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Abstract—Machine learning models are susceptible to a class
of attacks known as adversarial poisoning where an adversary
can maliciously manipulate training data to hinder model perfor-
mance or, more concerningly, insert backdoors to exploit at infer-
ence time. Many methods have been proposed to defend against
adversarial poisoning by either identifying the poisoned samples
to facilitate removal or developing poison agnostic training
algorithms. Although effective, these proposed approaches can
have unintended consequences on the model, such as worsening
performance on certain data sub-populations, thus inducing a
classification bias. In this work, we evaluate several adversarial
poisoning defenses. In addition to traditional security metrics, i.e.,
robustness to poisoned samples, we also adapt a fairness metric
to measure the potential undesirable discrimination of sub-
populations resulting from using these defenses. Our investigation
highlights that many of the evaluated defenses trade decision
fairness to achieve higher adversarial poisoning robustness. Given
these results, we recommend our proposed metric to be part of
standard evaluations of machine learning defenses.

I. INTRODUCTION

Machine learning (ML) is used in numerous critical applica-
tions including healthcare, finance, and the Internet-of-Things.
However, the sensitivity of these applications also motivates
a need to develop secure ML algorithms to avoid safety and
security incidents. In particular, adversarial poisoning attacks
on machine learning has received significant attention [1].
In a poisoning attack, an attacker modifies a portion of the
training data to influence and/or degrade the performance of
the trained model. Often, the goal is to encode a backdoor in
a few training samples, which the attacker can later trigger
at inference time. Despite the presence of poisoned training
samples, the overall performance on benign (i.e., non-trigger)
inputs is often satisfactory, thus avoiding suspicion that the
model has been poisoned. However, when a sample appears
containing a backdoor trigger (e.g., image patch), the desired
erroneous behavior occurs (e.g., a targeted misclassification).

To mitigate the effect of adversarial poisoning, a variety
of defense techniques have been proposed: flagging the data

(a) (b)

Fig. 1: Sample images in the GTSRB dataset with natu-
rally occurring sub-populations. Here, the (a) speed limit
and (b) pedestrian crossing signs appear to be different sub-
populations due to differences in brightness.

that is “suspicious” [2], [3], segmenting training data using
model ensembles [4], [5], abstaining from predicting [6], or by
manipulating the training data before feeding it to the training
process to neutralize potential malicious modifications [7]–
[10]. An ideal defense would fully mitigate or remove the
effect of poisoning without any undesirable side-effects.

The side-effects of adversarial poisoning defenses have not
been studied by prior works. Prior work primarily focuses on
reducing the poisoning attack success rate while maintaining
accuracy on benign samples. Although both of these metrics
are useful in evaluating the quality of a prospective defense,
they do not provide a complete picture of the final “defended”
model’s behavior. For example, we find most filtering defenses
remove a consistent fraction of the training data regardless
of whether the removed samples are poisonous. In general,
as poisoned samples are a small subset of the training data
containing a unique set of features, i.e. the trigger, we hypoth-
esize that prior defenses appeared effective as they (possibly
unintentionally) mitigated the influence of outlier features.
However, outliers are frequently under-represented benign sub-
populations that occur naturally in the data and can be harmed
by outlier mitigation techniques, which may result in potential
decision bias against benign samples. One such example is
Figure 1 where the difference in brightness can create a sub-
population that may potentially be marked as poison.

In this paper, we study the side-effects of existing poisoning
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defenses and show many defenses are non-ideal as they
negatively affect the decision fairness of the defended model
on under-represented benign sub-populations. We benchmark
existing defenses against multiple poisoning attacks using
traditional security metrics and a fairness metric that measures
the side-effects of prospective defenses on the model’s deci-
sion. Borrowing from fairness literature, we use the statistical
parity difference (SPD) [11] to measure the effect a defense
has on minority sub-populations in the data (e.g., images with
higher brightness compared to the rest of the dataset). Our
extensive experimental results shed new light on the effects
that existing poisoning defenses have on decision fairness.

II. BACKGROUND

A. Poisoning Attacks

Poisoning attacks manipulate a small percentage of the data
used during training to achieve some adversarial goal, often
backdoor injection. They can be broadly classified into dirty
label and clean label attacks. In dirty label attacks [12], [13],
the adversary’s goal is to induce a misclassification into a
target class through use of a backdoor trigger. The adversary
generates a trigger (e.g. image patch) and poisons a percentage
of the training data by adding the trigger, Xp ⊆ X , as well
as modifying the labels of those samples, Yp ⊂ Y , to the
target class. At inference time, the adversary adds the trigger to
induce the backdoor behavior, targeted misclassification. The
attack is designed so that when the backdoor is not present,
the model behaves normally.

In contrast to dirty label attacks, clean label attacks do
not modify the labels and rely on more inconspicuous mod-
ifications. As poisoned inputs appear consistent with their
labels, human inspection is unlikely to detect the attack. A
large variety of clean label attacks have been proposed in
literature [14]. Two distinct attacks are the original Clean
Label Backdoor Attack (CLBD) [15] and Witches’ Brew (also
known as Gradient Matching) [16]. These attacks often solve
optimization problems to generate poison images close to the
original without changing the labels which inject the backdoor
to the model if used for training. For example, a crafted
cat image still looks like a cat to a human, but the model
sees the image as if it is a truck in terms of features or
training gradients. The CLBD attack leverages a GAN and
adversarial example approach to generate poison images while
ensuring the perturbation is bounded [15]. In Witches’ Brew,
the attacker chooses one or few images in the test data as
trigger images and aims to make the model classify them as
the target class(es). This attack applies bounded perturbations
to the poison data by aligning the training gradient of the
poison data with the correct labels, and that of the trigger
samples with the target labels, using a surrogate model [16].

