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Abstract—Acoustic eavesdropping targeting private or con-
fidential spaces is one of the most severe privacy threats.
Soundproof rooms may reduce such risks, but they can-
not prevent sophisticated eavesdropping, which has been an
emerging research trend in recent years. Researchers have
investigated such acoustic eavesdropping attacks via sensor-
enabled side-channels. However, such attacks either make
unrealistic assumptions or have considerable constraints. This
paper introduces mmEcho, an acoustic eavesdropping system
that uses a millimeter-wave radio signal to accurately measure
the micrometer-level vibration of an object induced by sound
waves. Compared with previous works, our eavesdropping
method is highly accurate and requires no prior knowledge
about the victim. We evaluate the performance of mmEcho
under extensive real-world settings and scenarios. Our results
show that mmEcho can accurately reconstruct audio from
moving sources at various distances, orientations, reverber-
ating objects, sound insulators, spoken languages, and sound
levels.

Index Terms—mmWave radar, Audio eavesdropping, Vibra-
tions, Signal processing

1. Introduction

The sound eavesdropping attack is an age-old threat
to users’ private or confidential information. Along with
the widespread usage of soundproof materials in modern
buildings, non-effort sound eavesdropping has been allevi-
ated. However, sophisticated eavesdropping techniques have
grown steadily over the years, which pose a continuous
threat to the user’s information security.

Researchers have investigated acoustic eavesdropping
attacks with various techniques to reconstruct audio infor-
mation. We can classify these attacks into two main cate-
gories based on the deployment schemes: invasive and non-
invasive acoustic eavesdropping. In an invasive scenario,
several works in [1]–[9] have used the motion sensor (e.g.,
accelerometer, gyroscope) to infer the audio signal. These
attacks assume having access to data from sensors on the
victim’s device or placed in the same room as the audio
source. In contrast, non-invasive eavesdropping attacks rely
on sensors placed in an adjacent or more distant locations.

∗ Corresponding author.

To carry out this type of attack, researchers have used
sensors, such as laser transceiver [10], [11], high-speed
cameras [12] and photodiode [13], to reconstruct speech
through vibrations induced by sound waves. In addition,
WiFi signals [14], [15] and millimeter wave [16]–[18] have
also been used to extract vibrations and thus eavesdrop on
audio information. However, these methods either recover a
narrow range of sound frequencies, cannot carry out real-
time eavesdropping (i.e., offline analysis), or make strong
assumptions on prior knowledge (e.g., a large dataset of
the victim’s speech for training, the pre-installation of a
malicious software on the victim’s device).

In this paper, we present mmEcho, a system that lever-
ages millimeter wave (mmWave) radar with signal process-
ing to achieve efficient and accurate non-invasive acoustic
eavesdropping. mmEcho can address the aforementioned
limitations while achieving good performance.

(1) No machine learning and no prior knowledge re-
quired: Many eavesdropping attacks rely on machine learn-
ing techniques to achieve reasonable performance [16]–[18].
However, machine learning needs large labeled datasets for
training, which requires high labor and computational cost.
In addition, machine learning is highly data-dependent. It
may require the target user’s data to reach good perfor-
mance. However, such data is hard or impossible to obtain in
most cases. Compared to [16]–[18], mmEcho applies signal
processing techniques instead of machine learning, hence it
can reconstruct anyone’s voice without any prior knowledge.
Moreover, mmEcho can perform eavesdropping without any
burdensome model training or inference processes.

(2) Unconstrained vocabulary and high frequency re-
sponse: Most of the existing methods attain eavesdropping
as a classification task by segmenting the audio to recognize
individual phonemes or a small set of hot words [1]–[5],
[14], [15], [18]. By only relying on signal processing tech-
niques, mmEcho directly reconstructs the audio from the
millimeter-wave signal, hence it can perform eavesdropping
on an unconstrained vocabulary. Moreover, the majority of
existing work can reconstruct only a limited range of audio
frequency (e.g., below 1kHz in [12], [13]), which cannot
fully cover the spectrum of human speech. With the intra-
chirp method, mmEcho can reconstruct audio frequencies
up to 5kHz with a radar’s chirp rate of 10kHz.

(3) Low cost, portable, and high resolution: Unlike
expensive or unwieldy sensors (e.g., laser transceiver [10],
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[11], high-speed cameras [12], telescopes [13]), mmEcho
relies on a low-cost, portable, and off-the-shelf mmWave
radar. Furthermore, the short-length wavelength of millime-
ter wave allows such radar to provide a better vibration
resolution than other Radio Frequency (RF) based audio
eavesdropping systems [14], [15]. The high resolution is
necessary since the sound waves induced vibration on sur-
rounding objects (that we define as reverberating objects) is
at the order of a few micrometers.

(4) Simultaneous eavesdropping of multiple audio
sources: Most of the state-of-the-art eavesdropping methods
reconstruct audio by targeting a single audio source. For
instance, the IMU-based eavesdropping methods in [1]–
[5] can only extract sound vibrations produced by the
mobile device’s built-in loudspeaker. In contrast, mmEcho
can reconstruct the original audio from the vibration of a
wide range of reverberating objects. Instead of targeting
directly at a single audio source [16], mmEcho targets a
reverberating object that allows to simultaneously eavesdrop
on multiple and mobile audio sources (e.g., humans, mobile
devices).

