean the same thing, then we may
treat one, the other, or both as required. That is, Equation
(1) will force some correlated messages to be in some dialect
together. It may happen that those messages’ correlations may
only end up impacting one dialect, or if they are correlated
with multiple other messages, they may impact other dialects
as well.

This implies that dialects are ambiguous in a limited way,
and this ambiguity is central to our approach. Instead of
focusing initially on finding the best possible model, we
permit there to be many possible decompositions into dialects.
Furthermore, Theorems 1 and 2 in Section IV assert that
this ambiguity is rather benign. In short, bounds on the
number of dialects and the dialects themselves can be obtained
algorithmically.

A. Conditionally independent mixtures with required messages

The power set 2M of M consists of all subsets of M .
Equation (1) can be thought of as defining a function P (·|A) :
2M → [0, 1] for each dialect A. We can think of each
message pattern K as a binary sequence of length #M . In
that interpretation, each message k ∈ M is a variable that can
take the value 1 if the message is present in K or 0 if it is
absent from K. With a slight abuse of notation, the expression
for P (K|A) can then be written

P (K|A) =

{
0 if RA ̸⊆ K,

P (RA|A)
∏

k/∈RA
P (k|A) otherwise,

because P ({k = 0}) = 1− P ({k = 1}).
The subset operation ⊆ turns the power set into a partially

ordered set (2M ,⊆). Our methodology in Section IV applies
to any partially ordered set, and so applies to message patterns.
The partial ordering enforces certain ordering relationships for

149

the probabilities of messages patterns exhibited by files within
a dialect.

In [1, Lem. 1], it was proven that if each message occurs
with probability less than 1/2, then the probabilities defined
by Equation (1) decrease as more messages occur once the
required messages have occurred.

The assumption that P ({k}|A) < 1/2 is necessary but
benign. When a given message occurs on more than half of
the files, we may simply instead consider the absence rather
than the presence of that message.

Lemma 1. Suppose that within a dialect A, P ({k}|A) < 1/2
for every message k ∈ M . The probability function defined by
Equation (1) can also be written as

P (K|A) = 1URA
(K)g(K),

where
1) RA is the set of required messages for A,
2) URA

= {B ∈ 2M : RA ⊆ B} is the support of
the dialect A, that is the set of all message patterns
containing RA,

3) 1URA
is the indicator function on URA

, and
4) g : 2M → [0, 1] is monotonic decreasing using the

partial order (2M ,⊆) on the domain and the usual
ordering of the reals on the codomain.

Proof. Equation (1) stipulates that if k ∈ RA but k /∈ K,
then P (K|A) = 0. This means that the support of P (·|A) is
contained within the support of the indicator function on the
set RA of required messages.

On the other hand, since P ({k}|A) < 1/2 for every
message k ∈ M , this implies that the probability decreases
if we leave out a non-required message. This can be shown
explicitly. Without loss of generality, suppose that K is in the
support of the dialect, that K = {k1, . . . , kn}, and the required
messages start at index i+1, so that RA = {ki+1, . . . }. Then
we can write
P (k1, . . . , kn|A) = P (k1|A) · · ·P (ki|A)P (ki+1 = 1, . . . |A)

< P (k1|A) · · ·P (kj−1|A)P (kj+1|A) · · ·
P (ki|A)P (ki+1 = 1, . . . |A)

< P (k1, . . . , kj−1, kj+1 . . . |A).
Said another way, the probability is a monotonic decreasing
function within URA

.

If several disjoint dialects are present, the probability of
message patterns being exhibited has a rather definite form.

Corollary 1. Suppose that within a dialect A, P ({k}|A) <
1/2 for all messages k. Assuming dialects are disjoint, the
joint distribution of messages over all files is then

P (K) =
∑
A

P (K|A)P (A)

=
∑
A

1URA
(K)gA(K),

(2)

where 1URA
and gA are the functions defined in the statement

of Lemma 1 associated to dialect A.

It is worth noting that the assumption of disjointness holds
for some file formats but not others. For instance, CSV files
can be reasonably supposed to exhibit disjoint dialects. If
disjointness does not hold, we contend that Equation (2) may
still be a useful model. Even though PDF and NITF files do
not exhibit disjoint dialects, the model still provides useful
information in our analysis in Section III.

Proposition 1. Suppose that within a dialect A, P ({k}|A) <
1/2 for all messages k. Under the model given by Equation
(1), the support of a dialect has a unique minimal number of
messages that occur, namely the required messages.

Proof. According to Lemma 1, for a dialect A,

P (K|A) = 1URA
(K)g(K)

for a monotonic decreasing g. This ensures that the support of
the dialect is contained within URA

.
By way of contradiction, suppose that there were two

minimal sets of messages that occur. This is equivalent to
saying that there are at least two proper subsets S1 ⊂ RA and
S2 ⊂ RA of the required messages RA for which P (S1|A)
and P (S2|A) are both nonzero, yet P (RA|A) = 0. Notice that
by construction,

P (S1|A) = g(S1),

and
P (RA|A) = g(R).

We have just shown that g(S1) > g(RA), yet this violates
monotonicity and so is a contradiction.

III. EXPERIMENTAL RESULTS

Proposition 1 yields a decomposition of the joint mes-
sage probability into dialects specified by minimal sets of
required messages. Assuming that these decompositions can
be obtained—Section IV explains how to construct them—
this section discusses how these decompositions can partition
a given set of files into semantically useful dialects for further
exploration by other means.

As a preprocessing stage, any messages that occurred on
more than half of the files were inverted. That is, instead
of noting the presence of these messages, we record their
absence.

A. CSV

The humble comma separated value (CSV) file format
appears at first glance to be completely defined by its name. It
is a text file format for specifying tabular data, consisting of
cells grouped into rows and columns. Each row corresponds
to a line in the file, delimited by one of a handful of line
ending characters. Each column is delimited by a comma
character. This simple characterization quickly goes awry as
what constitutes a “comma” varies with language and text file
encoding [10]. Moreover, since cells might contain delimiters
for line endings or commas, some kind of quoting is required.
Again, quote characters vary with encoding. Finally, because
CSV files are often consumed by spreadsheet applications,

150

D
el
im
it
er
s

E
nc
o
d
in
gs

Escapes

Quotes

Fig. 1. Summary of our CSV data: Rows correspond to possible messages,
while columns correspond to files within our sample. A gray cell indicates
that the message did not occur for the corresponding file, whereas a shaded
cell indicates that it occurred. Due to limitations of horizontal resolution, files
are aggregated into bins in which counts are displayed.

they can contain formulae or fragments of executable code
that can interact with the parser in surprising ways [16].

To demonstrate the dialects that are present within a corpus
of CSV files, we drew a simple random sample of 3005 files
from the dataset described in [10]. To each of these files, we
extracted a total of 33 messages obtained by the CleverCSV
tool described in the same article. In total, the messages consist
of

• 14 delimiters,
• 3 quote characters,
• 3 escape characters, and
• 13 distinct text encodings.

Figure 1 shows a representation of the data obtained by this
process. Each row corresponds to a distinct message, and each
column corresponds to a distinct file. There are 29 rows in
Figure 1 because 4 messages (1 quote character, 2 escape
characters, and 1 delimiter) did not occur on any file in our
sample.