B. Poisoning Defenses

To mitigate poisoning attacks, multiple defenses have been
proposed. We provide a high-level overview of the specific
defenses that we chose to evaluate.

Activation Defense [2] is a filtering-based defense, which
analyzes the training set and filters out samples that are
deemed “too different” with respect to the rest of the data.
After training, the data is passed again through the model and
the last layer activations are recorded and clustered. Samples
associated with either small or isolated clusters are removed
from the training set. In our evaluation, potentially poisonous
data was marked based on the smallest activation cluster(s).

Spectral Signatures [3] is a filtering-based defense where
the activations of the network for each training sample are
analyzed using singular value decomposition (SVD). Samples
with unusual SVD are removed from the training set. This
defense has an additional hyperparameter to define how much
poison is expected to be in the training data. In our evaluation,
we use the best case scenario where the expected poisoning
hyperparameter exactly matches the true poisoning percentage.

Deep Partition Aggregation (DPA) [4] is an ensemble-
based defense that creates multiple weak classifiers and per-
forms inference by voting. The training samples are split
in k disjoint partitions P1, ..., Pk and each partition Pi is
used to train a different model to create an ensemble. During
inference, the models are ensembled and a prediction is made
based on a majority vote.

Finite Aggregation [5] is an extension of DPA and includes
two hyper-parameters to guide the ensembling process, k and
d. They are defined as the inverse sensitivity and the spreading
factor, respectively. The defense partitions the training dataset
into kd disjoint partitions and each data partition is assigned
to d of the kd submodels in the partition. The kd submodels
models are trained on their assigned partitions. During infer-
ence, a prediction is made based on a majority vote.

Inverse Self-Paced Learning (ISPL) [17] is a filtering
defense that relies on identifying “compatible or homogeneous
sets” in the training data. The defense uses the notion of “self-
expanding sets” and proposes an iterative approach, which
results in groups of homogeneous sets, i.e., all samples in
the set belong to the primary or noisy distribution. In their
scenario, the noisy distribution, which is assumed to be the
minority, contains the poisoned data. Once the data has been
segmented, a model is trained on each partition to classify data
from all of the other partitions. Using a majority voting scheme
based on the misclassification rate on the other partitions, the
primary and poison distributions can be identified.

Adversarial Training [18] is used as a defense against eva-
sion attacks, but has been used in some works as a poisoning
defense [19]. In this defense, adversarial inputs are generated
on-the-fly using an evasion attack to improve the model’s
generalization performance on the adversarial distribution. In
our evaluation, we use the Projected Gradient Descent (PGD)
attack, as is traditional, with the same hyperparemeters as
when it was used as a poisoning defense for consistency.

Data Augmentation techniques such as Mixup [7], Cutout
[8], and CutMix [9] use synthetically created data to improve
the model’s generalization. Maxup [10] applies a set of these
data augmentation techniques multiple times and selects the
worst-case input for training to further improve generalization.
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As existing poisoning attacks relied on precise and sometimes
large input manipulations, random data augmentation can in-
troduce variability that the attacks are not prepared to address.
One work proposes this approach, using Maxup with Cutout,
as a poisoning defense [20].

III. EVALUATING POISONING DEFENSES

To evaluate poisoning defenses, we perform two assess-
ments: (1) a security assessment and (2) a fairness assessment.
The security assessment uses security and accuracy metrics
to measure the performance of the final model after applying
the respective poisoning defense. The fairness assessment uses
model quality metrics to determine if any side-effects have
occurred from the poison defense in making the model biased
towards certain sub-populations.

A. Security and Accuracy Metrics

Traditionally, poison defenses are evaluated by their perfor-
mance in terms of the clean accuracy and final attack success
rate. The clean accuracy (also known as benign accuracy) is
the accuracy of the model evaluated on the test set with no
poisoned samples. The attack success rate is the percentage
of poisoned samples in the test set that were successfully
misclassified. We use both of these metrics in our evaluations.

B. Model Quality Metrics

Ideally, a poison defense should not have any undesirable
side-effects outside of mitigating the effect of poison. Most
of the poison defenses attempt to find poisoned samples by
identifying a subset of the training data containing a unique set
of features. This subset is usually an outlier and can be referred
to as a poisonous sub-population. Typically, a sub-population
within a class may include samples collected under specific
conditions (e.g., weather or lighting), a particularly under-
represented sample (e.g., very uncommon type of airplane),
or an under-represented minority (e.g., elderly population).
Examples of these are shown in Figure 2. Many adversar-
ial poisoning defenses attempt to find poisoned samples by
searching for sub-populations that are different from the rest
of the samples in the class. However, it is possible for naturally
occurring low-represented benign sub-populations to be falsely
identified in this process. This can hinder the overall model
quality and cause it to be biased. In different samples, we
observed difference in properties like brightness, contrast,
blurriness, zoom-in, or zoom-out can create sub-populations
that may be potentially marked as poison.

In this paper, in conjunction with the traditional security
metrics, we also adapt an existing fairness metric, to help
determine what effect various defenses have on different be-
nign sub-populations in the dataset. Ideally, applying a defense
should not result in a model that incorrectly predicts benign
inputs coming from sub-populations. Samples in these sub-
populations are typically uncommon or “difficult” to predict.
This allows us to measure the model quality in terms of
fairness and bias against sub-populations.

Fig. 2: Examples of different sub-populations that can occur
under specific conditions.

We adapt a well-known fairness metric, statistical parity
difference (SPD) [11], to determine how a particular defense
treats benign samples from different sub-populations. SPD
originally measured social biases by computing the difference
in the ratio of favorable outcomes between privileged and
unpriviledged groups. These groups are typically based on
sensitive attributes such as race, gender, and age [21], [22].