To perform a non-invasive acoustic eavesdropping attack
via a mmWave radar, we need to address two major chal-
lenges:
(1) How do we perform intra-chirp distance measurement
to cover the human speech spectrum? The mmWave radar
relies on the “chirp” to perform distance measurement. In
an optimistic scenario, each chirp could provide a distance
measurement. Hence, a 10k chirp rate radar can reconstruct
audio up to 5kHz. However, the conventional single-chirp
scheme cannot offer micrometer-level resolution in a real-
istic scenario. It is possible to exploit multiple chirps (i.e.,
inter-chirp) to measure the phase and derive better resolu-
tion. However, it will significantly limit the frequency of
reconstructed audio, i.e., the capability to cover the human
speech spectrum. We solve this problem by estimating the
phase within a single chirp (i.e., intra-chirp). It can provide
high-resolution distance estimation without sacrificing the
chirp rate.
(2) How do we accurately measure the micron-level vibra-
tion? In this paper, we reconstruct the audio entirely via
signal processing techniques to achieve machine learning-
independent acoustic eavesdropping. To attain this goal,
we need highly accurate vibration measurements at a
micrometer-level distance by calibrating the signal phase via
frequency and phase interpolation (see Section 5.2). Based
on the high-precision distance measurement, we combine the
distance information of all chirps to reconstruct the audio
amplitude, which exploits the advantage of the high chirp
rate of mmWave radar.
Contributions. In this paper, we provide the following
scientific contributions:

• We present mmEcho, a mmWave-based non-invasive
acoustic eavesdropping system that recreates sound
information from micron-level vibrations on reverber-
ating objects. By entirely relying on signal process-
ing techniques, mmEcho does not require any training
dataset or prior knowledge of the audio signal.

• We propose an intra-chirp scheme that provides high-
resolution distance estimation without sacrificing the
chirp rate. Hence, it can eavesdrop audio with un-
constrained vocabulary and cover the full spectrum of
human speech.

• mmEcho can achieve effective eavesdropping from re-
verberating objects made of a wide variety of every-
day materials via penetrating various sound-insulating
materials. mmEcho can eavesdrop on multiple and
non-stationary audio sources of different nature (e.g.,
human, loudspeaker, smartphone).

• We perform an extensive evaluation of mmEcho under
various settings such as distance, orientation, materials,
sound volume, languages, and audio source mobility
with subjective and objective metrics. Our experimental
results demonstrate that mmEcho can accurately recon-
struct the audio with the average MCD (Mel-Cepstral
Distortion) of 3.36 (the lower, the better), the average
MOS (Mean Opinion Score) of 4.09 (the higher, the
better), and the average WER (Word Error Rate) of
18.10% (the lower, the better).

Organization. The rest of the paper is organized as follows.
We discuss the related work on acoustic eavesdropping in
Section 2. In Section 3, we define our attack scenario. Sec-
tion 4 provides an overview of FMCW radar, the principles
of vibration measurement, and the feasibility analysis for our
attack. We describe the mmEcho design in Section 5 and we
experimentally evaluate it in Section 6. We discuss the po-
tential applications, insights, and limitations of mmEcho in
Section 7. Finally, we draw some conclusions in Section 8.

2. Related Work

In this section, we provide an overview of the state-
of-the-art work related to acoustic eavesdropping, and we
compare them with our proposed system. We summarize
the work related to acoustic eavesdropping in Table 1.
Motion Sensor-based acoustic eavesdropping. Re-
searchers have demonstrated the feasibility of eavesdrop-
ping by using motion sensors [1]–[4] to reconstruct words,
phrases, and even to identify the gender of the speaker. [5]
uses sensor fusion (e.g., geophone, gyroscope, accelerome-
ter) to eavesdrop on sound within a room. [19] reconstructs
with unconstrained vocabulary the audio played by a mobile
device’s loudspeaker via the built-in accelerometer. [6] and
[7] use the magnetic hard drive and vibrating motor to
reconstruct audio, respectively. [9] achieves eavesdropping
by transforming the speakers connected to the computer
into microphones. [8] eavesdrops on audio by using the
vibration sensors in the nasal pads of glasses. The major
disadvantage of these motion sensors-based methods is that
they are intrusive attacks, i.e., they require close access
to the victim’s device, which makes these attacks easy to
prevent in practice.
Optical sensor-based acoustic eavesdropping. Cameras,
lasers, and telescopes have also been used for acoustic
eavesdropping. [12] uses a high-speed camera to record the
vibrations of an object caused by sound waves and then
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TABLE 1. ACOUSTIC EAVESDROPPING ATTACKS IN THE LITERATURE
COMPARED WITH MMECHO.

Competence

Sensor
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Acoustic
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Motion
Sensor

AccelWord [4] ✗ ✗ ✗ ✗ ✓
PitchIn [5] ✗ ✗ ✓ ✓ -
AccelEve [2] ✗ ✗ ✗ ✗ -
Accear [19] ✗ ✗ ✓ ✗ -
Speechless [3] ✗ ✗ ✗ ✗ -
Gyrophone [1] ✗ ✗ ✗ ✗ -
HDD [6] ✗ - ✓ ✓ -
VibraPhone [7] ✗ ✗ ✓ ✗ -
V-Speech [8] ✗ - ✓ ✗ -
SPEAKE(a)R [9] ✗ ✗ ✓ ✓ -

Optical
Sensor

Visual Microphone [12] ✓ ✗ ✓ ✓ -
LidarPhone [11] ✗ ✗ ✓ ✗ -
Lamphone [13] ✓ ✗ ✓ ✓ -

Radio
Receiver

WiHear [15] ✓ ✓ ✗ ✗ ✗
ART [14] ✓ ✓ ✗ ✓ -
Tag-Bug [21] ✗ ✓ ✓ ✗ -
Uwhear [22] ✓ ✓ - ✓ ✗
WaveEar [16] ✓ - ✓ ✗ ✗
MILLIEAR [17] ✓ ✓ ✓ ✗ ✗
mmSpy [18] ✓ - ✗ ✗ ✗
mmEcho (this work) ✓ ✓ ✓ ✓ ✓