The horizontal stripes in Figure 1 indicate that there are
some messages that are very frequent (ASCII encoding and
ASCII comma, for instance).

Message patterns are formed by considering files that elicit
several messages simultaneously. Table I records the number
of files exhibiting each message pattern. Each message pattern
is a subset of the messages shown in Figure 1. Only message
patterns for which 5 or more files were present are shown.

TABLE I
FILE COUNTS FOR THE MOST COMMON MESSAGE PATTERNS IN THE CSV

DATA

File count Message pattern
1417 , ASCII

682 , " ASCII
196 , " UTF-8
156 , " ISO-8859-1
119 , UTF-8
64 , " WINDOWS-1252
55 ; ISO-8859-1
51 TAB ASCII
48 TAB ISO-8859-1
45 ; ASCII
29 ASCII
18 space ASCII
18 , ISO-8859-1
11 ; " ASCII
10 ; " UTF-8

8 | ASCII
8 , GB2312
8 ; " ISO-8859-1
7 : ASCII
6 , WINDOWS-1252

Most CSV files (about 89%) correspond to text files delimited
with commas, which is hopefully not too surprising. ASCII
text files delimited by ASCII commas correspond to about
70% of the total sample. About half of these ASCII files
contain ASCII " as a quotation character. It is worth noting
that the ASCII TAB character is often used as a field delimiter
in Microsoft Excel.

The perspective arising from Table I is useful but does
not do well for finding unusual dialects. As described in [1],
a different summary of the file-message data is a partially
ordered set in which each node corresponds to a message
pattern, and the order relation connects pairs of message
patterns obtained by adding additional messages. Figure 2
shows the Hasse diagram of this partial order for our data.
In the figure, the size of each node is determined by the
number of files exhibiting its corresponding message pattern.
Because the number of files in each message pattern varies
tremendously, the sizes are scaled logarithmically.

It is immediately apparent that the graph consists of many
disconnected components, each of which correspond to at least
one dialect. Many of these components correspond to different
text encodings. As should be expected, the ASCII-encoded
files form the largest component.

The statistical model described in Section II suggests that
relationships between message patterns might account for their
prevalence. For instance, consider the message pattern TAB
ASCII. Given that 51 of these files occur, it should not be
surprising that there are also some files that exhibit these
two messages along with a quotation or escape character.
Moreover, the statistical model suggests if these other files
are not too common, then we should consider them to be part
of the same dialect.

There is some ambiguity in how the dialects are formed,
though Theorem 2 in Section VI-B establishes that there is

151

\t " ASCII

, ASCII

, " ASCII

, UTF-8

, " UTF-8

space ASCII
| ASCII

, ISO-8859-1

; " UTF-8

\t ASCII

, " ISO-8859-1

\t ISO-8859-1
, " WINDOWS-1252

, " SHIFT_JIS

\t " UTF-16

> single WINDOWS-1252

ASCII

; ISO-8859-1

; ASCII

, GB2312

$ UTF-16
; " ISO-8859-1

; " WINDOWS-1252

, WINDOWS-1252

" EUC-JP

space WINDOWS-1252

: UTF-8

; " ASCII

space single ISO-8859-1

: ASCII

; UTF-8

, " doubleback ASCII

UTF-8
space UTF-8

, " N/A

, BIG5

| UTF-8

> front UTF-8
, " UTF-16

currency ISO-8859-9

ASCII

, single UTF-8

" ASCII

currency KOI8-R

, " front ASCII

\t " UTF-8 # " UTF-8 | " doubleback UTF-8

space front ASCII

, EUC-JP

space " front UTF-8

, single ASCII

circle EUC-JP

single ASCII

Fig. 2. Partial order of message patterns in the CSV data. Only those message patterns present in the data are shown. The size of each node is logarithmic
in the number of files exhibiting the corresponding message pattern.

TABLE II
LARGEST CSV CANDIDATE DIALECTS, IN ORDER OF DISCOVERY

File count Required messages
at root

1388 , ASCII
119 , UTF-8

77 , " UTF-8
18 , ISO-8859-1

7 ; " UTF-8
22 TAB ASCII

138 , " ISO-8859-1
48 TAB ISO-8859-1
58 , " WINDOWS-1252
29 ASCII
55 ; ISO-8859-1
16 ; ASCII

8 , GB2312
6 , WINDOWS-1252

a unique set of dialects that are the largest. Taking that as a
given, the resulting dialects we obtain are shown in Table II.

The “File count at root” column reports the number of files
exhibiting the required messages and no others. According to
Lemma 1, the number of files in the dialect associated to any
other message pattern will not exceed this value. In terms of
file count, the top entries in Table II are the comma-delimited
text files with various text encodings. The number of dialects
with at least 5 files is 14, which is smaller than the 20 message
patterns with at least 5 files, so some consolidation of the
data has occurred. The , " ASCII message pattern has been
subsumed into , ASCII, for instance. The numbers of files in
each have decreased somewhat because the statistical model
expects a few files exhibiting message pattern , ASCII to
arise as part of the ASCII dialect. In short, the model expects
that there are probably a few files that exhibited message
pattern , ASCII that are not actually CSV files—tabular
data—but are instead unstructured ASCII text files containing
commas.

B. PDF

The Portable Document File (PDF) format is defined by the
ISO 32000-2 standard. For this exercise, we used a sample of

TABLE III
MESSAGES ASSOCIATED TO EACH PDF PARSER

Parser Message count
caradoc 253
hammer 65
mutool 796
origami 39
pdfium 21
pdfminer 62
pdftk 29
pdftools 10
poppler 995
qpdf 136
xpdf 598
Total 3004

10000 files curated by the Test and Evaluation Team for the
DARPA SafeDocs evaluation exercise 4.

Each file was processed through 11 distinct parsers, run
with various options. A total of 3004 Boolean messages were
collected, as shown in Table III. One message per parser is
an exit code corresponding to the presence of an error. The
rest of the messages correspond to specific regular expressions
(regexes) run against stderr and stdout, as explained
previously in [1]. Several of these messages were found to
play an important role in identifying dialects, and appear in
Table IV.

After processing, we found 1658 distinct message patterns,
of which those with file count of at least 100 are shown in
Table V. It should be noted that valid files often still produce
numerous warnings and other output.

The proof of Proposition 3 compresses the message patterns
into 4 dialects with root file count greater than 100, as
shown in Table VI. These four dialects have a fairly clear
interpretation, as shown in the last column. The latter two
dialects appear to correspond to different kinds of syntax
errors.

As a comparison, if we consider file counts of at least 25, we
found 10 dialects with root file count greater than 25 compared
to 43 message patterns. A format analyst need only consider
about one-quarter as many dialects as overall message patterns.