We want to measure changes in sub-population misclassifi-
cation rates after applying a defense, even when a dataset does
not contain sensitive attributes to split samples into groups.
Rather than splitting solely based on a sensitive attribute,
we note that there are multiple ways to identify benign sub-
populations within a class as shown in Figure 2. One approach
is to segment benign samples using contextual data collection
information such as the time of the day when samples where
collected or lightning conditions in a way that one benign sub-
population contains all daytime observations while the other
night time samples. Other ways include selecting samples that
are not well represented in the dataset (e.g., planes that only
land on water) or using sensitive attributes as defined in the
fairness literature [21] (e.g., younger vs. older). For natural
language, sub-populations may be defined by different dialects,
and in audio by the tone or pitch. We highlight a method to
identify such sub-populations in the following section where
we use datasets without sensitive attributes.

Based on these observations, we can apply SPD for a variety
of use cases and modalities even when sensitive attributes do
not exist in the training data. Let us denote a feature set by X ,
the corresponding label set by Y and the cardinality by | · |.
Given a class y ∈ Y , two populations within this class P1 :=
(X1, Y1) and P2 := (X2, Y2) consisting of solely benign data
samples and a model M : X → Y trained with a defense,
the corresponding SPD for this given class y ∈ Y can be
computed as follows:

SPD = |{(x,y)∈P1:M(x)=y}|
|P1| − |{(x,y)∈P2:M(x)=y}|

|P2| (1)
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We interpret the above metric based on the range of the
value following standard conventions1:
• |SPD| ≤ 0.1: An acceptable range, where none of the

populations is disproportionately misclassified compared
to the other. We refer to this as a fair outcome.

• SPD < −0.1: An unfair outcome where the evaluated
model is biased towards P2.

• SPD > 0.1: An unfair outcome where the evaluated
model is biased towards P1.

Ideally, applying a defense should not disproportionately
reduce the model performance for a particular benign popu-
lation. Hence, |SPD| ≤ 0.1 is desirable. Clearly, applying
a defense should not exacerbate the misclassification rate of
these types of benign sub-populations.

IV. EXPERIMENTAL SETUP

A. Attacks and Defenses

We evaluate the seven popular defenses presented in Section
II under multiple poisoning attacks. We also use a modified
combination defense where we apply both Data Augmentation
and Adversarial Training (D.A. + A.T.), which is expected to
mitigate the drop in clean accuracy when doing adversarial
training alone. Specifically, we apply CutMix to augment the
data and perform adversarial training on a fraction of the data;
for our experiments we choose 75% as the hyperparameter.

For our main set of experiments, we evaluate each of
these defenses using the MicronNet model [23] trained on the
GTSRB dataset [24]. We use the same selection of hyperpa-
rameters as the MicronNet paper which involves training for
30 epochs using the SGD optimizer. We test against a dirty-
label backdoor attack [12] (DLBD) and a clean-label backdoor
attack [15] (CLBD). Under both attacks, only samples from
one of the classes (the target class) are poisoned. To fully
understand the effect that an adversary may have over the
model, we vary the percentage of poison for each defense.
For DLBD, we use 0%, 1%, 5%, 10%, 20%, and 30% poison.
For CLBD, we use 0%, 20%, 50%, and 80% poison. Note that
this poison is only applied to the target class.

In addition, for both of these attacks, we used two different
triggers: the bullet hole and the peace sign. These triggers are
shown in Figure 3. We generate poison samples by blending
the trigger image with a portion of each target image. This
was done using the Adversarial Robustness Toolbox [25]. For
the GTSRB dataset, we position the trigger in the center of
the image and use a blend factor of 0.6 for both triggers.

(a) (b)

Fig. 3: Poisoning attack triggers for the (a) bullet hole and (b)
peace sign used for the GTSRB dataset.

1These thresholds are used by the AI Fairness 360 framework tutorials
https://aif360.mybluemix.net

We only present evaluations using the default hyperparam-
eters for each defense in Section II. For additional evaluations
with different hyperparameters, refer to Appendix A. To fur-
ther test generalizability, we also evaluate using the CIFAR-10
dataset [26] against the DLBD [12] and Witches’ Brew [16]
attacks. Refer to Appendix B for these results. All experiments
were run using the Armory framework [27].

B. Baselines

We compare the performance of these defenses to a variety
of baselines to understand their effect on the security and
fairness metrics. As baselines, we use the following models.

1) Undefended: The model is poisoned and no corrective
measure is applied, creating a worst case scenario.

2) Perfect filter: This is an oracle filtering defense that fully
removes the poisoned data from the training set. This is
the best case scenario.

3) Random filter: This baseline randomly removes a fixed
percentage of the data (10% in our case), comparing to
simply removing some data with popular defenses.

C. Sub-population Generation

To determine sub-populations within the benign training
data, we use an explanatory model called BEAN regularization
[28]. Then, given a test set, for each sample within a class,
the explanatory model predicts whether the input sample
belongs to a well-represented group (population 1) or out-
of-distribution group (population 2). This labeling process is
performed on each class in the dataset and fed to the SPD
metric previously defined in (1). The BEAN model allows
for semantic interpretability due to its layer-wise regulariza-
tion rules that are biologically motivated. By applying these
learning constraints which adjust the weight space (enforcing
modularity), BEAN ultimately allows sparsifying connections
to disentangle learned concepts into distinct groups. Our
qualitative tests reproduced this same behavior on multiple
datasets (including GTSRB and CIFAR-10) and architectures.

While the original paper tests BEAN for better generaliza-
tion and zero-shot learning, in this study, we leveraged the
trait of explanatory data characterization in detecting out-of-
distribution sub-populations within a single “learned” class of
the pre-trained BEAN model. The pre-trained BEAN model
uses the same architecture as the undefended model, but solely
for the purpose of evaluating the defense model behavior on
non-poisoned inputs only.