reconstructs the audio. Both [10] and [11] use laser sensors
to implement eavesdropping. [11] controls a robot vacuum
cleaner to point its laser sensor at a audio source or other
vibrating object and converts the vibrations into audio by
analyzing the received signal. [13] uses a remote electro-
optical sensor to analyze the vibration of light bulbs due to
sound to reconstruct the audio. The main disadvantages of
these attacks are constrained vocabulary, lower frequency
response, and easy to prevent by obstructing the line-of-
sight channel (e.g. using a curtain). In addition, the recently
published SoK paper in [20] demonstrates that none of
the work in [1], [2], [4]–[6], [8], [11]–[13] can effectively
eavesdrop on a live human speech in a real-world scenario.
RF-based acoustic eavesdropping. The Great Seal bug
[23] is one of the first acoustic eavesdropping devices to
use passive RF techniques to transmit an audio signal.
However, it requires a pre-installed sensor in the room.
In recent years, researchers have proposed eavesdropping
attacks based on RF technologies, such as WiFi, RFID,
and mmWave. [14] and [15] can recognize specific words
by analyzing WiFi Received Signal Strength (RSS) and
Channel State Information (CSI), respectively. By using
Impulse Radio Ultra-Wideband, [22] can separate multiple
audio sources (household objects) via vibration sensing.
Using the same RF technology, [24] can recover audio
only below 400 Hz. Due to low audio frequency response,
these works have not considered the recovery of human
speech in their performance evaluations. [21] relies on RFID
tags in combination with cGAN for acoustic eavesdropping.
However, it needs to pre-install RFID tags in the victim’s
proximity, which reduces its practicality. In summary, these
WiFi signal- and impulse radio-based methods [14], [15],
[21], [22], [24] suffer a insufficient vibration resolution

due to long wavelength and low packet rate. Moreover,
compared to portable mmWave radars, they require large
antenna setups, which lead to an amplified physical footprint
of the attacker and increase the operational difficulty in a
real-world scenario.

In the area of mmWave-based eavesdropping, MIL-
LIEAR [17] relies on inter-chirp-based coarse-grained phase
estimates from mmWave signal to extract large amplitude
vibrations (from 0.1 to 1mm). Nevertheless, all inter-chirp-
based methods have limitations in terms of low-frequency
response and inaccuracies, thus the authors address these
challenges with cGAN. mmSpy [18] can use mmWaves to
eavesdrop on phone calls. Since mmSpy considers eaves-
dropping as a classification problem, it can only identify
specific keywords or digits (i.e., constrained vocabulary).
Since both works [17], [18] leverage machine learning tech-
niques, they require large labeled datasets, which are hard
to obtain in an eavesdropping attack.

Other RF-based methods unsuitable for eavesdropping.
Among other methods that use RF-based technologies, [25]
exploits Doppler radar to recognize a limited set of keywords
and the frequency response is limited below 200Hz [26]
presents a wall-permeable attack that infers the content
visualized on an LCD screen via a mmWave radar. In
an industrial environment, mmVib [27] achieves micron-
level vibration measurements (below 500Hz). Authors in
[28] use mmWave radar to sense vibration below 1kHz,
but the radar sensor needs to be quite close to the speaker
(≤ 5cm) for eavesdropping. [29] presents a system for user
verification with mmWave radar, which does not focus on
speech reconstruction and has a frequency response below
200Hz. [30] uses FMCW radar to reconstruct audio at fre-
quency below 1kHz and inadequate experimental evaluation
is provided. [16] can reconstruct a high-quality voice from
the user’s throat by using mmWave radar, but it requires
the subject to stay still and at a short distance from the
radar probe (less than 2m). Authors in [31] use a customized
mmWave radar to achieve vibration monitoring. [32] applies
speech enhancement algorithms to improve the speech signal
captured by customized mmWave radar. In [33], authors
provide a noise-resistant multi-modal speech recognition
system that combines mmWave and microphone by using
machine learning.

However, the work in [25], [27], [28], [30], [33] can
achieve a frequency response that cannot fully covers the
human speech spectrum (300Hz to 3.4kHz) [34]. In addi-
tion, since [16], [25], [26], [29], [33] use machine learn-
ing, they require prior knowledge and a large dataset for
model training, thus they cannot achieve unconstrained-
vocabulary eavesdropping. The works in [31], [32] rely
on customized hardware and perform line-of-sight audio
reconstruction. Hence, these works are not cost-effective and
cannot achieve eavesdropping when the target is non-line-
of-sight. Therefore, none of the aforementioned work fulfills
the requirements for acoustic eavesdropping in a real-world
scenario.
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Figure 1. Our attack model for mmWave-based acoustic eavesdropping.

3. Attack Model

The use of soundproof materials is a traditional method
to prevent eavesdropping. Such materials include wood,
glass, acoustic wool, plasterboard, etc. In this paper, we
consider the threat model depicted in Figure 1, where the
victim stays in a soundproof room. The pressure of the
sound wave produced by an audio source (e.g. human,
loudspeaker, etc.) can induce vibrations in the surrounding
objects (defined as reverberating object). An attacker can
measure such vibrations with a mmWave radar outside the
room to further recover the original sound.

Under these settings, the attacker’s main objective is to
eavesdrop on any sound in the victim’s room. In particular,
we assume the following scenario and attacker capabilities:

• the attacker can only place the mmWave radar outside
the victim’s room, and it cannot deploy any equipment
or sensor (e.g., camera, microphone) inside the victim’s
room;

• the victim’s room has a partial aperture composed
of sound insulation material which is penetrable by
mmWave;

• everyday objects (i.e., reverberating objects, such as
chip bags, carton boxes, etc.) are in the victim’s room.
Sound waves can induce minute vibrations on such
objects. However, the attacker has no prior knowledge
on the location of such objects within the victim’s
room;

• the attacker has no prior information on the sound in
the victim’s room, however, the attacker has to recover
audio which should be human-comprehensible;

• the equipment used by the attacker has to be portable
and cost-efficient.

4. Preliminaries

In this section, we first introduce the basic principles of
using mmWave radar to perform displacement measurement.
We then assess the feasibility for our eavesdropping attack.

4.1. Frequency Modulated Continuous Wave

The Frequency-Modulated Continuous Wave (FMCW)
radar is a special type of radar sensor that transmits a
signal called “chirp”. A chirp is a sinusoid whose frequency
increases linearly with time. FMCW radar can be used
to accurately estimate the object distance and its relative

Chirp Voltage
Generator

VCO
(Oscillator)

Power Amp
(PA)

DSP ADC Low-Pass
Filter

Mixer

IF

Tx

Rx

Low noise Amp
(LNA)

d

Tx

Rx

Figure 2. The simplified system architecture of FMCW radar.

velocity. Figure 2 shows the simplified system architecture
of FMCW radar.

