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Abstract—Diffusion models have attracted attention in recent
years as innovative generative models. In this paper, we inves-
tigate whether a diffusion model is resistant to a membership
inference attack, which evaluates the privacy leakage of a ma-
chine learning model. We primarily discuss the diffusion model
from the standpoints of comparison with a generative adversarial
network (GAN) as conventional models and hyperparameters
unique to the diffusion model, i.e., timesteps, sampling steps,
and sampling variances. We conduct extensive experiments with
DDIM as a diffusion model and DCGAN as a GAN on the CelebA
and CIFAR-10 datasets in both white-box and black-box settings
and then show that the diffusion model is comparably resistant
to a membership inference attack as GAN. Next, we demonstrate
that the impact of timesteps is significant and intermediate steps
in a noise schedule are the most vulnerable to the attack. We
also found two key insights through further analysis. First, we
identify that DDIM is vulnerable to the attack for small sample
sizes instead of achieving a lower FID. Second, sampling steps
in hyperparameters are important for resistance to the attack,
whereas the impact of sampling variances is quite limited.

Index Terms—diffusion model, membership inference attack,
GAN, hyperparameter, privacy

I. INTRODUCTION

A. Motivation

In machine learning, generative models have been ac-
tively studied. As a breakthrough in recent years, diffusion
models [1], [2] were discovered as new generative models.
Diffusion models can generate more plausible images and
texts than existing generative models such as a generative
adversarial network (GAN). Remarkably, diffusion models
have outperformed GANs on academic benchmarks in the past
years [3] and are expected to replace GANs in a variety of
applications [4]–[7].

We emphasize that discussion on privacy violations for
training data of diffusion models [8]–[10] is a very recent issue
and hence is still insufficient. In general, training generative
models requires large amounts of training data, and, for
example, models that generate disease histories as sensitive
information also attract attention [11], [12]. Understanding
privacy violations under realistic threats for generative models
is crucial for using generative models in the real world [13].
Consequently, privacy violations of diffusion models should
be discussed in more detail.

In this paper, we discuss a membership inference attack [14]
against diffusion models, which is an important criterion for
evaluating privacy violations. Informally, a membership infer-
ence attack aims to identify whether a data record was used
to train a machine learning model. This attack is discussed
for evaluating privacy violations in the past years [15]–[17],
and hence it is important to discuss the attack for diffusion
models in order to understand potential threats of the model.
We then try to answer the following question: How vulnerable
are diffusion models to a membership inference attack?

We note that this question is non-trivial because the data
generation logic by diffusion models differs from conventional
models such as GANs. According to earlier literature [13],
[18]–[20], the architecture of a generative model affects the
attack success rate of a membership inference attack. For
example, for an attack against GAN, an attacker can utilize
a discriminator model that is a counterpart to the generative
model [19]. By contrast, diffusion models do not contain
such a model. Meanwhile, diffusion models have unique
hyperparameters, i.e., timesteps, sampling steps, and sampling
variances, that have never been contained in conventional mod-
els. It indicates that we no longer know how the membership
inference attack on diffusion models varies compared to the
traditional models. These standpoints were not addressed in the
existing works [8]–[10]. (See Section II-C for more detail.)

B. Contributions

In this paper, we shed light on the impact of a membership
inference attack on diffusion models through extensive exper-
iments. Our primary discussions are on comparison with a
GAN as a conventional generative model and hyperparameters
of the diffusion model, i.e., timesteps, sampling steps, and
sampling variances. In particular, through extensive experi-
ments with denoising diffusion implicit models (DDIM) as
a diffusion model and deep convolutional GAN (DCGAN) as
a GAN on the CelebA and CIFAR-10 datasets in both white-
box and black-box settings, we show that the diffusion model
is comparably resistant to a membership inference attack as
GAN. We then identify the impact of timesteps on the attack.
Intermediate steps in a noise schedule are the most vulnerable
to the attack rather than the beginning or the final step. (See
Section IV for detail.)
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We also provide two key insights into a membership infer-
ence attack on the diffusion model through further analysis
for overfitting compared to GAN and hyperparameters for
sampling, i.e., sampling steps and sampling variances. First,
for overfitting, we show that DDIM is vulnerable to the attack
if the number of training samples is small since DDIM is
well-trained compared to DCGAN. Second, sampling steps in
hyperparameters are quite important for resistance to the attack
in contrast to sampling variances, which are irrelevant to the
attack. (See Section V for detail.) Our source code is publicly
available (https://github.com/fseclab-osaka/mia-diffusion).