V. BENCHMARKING POISONING DEFENSES

We now present the results for the three baselines and eight
defenses we evaluated. Every baseline or defense, except Finite
Aggregation, was evaluated for a total of three trials2. We
report the average metrics among all trials.

2For Finite Aggregation, we only ran one trial as it requires training a large
number of models (e.g., with the default parameters of k = 50, d = 10, 500
models MicronNet models need to be trained), requiring 3 days to run a single
experiment using a 32GB V100 GPU under GTSRB.
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Fig. 4: The clean accuracy (top) and attack success rate (bottom) for the baselines and defenses across varied poison. Each
model is evaluated against the DLBD and CLBD attacks using the bullet hole and peace sign triggers on the GTSRB dataset.

A. Security Assessment

We first evaluate the clean accuracy and attack success rate
for the baselines and defenses. In Figure 4, we report these
metrics across the varying poisoning percentages for the two
attacks using the bullet holes and peace sign triggers. We omit
0% poison for the attack success rate plots. We also include
tables showing the exact numbers in Appendix C.

We first notice that there is no clear correlation between
poison percentage and clean accuracy for either attack type or
trigger. We do observe, however, that most of the defenses
have lower clean accuracy than the baselines. Particularly,
Adversarial Training and the D.A. + A.T. combo have the
lowest clean accuracy; this is consistent with the fact that
training on adversarial examples usually hurts the model per-
formance [18]. Data Augmentation often performs even better
than the baselines; this is expected given that this technique
is used to increase generalization. Most of the defenses have
similar accuracy for both DLBD and CLBD; the exception is
Activation Defense which performs worse against CLBD.

Benign accuracy on itself is not enough, the defense should
also prevent attacks. For the attack success rate, we observe
that in DLBD, nearly all defenses are more robust than the
Undefended and Random Filter baselines. This does not extend
to CLBD as most are actually less robust than the Undefended
baseline. We also notice that the choice of trigger can affect
some defenses such as ISPL for CLBD where the peace
sign is a more nefarious trigger. DPA and Finite Aggregation
consistently offer high levels of robustness for both attacks and

even outperform the Perfect Filter baseline during CLBD. This
suggests that ensemble-based defenses help to reduce some of
the variance that results from benign data.

B. Fairness Assessment

We visualize the SPD metric of the models using heatmaps
by aggregating the fairness of classes across different models
for scenarios with different poison percentages. To generate
this heatmap, for each model and poison percentage, we first
categorize the resulting SPD values associating with each class
into SPD intervals described in Section III-B. The classes
belonging to SPD < −0.1 are considered negative classes,
SPD > 0.1 are considered positive classes, and |SPD| ≤ 0.1
are considered fair classes. The counts of classes belonging
to each of these three categories were taken across different
poison percentages and averaged for all trials.

This was performed individually for all baselines and de-
fenses. In Figure 5, we visualize the number of classes where
|SPD| ≤ 0.1 across the varying poisoning percentages and the
percentage of classes for each of the three intervals averaged
across all poison percentages for the two attacks using the
bullet holes and peace sign triggers.

In the heatmaps for the class counts of the |SPD| ≤ 0.1
(top row of Figure 5), darker blue reflects that more classes
fall into the acceptable range, and thus, the model is fairer
over all. The different baselines are also shown for relative
comparison purposes in each row. We first notice that the
poison percentage does not have a large effect on the fairness
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Fig. 5: The number of classes within the acceptable |SPD| ≤ 0.1 range across varied poison (top) and the percentage of
classes within each of the SPD ranges averaged across all poison percentages (bottom) for each baseline and defense. Each
model is evaluated against the DLBD and CLBD attacks using the bullet hole and peace sign triggers on the GTSRB dataset.

as the class counts stay relatively consistent. The baseline
models are the most fair while the evaluated defenses tend
to be less fair. Interestingly, Activation Defense exhibits high
levels of fairness during DLBD but the lowest fairness during
CLBD. However, we observe that all of the filtering and
adversarial training-based defenses are always less fair than
the baselines and other defenses. Intuitively, this reflects the
mechanics of the defenses, which remove outliers or try
to minimize the effect of minority data. In contrast, data
Augmentation consistently shows the highest fairness for both
types of attacks. This result suggests that defending a model
using data augmentation does improve generalization and
provides good fairness results. However, this approach is not
the best in terms of attack success rate.

In the heatmaps for the class percentages of the three inter-
vals (bottom row of Figure 5), we notice that most defenses
are not especially unfair as the majority of classes always lie
within the |SPD| ≤ 0.1 range. The exceptions are Activation
Defense and the D.A. + A.T. combo which in some cases drop
below 50% indicating they may be biased. We also observe
that each baseline or defense tends to be skewed towards the
either the negative SPD < −0.1 or positive SPD > 0.1. The
baselines and Activation Defense tend to be skewed towards
the positive range with the percentage of positive range larger
that the negative range, while the other defenses tend to be
skewed towards negative range. This pattern is consistent for
both DLBD and CLBD and for both triggers. This shows

that most of the defenses are biased towards a specific sub-
population regardless of the type of poisoning attacks.

VI. CONCLUSION

Machine learning algorithms, although used for critical
tasks, are susceptible to adversarial attacks. Poisoning attacks,
in particular, pose a large risk to these ML models. Many
defenses have been proposed to protect against poisoning
attacks. Traditionally, these defenses have been evaluated
using attack success rate and benign accuracy. However, these
metrics do not show the complete way in which a defense
may influence the model. To uncover potential side-effects of
defenses, we also utilize a fairness metric to understand how
different benign sub-populations can be affected.