We denote the round-trip delay between the transmitted
and received signals as τ ,

τ =
2d

c
(1)

where d is the distance between the radar and the target
object, and c is the speed of the millimeter-wave signal.

We can define the transmitted and received signals of a
mmWave radar as follow:

sTx(t) = ATx · cos[2π · fTx(t) · t+ ϕTx] (2)
sRx(t) = ARx · cos[2π · fTx(t− τ) · (t− τ) + ϕRx] (3)

where fTx(t) is frequency of transmitted signal, ϕTx and
ϕRx are the phase of transmitted signal and received signal,
ATx and ARx are the amplitude of the transmitted and
received signal. The transmitted signal fTx(t) = f0 + kt,
where f0 is the start frequency, k = B/Tc is the slope of
chirp signal, where B is the bandwidth of radar and Tc is
the duration of a chirp as shown in Figure 3.

As shown in Figure 2, a mmWave radar transmits a chirp
signal and receives a reflected signal. The transmitted signal
and received signal are combined by a mixer. As a result
of this process, we obtain an Intermediate Frequency (IF)
signal as follow,

sIF (t) =sTx(t) · sRx(t)

=
1

2
ATxARx{cos[2π · fTx(t) · t+ ϕTx

− 2π · fTx(t− τ) · (t− τ)− ϕRx]

+ cos[2π · fTx(t) · t+ ϕTx

+ 2π · fTx(t− τ) · (t− τ)− ϕRx]}

Since the frequency of the first cosine signal (frequency
difference of two carrier signals, which is at MHz level)
is much lower than the second one (frequency sum of two
carrier signals, which is at GHz level) [35], we can apply
a low-pass filter to exclude the second one. Therefore, we
obtain:

sIF (t) =
1

2
ATxARx · cos[2π · fTx(t) · t+ ϕTx

− 2π · fTx(t− τ) · (t− τ)− ϕRx] (4)

After the substitution fTx(t) for f0+kt in Eq. (4), we derive
the intermediate frequency signal as follows,

sIF (t) = AIF · cos
(
4πkτt+ 2πf0τ − 2πkτ2 + ϕd

)
(5)

where AIF = 1
2ATxARx is the IF signal amplitude and

ϕd = ϕTx − ϕRx is the phase difference between the
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Figure 3. Generation of chirps

transmitted and received signal. Figure 3 demonstrates the
generation of the chirp sequence, in which the transmitted
chirp is in blue, and the received chirp is in red.

4.2. FMCW-based Vibration Measurement

Since the sound waves is a kind of mechanical wave,
it can cause minute vibration on other objects. Our eaves-
dropping approach aims to measure the tiny vibration on
reverberating objects to infer the sound that causes such
vibrations. Once the vibration can be measured accurately,
we can indirectly reconstruct the original sound, which is
similar to the mechanism of the eardrum for sound percep-
tion.

The conventional FMCW based distance calculation for-
mula is as follows,

d =
fIF
k

· c
2

(6)

However, it cannot provide micrometer-level resolution for
vibration measurement.

Highly accurate distance estimation is a prerequisite
for vibration extraction. We use the intra-chirp method to
estimate the distance between the target object and radar,
i.e., using a single chirp to estimate the distance. Our intra-
chirp method combined with the radar’s high chirp rate
greatly improves the performance of the system, which can
now acquire a larger number of measurements per second.
For example, with a chirp rate of 10k chirps/second, the
system can obtain up to ten thousand individual distance
measurements each second. Therefore, the variation of two
successive measurements provides displacement of vibra-
tion. From Eq. (5), we can derive the phase of intermediate
frequency signal as follows,

ϕ = 2πf0τ − 2πkτ2 + ϕd (7)

With Eq. (1) and Eq. (7), we can derive the accurate distance
measurement:

d =

(
f0
k

+

√
f2
0

k2
− 2 · ϕ− ϕd

πk

)
· c
4

(8)

Furthermore, we use a phase calibration method which
is described in Section 5 to obtain the signal phase for more
accurate distance measurement. Then, we extract the vibra-
tion information from the displacement between successive
chirps.

4.3. Feasibility Analysis

To evaluate the feasibility of our eavesdropping attack,
we choose several materials as a reverberator for a proof-of-
concept experiment, i.e., tinfoil, chip bag, projector screen,
carton box, and paper. We use a loudspeaker as the audio
source and frosted glass as a sound insulator in front of the
mmWave radar, and we point the radar probe towards the
reverberating object.

To assess the frequency response of our system, we
play a sweep-tone ranging from 10Hz to 5kHz on the
loudspeaker. This frequency range fully covers the spec-
trum of human speech (300Hz to 3.4kHz) [34], [36]. We
report the results of our feasibility analysis in Figure 4. We
can notice that the frequency response of tinfoil and chip
bag is below 4kHz (in figures 4(b) and 4(c), respectively).
The frequency response of carton box, projector screen
and paper is below 3, 2.8, and 2.5kHz, respectively (in
figures 4(d), 4(e), and 4(f)). The reason for the variation
of frequency response on different materials is due to their
different elastic deformation capabilities and reflectivity. The
distortion at beginning of sweep-tone is mainly caused by
fact that the actual transmitted sinusoidal signal is modulated
by the step function when the excitation signal is applied.
This distortion does not occur with human-speech, hence, it
has a negligible impact on human-speech reconstruction.

The result of the feasibility analysis indicates that
mmWave radar can capture the vibration spectrum induced
by the human voice. Hence, we can leverage an FMCW
radar to eavesdrop on sound from a reverberating object.

5. mmEcho System

In this section, we present the system architecture of
mmEcho. Figure 5 provides an overview of the mmEcho
system and its modules. In what follows, we introduce the
three modules that compose mmEcho and their roles in
reconstructing high-quality audio from the mmWave radar’s
raw ADC data.