152

TABLE IV
SAMPLE MESSAGES IN OUR PDF DATA RELEVANT FOR CANDIDATE DIALECTS

Message parser regex
69 caradoc PDF error : Syntax error at offset \d+ \[0x[A-Fa-f\d]+\] in file !
163 caradoc PDF error : Syntax error at offset .* in file !
217 caradoc PDF error : Lexing error : unexpected character : 0x[A-Fa-f\d]+ at offset...
220 caradoc PDF error : Lexing error : unexpected word at offset \d+ \[0x[A-Fa-f\d]+\...
250 caradoc Warning : Flate\/Zlib stream with appended newline in object .*

96,188,251 caradoc Exit code meaning error
255 hammer .*: no parse
258 hammer (?:/[a-zA-Z\d \-]+)+/[A-Fa-f\d]+: error after position \d+ \(0x[A-Fa-f\d...
297 hammer VIOLATION ... No newline before ’endstream’ ...
308 hammer VIOLATION ... Missing endobj token \(seve...
313 hammer VIOLATION ... No linefeed after ’stream’ \...
314 hammer VIOLATION ... Nonconformant WS at end of x...
316 hammer Exit code meaning error
482 mutool warning: line feed missing after stream begin marker \(\d+ \d+ R\)
720 mutool warning: line feed missing after stream begin marker \(\d+ \d+ R\)
899 mutool page (?:/[a-zA-Z\d]+)+/[A-Fa-f\]+ \d +
978 mutool warning: line feed missing after stream begin marker \(\d+ \d+ R\)

1143 origami .*Object shall end with ’endobj’ statement.*
1153 origami Exit code meaning error
2346 qpdf WARNING: .*: expected endobj
2384 qpdf WARNING: .*: stream keyword followed by carriage return only
2889 xpdf Syntax Warning.*: Substituting font ’.*’ for ’.*’
3015 xpdf non_embedded_font

TABLE V
FILE COUNTS FOR THE MOST COMMON MESSAGE PATTERNS IN THE PDF

DATA

File count Message pattern
3761 250 251 899 1153

347 251 297 899 1153
319 250 251 899 1153 2888
186 217 251 899 1153
117 92 96 184 188 247 251 899 1153
116 200 250 251 899 1153
114 69 96 163 188 220 251 255 258 297 308 313 ...
107 234 251 899 1153
102 228 251 899 1153
101 7 96 104 188 217 251 899 1153

TABLE VI
LARGEST PDF CANDIDATE DIALECTS

File count Required messages Interpretation
at root

3684 250 251 899 1153 Compressed stream error
270 251 297 899 1153 Missing/misplaced

endstream delimiter
111 69 96 163 188 220 251 255 Syntax error

258 297 308 313 ...
109 217 251 899 1153 Syntax error

C. NITF

The National Imagery Transmission Format (NITF) is used
by many US Government entities to share geocoded imagery.
These files contain a complicated header and a data payload.
There are several distinct NITF parsers in wide usage, which
has lead to some format divergence.

As part of the DARPA SafeDocs hackathon exercise 5, the
Test and Evaluation Team provided a set of 2626 NITF files.
Against each of these files, 6 parsers were run. The output

TABLE VII
PARSERS USED TO PROCESS THE NITF DATA

Parser Message count
afrl 42

codice 28
gdal 36

hammer_nitf 15
kaitai 6
nitro 9

Total 136

of stderr, stdout were collected along with the parser’s
return code. Using the same process described in [1] for PDF,
suitably modified for NITF, a collection of regexes were run on
this output to produce 136 possible messages. The breakdown
of parsers and messages is shown in Figure VII.

The most common messages are shown in Table VIII. Sev-
eral regular expressions matched more than 50% of the time.
Since this violates the assumptions on message probability in
Section II-A, we used the absence of a match in what follows.

In our data, 103 of the messages are extant. There are 20
distinct message patterns with file count at least 25, which are
shown in Table IX.

The decomposition of the data into dialects is summarized
in Table X. The “File count at root” column reports the
number of files exhibiting the required messages and no
others. According to Lemma 1, the number of files in the
dialect associated to any other message pattern will not exceed
this value.

There are 12 dialects with required messages having a file
count at least 25, as shown in Table X. This is an improvement
over the 20 message patterns that Table IX presents. Referring
back to Table VIII, all but the two most common dialects

153

TABLE VIII
MOST COMMON MESSAGES IN THE NITF DATA

Message File count parser regex
59 1051 codice Absence of Parse error\n

102 1039 gdal Absence of gdalinfo failed \- unable to open ’.*’\.
107 1038 hammer_nitf Absence of errors in exit code
71 1029 gdal Absence of errors in exit code
1 825 afrl Absence of errors in exit code

37 812 afrl Error reading, read returned .*\. \(start = .*, ...
94 527 gdal ERROR \d+: Not enough bytes to read segment info

108 470 hammer_nitf /[a-zA-Z\d _\\.\-\(\):/,+]+\.[a-zA-Z\d]+: no parse
113 420 hammer_nitf VIOLATION ... Invalid file length in header \(severity=\d+\)
21 394 afrl Error reading header.*
12 308 afrl user defined data length = \d+

103 241 gdal gdal ERROR .*: NITF Header Length \(.*\) seems...
119 241 hammer_nitf VIOLATION ... Invalid number of graph segments \(severity=\d+\)
99 227 gdal Warning \d+: ... appears to be an NITF file, but no image ...

TABLE IX
FILE COUNTS FOR THE MOST COMMON MESSAGE PATTERNS IN THE NITF

DATA

File count Message pattern
357 1 59 71 102 107
151 1 12 59 71 102 107
100 1 59 71 99 102 107 122

70 14 23 94
70 94
66 21 37 81 113
59 1 59 71 99 102 107
56 103 113
50 15 37 86
48 21 37 94 113
47 33 37 103 113
44 22 37 76 108 119
43 94 111
42 21 37 103 113
30 21 37 94 119
29 17 59 71 102 107
29 21 37 76 113
29 7 59 71 102 107
28 12 34 37 40 94
26 2 12 59 79 82 107

TABLE X
LARGEST NITF CANDIDATE DIALECTS

File count Required messages Interpretation
at root

352 1 59 71 102 107 Valid files
93 1 59 71 99 102 107 122 Corrupted data payload
70 94 Read access error
60 14 23 94 Read access error
54 103 113 Corrupted header length
49 15 37 86 Read access error
43 21 37 81 113 Corrupted header length
41 21 37 94 113 Corrupted header length
27 22 37 76 108 119 Read access error
26 21 37 94 119 Corrupted header
26 2 12 59 79 82 107 Valid but unsupported version
25 21 37 76 113 Corrupted header length

shown contains some kind of parser error message.
While not every possible message corresponds to a violation

of length fields, most of the dialects shown in Table X
correspond to a corrupted length field within the NITF header.

Because the NITF specification permits random access to the
data payload, length field corruption explains the presence of
messages 37 and 94, which indicate reading beyond the end
of the file. What ultimately distinguishes the dialects is which
length fields were corrupted. Due to differences in how the
parsers operate, different fields are collected at different points
in the parse by different parsers.

Further examination of the files in the second-to-last dialect
in Table X, the one that contains message 2, revealed that these
files were for a version not supported by the afrl parser.

IV. DETAILED METHODOLOGY

Our goal is to find candidate dialects from the probabilities
P (K) of each message pattern. We show in Proposition 3
that there are decompositions of these data into a mixture of
disjoint dialects of the form postulated in Corollary 1. The
proof of Proposition 3 is sufficiently constructive that it can
be taken as defining an algorithm that finds a decomposition
by greedily selecting the largest dialects first.

Although our probabilistic model is posed over the power
set of messages partially ordered by subset (2M ,⊆), we will
instead establish results for an arbitrary partially ordered set
X . This can yield a substantial savings in memory usage and
runtime of any algorithms working on the data, because we
need only consider those message patterns that are actually
present in the data. Moreover, at the level of generality used,
our data could be formatted as probabilities taking values
between 0 and 1 or equally well as counts of files.