In our evaluations, we found that some defenses that pro-
duce robust models with a low attack success rate can actually
yield unfair and biased models with few classes in the accept-
able statistical parity difference (SPD) range. This especially
applied for filtering and adversarial training-based defenses.
Our experiments also suggest that ensemble-based methods
can reduce attacks without resulting in unfair models. Overall,
our work highlights that creating robust models may have
unintended consequences on the final model quality against
certain sub-populations. We encourage future evaluations of
adversarial defenses to use metrics outside of the traditional
clean accuracy and attack success rate such as SPD to measure
additional model qualities such as resulting fairness.
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APPENDIX

A. Alternative Hyperparameter Evaluations

In our evaluations, we used the default hyperparameters
for all of the defenses based on their respective paper. We
now present results for the Activation Defense, Spectral Sig-
natures, Data Augmentation, Adversarial Training, and the
Data Augmentation and Adversarial combination (D.A. +
A.T.) defenses where we use alternative hyperparameters.
For Activation Defense, there is an optional exclusionary
reconstruction phase [2] (we denote as this as ExRe); we now
evaluate using exclusionary reconstruction with a threshold
of 1.0. For Spectral Signatures, we evaluated using the best
case scenario where the expected poison is the actual poison
amount; now we use a fixed 30% poison for the dirty label
attacks and fixed 20% poison for the clean label attacks. For
Data Augmentation, the original work for the data augmen-
tation poisoning defense used Maxup with Cutout [20]; now
we use CutMix, a different data augmentation method. For
Adversarial Training, the original work used a 7-step PGD
attack with ε = 0.1 and a step size of 0.02 [19]; we now
use a weakened PGD attack with the same hyperparamaters
as the original work [18], a 10-step PGD with ε = 0.03 and a
step size of 0.007. For the D.A. + A.T. combo, we originally
adversarially perturbed 75% of the training samples; we now
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Fig. 6: The clean accuracy (top) and attack success rate (bottom) for the additional hyperparameter modified defenses across
varied poison. Each model is evaluated against the DLBD and CLBD attacks using the bullet hole and peace sign triggers on
the GTSRB dataset.

Fig. 7: The number of classes within the acceptable |SPD| ≤ 0.1 range across varied poison (top) and the percentage of classes
within each of the SPD ranges averaged across all poison percentages (bottom) for the additional hyperparameter modified
defenses. Each model is evaluated against the DLBD and CLBD attacks using the bullet hole and peace sign triggers on the
GTSRB dataset.
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use a weakened version where we only perturb 50% of the
training samples.

Security Assessment: The clean accuracy and attack suc-
cess rate for these alternative hyperparameter defenses are
shown in Figure 6. The undefended baseline and original
hyperparameter variations are also included as reference. We
report these metrics across the varying poisoning percentages
for the two attack using the bullet hole and peace sign triggers.
We omit 0% poison for the attack success rate plots. We also
include tables showing the exact numbers in Appendix C. We
immediately notice that Activation Defense with exclusion-
ary reconstruction offers a significant improvement in clean
accuracy compared to without but does not change much
in terms of attack success rate. We also observe that the
choice of expected poison for Spectral Signatures does not
affect the clean accuracy but does have a significant effect
on the attack success rate. The choice of Data Augmentation
method (Maxup or CutMix) does not largely affect on the clean
accuracy or attack success rate. For both Adversarial Training
and the D.A. + A.T., the weakened variant has a higher clean
accuracy but also higher attack success rate.

Fairness Assessment: In Figure 7, we report the number
of classes in the acceptable |SPD| ≤ 0.1 across the varying
poisoning percentages and the percentage of classes for each
of the SPD intervals averaged across all poison percentages for
the two attacks using the bullet hole and peace sign triggers.
We notice a large improvement in fairness for Activation
Defense with exclusionary reconstruction for CLBD. We also
observe that the hyperparameters for Spectral Signatures and
the choice of Data Augmentation do not affect the fairness
of the model as the SPD remains very similar. For both
Adversarial Training and the D.A. + A.T. combo, however, we
notice a large increase in fairness for the weakened variants.
The same trend where the defense tends to be skewed towards
the either the negative SPD < −0.1 or positive SPD > 0.1
remains consistent regardless of the hyperparameters.

B. Alternative Dataset and Attack Evaluations

In addition to our experiments using the MicronNet model
trained on the GTSRB dataset, we also use a different model
architecture and dataset to properly judge each defense’s
generalizability. For each of the baselines and defenses, except
DPA and Finite Aggregation 3, we trained a ResNet-18 [29]
model on the CIFAR-10 [26]. Each model was trained for
100 epochs. We evaluate these defenses against the dirty label
backdoor [12] (DLBD) and Witches’ Brew [16] attacks. We
used the Adam optimizer for models evaluated against the
DLBD attack and the SGD optimizer for models evaluated
against the Witches’ Brew attack.

Just like experiments using the GTSRB dataset, we vary
the percentage of poison for each defense. For DLBD, we
used 0%, 1%, 5%, 10%, 20%, and 30% poison. For Witches’
Brew, we use 0%, 1%, 5%, 10%, 20%, and 30% poison.

3We omit DPA and Finite Aggregation for the CIFAR-10 results as these
defenses were not compatible with this combination of dataset and poisoning
attacks.

Additionally, for DLBD, we use two triggers: the copyright
and the watermark. These triggers are shown in Figure 8. Same
as before, we generate poison samples by blending the trigger
image with a portion of each target image. For the CIFAR-10
dataset, we set the trigger size equal to the original image with
a blend factor of 0.18 for copyright and 1.0 for the watermark
trigger. The Witches’ Brew attack does not use a trigger.

(a) (b)

Fig. 8: Poisoning attack triggers for the (a) copyright and (b)
watermark used for the CIFAR-10 dataset.

