
SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning

Till Gehlhar , Felix Marx , Thomas Schneider , Ajith Suresh , Tobias Wehrle and Hossein Yalame
Technical University of Darmstadt, Germany

{till.gehlhar,felix.marx,tobias.wehrle}@stud.tu-darmstadt.de
{schneider,suresh,yalame}@encrypto.cs.tu-darmstadt.de

Abstract—Federated learning (FL) has gained widespread pop-
ularity in a variety of industries due to its ability to locally
train models on devices while preserving privacy. However,
FL systems are susceptible to i) privacy inference attacks and
ii) poisoning attacks, which can compromise the system by
corrupt actors. Despite a significant amount of work being
done to tackle these attacks individually, the combination of
these two attacks has received limited attention in the research
community.

To address this gap, we introduce SAFEFL, a secure
multiparty computation (MPC)-based framework designed to
assess the efficacy of FL techniques in addressing both privacy
inference and poisoning attacks. The heart of the SAFEFL
framework is a communicator interface that enables PyTorch-
based implementations to utilize the well-established MP-SPDZ
framework, which implements various MPC protocols. The
goal of SAFEFL is to facilitate the development of more effi-
cient FL systems that can effectively address privacy inference
and poisoning attacks.

Index Terms—Federated Learning, MPC, Privacy

1. Introduction

Machine learning (ML) has become a widely adopted
technology in various industries such as autonomous driv-
ing [25], medical diagnosis [50], natural language process-
ing [52], and finance [31]. In traditional ML, the data
was collected and centralized, and the model was trained
on the entire data set. However, this approach is often
not practical due to growing privacy concerns among data
owners and regulations such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy
Act (CCPA). These regulations limit the collection and
use of personal data, making it necessary to find alterna-
tive methods for training machine learning models, thus
paving the way for privacy-preserving ML (PPML) tech-
niques [11], [28], [40], [45], [68], [70]. Existing PPML
solutions use secure computation techniques such as secure
multi-party computation (MPC) [51] and homomorphic en-
cryption (HE) [2], and have relatively high communication
and computation costs.

In an attempt to reduce the costs while uphold-
ing the user’s trust, Google introduced Federated Learn-
ing (FL) [46], where users train models locally on their

devices, and the results are then combined by a central
aggregator to update the model (e.g., FedAvg [59]). This
approach ensures that data remains on the user’s device,
creating a trust-based relationship between the user and the
system. The popularity of FL has seen a surge in both
academic [39] and industrial research [14], leading to the
deployment of several real-world solutions [54], [80] due to
its numerous benefits. However, despite its potential bene-
fits, FL has been shown to be susceptible to two orthogonal
issues caused by the presence of corrupt actors in the system,
namely i) privacy inference attacks and ii) poisoning attacks.

In privacy inference attacks, an adversary who corrupts
the model aggregator attempts to infer sensitive informa-
tion about the users’ private data from the updated local
models/gradients [60], [65]. To address this issue, secure
aggregation (SA) techniques have been proposed, in which
users send encrypted local updates to the aggregator, who
can only access the combined update rather than individual
ones [56].

In poisoning attacks, corrupt users create fraudulent
models and send them to the aggregator to manipulate the
training process [34], [75], [76], [79]. These crafted models
can either reduce the accuracy of the model, making it in-
effective, or incorporate a backdoor that changes its predic-
tions when a specific trigger is present in the input. Robust
aggregation schemes were proposed to counteract poisoning
attacks, with the goal of either discarding the possibly
corrupt local models from the aggregation or minimizing
their impact using various scoring measures [9], [10], [20],
[58], [66], [75].

Despite the pressing need to address both types of
attacks, few works have attempted to tackle both simul-
taneously [32], [55], [66]. This is primarily due to the
conflict between robust aggregation schemes, which require
individual analysis of each update, and secure aggregation,
which only reveals the aggregated joint model and does not
allow for individual analysis. Furthermore, these existing
methods are computationally demanding, incur a significant
runtime overhead over their privacy-free variants, and as-
sume weaker corruption models. Thus, we intend to answer
the following question:
How practical is it to use robust aggregation schemes for
privacy-preserving federated learning?

In this paper, we address the above question by offering
an MPC-based framework for evaluating the effectiveness

69

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Till Gehlhar. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00012

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

12

TABLE 1: High-level comparison of SAFEFL and previous works (arranged chronologically). Techniques: HE—Homomorphic Encryp-
tion [2], MPC—Secure Multi-Party Computation [51], TEE—Trusted Execution Environment [62], ZKP—Zero Knowledge Proofs [16],
and DP—Differential Privacy [30].