As suggested in Section II-A, the data are formatted as a
function f : X → [0,∞) from a partially ordered set (X,≤)
to the nonnegative real numbers. We begin by relaxing from
independent mixtures (Corollary 1) to a decomposition into
monotonic functions.

Definition 2. Suppose that f : X → [0,∞) is a function
from a finite partially ordered set (X,≤) to the nonnegative
real numbers. A monotonic decomposition expresses f as a
sum of functions

f(x) =
N∑

k=1

1Uyk
(x)gk(x) (3)

154

where gk : X → [0,∞) is monotonic decreasing, and Uyk
=

{x ∈ X : x ≥ yk} is an upwardly closed set. Through a slight
abuse of naming, which is meant to evoke the usage for files,
we will call each term in the above sum a dialect. Each yk is
called a root node, and plays the role of the pattern of required
messages for the dialect.

Duplicate yk and/or gk are permissible in a monotonic
decomposition.

Monotonic decompositions generalize the probabilistic
model posited in Section II, in which the values of f could
correspond to probabilities or file counts of message patterns.

Proposition 2. Suppose that there is a set of messages for
which the probability each message pattern in each dialect is
given by Equation (1). Assume that dialects are disjoint so
that Corollary 1 applies. Then Equation (2) is a monotonic
decomposition of the joint probability distribution over all
message patterns.

Proof. According to Lemma 1, each dialect corresponds to a
term of the form 1Uy

g(x) where g is a monotonic decreasing
function. According to Corollary 1, the formula for the joint
probability distribution for all messages patterns is of precisely
the same form as required by Equation (3) in Definition 2.

Nonuniqueness is a general feature of monotonic decompo-
sitions, and is not due to any particular algorithm for finding
them.

Example 1. Consider the partially ordered set given by

D

B

>>

C

``

A

>>``

with the function f given by

f(A) := 0, f(B) := 4, f(C) := 4, and f(D) := 5.

One can interpret these values as counts of files for four
different message patterns. In this case B and C represent two
distinct, but overlapping message patterns. A represents the
message pattern consisting of the intersection of the patterns
for B and C. Finally, D represents the message pattern
consisting of the union of the patterns for B and C.

The function f can be written as the sum

f = 1UB
g1 + 1UC

g2,

where

g1(A) := 5, g1(B) := 4, g1(C) := 4, and g1(D) := 2,

and

g2(A) := 5, g2(B) := 4, g2(C) := 4, and g2(D) := 3.

f

g

Fig. 3. An example of the function g guaranteed by Lemma 3

Evidently, both g1 and g2 are monotonic decreasing. However,
it is also true that

f = 1UB
g2 + 1UC

g1,

which contradicts the uniqueness of the decomposition, since
exactly the same two open sets are used.

Our experimental results follow from a constructive proof
of the following.

Proposition 3. Every function f : X → [0,∞) from a finite
partially ordered set (X,≤) to the nonnegative real numbers
has a monotonic decomposition.

We will prove Proposition 3 constructively (algorithmically
after certain choices are made) later in this section, after
establishing two Lemmas as tools.

Lemma 2. Suppose that f : X → [0,∞) is a function from a
partially ordered set (X,≤) to the nonnegative real numbers.
If g1, g2 : X → [0,∞) are two functions satisfying

1) both gi are monotonic decreasing: if x ≤ y are two
elements of X , then gi(x) ≥ gi(y), and

2) gi(x) ≤ f(x) for all x ∈ X and both gi.
Then the function

h(x) := max{g1(x), g2(x)}

satisfies the same two conditions.

Proof. The fact that h(x) ≤ f(x) for all x ∈ X follows
immediately from the fact that h(x) is equal to either g1(x), or
g2(x), or both. Now suppose that x ≤ y are two elements of
X . Without loss of generality, suppose that h(x) = g1(x). This
means that g1(x) ≥ g2(x), and by assumption g2(x) ≥ g2(y).
By transitivity, this means that h(x) = g1(x) ≥ g2(y). By
assumption, we have that h(x) = g1(x) ≥ g1(y) as well. Since
h(y) is equal to the larger of g1(y) and g2(y), this means that
h(x) is larger than h(y).

Lemma 3. Suppose that f : X → [0,∞) is a function from
a finite partially ordered set (X,≤) to the nonnegative real
numbers. The set of monotonic decreasing functions g : X →
[0,∞) such that g(x) ≤ f(x) for all x ∈ X has a unique
maximal element. (See Figure 3.)

155

f

x yi

1U g
yiyi

Fig. 4. Construction of the function gyi in the proof of Proposition 3

Proof. All we need to show is that the set in question is
nonempty, since Lemma 2 does the rest. This is easy because
the zero function is in the set.

There is a greedy, recursive algorithm that constructs the
function g guaranteed by Lemma 3.

Algorithm 1. 1) Start with the set of minimal elements M0

of X .
2) We can without any trouble define g(m) := f(m) for

every m ∈ M , as this is evidently maximal in all cases.
3) In preparation for the recursive step, let L0 := M0.
4) For the recursive step, assume g is already defined on

some lower-closed subset Lk of X .
a) Consider the set Mk of minimal elements of X\Lk.
b) For each m ∈ Mk, define g(m) := min{f(m)} ∪

{g(x) : x < m}, noting that every x in the
latter set is an element of Lk so g(x) is well-
defined. Defining g in this way ensures that it is
upper bounded by f , is monotonic decreasing, yet
is otherwise maximal.

c) In preparation for the next recursive step, let
Lk+1 := Lk ∪Mk.

The greediness of Algorithm 1 makes it scale linearly in the
number of relations in X .

These maximal monotonic decreasing functions can be used
to decompose an arbitrary function into a sum of monotonic
decreasing functions whose domains are restricted appropri-
ately.

Proof. (of Proposition 3) Proceed by induction on the number
of places where f fails to be monotonic decreasing.

• Base case: f is monotonic decreasing. If there is one
minimal element, y of X , then we merely take y1 := y,
and let g1 := f . However, if there is more than one mini-
mal element, then things become annoyingly non-unique.
This can be resolved in various ways, for instance using
the following tie-breaking procedure. Let y1, . . . , ym be
an arbitrary ordering of the minimal elements of X . Since
they are all minimal, they are mutually incomparable
elements of X . Define

gi(x) := 1Ai(x)f(x),

where

Ai = Uyi
\

i−1⋃
j=1

Uyj
.

Notice that since each 1Ai is monotonic decreasing—
it is 1 on yi, but eventually drops to 0 on sufficiently
large elements of X—the resulting gi functions are also
monotonic decreasing. Moreover, by construction each
element x of X is an element of exactly one Ai set.
Therefore, the decomposition formula for f holds.