1) Reverberating Objects Detection (ROD) analyzes the
data received by the radar to locate the reverberating objects
within the victim’s room. In particular, this module identifies
the objects with adequate sound-induced vibrations suitable
for processing in the subsequent modules by filtering out
the unsuitable ones. This module can also guide directional
adjustments in pointing the radar towards the selected rever-
berating object to attain a high signal-to-noise ratio (SNR).
To achieve these goals, the ROD module pre-processes the
intermediate frequency signal and performs a Range-FFT to
obtain the range bins as shown in Figure 3. After that, ROD
applies a Doppler-FFT (i.e., 2D-FFT) on such range bins

1844



5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

(a) Original audio

5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)
(b) Tinfoil

5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

(c) Chip Bag

5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

(d) Carton Box

5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

(e) Projector Screen

5 10
Time (s)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

(f) Paper
Figure 4. The spectrograms for original and reconstructed audio from different reverberating materials.
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Figure 5. The mmEcho system mainly consists of a mmWave radar (TI IWR1642boost and TI DCA1000EVM), a Data-preprocessing module to extract
the vocal spectrogram, and an Audio Reconstruction module to recover high-quality voice.

and sets the range gates of the reverberating objects in the
Doppler-FFT spectrum to detect the vibration in each object
within the radar vision.

2) Vibration extraction and Audio reconstruction (VA)
is the core of our method since it reconstructs the audio
from the vibrations induced by the pressure of sound waves
on a reverberating object. Hence, VA aims to measure such
vibrations as radar-to-object distance (i.e., displacement of
the object caused by vibrations). According to Eq. (8),
distance calculation requires an accurate phase estimation.
To measure the distance with micron-level precision, VA
accurately estimates the phase of the received radar sig-
nal by combining the frequency- and measurement-based
phase estimations. Since we apply an intra-chirp method,
VA measures the accurate radar-to-object distance for every
chirp at 10k samples/second. Thus, VA derives the amplitude
of the original sound waves from the displacement with
consecutive chirps. By transposing such amplitude in the
time domain, VA provides a preliminary version of the
reconstructed audio.

3) Audio Noise Reduction (ANR) aims to improve the
quality of the audio reconstructed by the VA module.
Measuring the micron-level displacement on a reverberat-
ing object requires accurate measurements from the radar.
However, such measurements may contain anomalies due
to RF interference from the surrounding environment. Such
anomalies result in audible ”clicks” in the reconstructed
audio. Since a radar provides data from multiple indepen-
dent antennas, ANR identifies and removes most anomalies
by applying a sliding window on such data. In addition,
ANR further improves the quality of the resulting audio by
filtering the white noise via a Wiener filter.

In what follows, we describe in detail the aforemen-
tioned modules.
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Figure 6. The spectrum of Doppler-FFT

5.1. Reverberating Object Detection

To facilitate signal processing, we collect raw binary
ADC data by mmWave radar and convert it to multi-
dimensional IQ arrays. We partition the collected intermedi-
ate frequency signal via a windowing process to avoid spec-
trum leakage. For this process, we select several commonly
used window functions: Boxcar, Triang, Blackman, Nuttall,
and Hanning. We test the impact of such window functions
on audio reconstruction in Section 6.4.1. Then, we per-
form a Fast Fourier Transform (FFT) to output the Range-
FFT frequency spectrum SpecIF (f) and phase spectrum
Specϕ(f), which contains the frequency bins of a single
chirp. The result of Range-FFT can be used to differentiate
multiple objects based on the intermediate frequency. We
identify the peaks on the Range-FFT spectrum by applying a
Continuous Wavelet Transform (CWT)-based peak detection
algorithm [37].

Each frequency peak corresponds to an object within
the radar range. However, Range-FFT can only provide us
with the target’s distance. To locate the reverberating object,
we perform Doppler-FFT based on the results of Range-
FFT. In Figure 6, we provide an example of the Doppler-
FFT spectrum. Similar to the Range-FFT spectrum, we can
identify the objects within the radar’s range. We can observe
that a vibrating object produces a significant lateral velocity
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in the Doppler-FFT spectrum. Therefore, we separate one
object from other objects on the range axis (i.e., range gate)
and determine whether an object vibrates or not by setting a
threshold on the velocity axis (i.e., speed gate). By detecting
vibrating objects on the Doppler-FFT spectrum, we locate
potential reverberating objects, which we can use for our
eavesdropping attack.

5.2. Vibration Extraction and Audio Reconstruc-
tion

We run the CWT-based peak detection algorithm [37]
in the frequency spectrum. Each peak in the Range-FFT
corresponds to a distinct object and its distance. However,
the resulting peak frequency fin is in low resolution due to
the limited number of sampling points in a single chirp (e.g.,
maximum 400 sampling points per chirp on our mmWave
sensor). Therefore, we apply the parabolic interpolation al-
gorithm to obtain precise peak frequencies. In particular, we
perform the interpolation by selecting three, five, or seven
points near a frequency peak. We choose the three-point
parabolic interpolation since it provides accurate results and
has a low computational complexity. We refer to a peak
frequency obtained from the interpolation process as f̂in.

With the intermediate frequency, we can measure the
distance of an object at a millimeter-level accuracy. How-
ever, such a low accuracy cannot extract the micrometer-
level vibration on reverberating objects. To address the chal-
lenge, we resort to the phase of the intermediate frequency
signal to obtain a micrometer-level distance measurement.
Since we use the intra-chirp method, the precise estimation
of phase is essential for minute displacement estimation.
Unfortunately, the phase measurement is easily affected by
the phase wrapping phenomenon, as shown in Figure 7. In
the actual measurement, we obtain the IQ data consisting of
In-phase (I) and quadrature (Q) components. As depicted in
Figure 7(a), the phase is within the range [−π, π]. When the
actual phase is outside this range, the phase value is added
or deducted by multiple 2π to enforce the phase value within
[−π, π].