Security Assessment: In Figure 9, we report the clean
accuracy and attack success rate across the varying poisoning
percentages for the two attacks (and triggers where applicable).
We omit 0% poison for the attack success rate plots since
there will never be a successful attack. We also include tables
showing the exact numbers in Appendix C. We immediately
notice that nearly all of the defenses have a lower clean
accuracy than the baselines. Adversarial Training and the D.A.
+ A.T. combo in particular perform extremely poorly, but this
may be due to the choice of hyperparameters for the PGD
attack. For the attack success rate, the defenses perform better
than the undefended baseline for the DLBD. However, for the
Witches’ Brew attack, all of the defenses perform worse than
the baseline. This may demonstrate that these defenses are
brittle against this type of attack.

Fairness Assessment: The fairness class counts for the
acceptable |SPD| ≤ 0.1 range and the percent distribution
for all three SPD ranges are shown in Figure 10. We observe
that since the CIFAR-10 dataset tends to have balanced classes,
the baselines and most of the defenses are very fair and tend
to exhibit no bias. Adversarial Training and the D.A. + A.T.
combo show some form of bias, but is still very low. This
shows that against a balanced dataset, models tend to stay fair
and do not exhibit much bias against sub-populations. For this
reason, we used the GTSRB dataset for our main results as
this dataset is unbalanced which is more realistic.

C. Results as Tables

For readability and accurate comparisons, we also include
tables showing the exact numbers for the clean accuracy and
attack success rate plots of all the baselines and defenses in
our three sets of experiments.

Table I and Table II correspond to the top row and bottom
rows of Figure 4, respectively. This is the clean accuracy and
attack success rates for the main set of baselines and defenses
evaluated against the DLBD and CLBD attacks using the bullet
hole and peace sign triggers on the GTSRB dataset.

Table III and Table IV correspond to the top row and bottom
rows of Figure 6, respectively. This is the clean accuracy and
attack success rates for the alternative hyperparameter defenses

53



Fig. 9: The clean accuracy (top) and attack success rate (bottom) for the baselines and defenses across varied poison. Each
model is evaluated against the DLBD attack using the copyright and watermark triggers and the Witches’ Brew attack on the
CIFAR-10 dataset.

Fig. 10: The number of classes in the acceptable |SPD| ≤ 0.1 range across varied poison (top) and the percentage of classes
within each of the SPD ranges averaged across all poison percentages (bottom) for each baseline and defense. Each model is
evaluated against the DLBD attack using the copyright and watermark triggers and the Witches’ Brew attack on the CIFAR-10
dataset.
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TABLE I: The clean accuracy for the main set of baselines and defenses evaluated on the GTSRB dataset against the DLBD
and CLBD attacks with bullet hole and peace sign triggers across varying poison percentages. The best performing models are
in bold.

DLBD Bullet Hole DLBD Peace Sign CLBD Bullet Hole CLBD Peace Sign
Model 0% 1% 5% 10% 20% 30% 0% 1% 5% 10% 20% 30% 0% 20% 50% 80% 0% 20% 50% 80%

Undefended 0.916 0.940 0.935 0.941 0.942 0.939 0.928 0.941 0.945 0.941 0.925 0.942 0.928 0.929 0.927 0.925 0.928 0.929 0.927 0.925
Perfect Filter 0.942 0.919 0.919 0.932 0.941 0.942 0.943 0.944 0.892 0.921 0.942 0.940 0.928 0.927 0.927 0.928 0.928 0.927 0.927 0.928
Random Filter 0.934 0.903 0.916 0.935 0.915 0.937 0.905 0.936 0.925 0.941 0.893 0.925 0.924 0.924 0.927 0.927 0.924 0.924 0.927 0.927
Activation Defense 0.904 0.929 0.930 0.932 0.911 0.906 0.933 0.880 0.924 0.933 0.933 0.920 0.866 0.875 0.859 0.860 0.866 0.875 0.859 0.860
DPA 0.925 0.922 0.922 0.922 0.922 0.917 0.925 0.922 0.923 0.925 0.922 0.920 0.925 0.922 0.919 0.915 0.925 0.923 0.920 0.912
Finite Aggregation 0.916 0.916 0.916 0.915 0.914 0.910 0.916 0.916 0.916 0.916 0.915 0.914 0.916 0.915 0.913 0.909 0.916 0.915 0.913 0.909
Spectral Signatures 0.947 0.946 0.918 0.946 0.918 0.941 0.946 0.947 0.943 0.915 0.912 0.921 0.946 0.909 0.912 0.911 0.946 0.913 0.911 0.908
ISPL 0.878 0.874 0.910 0.905 0.885 0.895 0.896 0.879 0.879 0.877 0.884 0.877 0.878 0.889 0.891 0.902 0.878 0.901 0.878 0.898
Data Augmentation 0.947 0.948 0.939 0.948 0.945 0.949 0.945 0.947 0.947 0.939 0.946 0.949 0.947 0.951 0.947 0.946 0.919 0.942 0.930 0.943
Adversarial Training 0.886 0.867 0.862 0.864 0.853 0.864 0.878 0.857 0.862 0.859 0.848 0.842 0.864 0.862 0.858 0.860 0.861 0.865 0.854 0.871
D.A. + A.T. 0.884 0.875 0.846 0.849 0.830 0.840 0.867 0.848 0.844 0.848 0.839 0.848 0.856 0.838 0.840 0.846 0.864 0.843 0.853 0.849

TABLE II: The attack success rate for the main set of baselines and defenses evaluated on the GTSRB dataset against the
DLBD and CLBD attacks with the bullet hole and peace sign triggers across varying poison percentages. The best performing
models are in bold.