• Induction case: Suppose that f is not monotonic de-
creasing at k elements {y1, . . . , yk} of X . For each of
these elements yi, there is an x in X with x ≤ yi but
f(x) < f(yi). At least one of these yi is minimal among
the set {y1, . . . , yk}, which means that for each j ≠ i,
either yi < yj or yi and yj are incomparable. Use Lemma
3 to construct a maximal monotonic decreasing function
gyi on Uyi that is bounded above by f . We will show that
the residual function f − 1Uyi

gyi
fails to be monotonic

at not more than k − 1 elements of X .
We assumed that there was an x such that f(x) < f(yi).
Due to the hypothesis that gyi is bounded above by f , this
means that gyi(yi) ≤ f(yi). On the other hand, given that
Lemma 3 asserts a maximal such gyi

exists on Uyi
, we

must conclude that gyi
(yi) = f(yi), as shown in Figure 4,

since that value has no further impact on the monotonicity
of gyi

. Therefore, the residual function f −1Uyi
gyi

takes
the value 0 on yi, and therefore automatically satisfies

f(x) = f(x)− 1Uyi
(x)gyi

(x)

≥ 0 = f(yi)− 1Uyi
(yi)gyi

(yi).

Therefore, at least one violation of monotonicity in f is
not present in the residual.
Let us establish that no new violations of monotonicity
occur in the residual. Suppose that x ≤ z are two
elements of X for which f(x) ≥ f(z). If both elements
are outside Uyi

, then the residual is unchanged from f
on these two elements. If x is outside Uyi

but z ∈ Uyi
,

then

f(x)− 1Uyi
(x)gyi(x) = f(x)

≥ f(z)

≥ f(z)− 1Uyi
(z)gyi(z),

since gyi is nonnegative by construction. Finally, assume
that both x (and therefore z) are elements of Uyi

and that
f(x) ≥ f(z). While an arbitrary monotonic decreasing
function h bounded above by f might not result in f(x)−
h(x) ≥ f(z)− h(z), this cannot happen with gyi due to
its maximality. We establish this by way of contradiction;
suppose that

f(x)− gyi
(x) < f(z)− gyi

(z).

Rearranging this inequality yields

0 ≤ f(x)− f(z) < gyi
(x)− gyi

(z),

156

which means that there is a monotonic decreasing h with
h(x) = gyi(x) and gyi(z) < h(z) ≤ f(z), contradicting
the maximality of gyi . We have therefore established that
the residual f − 1Uyi

gyi
has strictly fewer violations of

monotonicity than f .

Example 2. Let us apply Algorithm 1 repeatedly to Example
1, according to the recipe in the proof of Proposition 3 to
show how dialects are collected. We need to run Algorithm 1
for each dialect, which will yield a new g function for each
dialect. We will call these functions gA, gB , gC , and gD.

The minimal element of the partial order is A, so we set
M0 = {A}, leading to gA(A) := f(A) = 0, and L0 = {A}.
Evidently, this means that the first dialect has a root node of
A, but has all zero values since they must be bounded above
by gA(A) = 0.

To obtain the next dialect, we remove A from consideration,
leaving {B,C,D}. There are two minimal elements, namely
B and C. Let us consider B. We thus can take gB(B) :=
f(B) = 4, and after one recursive step, we have gB(D) := 4
after Step 4(b) in Algorithm 1.

Removing B from consideration, the minimal element of
the resulting set {C,D} is C, which will lead us to construct
gC . We can take gC(C) := f(C) = 4. Since we want to result
in a monotonic decomposition, we must have that

5 = f(D) = gA(D) + gB(D) + gC(D) = 0 + 4 + gC(D).

Thus gC(D) = 1. At this point, the residual in Equation (3)
is zero, so there is nothing left to do.

This completes the monotonic decomposition, namely that

f = 1UA
gA + 1UB

gB + 1UC
gC , (4)

where

gA(A) := 0, gA(B) := 0, gA(C) := 0, and gA(D) := 0,

gB(B) := 4, gB(C) := 0, and gB(D) := 4,

and
gC(B) := 0, gC(C) := 4, and gC(D) := 1.

Notice that we never defined gB(A) or gC(A). While strictly
speaking this does not fit the form of Equation (3), these values
lie outside the support of their respective dialects. We can
easily fill the missing values with the maximum value of each
function to comply with Equation (3). Additionally, since gA is
identically zero, we may remove it from further consideration.

The decomposition proposed in the proof of Proposition 3
is not unique. This means that there are sometimes different
possible choices of dialects that result in the same message
probabilities. Fortunately, the collection of dialects produced
by the proof of Proposition 3 is the coarsest collection that is
consistent with the specified probabilities.

Theorem 1. The procedure defined in the proof of Proposition
3, yields a minimally refined monotonic decomposition for an

arbitrary nonnegative function f on a finite partially ordered
set.

Assuming that the probabilities of the true dialects are given
by an independent mixture model, then the support of each
dialect is a subset of a dialect found by Algorithm 1.

Theorem 2. The number of dialects is bounded below by the
number of support sets in the irredundant cover of X induced
by any minimal irredundant monotonic decomposition of the
joint probability distribution function.

Hence, the decomposition constructed by the proof of
Proposition 3 yields a bound on the number and structure
of dialects. In particular, the sets of required messages found
by this procedure correspond to those of some true dialects,
though there may be other dialects that remain to be found.
Theorems 1 and 2 are proven in the Appendix.

V. CONCLUSION

This paper presented a novel statistically-based method for
partitioning sets of files into format dialects based upon their
behaviors when parsed. As a direct consequence of Theorems
1 and 2, our method yields the coarsest such partition that
could be consistent with the statistical model. This means
that a format analyst can begin their analysis with a minimal
number of dialects. In practice, an analyst needs to consider
about half the number of dialects as distinct message patterns.
Intuitively, this considerably reduces their cognitive load when
studying a complex format.

ACKNOWLEDGMENTS

The authors would like to thank the SafeDocs test and
evaluation team, including NASA (National Aeronautics and
Space Administration) Jet Propulsion Laboratory, California
Institute of Technology and the PDF Association, Inc., for
providing the test data. The authors would like to thank Cory
Anderson for the initial processing of the files into sets of
messages.

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) SafeDocs pro-
gram under contract HR001119C0072. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views
of DARPA.

CONFLICT OF INTEREST

The authors state that there is no conflict of interest.

REFERENCES

[1] M. Robinson, L. W. Li, C. Anderson, and S. Huntsman,
“Statistical detection of format dialects using the
weighted Dowker complex,” in 2022 IEEE Security and
Privacy Workshops (SPW), 2022, pp. 98–112. [Online].
Available: http://arxiv.org/pdf/2201.08267

[2] D. Scofield, C. Miles, and S. Kuhn, “Fast model learning
for the detection of malicious digital documents,” in
SSPREW-7, December 2017.

157

[3] M. Robinson, “Looking for non-compliant documents
using error messages from multiple parsers,” in 2021
IEEE Security and Privacy Workshops (SPW), 2021, pp.
184–193. [Online]. Available: https://doi.org/10.1109/
SPW53761.2021.00032

[4] K. Ambrose, S. Huntsman, M. Robinson,
and M. Yutin, “Topological differential testing,
arxiv:2003.00976,” 2020. [Online]. Available:
https://arxiv.org/abs/2003.00976

[5] M. Belaoued and S. Mazouzi, “A real-time PE-malware
detection system based on chi-square test and PE-file
features,” in IFIP International Conference on Computer
Science and its Applications. Springer, 2015, pp. 416–
425.

[6] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid,
“Ransomware threat success factors, taxonomy, and
countermeasures: A survey and research directions,”
Computers & Security, vol. 74, pp. 144–166, 2018.