To the best of our knowledge, the number of phase
jumps on a reverberating object is unknown even if we
unwrap the phase. Therefore, we propose a phase calibration
algorithm based on a combination of phase calculation and
phase measurement.

(1) Calculation-Based Phase (CBP). We use the
previously estimated frequencies f̂in in Eq. (6) to obtain
a frequency-based distance estimation and the Round-trip
delay τ . According to Eq. (7), we can calculate the phase
ϕCBP from frequency. The frequency-based phase calcula-
tion contains information on the number of wrapping. How-
ever, the phase value based on calculation is not accurate due
to the defects of the frequency-based method.

(2) Measurement-Based Phase (MBP). We can also
use the exact peak frequency f̂in to extract an accurate phase
value based on measurement. To obtain such a value, we
need to interpolate in the phase spectrum. Unfortunately,
directly applying such interpolation produces errors due to
the phase wrapping phenomenon. Therefore, in the phase
spectrum Specϕ(f), we perform phase unwrapping around
the f̂in as follow:

ϕ(⌊f̂in⌋) =


ϕ(⌊f̂in⌋) + 2π, ϕ(⌈f̂in⌉)− ϕ(⌊f̂in⌋) > π

ϕ(⌊f̂in⌋)− 2π, ϕ(⌊f̂in⌋)− ϕ(⌈f̂in⌉) > π

ϕ(⌊f̂in⌋), otherwise

where ϕ(⌊f̂in⌋) and ϕ(⌈f̂in⌉) are the phases of the nearest
integer to the left and right of f̂in in Specϕ(f), respectively.
Then, we apply linear interpolation to the phase spectrum.
We obtain ϕMBP as a result of our phase interpolation
algorithm. However, the number of phase jumps cannot be
calculated only with the measurement-based phase.

(3) Phase Calibration. It is worth noticing that the
ϕCBP contains the phase wrapping information while the
ϕMBP provides a more accurate phase value. Therefore, we
can perform the phase calibration by combining the ϕCBP

and ϕMBP as follows:

ϕ̂ = ϕMBP + 2π · round
(∣∣∣∣ϕCBP − ϕMBP

2π

∣∣∣∣) (9)

Although ϕCBP is a rough phase estimation, it con-
tains the number of phase wrapping. In the best case,
ϕCBP = ϕMBP + 2π · n, where n is the number of phase
wrapping. Hence, we use ϕCBP to extract n and combine
ϕMBP to get more precise phase estimate. In the real world,
there are inevitable errors between theoretical calculations
and actual measurements, but the errors cannot exceed one
phase period. Therefore, we use (ϕCBP − ϕMBP )/2π to
calculate the number of wrapping. Due to the insufficient
accuracy of the frequency-based method, we use the ϕMBP

for calibration. Hence, ϕ̂ includes both the accuracy of
the measurement-based phase and the wrapping information
contained in the calculation-based phase.

(4) Audio Reconstruction. With the intra-chirp based
method in sections 5.1 and 5.2, we can derive a micrometer-
level distance for each chirp according to Eq. (8). With the
precise measurement of distance, we can easily calculate
the displacement (i.e., vibration) of the reverberating object
between successive chirps. From the measured vibration on
a reverberating object, mmEcho aims to generate an audio
signal of the original sound as a time series of amplitudes.
As shown in Figure 8, each chirp c can provide an accurate
distance dc, thus we obtain the displacement from consec-
utive chirps ∆d = dc+1 − dc, i.e., the vibration amplitude.
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After calculating the displacement of all chirps, we obtain
the vibration amplitude information on the time domain.
Hence, the chirps include information about the vibrations
on a reverberating object. Note that the chirp rate (i.e., in
chirp/second) sets a limitation on the maximum frequency of
reconstructed audio. For instance, we can reconstruct audio
up to 5kHz with a chirp rate of 10kHz. We then normalize
and amplify the amplitude of such vibrations to obtain an
intermediate signal.

We convert the intermediate signal to a single-channel
audio signal (i.e., monophonic sound) where a 16-bit depth
is used to represent each sample. As a final step, we re-scale
the intermediate signal within the interval [−215+1, 215−1]
to obtain reconstructed diatonic audio.

5.3. Audio Noise Reduction

Since radio frequency signal is prone to surrounding
interference, abnormal data may be present during the ac-
quisition process. In particular, such anomalies can result in
an audible “click” in the reconstructed audio signal, which
affects the comprehensibility.

A typical mmWave radar normally equips multiple re-
ceiving antennas (i.e., four receiving antennas in our case)
for signal enhancement purpose. Since each receiver antenna
is independent, it is possible to remove clicks by combining
multiple acquired data from different antennas as shown in
Figure 9.

We process the data from the multiple receiver antennas
simultaneously in the following way. Since different receiver
antennas have different path lengths for signal propagation,
it can result in a minor difference in arrival time among
antennas. Hence, we cannot compare the whole temporal
amplitude series among multiple antennas. We resort to
sliding windows to address this issue as in most cases two
consecutive clicks do not occur in a short period of time. A
sliding window is set for the data acquired by each antenna,
and all the windows move synchronously. Then we perform
decision-making for peaks in sliding windows. If the peak at
a certain point in windown also exists in the other windows,
it is identified as a “valid peak”; otherwise, it is identified
as a “click” and dropped. Sliding windows partially solve
the arrival time delay problem. However, it fails if there
are multiple peaks within the same window. Therefore, the
selection of a proper window length is essential. We assess
the effect of window length and step size on the audio
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Figure 9. Click removal from multi-antenna reconstructed audio.

reconstruction results in Section 6.4.1. Finally, we apply
a Wiener filter [38] to remove the white noise from the
reconstructed audio.

6. Evaluation

In this section, we report the results of the experimental
evaluation of mmEcho. In particular, we present the detailed
setup of our experiments, the dataset, and the performance
under extensive scenarios and settings.