Solution Technique Model
Privacy

Poisoning
Resilience

Malicious
Servers

Distributed
Servers

Efficient
&Private

MPC
Friendly

No Client
Interaction

Open
Source

FedAvg [59] – ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Krum [10] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
SecAgg [15] Masking ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗
PPDL [71] HE ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Median [87] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
SecAgg+ [8] Masking ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗
BatchCrypt [88] HE ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓
FoolsGold [37] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
SAFELearn [35] MPC ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓
BREA [77] Masking ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
FLOD [32] HE+MPC ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗
PEFL [53]† HE ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗
FLTrust [20] – ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
DnC [75] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
CONTRA [6] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
PPFL [61] TEE ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
PPFDL [83] HE+MPC ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗
ShieldFL [55] HE ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗
FLAME [66] MPC ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗
FLDP [78] Masking+DP ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗
SignGuard [84] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
FLARE [81] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
Romoa [57] – ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
EIFFel [26] MPC+ZKP ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗
ELSA [73]‡ MPC ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

SAFEFL (This) MPC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

† PEFL [53] was completely broken in [74]. ‡ ELSA [73] supports only norm-based aggregation [79].

of robust aggregation techniques against poisoning attacks
while also examining the overhead (communication and
runtime) of introducing model privacy into it. We anticipate
that our framework will aid in the development of more
efficient schemes in the future that can effectively protect
against both privacy inference attacks and poisoning attacks.

1.1. Our Contributions

We present SAFEFL, an MPC-based framework for as-
sessing the effectiveness and performance of FL techniques
that protect against both privacy inference and poisoning
attacks. SAFEFL adopts a distributed aggregator setup in
contrast to several existing frameworks that use a centralized
aggregator. This design choice is motivated by the vulnera-
bilities demonstrated in recent studies on single aggregator
setups in FL [12], [13], [36], [67], [82]. These attacks
showed that when the central aggregator is maliciously
corrupt, FL privacy can be compromised even if secure
aggregation is in place.

The distributed aggregator in SAFEFL is realised using
MPC techniques, in which users securely distribute their
local updates across two or more servers, which privately
compute the aggregation function using an interactive proto-
col [35], [66], [73]. These practical techniques, used in real-
world deployments [1], [3], remove user interaction and ef-

ficiently handle user dropouts in the FL context. Concretely,
we use the well-known MP-SPDZ [44] framework, which
contains implementation of various MPC protocols (see §3.1
for more details).

However, combining MP-SPDZ with a secure aggre-
gation scheme is challenging as MP-SPDZ is primarily
designed for continuous secure computing, whereas secure
aggregation in FL is interleaved with local user training [42].
To address this issue, we developed a communicator in-
terface that connects the widely used open source ML
framework PyTorch [72] and MP-SPDZ by extending the
ExternalIO library [43] provided in MP-SPDZ. This
capability allows us to evaluate the effectiveness and per-
formance of a robust aggregation protocol in different MPC
settings with ease, thus facilitating the development of more
efficient protocols.

To identify the best candidate for robust aggregation in
SAFEFL, we conducted a comprehensive evaluation of dif-
ferent robust aggregation methods against various poisoning
attacks, including the state-of-the-art Min-Max attack [75].
Specifically, we tested these attacks on a Linear Regression
classifier using the Human Activity Recognition (HAR)
dataset [4]. Finally, we used our SAFEFL framework to
evaluate the privacy-preserving variant of robust aggregation
in FLTrust [20] over various MPC settings supported by MP-
SPDZ, as it provided the best trade-off between accuracy

70

and computational costs among the approaches we studied.
Our framework is open-sourced under the MIT License at
https://encrypto.de/code/SAFEFL.
Our contributions are summarised as follows:

• We present SAFEFL, an MPC-based framework for eval-
uating the effectiveness and performance of FL techniques
that protect against both privacy inference and poisoning
attacks.

• SAFEFL provides a communicator interface between the
PyTorch [72] ML framework and the MP-SPDZ [44] library,
allowing for the simple translation of a robust aggregation
scheme to its private equivalent across many MPC protocols.

• With SAFEFL, we implement a wide range of FL poison-
ing attacks, including Min-Max [75], and perform a com-
prehensive evaluation of various robust aggregation schemes
and report accuracy.

• We evaluate the computation and communication over-
head for the private implementation of the robust aggrega-
tion scheme in FLTrust [20] using multiple MPC protocols
tailored to various settings.

Tab. 1 provides a high-level comparison of SAFEFL with
previous works and the details regarding relevant related
work are provided in §3.

2. SAFEFL Framework

This section provides the details of our SAFEFL frame-
work. At a high level, SAFEFL comprises of two modules,
Model Training and Aggregation, and a communicator in-
terface that connects them, as illustrated in Fig. 1.

Model Training

PyTorch MP-SPDZ

Aggregation

Communicator

Figure 1: High level overview of SAFEFL framework, comprising
of the Model Training module using PyTorch [72] and the Aggre-
gation module using MP-SPDZ [44] along with the communicator
interface between them.