II. RELATED WORK

This section describes related works of membership infer-
ence attacks, including GANs and diffusion models.

A. Membership Inference

A membership inference attack is a kind of attack whereby
an adversary infers whether a particular example was con-
tained in the training dataset of a model [21]–[23]. A model
vulnerable to the attack potentially contains threats to privacy
leakage, and hence recent works discuss membership inference
attacks for various machine learning models [15], [16], [18].
There are two settings [14], i.e., the white-box setting where
an adversary has access to model parameters, and the black-
box setting where he/she utilizes only outputs of the model.

A typical approach for membership inference attacks is to
leverage the large divergence between the loss distribution
over members and non-members [24]. The divergence can
be embedded by an adversary. For instance, privacy leakage,
including membership inference attacks, can be more effective
by training a model with poisoning samples [25]–[28].

Membership inference attacks can be prevented by differ-
ential privacy [29] where gradients are perturbed [30], [31].
Since differential privacy often deteriorates inference accuracy,
several works evaluated differential privacy on membership
inference attacks in a quantitative fashion [32], [33].

B. Attacks on GANs

Related works are membership inference attacks against
GANs [13], [18], [19], [34]. LOGAN was presented as the
first attack against GANs in both white-box and black-box
settings. LOGAN in the white-box setting utilizes outputs from
the discriminator of a target model. Concurrently, the Monte
Carlo attack [13] was presented as an attack independent of a
target model’s architecture in the black-box setting. The above
attacks are also utilized as oracles in the subsequent work [19].

GAN-Leaks [34] is the state-of-the-art attack against GANs
in the black-box setting, to the best of our knowledge. It
no longer requires the setting of parameters compared to the
above attacks and hence can be used in diffusion models.
GAN-Leaks also showed a new attack whereby an adversary
has access to the internal of a target model’s generator.

We utilize LOGAN in the white-box setting and GAN-Leaks
in the black-box setting to compare a diffusion model with a
GAN, respectively. As described above, LOGAN is the only

Fig. 1: Overview of our membership inference attacks.

work on GANs in the white-box setting while GAN-Leaks can
be used in diffusion models. We note that there is no work that
is applicable to diffusion models in the white-box setting.

C. Attacks on Diffusion Models

We note that there is an attack by Wu et al. [35] against
diffusion models. Their attack focuses on text-to-image gener-
ation models. In contrast, we focus on typical image generation
models. Namely, the underlying problem is quite different. It
is considered that the existing attacks against GANs are rather
close to our work than Wu et al. [35].

Concurrently, there are a few works [8]–[10] on typical
image generation models based on diffusion models, which
are the closest to ours. As the main difference from these
works, we discuss hyperparameters of diffusion models in
detail, which are our main results. In particular, Hu et al. [8]
and Duan et al. [10] did not discuss comparison with GANs.
Carlini et al. [9] compared with GANs, but did not discuss
hyperparameters, i.e., sampling steps and sampling variances.
We primarily focus on comparison with GANs and discussion
on the hyperparameters. Our work is thus concurrent with the
above works. Interested readers are also encouraged to read
the existing works [8]–[10].

III. MEMBERSHIP INFERENCE ATTACKS AGAINST
DIFFUSION MODEL

This section presents our membership inference attacks
against a diffusion model. To this end, we first formalize the
adversary setting of the attacks and the detail of a diffusion
model. We then describe our investigation method and the key
question of this paper in detail.

A. Formalization

A membership inference attack in this paper is defined as a
game between an adversary A and a challenger C. We note that
the adversary’s knowledge about the target model is different
for white-box and black-box settings. White-box setting means
that an adversary has access to an architecture of the model and
its parameters while black-box setting means that an adversary
cannot obtain these information.

We first denote by R a set of real numbers, by D a set of
data samples, and by M a set of generative models. Then, a
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generative model M ∈M is defined as a function M : Rr →
D, where r is an arbitary integer. The game is as follows:

1) C chooses a dataset D ⊆ D.
2) C chooses a bit b← {0, 1}. If b = 1, C chooses a sample

x ∈ D; otherwise, C chooses x ∈ D\D other than D. C
sends x to A.