6.1. Experiment Setup

Hardware. We implement mmEcho based on the mmWave
sensor IWR1642BOOST and the data capture adapter
DCA1000EVM (both from Texas Instruments). The
IWR1642 BOOST works in the 76-81GHz band and is
equipped with two transmitter antennas and four receiver
antennas. The DCA1000EVM provides real-time data ac-
quisition and streaming for two- and four-lane LVDS traffic
from IWR1642BOOST. The maximum chirp rate of the
mmWave sensor is 10kHz. The mmWave radar is connected
to the laptop via an Ethernet RJ45 interface. We perform
data processing and analysis on a laptop (Lenovo Legend
Y7000P) equipped with an Intel Core i7-10750H CPU @
2.60GHz and 16GB of RAM. We use a loudspeaker (Philips
SPA311) as audio source. The sampling rate of all the audio
samples in our experiments is 44.1kHz.
Software. We use mmWave SDK1 to configure mmWave
sensor modules and acquire the data from Analog-to-Digital
Converter (ADC). The mmWave SDK also provides basic
post-processing and visualization of ADC data. We provide
more details for our algorithm implementation and its com-
putational overhead in Appendix A.
Material. Our eavesdropping method measures the vibra-
tions on a reverberating object caused by sound waves. Since
the intensity of vibration and the reflected signal directly
depends on the properties of the material of a reverberating
object (henceforth referred to as reverberators), we analyze
such properties on several widely used materials in daily
life, which are tinfoil, chip bag, plastic, poly bag, carton,

1. mmWave SDK Ver. 03.05.00.04, www.ti.com/tool/MMWAVE-SDK
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projector cloth, leather, laptop lid (i.e., a MacBook pro 2021
13 inches), and paper.

In our attack scenario in Section 3, we consider the
presence of a sound insulator between the millimeter-wave
probe and a reverberator in the victim’s room. We choose
several common acoustic insulation materials (referred to as
insulators) in modern buildings, which are drywall, wood,
glass, frosted glass, cotton, and polyester.
Attack Setup. In our experimental evaluation, we place
the mmWave radar sensor outside the victim’s room. We
position a reverberator composed of different materials (e.g.,
tinfoil, chip bag, and plastic) on a table within the room. We
also position the loudspeaker as an audio source at different
distances from the reverberator. The sound waves resulting
from the audio played by the loudspeaker induce minute
vibrations on the reverberator. By pointing the mmWave
radar towards the reverberating object, we can measure such
sound-induced vibrations and reconstruct the original audio
played by the loudspeaker. In Figure 10, we depict the
meeting room scenario used for our experiments.

6.2. Dataset

We collect audio data of five commonly spoken lan-
guages in the world, which are English, Chinese, Italian,
Spanish, and French. In Table 2, we report the detailed
information of our dataset. The English audio is from the
IELTS listening test exam2,3, including two male (User1
and User2) and two female (User3 and User4). The Chinese
audio is from the training audio for Chinese pronunciation4.
For the other languages, we select instructional audio for
learning Italian5, Spanish6, and French7.

6.3. Metrics

We assess the quality of the audio reconstructed by
mmEcho using the following subjective and objective eval-
uation metrics.
Mel-Cepstral Distortion (MCD) [39] is an objective mea-
sure used for speech quality assessment. It has been widely

2. IELTS Listening 21.8, www.youtube.com/watch?v=OWAjEPFqmVY
3. IELTS Listening 21.9, www.youtube.com/watch?v=5cG3VcPRYhM
4. Spoken Mandarin training, https://music.163.com/song?id=29808867
5. Italian Children’s Stories, www.theitalianexperiment.com/stories
6. One Hour Spanish Mini, www.youtube.com/watch?v=gBJMt1 xjTM
7. Super easy French, www.youtube.com/watch?v=fq 4V-Ia1z0

TABLE 2. AUDIO DATASET USED FOR EVALUATION.
Label Language # of words Duration (s) Gender
User1 English 1034 6124 Male
User2 English 1107 6245 Female
User3 English 1152 6308 Male
User4 English 1075 6276 Female
User5 Italian 1134 6417 Male
User6 Chinese 1178 6482 Male
User7 French 1009 6112 Male
User8 Spanish 1071 6294 Male

TABLE 3. RATING SCALE FOR MOS
Score Label Description

5 Excellent All the original speech is recovered
4 Good Most of the original speech is recovered
3 Fair Half of the original speech is recovered
2 Poor Little of the original speech is recovered
1 Bad None of the original speech is recovered

used to compare the quality of synthesized speech and orig-
inal/natural speech. A smaller MCD value indicates a closer
similarity between the reconstructed audio and the original
audio. Typically, reconstructed audio with MCD below 8
can be recognized by speech recognition systems [40].
Word Error Rate (WER) [41] is an objective metric for
evaluating speech comprehensibility in terms of recognized
words. We input the original audio and the reconstructed
audio into the Google speech recognition system8 and cal-
culate its accuracy as WER = (D + I + S)/N , where D,
I , and S represent the number of word deletions, insertions,
and substitutions, respectively, while N is the total number
of words in the original audio. A lower WER indicates a
higher word recognition accuracy, i.e., a better reconstruc-
tion performance of mmEcho.
Mean Opinion Score (MOS) is a metric used for the
subjective assessment of audio quality. MOS is expressed
by a single discrete number, typically in the range from 1
to 5, where 1 indicates the lowest intelligible quality and
5 indicates the highest intelligible quality. Table 3 shows
the rating scale for the MOS metric. In the user study for
this subjective evaluation, we recruited 30 participants (i.e.,
15 males and 15 females) among university students and
faculties via group chats and mailing lists. These participants
include both native and non-native speakers with ages from
20 to 30 years old. Participants are volunteers (i.e., no
reward) and with no conflict of interest. We provided the
participants with the experiment instructions in advance.
The participants could choose a time and place at their
convenience and they could take breaks, interrupt, or decide
to quit the experiment at any time. The overall duration of
the experiment is around 10 minutes.

6.4. Experimental Results

In this section, we analyze the performance of mmEcho
under various settings.