Each of these components are detailed next. Along the
way, we will also discuss various evaluations carried out
using SAFEFL.
Benchmarking Environment. All experiments are run on a
16-core machine,1 with a 2.8 GHz Intel Core i9-7960X
processor and 128GB RAM, running Linux. We evaluated
over a LAN setting with bandwidth 10Gbps and a round
trip time (RTT) of 1ms.

The evaluations are carried out using a Linear Re-
gression (LR) classifier over the Human Activity Recog-
nition (HAR) [4] dataset. HAR is an unbalanced dataset
with human activity data collected from the smartphones of

1. One machine is used per aggregator for MPC evaluations.

30 real-world users. We used 75% of each user’s data as
training examples and the remaining 25% for testing.

2.1. Model Training Module

This PyTorch-based module is responsible for perform-
ing the local model training on behalf of the users. For
this, we use the publicly available code of FLTrust [20]
as a starting point. The code includes a basic FL setup
and their robust aggregation method implemented in Apache
MXNet [64], as well as the implementation of the Trim poi-
soning attack [34]. We changed the code to use PyTorch [72]
instead of MXNet and implemented (plaintext variants of)
7 poisoning attacks (cf. §3.2) and 14 different aggregation
schemes (cf. §3.3).
Accuracy Evaluation. Our evaluation comprises of 30
users (consistent with the HAR dataset) and the model
training was carried out for 2,000 iterations assuming a 20%
malicious corruption. Our choice of attacks covers both data
poisoning and model poisoning attacks in FL. As discussed
in §3.3, FLTrust [20], FLOD [32], and FLARE [81] assume
the presence of a ‘root dataset’. For this, we sampled 100
data points uniformly at random. Table 2 summarises the
various evaluation-specific parameters used.

TABLE 2: Parameters used in SAFEFL for evaluating the effec-
tiveness of various poisoning attacks (cf. §3.2) against different
aggregation schemes (cf. §3.3).

Parameter HAR

users (n) 30
malicious users (f) 6 (20%)
iterations 2,000
learning rate 0.25
batch size 64
size of server dataset 100
β (Trim-mean [87]) 6
τ (FLOD [32]) 50% of parameters
ϵ|δ (FLAME [66]) 3,000|0.001
niter|b|c (DnC [75]) 5|2,000|1.0
κ (ShieldFL [55]) 0

Tab. 3 summarises the result of our accuracy evaluation.
We observe that the following three robust aggregation
schemes—DnC [75], FLAME [66], and FLTrust [20]—
always achieved an accuracy of at most 0.05 less than what a
simple FedAvg [59] could attain in the absence of an attack,
i.e., 0.97.

2.2. Communicator Interface

After locally training the models in SAFEFL with the
Model Training module, the next step is to perform private
and robust aggregation in a distributed aggregator setup
using MPC techniques. This aggregation could be performed
using the Aggregation module running on the MP-SPDZ
framework, as described in §2.3. However, since the proto-
cols used in MP-SPDZ are designed for continuous secure
computation, they must be compiled and executed on a
virtual machine. The training in FL, on the other hand,

71

TABLE 3: Accuracy evaluation (in plaintext) of various FL aggregations (cf. §3.3) under different attacks (cf. §3.2) using a Linear
Regression classifier over the HAR data set [4] (larger is better, best values marked in bold).

Aggr.
Attack No LF [34], [76] Krum [34] Trim [34] Min-Max [75] Min-Sum [75] Scaling [34] FLTrust [20]

FedAvg [59] 0.97 0.74 0.95 0.69 0.86 0.95 0.95 0.96
Krum [10] 0.88 0.91 0.65 0.91 0.91 0.87 0.91 0.90

Trim-mean [87] 0.95 0.93 0.95 0.71 0.91 0.95 0.95 0.91
Median [87] 0.95 0.93 0.95 0.85 0.92 0.94 0.95 0.93
FLTrust [20] 0.96 0.96 0.94 0.94 0.92 0.94 0.94 0.95

DnC [75] 0.97 0.96 0.96 0.96 0.95 0.96 0.96 0.95
FoolsGold [37] 0.79 0.31 0.77 0.82 0.84 0.81 0.84 0.51

CONTRA [6] 0.94 0.02 0.17 0.51 0.71 0.91 0.91 0.34
FLARE [81] 0.94 0.63 0.92 0.78 0.77 0.94 0.92 0.91
Romoa [57] 0.96 0.78 0.93 0.89 0.91 0.97 0.92 0.92

SignGuard [84] 0.96 0.88 0.93 0.91 0.92 0.92 0.96 0.94
FLAME [66] 0.95 0.95 0.96 0.95 0.94 0.96 0.95 0.95

FLOD [32] 0.92 0.89 0.92 0.90 0.87 0.92 0.92 0.92
ShieldFL [55] 0.94 0.92 0.33 0.91 0.78 0.84 0.94 0.84

necessitates interleaved invocations of secure aggregation in
between local training.