DLBD Bullet Hole DLBD Peace Sign CLBD Bullet Hole CLBD Peace Sign
Model 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 20% 50% 80% 20% 50% 80%

Undefended 0.278 0.569 0.820 0.910 0.940 0.744 0.953 0.983 0.967 0.998 0.225 0.236 0.268 0.225 0.236 0.268
Perfect Filter 0.103 0.094 0.092 0.135 0.135 0.137 0.045 0.072 0.228 0.120 0.119 0.107 0.115 0.119 0.107 0.115
Random Filter 0.134 0.568 0.745 0.800 0.936 0.668 0.753 0.979 0.738 0.998 0.227 0.247 0.267 0.227 0.247 0.267
Activation Defense 0.289 0.691 0.815 0.838 0.830 0.497 0.886 0.977 0.985 0.988 0.248 0.283 0.261 0.248 0.283 0.261
DPA 0.128 0.163 0.200 0.364 0.492 0.056 0.138 0.310 0.547 0.701 0.122 0.106 0.107 0.085 0.083 0.079
Finite Aggregation 0.122 0.161 0.231 0.383 0.508 0.050 0.251 0.451 0.724 0.861 0.096 0.092 0.090 0.096 0.092 0.090
Spectral Signatures 0.266 0.506 0.839 0.705 0.915 0.532 0.871 0.676 0.769 0.992 0.193 0.271 0.250 0.263 0.327 0.315
ISPL 0.068 0.088 0.106 0.167 0.247 0.096 0.073 0.081 0.311 0.461 0.159 0.194 0.170 0.329 0.264 0.290
Data Augmentation 0.201 0.300 0.844 0.949 0.956 0.568 0.896 0.893 0.985 0.990 0.222 0.217 0.194 0.199 0.267 0.268
Adversarial Training 0.119 0.157 0.142 0.243 0.263 0.194 0.178 0.358 0.339 0.479 0.142 0.271 0.275 0.203 0.218 0.229
D.A. + A.T. 0.140 0.229 0.275 0.418 0.600 0.272 0.346 0.447 0.583 0.754 0.200 0.219 0.251 0.202 0.247 0.289

TABLE III: The clean accuracy for the alternative hyperparameter defenses evaluated on the GTSRB dataset against the DLBD
and CLBD attacks with bullet hole and peace sign triggers across varying poison percentages. The best performing models are
in bold.

DLBD Bullet Hole DLBD Peace Sign CLBD Bullet Hole CLBD Peace Sign
Model 0% 1% 5% 10% 20% 30% 0% 1% 5% 10% 20% 30% 0% 20% 50% 80% 0% 20% 50% 80%

Undefended 0.916 0.940 0.935 0.941 0.942 0.939 0.928 0.941 0.945 0.941 0.925 0.942 0.928 0.929 0.927 0.925 0.928 0.929 0.927 0.925
Activation Defense (original) 0.904 0.929 0.930 0.932 0.911 0.906 0.933 0.880 0.924 0.933 0.933 0.920 0.866 0.875 0.859 0.860 0.866 0.875 0.859 0.860
Activation Defense (ExRe) 0.914 0.953 0.933 0.952 0.950 0.953 0.954 0.953 0.952 0.942 0.950 0.951 0.948 0.952 0.954 0.947 0.948 0.953 0.953 0.951
Spectral Signatures (original) 0.947 0.946 0.918 0.946 0.918 0.941 0.946 0.947 0.943 0.915 0.912 0.921 0.946 0.909 0.912 0.911 0.946 0.913 0.911 0.908
Spectral Signatures (fixed) 0.941 0.943 0.933 0.937 0.917 0.941 0.941 0.875 0.929 0.901 0.941 0.921 0.940 0.899 0.902 0.901 0.940 0.903 0.901 0.898
Data Augmentation (maxup) 0.947 0.948 0.939 0.948 0.945 0.949 0.945 0.947 0.947 0.939 0.946 0.949 0.947 0.951 0.947 0.946 0.919 0.942 0.930 0.943
Data Augmentation (cutmix) 0.944 0.936 0.937 0.943 0.937 0.936 0.947 0.941 0.938 0.938 0.941 0.938 0.941 0.931 0.946 0.949 0.939 0.945 0.948 0.947
Adversarial Training (original) 0.886 0.867 0.862 0.864 0.853 0.864 0.878 0.857 0.862 0.859 0.848 0.842 0.864 0.862 0.858 0.860 0.861 0.865 0.854 0.871
Adversarial Training (weak) 0.942 0.940 0.934 0.938 0.928 0.933 0.943 0.938 0.936 0.933 0.939 0.929 0.943 0.934 0.929 0.946 0.918 0.937 0.941 0.944
D.A. + A.T. (original) 0.884 0.875 0.846 0.849 0.830 0.840 0.867 0.848 0.844 0.848 0.839 0.848 0.856 0.838 0.840 0.846 0.864 0.843 0.853 0.849
D.A. + A.T. (weak) 0.886 0.897 0.889 0.888 0.881 0.886 0.898 0.897 0.894 0.889 0.895 0.888 0.898 0.906 0.898 0.896 0.898 0.876 0.898 0.882

TABLE IV: The attack success rate for the alternative hyperparameter defenses evaluated on the GTSRB dataset against the
DLBD and CLBD attacks with the bullet hole and peace sign triggers across varying poison percentages. The best performing
models are in bold.