3) C trains M with the dataset D.
4) A obtains xi = M(zi) for any zi ∈ Rr. Furthermore,
A also receives M and its auxiliary information1.

5) A returns a bit b′ ∈ {0, 1}. If b = b′, A wins the game.
The difference between the white-box and black-box set-

tings is represented as the sentences with red color, and only
the white-box setting contains this sentence. As described in
Section II-A, an adversary in the white-box setting has access
to the internal of a target model M : in this paper, he/she can
have access to internal networks, which are utilized in the
training of M and unnecessary for data generation, such as
discriminators in GANs as auxiliary information. On the other
hand, an adversary in the black-box setting receives only the
generated samples xi from a target model M .

We adopt area-under-the-ROC-curve (AUCROC) [36], at-
tack success rate (ASR) [14], and true positive rates (TPR) at
low false positive rates (FPR) [23], used as TPR at 1%FPR
in this paper, as evaluation metrics of the attacks. We also
adopt the Frechet inception distance (FID) [37] to evaluate
the quality of generated images. A lower score for FID means
that generated images are of a higher quality.

B. Detail of Diffusion Model

Membership inference attacks in this paper depend on loss
values of a diffusion model. We describe the detail of the loss
function, including the diffusion process and denoising one.

We describe the denoising diffusion probabilistic models
(DDPM) [2] below for simplicity because DDIM has nearly
the same process. The diffusion process is described as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

According to the noise schedule β, the observed data x0 are
transformed into noise xT by adding Gaussian noises over T
steps. The denoising process is described as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

The data are reconstructed by repeatedly removing noises
from noise xT drawn from a multivariate standard Gaussian
distribution.

The model is trained to maximize the variational lower
bound of the log marginal likelihood log pθ(x0). Therefore,
the loss function L is expressed as:

L := Eq

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ E

[
− log pθ(x0)

]
. (3)

In practice, we use the simplified loss function shown as:

Lsimple := Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
, (4)

1In the case of GANs, a discriminator is the auxiliary information.

Algorithm 1 White-box attack against diffusion models

Input: Target samples x1, ..., xm, model’s network ϵθ, time t,
noise schedule ᾱt :=

∏t
s=1(1− βs), threshold c

for i = 1 to m do
yi ← 0 ▷ Initialization
if ϵ− ϵθ(

√
ᾱtx

i +
√
1− ᾱtϵ, t) < c then

yi ← 1 ▷ Inferring as a member
Output: Labels y1, ..., ym

which represents the noise estimation error of the data xt,
using the notation ᾱt :=

∏t
s=1(1− βs).

In training, θ is optimized for the above loss function. It
is also utilized for the membership inference attack because
small loss values mean that the target sample is in-member.

Meanwhile, the sampling of DDIM is represented as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σt

2 · ϵθ(xt, t) + σtϵt, (5)

where σ controls the randomness of the sampling. We can
generate images for any subset of timesteps τ ⊂ {1, ..., T}
and σ is represented with a hyperparameter η as:

στi(η) := η
√

(1− ᾱτi−1
)/(1− ᾱτi)

√
1− ᾱτi/ᾱτi−1

. (6)

Note that the following value is utilized for CIFAR-10 in [38]:

σ̂τi :=
√

1− ᾱτi/ᾱτi−1
. (7)

C. Investigation Method

We describe our investigation method to evaluate member-
ship inference attacks against a diffusion model in the white-
box setting. As described in Section II-B, there is no attack
against a diffusion model in the white-box setting, whereas
we utilize LOGAN [18] and GAN-Leaks [34].

The loss function of a diffusion model represents a noise
estimation error as in Equation (4). In general, the loss
values among members are smaller than among non-members
because a model learns training data to minimize them [24].
Based on this fact, an adversary can infer whether the target
samples are contained in the training dataset by computing
their loss values with appropriate time t (as described later).
The detail of the method is shown in Algorithm 1.

D. Key Question

As described in Section I-A, we shed light on how a
diffusion model is vulnerable to membership inference attacks.
To this end, we discuss it from two standpoints: difference
from generative adversarial models (GANs), and timesteps of
a diffusion model.

We first evaluate membership inference attacks, including
the investigation method in the previous section, against the
diffusion model and existing GANs. The main difference
between the diffusion model and existing GANs is the number
of neural networks, i.e., the diffusion model consists of a
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single neural network while the existing GANs consist of
generators and discriminators. We discuss the impact of the
above difference on membership inference attacks in both
black-box and white-box settings.