To solve the issue, we created a communicator inter-
face in SAFEFL that enables bidirectional communication
between PyTorch and the MP-SPDZ library. We utilize this
communicator to securely transfer secret shares of locally
trained models from PyTorch to the MPC servers in MP-
SPDZ, who compute the aggregation using specified MPC
protocols and return the aggregated model to PyTorch for
the next training iteration.

Our starting point is the Banker Bonus example provided
by MP-SPDZ [43], which solves the Yao’s Millionaires’
problem [85] with up to 8 users. In this example, the MPC
servers listen on a specified port for the users and accept
connections from the user-side interface. When all users are
connected, the computation begins and the connection is
closed upon completion of the computation. Furthermore,
the connection is secured with SSL, and the required keys
and certificates are generated upon launch.

In SAFEFL, we extended the MP-SPDZ user interface to
send an arbitrary amount of data and integrated the user into
PyTorch to send the secret-shared local models to the MPC
servers and retrieve the aggregated model. For simplicity,
we let PyTorch behave as a single user, distributing all local
models with the MPC servers. However, this can simply be
extended such that each user connects separately. As far as
we know, this is the first time a communicator has been
developed to connect PyTorch and MP-SPDZ, specifically
for federated learning.

2.3. Aggregation Module

This module is responsible for executing the distributed
secure aggregation utilizing MPC protocols implemented
in MP-SPDZ. We chose FLTrust [20] as the best candidate
to adopt as a private and robust aggregation scheme in
SAFEFL. This is because it is the most MPC-friendly of
the three schemes—DnC, FLAME and FLTrust, which we
identified as the best robust aggregation schemes in §2.1.
For FLTrust, we allowed a trusted user in PyTorch, which

could be a user or an MPC server, to train the server model
over the root dataset. MP-SPDZ is used to compute trust
scores and aggregate the final model. We also implemented
the FedAvg [59] aggregation scheme to serve as a baseline
to estimate the cost overhead of adding robust aggregation.
We removed the weighting by the data size of a user from
FedAvg to make it more efficient and reduce numerical
errors.

Note that once an aggregation technique has been imple-
mented in MP-SPDZ, it is simple to evaluate it using any of
the MPC protocols available in MP-SPDZ, hence improving
usability. The code in Listing 1 shows the simplicity of
implementing the FLTrust aggregation in SAFEFL.

1 # Aggregation
2 @for_range_multithread(N_THREADS, N_PARALLEL,
3 WORKERS - 1)
4 def _(i):
5 input[i][:] = trust_score[i] / norm[i]
6 * input[i][:]
7

8 global_model_update = sfix.Array(PARAM_NUM)
9 @for_range_opt(WORKERS - 1)

10 def _(i):
11 global_model_update[:] += input[i][:]
12

13 global_model_update = norm[WORKERS - 1] /
14 total_trust_score * global_model_update[:]

Listing 1: SAFEFL code snippet for FLTrust [20]

Tab. 4 provides the communication and runtime costs
for evaluating private variants of FLTrust and FedAvg using
our aggregation module. The experiments are run over a
64-bit ring using four different MPC protocols using MP-
SPDZ [44], catering to different settings.

The trends observed in Tab. 4 correspond to the com-
plexity of the underlying MPC protocols, with honest ma-
jority outperforming dishonest majority and malicious secu-
rity being more expensive than semi-honest security. When
moving from FedAvg to FLTrust in the stronger dishonest
majority setting with malicious security, we observe ≈ 16×
higher communication and ≈ 3.6× higher runtime. While a
similar trend is observed for communication in the malicious

72

TABLE 4: Communication (Comm. in GB) and computation
(Time in hours) costs for privacy-preserving implementation of
FLTrust [20] and FedAvg [59] for 50 iterations in various MPC
settings using MP-SPDZ [44]. Notations: N - number of MPC
servers, DM - dishonest majority.

MPC Protocol N
FLTrust [20] FedAvg [59]

Comm. Time Comm. Time

Semi2k
(DM, semi-honest)

2 1,279.50 0.65 81.93 0.38
3 7,454.37 2.28 146.47 0.55

SPDZ2k [27]
(DM, malicious)

2 19,086.60 8.27 1,216.15 3.56
3 57,191.00 17.64 3,643.82 4.87

Replicated2k [5] 3 16.25 0.27 0.98 0.12

PsReplicated2k [33] 3 62.52 0.49 3.87 0.33

honest majority setting, the overhead in runtime is reduced
to ≈ 1.5×. The observations suggest that additional efforts
should be made to bridge the communication gap in order to
make private and robust aggregation schemes more feasible.

3. Related Work

This section provides a succinct overview of works
related to our SAFEFL framework.