[7] S. D. S.L and J. CD, “Windows malware detector using
convolutional neural network based on visualization
images,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2019. [Online]. Available: https:
//doi.org/10.1109/TETC.2019.2910086

[8] M. Alazab, “Profiling and classifying the behavior
of malicious codes,” Journal of Systems and
Software, vol. 100, pp. 91 – 102, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0164121214002283

[9] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waks-
man, S. Sethumadhavan, and S. Stolfo, “On the fea-
sibility of online malware detection with performance
counters,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, pp. 559–570, 2013.

[10] G. J. J. van den Burg, A. Nazábal, and C. Sutton,
“Wrangling messy CSV files by detecting row and
type patterns,” Data Mining and Knowledge Discovery,
vol. 33, no. 6, pp. 1799–1820, 2019. [Online]. Available:
https://doi.org/10.1007/s10618-019-00646-y

[11] J. Marin, K. Mengersen, and C. P. Robert, “Bayesian
modelling and inference on mixtures of distributions,”
in Essential Bayesian models. Handbook of statistics:
Bayesian thinking - modeling and computation. Vol. 25,
D. Dey and C. Rao, Eds. Elsevier, 2011).

[12] G. McLachlan and D. Peel, Finite Mixture Models.
Wiley, 2000.

[13] A. Björner, “Topological methods,” Handbook of combi-
natorics, vol. 2, pp. 1819–1872, 1995.

[14] M. Robinson, “Cosheaf representations of relations
and Dowker complexes,” Journal of Applied and
Computational Topology, 2021. [Online]. Available:
https://doi.org/10.1007/s41468-021-00078-y

[15] M. Brun and L. M. Salbu, “The rectangle complex
of a relation,” Mediterranean Journal of Mathematics,
vol. 20, no. 1, pp. 1–8, 2023.

[16] J. Dileo, “CSV injection, RFC5322,” March 2019.
[Online]. Available: https://unpack.debug.su/pocorgtfo/

pocorgtfo19.pdf
[17] C. R. Kime, R. P. Batni, and J. D. Russell, “An efficient

algorithm for finding an irredundant set cover,” J. ACM,
vol. 21, no. 3, p. 351–355, jul 1974. [Online]. Available:
https://doi.org/10.1145/321832.321833

[18] S.-i. Minato, “Fast generation of prime-irredundant cov-
ers from binary decision diagrams,” IEICE transactions
on fundamentals of electronics, communications and
computer sciences, vol. 76, no. 6, pp. 967–973, 1993.

VI. APPENDIX

Although Proposition 3 constructs a monotonic decompo-
sition of a functions, nonuniqueness can impede its practical
utility. Theorem 1 asserts that the decomposition constructed in
the proof of Proposition 3 is minimal in the sense that it cannot
be decomposed further. Furthermore, Theorem 2 asserts that
the decomposition so constructed provides an unambiguous
lower bound on the true number of dialects. Theorem 1 is
proven in Section VI-A. Theorem 2 is proven in Section VI-B.

A. Bounding the structure of dialects

An effective way to handle the ambiguity present among
possible dialect decompositions is simply to embrace it. Some
decompositions are evidently finer, in that they split the set of
files into smaller dialects. This situation is easily characterized
by the notion of refinement.

Definition 3. Suppose that a function f : X → [0,∞) from a
finite partially ordered set (X,≤) has multiple monotonic de-
compositions. We will say that the monotonic decomposition

f(x) =
N∑

k=1

1Uzk
(x)hk(x)

refines the monotonic decomposition

f(x) =

M∑
j=1

1Uyj
(x)gj(x)

if for every k = 1, · · · , N , there is a j such that
1) Uzk ⊆ Uyj

, and
2) hk(x) ≤ gj(x) for every x ∈ Uzk .

Lemma 4. The set of monotonic decompositions of a function
f : X → [0,∞) from a finite partially ordered set (X,≤) is
itself a preordered set under refinement.

Proof. This is merely a straightforward verification of the ax-
ioms. Suppose that we have three monotonic decompositions
of f ,

f(x) =
N∑

k=1

1Uzk
(x)hk(x)

=
M∑
j=1

1Uyj
(x)gj(x)

=

Q∑
ℓ=1

1Uwℓ
(x)pℓ(x).

158

• Reflexivity is trivial; both ⊆ for sets and ≤ for functions
are reflexive.

• For transitivity, suppose that the first monotonic decom-
position refines the second, and that the second refines
the third. For every k = 1, · · · , N , there is a j such that
Uzk ⊆ Uyj

. Yet there is also an ℓ such that Uyj
⊆ Uwℓ

.
Thus Uzk ⊆ Uwℓ

. For exactly these same indices, we
have that

hk(x) ≤ gj(x) ≤ pℓ(x)

for all x ∈ Uzk . Hence, the first monotonic decomposition
refines the third.

We seek a monotonic decomposition that is minimally
refined, there is no other monotonic decomposition refined
by it. Because of cases like Example 1, minimally refined
monotonic decompositions are not unique. In Example 1, both
decompositions are minimally refined and neither refines the
other.

The remainder of this section is devoted to the proof of
Theorem 1. Before attempting the proof, it helps to consider
the case of monotonic functions before considering general
monotonic decompositions.

Lemma 5. Suppose that f : X → [0,∞) is a monotonic
function from a finite partially ordered set (X,≤). If (X,≤)
has a unique minimal element p, then every monotonic decom-
position of f refines

f = 1Upf. (5)

Additionally, this monotonic decomposition refines no other
monotonic decomposition of f .

Proof. For the first statement, suppose that

f(x) =
N∑

k=1

1Uzk
(x)hk(x).

Evidently, since p is the minimal element of (X,≤), it follows
that Uzk ⊆ 1Up = X . Moreover, since hk(x) is nonnegative
and the collection sums to f , it follows that hk ≤ f .

Conversely, the only way that the monotonic decomposition
defined by Equation (5) refines any other is that zk = p for
some k. If this is the case, refinement requires that f ≤ hk.
However, since the hk must sum to f , is still the case that
hk ≤ f . Hence hk = f .

Proof. (of Theorem 1) Suppose that f : X → [0,∞) is a
function from a finite partially ordered set (X,≤).

Lemma 5 can be used with Lemma 3 to rule out refinement
by certain decompositions supported on minimal elements.
Suppose tentatively that p ∈ X is a minimal element of
(X,≤). If gp : Up → [0,∞) is the unique maximal monotonic
decreasing function such that g ≤ f guaranteed by Lemma 3,
then

f = 1Upgp +
N∑

k=1

1Uzk
(x)hk(x)

cannot refine any monotonic decomposition which does not
also contain the term 1Upgp.

With this situation treated, now consider the case where
there are multiple minimal elements of (X,≤). Let p1, . . . , pm
be all of the minimal elements of a finite partially ordered set
(X,≤).

Define monotonic decreasing functions gi : X → [0,∞) for
each i = 1, . . . ,m inductively via

• Base case: g1 is the unique maximal monotonic decreas-
ing function on Up1

such that g ≤ f guaranteed by
Lemma 3,

• Induction case: gi is the unique maximal mono-
tonic decreasing function on Up1

such that g ≤(
f −

∑i
j=1 1Upi

gi

)
guaranteed by Lemma 3.

Any monotonic decomposition of the form

f(x) =
m∑
j=1

1Upi
gi(x) +

N∑
k=1

1Uyk
hk(x)

cannot refine any monotonic decomposition not containing all
of the terms in the first sum.