We also discuss the impact of timesteps on membership
inference attacks. In a diffusion model, information learned
by the model is different for each timestep t. Although the
performance of membership inference attacks depends on the
divergence of loss distributions between members and non-
members [24], the timestep t when the divergence is largest
is unknown. Consequently, we evaluate membership inference
attacks with respect to timestep t.

IV. EXPERIMENTS

This section conducts extensive experiments on membership
inference attacks against a diffusion model. We evaluate the
attack AUC by comparing the attacks against GANs. We also
evaluate the impact of the timesteps of a diffusion model on
the attack AUC.

A. Experimental Setting

The experimental setting in this paper is described below.
1) Datasets: We utilize CIFAR-10 [39] and CelebA [40]

datasets, which contain samples with 32×32 color pixels and
with center-cropped 64× 64 color pixels, respectively.

2) Architectures: We utilize the denoising diffusion implicit
model (DDIM) [38] as a diffusion model and the deep
convolutional GAN (DCGAN) [41] as a baseline. The reason
of the use of these architectures is that DDIM is the basis
of other diffusion models and is suitable for investigating
common properties of the diffusion models. On the other hand,
DCGAN has been utilized in existing works [13], [18], [34]
for membership inference attacks on generative models.

For hyperparameters, we set T = 1000, and the noise
schedule is the cosine schedule [42] or the linear schedule [2].
The default setting is the cosine schedule. Also, the sampling
is performed for sampling variance σ(0) and per 50 steps,
i.e., 20 steps in total. The dimension of latent variables in
DCGAN is 100. A target model M is trained with 12,000
samples, and the numbers of epochs are 500 for DDIM and
300 for DCGAN. To fairly compare the evaluation metrics for
membership inference attacks, the effect of overfitting should
be minimized. Thus, we utilize 500 epochs for DDIM and 300
epochs for DCGAN as the target model M .

3) Attack Methods: In the white-box setting, we utilize the
investigation method described in Section III-C for the attack
on DDIM, where time t = 350, and LOGAN [18] for the
attack on DCGAN. On the other hand, in the black-box setting,
we utilize the full black-box attack of GAN-Leaks [34] where
the number of generated images is 12,000.

B. Results

1) Comparison with GANs: The results of DDIM and
DCGAN are shown in Fig. 3 and Tables I. According to these
results, DDIM is more resistant to the membership inference
attack than DCGAN on CIFAR-10 in the white-box setting.

(a) DDIM (b) DCGAN

Fig. 2: FID scores throughout training.

(a) White-box setting. (b) Black-box setting.

Fig. 3: ROC curves.

TABLE I: Attack performance on white-box/black-box setting.

Dataset Model AUCROC ASR TPR at
1%FPR

CIFAR-10 DDIM 0.552 / 0.503 0.536 / 0.499 1.54 / 1.19%
DCGAN 0.778 / 0.497 0.707 / 0.497 6.50 / 1.05%

CelebA DDIM 0.635 / 0.503 0.599 / 0.502 2.93 / 1.09%
DCGAN 0.699 / 0.495 0.643 / 0.494 2.56 / 1.13%

Furthermore, according to Table I, DDIM is more resistant
than DCGAN in terms of AUCROC. Although one might
think that DDIM is vulnerable according to TPR at 1%FPR,
including several low scores of FPR in Fig. 3, on CelebA, it is
considered that they are fairly comparable because each value
is quite small. By contrast, the attack fails for all models and
datasets in the black-box setting. As a result, it is considered
that DDIM is at least resistant equivalently to DCGAN.

2) Attack performance for different timesteps: The inves-
tigation method in Section III-C requires a timestep t as an
input to a target model M in addition to samples x1, . . . , xm.
We show that timesteps and the noise schedule strongly affect
the performance of the membership inference attacks.

The results of AUCROC for each timestep t are represented
in Fig. 4, where DDIM is trained with the cosine and linear
schedules. According to the figure, AUCROC is maximized
at t = 350 for the cosine schedule and at t = 200 for the
linear schedule. We call these values best-one AUCROC for
the sake of convenience. For these values, the value of ᾱt is
0.7. As might have been unexpected, these maximized values
were obtained in intermediate steps. The best-one AUCROC
for the cosine schedule is higher than the liner schedule.
Besides, according to Table II, AUCROC with an average of
loss values for all the steps, called average AUCROC for the

80



Fig. 4: AUCROC at every 25 step on white-box setting.