3.1. Secure Multi-party Computation (MPC)

MPC [38], [86] enables a set of distrusting parties to
compute on their combined input without revealing more
information than they could infer from their input and
output. MPC protocols can be categorised into several types
based on the nature of the corruption; two of these categories
are discussed here.
Honest vs. Dishonest Majority. This classification is based
on the amount of possible corruption among the MPC
parties. In an honest majority setting [5], [18], [21], [22],
[48], the majority of the parties are considered to be honest
and follow the protocol. Dishonest majority protocols [29],
[63], [68], on the other hand, tolerate corruption of all but
one party.
Semi-honest vs. Malicious Security. This classification con-
cerns the nature of the corruption. In a semi-honest set-
ting [41], [68], [69], corrupt parties follow the protocol,
but are curious and tend to learn more information than
intended. The malicious setting [27], [33], [47], [49] models
scenarios, where corrupt parties can arbitrarily deviate from
the protocol.

3.2. Poisoning Attacks in FL

The poisoning attacks [76] evaluated in SAFEFL can be
broadly classified into four categories and the details are
provided next.
1) Label flipping (LF) [34], [76]: In this attack, corrupt
users poison their training data by flipping the labels of
some instances from one class (the source class) to another

(i.e., the target class). We use the untargeted attack in [34],
where the new label is defined as lnew = L− lold − 1, for L
classes.

2) Scaling [20]: This is a backdoor technique that alters
data samples by adding a trigger and modifying the label
to a desired target class. To amplify the attack’s impact, the
compromised models are usually scaled up. In SAFEFL,
each corrupt user duplicates a random fraction, p ∈ (0, 1],
of their training data for alteration and scales up by the total
number of users.

3) AGR-tailored [20], [34]: Fang et al. [34] proposed a
framework for optimizing local model poisoning attacks for
any aggregation rule. The framework formulates the attack
as a maximization problem to deviate the global model
from its expected direction of change. We used the model
poisoning attack framework of [34] to optimize the attacks
Krum, Trim, and FLTrust [20, §V].

4) AGR-agnostic [75]: Here, the attacker lacks knowledge
of the aggregation algorithm and its constraints. The two
proposed attacks, Min-Max and Min-Sum, were shown to
outperform the previously published LIE attack [7].

3.3. Robust Aggregation in FL

In addition to the simple aggregation scheme
FedAvg [59], which simply computes a (weighted)
average of all inputs, we implement and evaluate 13 other
robust aggregation schemes [24] in SAFEFL:
1) Krum [10]: In each iteration, Krum selects a global
model update from n local updates using a Euclidean dis-
tance score. For f malicious users, the score is determined
by computing the distance between each pair of models and
selecting the model with the lowest sum of distances to the
closest n− f − 2 models. The user with the minimal score
has their local update chosen as the global update.

2) Trim-mean [87]: This method aggregates model param-
eters coordinate-wise by sorting their values in local model
updates, removing the largest and smallest β values for a
given parameter β, and computing the mean of the remain-
ing values as the final parameter value in the global update.

3) Median [87]: This method, similar to Trim-mean, sorts
values in each local model update. However, instead of
computing the mean after trimming, the median value of
each parameter is considered as the global update value.

4) FLTrust [20]: FLTrust utilizes a root dataset on the server
and assesses the trust score of a local model update based
on the deviation from the server’s model update. This is
achieved through cosine similarity measurement and ReLU
clipping.

5) Divide-and-Conquer (DnC) [75]: DnC selects a random
set of gradient coordinates r, of size less than b, and
constructs a subsampled set ∇r. The mean of ∇r is then
calculated to obtain the centered set ∇c. The algorithm com-
putes projections along the top right singular eigenvector v
and calculates a vector of outlier scores s. A set of c · f

73

gradients with the highest scores are removed, with the
remaining gradients being considered “good” and added to
a set. This is repeated for niter iterations, with the set of
indices being randomized each time, and the good gradients
are aggregated by computing the average of the common
gradients in all niter good sets.

6–7) FoolsGold [37], CONTRA [6]: FoolsGold tracks user
updates by aggregating them over multiple iterations. It
computes the cosine similarity between aggregated updates
and adjusts the learning rate αi per user based on update
similarity and historical information. Similarly, CONTRA
also limits similar updates by either reducing their learning
rates or discarding them. However, these methods result in
significant accuracy drop when good updates are similar (cf.
accuracy against LF attack in Tab. 3).

8) FLARE [81]: This method found that the penultimate
layer (PLR) has a unique ability to differentiate malicious
models from benign ones. The PLRs of benign models have
a similar distribution, while those of malicious models have
a different distribution. FLARE showed that the distances
between benign PLRs are smaller than those between be-
nign and malicious PLRs. The method assigns a root score
(similar to FLTrust [20]) to each user based on Maximum
Mean Discrepancies between PLRs. The model updates are
then scaled and averaged, weighted by the root score of each
user.

9) Romoa [57]: Romoa considers three similarity measures:
element-wise cosine similarity, layer-wise cosine similarity,
and layer-wise Pearson correlation. Users share their local
models with the aggregation server after each iteration,
but the aggregation is only performed every t iterations.
The calculation of similarity measures is performed every
iteration to compute sanitization factors that are used during
aggregation to find the aggregate as a weighted sum.