The reader is cautioned that changing the ordering of the
pi in the above construction will generally yield different
corresponding gi functions. The monotonic decompositions so
arising cannot refine each other as a result. The tie-breaking
procedure used in the proof of Proposition 3 provides one such
option for an ordering.

The full statement of the Theorem follows by mimicking the
induction case of the proof of Proposition 3. That is, we repeat
the above procedure with

(
f −

∑m
j=1 1Upi

gi

)
instead of f ,

and restrict the domain to X \{p1, . . . , pm}. At each iteration,
we obtain more terms of the minimally refined monotonic
decomposition.

B. The structure of the refinement preorder

In the previous section, it was shown (Lemma 4) that
monotonic decompositions are preordered by refinement. We
now establish that this preorder can be strengthened to a partial
order (Proposition 4) if redundancies of a certain kind are
eliminated.

Lemma 6. Suppose that there are two monotonic decomposi-
tions of a function f : X → [0,∞) that refine each other, and
that these two decompositions can be written as

f(x) =
N∑

k=1

1Uzk
(x)hk(x) =

M∑
j=1

1Uyj
(x)gj(x).

If we assume that the sets of root nodes {zk} and {yj} are
antichains in X , then the two decompositions differ at most
by a reordering of terms.

Proof. Because the first monotonic decomposition refines the
second, this means that every zk is greater than at least one
element of {yj} in (X,≤). In fact, this means there is (not
uniquely) an order preserving function r : {zk} → {yj} such
that r(zk) ≤ zk for every k. On the other hand, the fact that
the second monotonic decomposition refines the first means
that every yj is greater than at least one element of {zk}

159

in (X,≤). Again, there exists an order preserving function
s : {yj} → {zk} such that s(yj) ≤ yj for every j.

Using this notation,

zm = s(r(zk)) ≤ r(zk) = yj ≤ zk,

but being an antichain means that zm ≤ zk implies m = k.
Thus, yj = zk as well. Hence the collection of support sets
for the two decompositions coincide up to a permutation of
indices. We can therefore compare the associated monotonic
functions hk and gj on Uzk = Uyj

. Since both decompositions
refine each other, we have that hk ≤ gj and hk ≥ gj .
Antisymmetry for ≤ on functions completes the argument.

The hypotheses for Lemma 6 only yield a sufficient condi-
tion. This condition is too restrictive, because we often want
to represent dialects that have subset behaviors of larger ones.
Such a situation is represented by a monotonic decomposition
in which zm < zk are both present.

Lemma 7. Suppose that

f(x) = 1Uy
(x)g1(x) + 1Uz

(x)g2(x) = 1Uy
(x)h(x)

are two monotonic decompositions of f : X → [0,∞) that
refine each other, and that y ≤ z in X . Then g2 is identically
zero.

Proof. Because the left decomposition refines the right one,
we have that g1 ≤ h. On the other hand, because the right
decomposition refines the left one, we also have that h ≤ g1.
Thus g1 = h. Since y ≤ z in X , this means that Uz ⊆ Uy .
Therefore,

f(z) = 1Uy
(z)h(z)

= h(z)

= 1Uy
(z)g1(z) + 1Uz

(z)g2(z)

= g1(z) + g2(z)

= h(z) + g2(z),

whence g2(z) = 0. Since g2 is assumed to be monotonic, this
means that g2 is identically zero.

One irritation is that there can be redundancies that com-
plicate minimality.

Definition 4. A monotonic decomposition

f(x) =
N∑

k=1

1Uyk
(x)gk(x)

is called irredundant if each of the gk functions is nonzero for
at least one x ∈ X .

Notice that the decomposition in Equation (4) of Example
2 is not irredundant because gA is identically zero. Simply
by excluding any zero terms, every monotonic decomposition
refines a unique irredundant monotonic decomposition.

Proposition 4. The set of irredundant monotonic decompo-
sitions of a function f : X → [0,∞) from a finite partially
ordered set (X,≤) is a partially ordered set.

Proof. All that remains after Lemma 4 is antisymmetry. Sup-
pose that

f(x) =
M∑
j=1

1Uyj
(x)gj(x) =

N∑
k=1

1Uzk
(x)hk(x)

are two irredundant monotonic decompositions that refine each
other. We want to show that these two decompositions are in
fact the same, up to reordering of terms.

Let us establish that the sets {yj} and {zk} are identical. To
see that the desired result follows from this statement, suppose
that yj = zj for some j. Then gj ≤ hj and hj ≤ gj by the
refinement hypotheses, so gj = hj .

Without loss of generality, suppose that there is a y ∈ {yj}
that is not equal to any zk. Since the first decomposition refines
the second, this means that there must nevertheless be a zk
such that zk ≤ y.

Discern two cases: either zk is equal to an element of yj1
or there is no such element. In the first case, Lemma 7 asserts
that gj1 = 0 in contradiction to the irredundancy of the first
decomposition.

In the second case, although zk is not equal to any element
ym, nevertheless refinement requires there to be a yj1 such that
yj1 ≤ zk ≤ y. Assuming Lemma 7 does not apply outright
to this new situation, we can continue iterating this process
to obtain a sequence y ≥ yj1 ≥ yj2 ≥ · · · . Since X is a
finite set, this sequence must terminate at some y′ ∈ {yj}.
Again, because both decompositions refine each other, we
must conclude that y′ ∈ {zk}. Lemma 7 applies to this
situation, and thereby contradicts the irredundancy of at least
one of the decompositions.

Definition 5. (standard, see for instance [17]) Suppose that
(X, T) is a topological space for which T is finite, and that
U ⊆ T is a cover for X .

An open set U ∈ U is called redundant in U if there is a
subset V ⊂ U such that U /∈ V but U ⊆ ∪V .

A cover with no redundant open sets is called an irredundant
cover.

Efficient algorithms for finding irredundant covers have
been known for a long time [17]. Irredundant monotonic
decompositions correspond to dialects with nonzero probabil-
ities, and so are useful in helping to identify candidate dialect
decompositions. It is informative to know the number of di-
alects that could be present in a given dataset, which Corollary
2 below relates to minimal monotonic decompositions. As a
practical matter, irredundant monotonic decompositions are
especially useful because even though they are not unique,
they are unambiguous about the number of dialects involved.

Corollary 2. Because each dialect decomposition corresponds
to a monotonic decomposition according to Proposition 2,
Theorem 1 implies that a lower bound on the number of
dialects given for a probability distribution as expressed by
Equation (2) is the minimum number of terms in a minimally
refined monotonic decomposition.

160

Theorem 2 is an immediate consequence of Lemmas 8 and
9, which follow.

Lemma 8. All minimal irredundant monotonic decomposi-
tions of a given function have the same support sets and hence
have the same number of terms.

This is different from the related situation of finding min-
imal irredundant decompositions of logic functions. Logic
functions are known that have minimal irredundant decom-
positions into sums with different numbers of terms [18].

Proof. Suppose that

f(x) =
∑

y∈R⊆X

1Uy (x)gy(x)

is a minimal irredundant monotonic decomposition of an
arbitrary function f . The statement to be proven is that the
R set in the equation is the same for all minimal irredundant
monotonic decompositions of f . More explicitly, if y ∈ R,
so that 1Uy (x)gy(x) is a term in the minimal irredundant
monotonic decomposition above, then any other irredundant
monotonic decomposition must also have a term of the form
1Uy

(x)hy(x).
Suppose that y ∈ X is such that f(x) = 0 for all x ≤ y.