TABLE II: AUCROC by best-one and average t.

CIFAR-10 CelebA
best-one average best-one average

cosine 0.552 0.535 0.636 0.597
linear 0.518 0.510 0.555 0.529

sake of convenience, is lower than the best-one AURCROC.
Therefore, we use results at t = 350 for the investigation
methods in the entire experiments.

V. DISCUSSION

This section discusses the attack performance in terms of
number of training samples and training epochs to understand
the impact of overfitting on diffusion models. We then discuss
the impacts of hyperparameters for sampling in the diffusion
models.

A. Impact of Overfitting

Overfitting strengthens membership inference attacks in
general [31]. We discuss the impact of overfitting in terms
of number of training samples and epochs.

1) Number of training samples: We perform the attacks
on three target models, i.e., their number of training samples
is 12,000, 6000, and 600 images, to evaluate the impact of
number of training samples on a membership inference attack.
The results are shown in Fig 5 and Table III, where the number
of epochs is changed depending on the number of training
samples in order to align the number of images trained by the
model. Overall, DDIM is vulnerable to membership inference
attacks compared to DCGAN when the number of training
samples is small. We analyze this result in detail below. We
also note that FID for DCGAN on CIFAR-10 is high because
DCGAN is unsuitable for the dataset. Indeed, we found many
strange images, although we omit the detail due to the space
limitation. Consequently, we focus on results on CelebA.

First, in the white-box setting, Fig. 5 shows a remarkable
phenomenon: DDIM is more vulnerable to the membership
inference attack than DCGAN for small number of training
samples but is more resistant for large number of training
samples. For instance, DDIM is vulnerable in the white-
box setting until 6000 images. After that, according to the
columns of CelebA in Table III, AUCROC and ASR of DDIM
for 12,000 images are 0.064 smaller and 0.044 smaller than
DCGAN, respectively.

(a) White-box setting (CIFAR-10). (b) White-box setting (CelebA).

(c) Black-box setting (CIFAR-10). (d) Black-box setting (CelebA).

Fig. 5: ROC curves for different number of training samples.

(a) DDIM. (b) DCGAN.

Fig. 6: AUCROC throughout training on white-box setting.

We also found remarkable results in the black-box setting:
for small number of training samples, DDIM is significantly
vulnerable compared to DCGAN. Notably, AUCROC and
ASR of DDIM for 600 images are 0.24 higher and 0.19 higher
than DCGAN, respectively. Meanwhile, after the number of
training samples is 6,000, the result of DDIM for each model
is identical to that of DCGAN for any metrics. It means that
DDIM is vulnerable to membership inference attacks for small
number of training samples instead of providing lower FID.

2) Epochs: We perform the attacks on five target models,
i.e., models with 300 epochs to 700 epochs, to evaluate the
impact of the number of epochs on a membership inference
attack in the white-box setting. The results are shown in Fig 6.
We also note that we omit results in the black-box setting since
those for DDIM and DCGAN are identical. According to the
figure, values of AUCROC become higher in proportion to the
number of epochs, and it is especially stable for DDIM. Since
AUCROC of DDIM increases linearly, we can also estimate
the number of epochs to obtain the resistance to a membership
inference attack.
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TABLE III: Attack performance for different number of training samples in white-box/black-box setting.

Model Num. of CIFAR-10 CelebA
samples AUCROC ASR TPR at 1%FPR FID AUCROC ASR TPR at 1%FPR FID
12,000 0.552 / 0.503 0.536 / 0.499 1.54 / 1.19% 13.91 0.635 / 0.503 0.599 / 0.502 2.93 / 1.09% 13.94

DDIM 6,000 0.801 / 0.499 0.736 / 0.500 5.65 / 0.90% 16.27 0.973 / 0.497 0.901 / 0.499 65.30 / 0.90% 16.64
600 1.000 / 0.931 0.968 / 0.882 100.00 / 77.50% 28.72 1.000 / 0.762 0.995 / 0.717 100.00 / 47.33% 33.89

12,000 0.778 / 0.497 0.707 / 0.497 6.50 / 1.05% 68.29 0.699 / 0.495 0.643 / 0.494 2.56 / 1.13% 25.54
DCGAN 6,000 0.983 / 0.497 0.899 / 0.499 69.80 / 0.78% 79.30 0.776 / 0.492 0.694 / 0.490 8.33 / 0.95% 31.99

600 1.000 / 0.526 0.988 / 0.529 99.50 / 2.17% 189.96 0.940 / 0.524 0.873 / 0.520 19.83 / 1.50% 227.53

(a) CIFAR-10. (b) CelebA.