10) SignGuard [84]: SignGuard aggregates models through
sign-based clustering and norm-based thresholding. The me-
dian of local model norms is calculated to determine the
norm bound. Local models with normalized norms within
the bound (0.1 to 3.0) are added to a set. A 10% random
subset of coordinates is selected from local models for sign-
based clustering. The cluster with the highest number of
elements is considered benign, and the final global model is
the average of these benign local models.

11) FLAME [66]: This method aggregates local models
through clustering, clipping, and adaptive noise addition.
Clustering is performed using HDBSCAN [19] with a cosine
distance metric and a minimum cluster size of n/2 + 1.
Outlier models are excluded, while remaining models are
clipped, averaged, and modified with adaptive noise based
on clipping bounds and privacy parameters ϵ and δ.

12) FLOD [32]: This method, like FLTrust, uses a trusted
server model to determine if a model should be discarded
and to calculate the weighted average of the remaining
models. Model updates are converted to Boolean via the sign
function and Hamming distance is used for the weighted

average of the updates. Models with Hamming distance
greater than or equal to the threshold τ are excluded from
the average.

13) ShieldFL [55]: In ShieldFL, users normalize updates
larger than κ or with change exceeding the threshold and
set other updates to 0. The server aggregates models by
a normalization check, cosine similarity calculation with
respect to the last iteration, poison baseline identification,
cosine distance calculation as weight, and weighted average
adjustment.

4. Conclusion & Future Work

This paper presents SAFEFL, a framework that leverages
secure multi-party computation (MPC) to evaluate the
effectiveness and performance of federated learning (FL)
techniques in protecting against privacy inference and
poisoning attacks. The framework features a communicator
interface that integrates PyTorch-based implementations
with the well-established MP-SPDZ framework [44],
providing a solid foundation for creating more efficient FL
systems that can effectively protect against privacy breaches
and malicious attacks. We carried out a comprehensive
evaluation to determine the impact of different poisoning
attacks on various robust aggregation methods. We also
assessed the computational and communication costs of
incorporating MPC for privacy protection in FLTrust,
a well-known robust aggregation technique. With the
continued development and use of SAFEFL, we believe it
will greatly contribute to the advancement of private and
robust federated learning systems.

As future work, we plan to expand the compatibility
of our framework to include other MPC frameworks such
as MOTION [17] and Silph [23]. Additionally, we aim to
enhance the accuracy evaluation of our framework by testing
it with more complex architectures, such as Deep Neural
Networks.

Acknowledgements

This project received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by
the Deutsche Forschungsgemeinschaft (DFG) within
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230.

References

[1] J. Aas and T. Geoghegan. (2022) Introducing ISRG Prio Services
for Privacy Respecting Metrics. https://www.abetterinternet.org/post/
introducing-prioservices/.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,”
ACM Computing Surveys, 2018.

[3] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares,”
in SCN, 2022.

74

[4] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz,
“A Public Domain Dataset for Human Activity Recognition Using
Smartphones,” in ESANN, 2013.

[5] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority,” in CCS, 2016.

[6] S. Awan, B. Luo, and F. Li, “Contra: Defending Against Poisoning
Attacks in Federated Learning,” in ESORICS, 2021.

[7] G. Baruch, M. Baruch, and Y. Goldberg, “A Little Is Enough:
Circumventing Defenses For Distributed Learning,” in NeurIPS, 2019.

[8] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure Single-Server Aggregation with (Poly)Logarithmic Over-
head,” in CCS, 2020.

[9] Y. Ben-Itzhak, H. Möllering, B. Pinkas, T. Schneider, A. Suresh,
O. Tkachenko, S. Vargaftik, C. Weinert, H. Yalame, and A. Yanai,
“ScionFL: Secure Quantized Aggregation for Federated Learning,”
CoRR, vol. abs/2210.07376, 2022.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine Learning with Adversaries: Byzantine Tolerant Gradient
Descent,” in NeurIPS, 2017.

[11] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A Mixed-Protocol Machine Learning Framework for Pri-
vate Inference,” in ARES, 2020.

[12] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shu-
mailov, and N. Papernot, “When the Curious Abandon Honesty:
Federated Learning Is Not Private,” CoRR, vol. abs/2112.02918, 2021.

[13] ——, “Is Federated Learning a Practical PET Yet?” CoRR, vol.
abs/2301.04017, 2023.

[14] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
Federated Learning at Scale: System Design,” in MLSys, 2019.

[15] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Ag-
gregation for Privacy-Preserving Machine Learning,” in CCS, 2017.

[16] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear
PCPs,” in CRYPTO, 2019.

[17] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “MOTION–
A Framework for Mixed-Protocol Multi-Party Computation,” TOPS.

[18] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: Fast and
Robust Framework for Privacy-preserving Machine Learning,” PETS,
2020.