Then every monotonic decomposition (irredundant or not) of
f must contain a term of the form 1Uy (x)hy(x).

Suppose that y ∈ X is such that there is an x ∈ X such x ≤
y and f(x) ̸= 0. We can rewrite the monotonic decomposition
as

f(x) =
∑

v∈R:v<y

1Uv (x)gv(x) +
∑

w∈R:y≤w

1Uw(x)gw(x)+∑
z∈R:z ̸≤y,y ̸≤z

1Uz
(x)gz(x).

Because gy(y) ≠ 0 by irredundancy, the middle term must be
positive. This means that the above decomposition leads to the
inequality

f(y) >
∑

v∈R:v<y

1Uv
(y)gv(y).

We can take this inequality a bit further. The Proposition
follows if there are is a subset R′ of those v ∈ R satisfying
both v < y and

f(y) >
∑

v∈R:v<y

1Uv (y)gv(y) =
∑
u∈R′

f(u). (6)

This claim can be proven by contradiction; assume that there
is a subset R′ ⊆ {v ∈ R : v < y} such that

f(y) =
∑
u∈R′

f(u).

If this is the case, using the fact that the gv functions sum
to f(u) on each u ∈ R′, we can choose the gv functions
to take the same value at y without violating monotonicity.
Thus gy has to be zero because the sum of all the gv(y) is
equal to f(y), a contradiction with irredundancy. Obviously
a smaller f(y) forces gy(y) = 0 as well. In any case, this

also contradicts irredundancy. Thus f(y) is strictly greater than
that, as Equation (6) claims.

Notice that the last sum in Equation (6) does not depend
on gv . A term involving Uy in an irredundant monotonic
decomposition is therefore determined directly by the values
of f . Therefore, any other monotonic decomposition will be
subject to the same situation and therefore will need to contain
a term involving y.

Lemma 9. Suppose that (X, T) is a topological space for
which T is finite, that U is a cover which refines an irredun-
dant cover V . Then #V ≤ #U .

Proof. Let V ∈ V . The hypotheses imply there is a U ∈ U
such that U ⊆ V . Let us establish this claim by contradiction.
Suppose that no U ∈ U is a subset of V . Because U is a
cover, there is a collection U ′ ⊆ U such that V ⊆ ∪U ′. Since
U refines V , each U ′ ∈ U ′ is a subset of some V ′ ∈ V .
Consider the subset

V ′ := {V ′ ∈ V : U ′ ⊆ V ′ for some U ′ ∈ U ′} ⊆ V.

Evidently V ⊆ ∪V ′. Recalling that we assumed no U ∈ U
is a subset of V , we must conclude that V ̸= ∪V ′, which
contradicts the irredundancy of V .

We complete the argument by induction on #V .
• Base case: Suppose that #V = 1. Because both V and U

both cover X , and V is evidently nonempty, then U must
also be nonempty.

• Induction case: Suppose that the Lemma has been es-
tablished for all V with #V ≤ n for some integer
n. Suppose that V is an irredundant cover containing
n + 1 elements, V0, . . . , Vn. Consider the subspace of
(X, T) covered by V0, . . . , Vn−1. By the claim proven
above, there is a subset U ′ ⊆ U that both covers
V0 ∪ · · · ∪ Vn−1 and refines the cover {V0, . . . , Vn−1}.
The induction hypothesis applied to this situation asserts
that #U ′ ≥ n. By the irredundancy of V , we must have
that V ̸⊆ (V0 ∪ · · · ∪ Vn−1). Because each element of U ′

is a subset of at least one of the V0, . . . , Vn−1, we have
that V ̸⊆ ∪U ′ as well. Therefore, to be a cover of X , U
must have at least one more element than U ′. Hence,

#U ≥ #U ′ + 1 ≥ n+ 1 = #V.

Example 3. Suppose that X = {A,B,C,D} is the partial
order defined by the Hasse diagram

D

B

>>

C

``

A

>>``

According to Theorem 2, all minimally refined irredundant
monotonic decompositions of an arbitrary function f : X →
[0,∞) have the same number of terms. We can demonstrate

161

this fact by reasoning about monotonic decompositions di-
rectly.

If f(A) ̸= 0, then every irredundant monotonic decompo-
sition of f must contain a term of the form 1UA

gA where
gA(A) = f(A). Therefore, without loss of generality, we may
assume that f(A) = 0. Also, without loss of generality, we
may assume that f(B) ≤ f(C).

If f(B) = 0, then there are no choices to be made in the
decomposition of f :

• If f(C) = 0, the decomposition has at most one term of
the form 1UD

f(D).
• If f(D) > f(C) > 0 the decomposition contains a term

of the form 1UD
(f(D)− f(C)).

• Otherwise the decomposition has only one term.
If instead f(B) ̸= 0, whether we start the decomposition

using B or C does not change the resulting number of terms
in the decomposition. This happens because after removing
the contribution from a term supported on B or C results in a
new function that decomposes as above. Notice that this latter
situation is exactly what happened in Example 2.

While Theorem 2 handles the case of minimally refined
irredundant monotonic decompositions, which have useful
implications for determining the number of dialects, maximally
refined irredundant monotonic decompositions also exist.

Proposition 5. There is a unique maximally refined irredun-
dant monotonic decomposition of a function f : X → Z+

from a finite partially ordered set (X,≤) to the nonnegative
integers, namely

f(x) =
∑
y∈X

f(y)∑
i=1

1Uy
(x)1{y}(x). (7)

The maximally refined monotonic decomposition is rather
uninformative, because it means that each dialect contains
exactly one file.

Proof. Because X is assumed to be finite and each of the
monotonic functions in a monotonic decomposition produce
nonnegative integers, the set of monotonic decompositions is
finite. Therefore, Lemma 4 implies that there are maximal and
minimal monotonic decompositions under refinement.

Suppose that we have an arbitrary monotonic decomposition
of f ,

f(x) =
N∑

k=1

1Uyk
(x)gk(x). (8)

We must show that Equation (7) refines this decomposition.
Close inspection of the sum in Equation (7) reveals that it

only contains terms involving Uy if f(y) > 0. While the outer
sum would seem to imply that terms involving Uy will be
present for all y ∈ X , the inner sum prevents the inclusion of
any term for which f(y) = 0. Hence, Equation (7) defines an
irredundant monotonic decomposition.

Given this observation, consider a y ∈ X for which f(y) >
0. Necessarily, there must be a term in Equation (8) for which

y ∈ Uyk
and gk(y) > 0. Therefore, Uy ⊆ Uyk

. Moreover,
since each of the monotonic functions in Equation (7) simply
take the value 1 on exactly one element of X , we have that
1{y} ≤ gk(y).

Remark 1. If we instead permit redundancies in Proposition
5, then we may add terms with the zero function arbitrarily.
While these monotonic decompositions all refine each other,
this precludes uniqueness of such a decomposition.

Remark 2. If we instead consider f : X → [0,∞) in Propo-
sition 5, then the inner sum in Equation (7) becomes infinite.
There is no maximally refined monotonic decomposition in
this case.

162