Fig. 7: ROC curves for different sampling steps on black-box
setting.

TABLE IV: Attack performance for different sampling steps
on black-box setting.

Dataset Steps AUCROC ASR TPR at 1%FPR FID
50 0.986 0.962 92.83% 22.60

CIFAR-10 20 0.931 0.882 77.50% 28.72
10 0.781 0.724 51.17% 45.50
50 0.966 0.933 87.67% 12.37

CelebA 20 0.762 0.717 47.33% 33.89
10 0.539 0.516 15.00% 101.01

B. Impact of Hyperparameters for Sampling

Hyperparameters often affect the model’s performance, and
hence we discuss the impact of hyperparameters for sampling,
which are unique to diffusion models, i.e., sampling steps
and sampling variances. Here, the investigation method in
Section III-C is independent of hyperparameters for sampling
since they are used only for the image generation process.
Consequently, we evaluate only in the black-box setting.

1) Sampling Steps: We perform the attacks on three dif-
ferent numbers of steps, i.e., 50 steps, 20 steps, and 10 steps,
to evaluate the impact of sampling steps on a membership
inference attack. The results are shown in Fig. 7 and Table IV,
where the number of epochs is 1000 and the model is trained
with 600 images. According to the figure, DDIM is more
vulnerable to the membership inference attack in proportion to
the number of sampling steps. The reason is that generated im-
ages have passed through the trained networks more frequently
in proportion to the number of sampling steps. Namely, the
generated images represent the training results strongly. It also
means that sampling steps significantly affect the resistance to
a membership inference attack.

2) Sampling Variances: We perform the attacks on three
different sampling variances, i.e., σ(1), σ(0), and σ̂, to evalu-
ate the impact of sampling variances that control the random-

TABLE V: Attack performance for different sampling vari-
ances on black-box setting.

Dataset Variance AUCROC ASR TPR at 1%FPR FID
σ(0) 0.931 0.882 77.50% 28.72

CIFAR-10 σ(1) 0.927 0.892 78.50% 39.10
σ̂ 0.929 0.886 79.83% 89.95

σ(0) 0.762 0.717 47.33% 33.89
CelebA σ(1) 0.799 0.763 55.50% 31.42

σ̂ 0.803 0.759 54.17% 78.85

ness of the sampling on a membership inference attack. The
results are shown in Table V, where the number of sampling
steps is 20 and the model is trained with 600 images and
10,000 epochs. According to the table, although FID becomes
larger in proportion to variances, DDIM is vulnerable to the
membership inference attack for all variances. It means that
the resistance to a membership inference attack is independent
of sampling variances and they affect only the quality of
generated images.

3) Summary: In summary, sampling steps are important
for the resistance to a membership inference attack, while
sampling variances are irrelevant. We leave it as an open
problem to confirm if the same results are obtained in other
architectures of diffusion models.

VI. CONCLUSION

In this paper, we investigated a membership inference attack
on diffusion models. We primarily discussed the comparison
of DDIM as a diffusion model with DCGAN as an existing
generative model and hyperparameters of a diffusion model,
i.e., timesteps, sampling steps, and sampling variances. We
first showed that the diffusion model is comparably resistant
to a membership inference attack as GAN through experiments
on CelebA and CIFAR-10 datasets in the white-box and black-
box settings. We then demonstrated the impact of timesteps
on the membership inference attack. According to our result,
intermediate steps in a noise schedule are the most vulnerable.

We also found two key insights into a membership inference
attack on the diffusion model through analysis for overfitting,
including comparison with a GAN, and hyperparameters for
sampling. First, for overfitting, we confirmed if DDIM is vul-
nerable to the attack when the sample sizes are small because
it could be more well-trained than DCGAN. Second, sampling
steps are significantly important for resistance to the attack,
while sampling variances are irrelevant. We are in the process
of investigating further resistance to membership inference
attacks on diffusion models, including other architectures.
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