[19] R. J. Campello, D. Moulavi, and J. Sander, “Density-based Clustering
based on Hierarchical Density Estimates,” in PAKDD, 2013.

[20] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-robust
Federated Learning via Trust Bootstrapping,” in NDSS, 2021, https:
//people.duke.edu/∼zg70/code/fltrust.zip.

[21] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: High
Throughput 3PC over Rings with Application to Secure Prediction,”
in CCSW@CCS, 2019.

[22] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning,” in NDSS,
2020.

[23] E. Chen, J. Zhu, A. Ozdemir, R. S. Wahby, F. Brown, and W. Zheng,
“Silph: A Framework for Scalable and Accurate Generation of Hybrid
MPC Protocols,” in IEEE S&P, 2023.

[24] H. Chen and F. Koushanfar, “Tutorial: Towards Robust Deep Learning
against Poisoning Attacks,” ACM Transactions on Embedded Com-
puting Systems, 2022.

[25] L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu,
X. Na, Z. Li et al., “Milestones in Autonomous Driving and Intelli-
gent Vehicles: Survey of Surveys,” IEEE Transactions on Intelligent
Vehicles, 2022.

[26] A. R. Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “EIFFeL:
Ensuring Integrity for Federated Learning,” in CCS, 2022.

[27] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing,
“SPDZ2k: Efficient MPC mod 2k for Dishonest Majority,” in
CRYPTO, 2018.

[28] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure Evaluation of
Quantized Neural Networks,” PETS, 2020.

[29] D. Demmler, T. Schneider, and M. Zohner, “ABY - A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[30] D. Desfontaines and B. Pejó, “SoK: Differential Privacies,” PETS,
2020.

[31] M. F. Dixon, I. Halperin, and P. Bilokon, Machine Learning in
Finance: From Theory to Practice. Springer, 2020.

[32] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “FLOD: Oblivi-
ous Defender for Private Byzantine-Robust Federated Learning with
Dishonest-Majority,” in ESORICS, 2021.

[33] H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura, and
M. Simkin, “Use your Brain! Arithmetic 3PC For Any Modulus with
Active Security,” in ITC, 2019.

[34] M. Fang, X. Cao, J. Jia, and N. Gong, “Local Model Poisoning At-
tacks to Byzantine-Robust Federated Learning,” in USENIX Security,
2020.

[35] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini,
H. Möllering, T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider,
H. Yalame, and S. Zeitouni, “SAFELearn: Secure Aggregation for
Private FEderated Learning,” in DLS@S&P, 2021.

[36] L. H. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein,
“Robbing the Fed: Directly Obtaining Private Data in Federated
Learning with Modified Models,” in ICLR, 2022.

[37] C. Fung, C. J. Yoon, and I. Beschastnikh, “The Limitations of
Federated Learning in Sybil Settings,” in RAID, 2020.

[38] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority,” in STOC, 1987.

[39] C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar,
Q. Yang, M. Annavaram, and S. Avestimehr, “FedML: A Research
Library and Benchmark for Federated Machine Learning,” CoRR, vol.
abs/2007.13518, 2020.

[40] A. Hegde, H. Möllering, T. Schneider, and H. Yalame, “SoK: Efficient
Privacy-preserving Clustering,” PETS, vol. 2021.

[41] T. Heldmann, T. Schneider, O. Tkachenko, C. Weinert, and
H. Yalame, “LLVM-based Circuit Compilation for Practical Secure
Computation,” in ACNS, 2021.

[42] M. Keller. https://github.com/data61/MP-SPDZ/issues/614.

[43] ——. https://github.com/data61/MP-SPDZ/tree/master/ExternalIO.

[44] ——, “MP-SPDZ: A Versatile Framework for Multi-Party Computa-
tion,” in CCS, 2020.

[45] M. Keller and K. Sun, “Secure Quantized Training for Deep Learn-
ing,” in ICML, 2022.

[46] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving commu-
nication efficiency,” CoRR, vol. abs/1610.05492, 2016.

[47] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning,” in USENIX
Security, 2021.

75

[48] N. Koti, S. Patil, A. Patra, and A. Suresh, “MPClan: Protocol Suite
for Privacy-Conscious Computations,” CoRR, vol. abs/2206.12224,
2022.

[49] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively Secure
4PC for Secure Training and Inference,” in NDSS, 2022.

[50] R. Lamsal, A. Harwood, and M. R. Read, “Socially Enhanced Sit-
uation Awareness from Microblogs Using Artificial Intelligence: A
Survey,” ACM Computing Surveys, 2022.

[51] Y. Lindell, “Secure Multiparty Computation,” Communications of the
ACM, 2020.

[52] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing,” ACM Computing Surveys,
2023.

[53] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-
Enhanced Federated Learning Against Poisoning Adversaries,” IEEE
TIFS, 2021.