DLBD Bullet Hole DLBD Peace Sign CLBD Bullet Hole CLBD Peace Sign
Model 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 20% 50% 80% 20% 50% 80%

Undefended 0.278 0.569 0.820 0.910 0.940 0.744 0.953 0.983 0.967 0.998 0.225 0.236 0.268 0.225 0.236 0.268
Activation Defense (original) 0.289 0.691 0.815 0.838 0.830 0.497 0.886 0.977 0.985 0.988 0.248 0.283 0.261 0.248 0.283 0.261
Activation Defense (ExRe) 0.319 0.554 0.846 0.944 0.962 0.606 0.906 0.833 0.983 0.992 0.225 0.221 0.237 0.305 0.360 0.428
Spectral Signatures (original) 0.266 0.506 0.839 0.705 0.915 0.532 0.871 0.676 0.769 0.992 0.193 0.271 0.250 0.263 0.327 0.315
Spectral Signatures (fixed) 0.268 0.562 0.819 0.823 0.915 0.270 0.774 0.756 0.983 0.992 0.213 0.281 0.260 0.263 0.377 0.365
Data Augmentation (maxup) 0.201 0.300 0.844 0.949 0.956 0.568 0.896 0.893 0.985 0.990 0.222 0.217 0.194 0.199 0.267 0.268
Data Augmentation (cutmix) 0.186 0.643 0.806 0.869 0.964 0.467 0.890 0.938 0.964 0.983 0.211 0.226 0.192 0.300 0.312 0.299
Adversarial Training (original) 0.119 0.157 0.142 0.243 0.263 0.194 0.178 0.358 0.339 0.479 0.142 0.271 0.275 0.203 0.218 0.229
Adversarial Training (weak) 0.171 0.178 0.424 0.421 0.468 0.207 0.686 0.925 0.979 0.997 0.247 0.232 0.253 0.297 0.267 0.271
D.A. + A.T. (original) 0.140 0.229 0.275 0.418 0.600 0.272 0.346 0.447 0.583 0.754 0.200 0.219 0.251 0.202 0.247 0.289
D.A. + A.T. (weak) 0.165 0.151 0.254 0.350 0.467 0.188 0.207 0.306 0.492 0.861 0.264 0.243 0.261 0.274 0.282 0.278
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TABLE V: The clean-accuracy for the baselines and defenses evaluated on the CIFAR-10 dataset against the DLBD attack
with the copyright and watermark triggers and Witches’ Brew attack across varying poison percentages. The best performing
models are in bold.

DLBD Copyright DLBD Watermark Witches’ Brew
Model 0% 1% 5% 10% 20% 30% 0% 1% 5% 10% 20% 30% 0% 10% 20% 30%

Undefended 0.767 0.762 0.765 0.764 0.758 0.737 0.769 0.764 0.758 0.762 0.766 0.765 0.637 0.634 0.632 0.627
Perfect Filter 0.770 0.768 0.763 0.767 0.767 0.763 0.771 0.765 0.767 0.765 0.763 0.761 0.771 0.738 0.731 0.716
Random Filter 0.739 0.731 0.725 0.729 0.728 0.728 0.734 0.728 0.733 0.730 0.733 0.725 0.734 0.710 0.703 0.701
Activation Defense 0.716 0.722 0.708 0.697 0.727 0.711 0.731 0.721 0.708 0.718 0.704 0.516 0.731 0.548 0.641 0.637
Spectral Signatures 0.682 0.644 0.680 0.692 0.674 0.686 0.703 0.690 0.492 0.672 0.687 0.689 0.703 0.668 0.658 0.656
ISPL 0.674 0.669 0.666 0.664 0.666 0.675 0.677 0.683 0.667 0.677 0.657 0.674 0.710 0.711 0.694 0.690
Data Augmentation 0.748 0.742 0.745 0.741 0.747 0.728 0.756 0.745 0.749 0.751 0.729 0.740 0.643 0.629 0.621 0.613
Adversarial Training 0.303 0.326 0.334 0.315 0.326 0.283 0.310 0.350 0.347 0.339 0.334 0.311 0.280 0.270 0.260 0.254
D.A. + A.T. 0.402 0.408 0.396 0.398 0.411 0.406 0.380 0.342 0.414 0.373 0.391 0.391 0.315 0.307 0.305 0.315

TABLE VI: The attack success rate for the baselines and defenses evaluated on the CIFAR-10 dataset against the DLBD attack
with the copyright and watermark triggers and Witches’ Brew attack across varying poison percentages. The best performing
models are in bold.

DLBD Copyright DLBD Watermark Witches’ Brew
Model 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 10% 20% 30%

Undefended 0.228 0.624 0.777 0.866 0.879 0.340 0.764 0.869 0.939 0.947 0.167 0.300 0.433
Perfect Filter 0.051 0.094 0.081 0.067 0.081 0.033 0.025 0.026 0.030 0.027 0.033 0.033 0.067
Random Filter 0.238 0.623 0.713 0.847 0.881 0.258 0.703 0.812 0.907 0.944 0.633 0.600 0.667
Activation Defense 0.249 0.475 0.694 0.784 0.897 0.212 0.978 0.603 0.789 0.636 0.400 0.667 0.733
Spectral Signatures 0.225 0.451 0.606 0.687 0.828 0.121 0.103 0.581 0.831 0.601 0.700 0.733 0.600
ISPL 0.041 0.060 0.091 0.215 0.646 0.027 0.034 0.082 0.284 0.602 0.533 0.467 0.667
Data Augmentation 0.051 0.066 0.087 0.272 0.456 0.285 0.650 0.815 0.900 0.943 0.467 0.567 0.600
Adversarial Training 0.014 0.011 0.015 0.040 0.133 0.043 0.372 0.668 0.114 0.424 0.067 0.100 0.000
D.A. + A.T. 0.026 0.028 0.023 0.069 0.093 0.010 0.470 0.119 0.742 0.764 0.033 0.033 0.000

evaluated against the DLBD and CLBD attacks using the bullet
hole and peace sign triggers on the GTSRB dataset.

Table V and Table VI correspond to the top row and bottom
rows of Figure 9, respectively. This is the clean accuracy and
attack success rates for the alternative hyperparameter defenses
evaluated against the DLBD attack using the copyright and
watemark triggers and Witches’ Brew attack on the CIFAR-
10 dataset.

56