[54] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Ra-
jamoni, Y. Ong, J. Radhakrishnan, A. Verma, and M. Sinn, “IBM
Federated Learning: an Enterprise Framework White Paper V0.1,”
CoRR, vol. abs/2007.10987, 2020.

[55] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng, “ShieldFL: Mitigating
Model Poisoning Attacks in Privacy-Preserving Federated Learning,”
IEEE TIFS, 2022.

[56] M. Mansouri, M. Önen, W. B. Jaballah, and M. Conti, “SoK: Secure
Aggregation Based on Cryptographic Schemes for Federated Learn-
ing,” PETS, 2023.

[57] Y. Mao, X. Yuan, X. Zhao, and S. Zhong, “Romoa: Robust Model
Aggregation for the Resistance of Federated Learning to Model
Poisoning Attacks,” in ESORICS, 2021.

[58] F. Marx, T. Schneider, A. Suresh, T. Wehrle, C. Weinert, and
H. Yalame, “HyFL: A Hybrid Approach For Private Federated Learn-
ing,” CoRR, vol. abs/2302.09904, 2023.

[59] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in AISTATS, 2017.

[60] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in IEEE
S&P, 2019.

[61] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtel-
lis, “PPFL: Privacy-preserving Federated Learning with Trusted Ex-
ecution Environments,” in ACM MobiSys, 2021.

[62] F. Mo, Z. Tarkhani, and H. Haddadi, “SoK: Machine Learning with
Confidential Computing,” CoRR, vol. abs/2208.10134, 2022.

[63] J.-P. Münch, T. Schneider, and H. Yalame, “VASA: Vector AES
Instructions for Security Applications,” in ACSAC, 2021.

[64] MXNet. https://mxnet.apache.org/.

[65] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning,” in IEEE S&P,
2019.

[66] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering,
H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, S. Zeitouni,
F. Koushanfar, A.-R. Sadeghi, and T. Schneider, “FLAME: Taming
Backdoors in Federated Learning,” in USENIX Security, 2022.

[67] D. Pasquini, D. Francati, and G. Ateniese, “Eluding Secure Aggrega-
tion in Federated Learning via Model Inconsistency,” in CCS, 2022.

[68] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved Mixed-Protocol Secure Two-Party Computation,” in USENIX
Security, 2021.

[69] ——, “SynCirc: Efficient Synthesis of Depth-Optimized Circuits for
Secure Computation,” in IEEE HOST, 2021.

[70] A. Patra and A. Suresh, “BLAZE: Blazing Fast Privacy-Preserving
Machine Learning,” in NDSS, 2020.

[71] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
Preserving Deep Learning via Additively Homomorphic Encryption,”
IEEE TIFS, 2018.

[72] PyTorch. https://pytorch.org/.

[73] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “ELSA: Secure
Aggregation for Federated Learning with Malicious Actors,” IEEE
S&P, 2023.

[74] T. Schneider, A. Suresh, and H. Yalame, “Comments on “Privacy-
Enhanced Federated Learning Against Poisoning Adversaries”,” IEEE
TIFS, 2023.

[75] V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine:
Optimizing Model Poisoning Attacks and Defenses for Federated
Learning,” in NDSS, 2021.

[76] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the Drawing Board: A Critical Evaluation of Poisoning Attacks on
Production Federated Learning,” in IEEE S&P, 2022.

[77] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-Resilient Secure
Federated Learning,” IEEE JSAC, 2021.

[78] T. Stevens, C. Skalka, C. Vincent, J. Ring, S. Clark, and J. P. Near,
“Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors,” in USENIX Security,
2022.

[79] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can You
Really Backdoor Federated Learning?” CoRR, vol. abs/1911.07963,
2019.

[80] N. F. L. Team. (2021) Federated Learning for Healthcare Us-
ing NVIDIA Clara (White Paper). https://developer.nvidia.com/blog/
federated-learning-clara/.

[81] N. Wang, Y. Xiao, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou, “FLARE:
Defending Federated Learning against Model Poisoning Attacks via
Latent Space Representations,” in ASIACCS, 2022.

[82] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, “Fish-
ing for User Data in Large-Batch Federated Learning via Gradient
Magnification,” in ICML, 2022.

[83] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. H. Deng, “Privacy-
Preserving Federated Deep Learning With Irregular Users,” IEEE
TDSC, 2022.

[84] J. Xu, S.-L. Huang, L. Song, and T. Lan, “SignGuard: Byzantine-
robust Federated Learning through Collaborative Malicious Gradient
Filtering,” in ICDCS, 2022.

[85] A. C. Yao, “Protocols for secure computations,” in FOCS, 1982.

[86] A. C.-C. Yao, “How to Generate and Exchange Secrets (Extended
Abstract),” in FOCS, 1986.

[87] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-Robust
Distributed Learning: Towards Optimal Statistical Rates,” in ICML,
2018.

[88] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient Homomorphic Encryption for Cross-Silo Federated Learn-
ing,” in USENIX ATC, 2020.

76