6.4.1. Impact of Window Function and Size. This ex-
periment aims to assess which window function and which

8. Google Speech-To-Text, https://cloud.google.com/speech-to-text
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Figure 12. Effect of different lengths and step sizes of sliding window on
audio reconstruction performance of mmEcho.

sliding window configuration are the most suitable for our
requirements. We apply different window functions on the
received signal to reconstruct the audio.

In Figure 11, we compare the performance of the con-
sidered window functions in terms of MCD and WER.
As we can notice, the Hanning window function achieves
the lowest MCD and WER. Hence, we apply the Hanning
window function in all the afterward experiments.

In Figure 12, we show the effect of using different
sliding window lengths and step sizes on the audio recon-
struction results. For the same window length, the processing
time is longer for shorter steps. As an optimal trade-off
between processing time and MCD value, we apply 1ms
window length and 0.5ms step size in all experiments re-
ported in this section.

6.4.2. Overall Performance in a Realistic Scenario. We
evaluate the audio reconstruction performance of mmEcho
in a real-world meeting room scenario as depicted in Fig-
ure 10, where the drywall serves as insulator9, a chip bag
as reverberator, and a loudspeaker as the audio source at a
distance of one meter from the reverberator.

In Figure 13, we report the spectrograms and the textual
content of (a) the original audio (used for reference), and
(b) the audio reconstructed by mmEcho from the signal
reflected by the reverberator. We can clearly observe the high
similarity between the reconstructed audio and the original
audio in the low-frequency range (below 3.5kHz). The high-
frequency range of the reconstructed audio has a lower inten-

9. The insulator in the realistic scenario is constructed with a wood
framing covered with a single-layer drywall on each side. The drywall
is made of calcium sulfate dihydrate, and each layer is 2cm thick.

sity than the low-frequency part, which is due to the weak
elastic deformation capacity of the reverberating material,
i.e., the sound waves of the audio source does not induce
high-frequency vibrations on the reverberator. Nonetheless,
this has limited influence on the comprehensibility of the
reconstructed audio since its spectrum encompasses most of
the frequency spectrum of human speech [34], [42], [43].

6.4.3. Impact of Distance and Direction. In real-world
attack scenarios, the attacker needs to adjust the position of
the mmWave radar to target a reverberator. Hence, it will
affect the distance and direction of the mmWave radar from
such a reverberator (radar-to-reverberator). In this experi-
ment, we assess the robustness of mmEcho across various
distance and direction angles between the mmWave radar
and a reverberator made of tinfoil. In particular, we adjust
the distance from 0.5 to 5m at a fixed angle of 0◦ and the
direction angle from 0◦ to 60◦ at a fixed distance of 1m. We
use frosted glass as an acoustic insulator and a loudspeaker
as an audio source. For each distance and direction setting,
we play the English audio from different users, measure
the Signal-to-Noise Ratio (SNR) of the received signal, and
assess the reconstructed audio quality.

We report the results of these experiments in terms
of MCD and WER metrics in Figure 14. mmEcho still
achieves good performance at the distance of 5m. WER is
between 4.17% at 0.5m to 35.51% at 5m. As reported in Fig-
ures 14(a) and 14(b), the increasing distance and angle cause
the attenuation of millimeter-wave signal in terms of SNR,
which also decreases the reconstruction performance. Com-
pared with the distance, the performance degrades rapidly
along with the increase of angle. Nonetheless, mmEcho still
achieves a good performance up to the angle of 45◦ (i.e.,
3.5 and 26.75% for average MCD and WER, respectively)
and reasonable performance at even at a large angle of 60◦
(i.e., 4.13 and 45.61%).

We also assess the performance of mmEcho under vari-
ous settings of the distance between the reverberator and
the audio source (reverberator-to-source). In this experi-
ment, we fix the radar-to-reverberator distance at 1m and
vary the reverberator-to-source from 0.5 to 5m. We keep
using the frosted glass as the acoustic insulator. For each
distance setting, we play English audios from different users.
Figure 15 reports the results of this experiment in terms of
MCD and WER. As we move the loudspeaker away from the
reverberator, the MCD and WER of the reconstructed audio
increase accordingly. We can explain these results with the
physical properties of sound. The relationship between the
amplitude A of sound waves and the distance d follows the
proportion A ∝ 1/d2 (i.e., an inverse-square law). Hence, as
the amplitude of sound waves decreases with the distance,
the intensity of the resulting vibrations on a reverberator also
decreases. Even under the worst distance setting, mmEcho
can still achieve a reasonable performance at an average
MCD of 4.16 and WER of 45.18%.

In summary, the results of our experiment underline that
the MCD does not deteriorate significantly, and the WER
is within human comprehensibility under a large distance
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Figure 15. The impact of the distance between the audio source and the
reverberator on the system performance.

and angle setting. It indicates mmEcho can launch effective
eavesdropping.

6.4.4. Impact of Different Reverberating Materials. The
same sound wave can activate various intensities of vibration
on different reverberating materials. In this experiment, we
evaluate the influence of different materials on the perfor-

mance of mmEcho. In this experiment, we fix both the radar-
to-reverberator and the reverberator-to-source distances at
1m, use frosted glass as insulator, and plays English audio
from the loudspeaker.

Figure 16 shows the performance results in terms of
MCD, WER, and MOS on different reverberating materi-
als. Among the considered materials, tinfoil and chip bag
achieve the lowest MCD of 3.25 and 3.4, respectively.
Besides, the average WER of tinfoil and chip bag is also
the best, which are 10.60% and 12.72%, respectively. Sound
waves produce particularly strong vibrations on these two
materials because of their low stiffness, high elasticity, and
slimness. In addition to that, they have strong reflectivity for
millimeter wave. This allows the antennas of mmWave radar
to receive a high signal-to-noise signal. The high MCD and
WER for cardboard box (i.e., carton) and paper is due to the
weak reflectivity since most of the millimeter-wave signal
from the radar penetrates it, and only a slight amount of sig-
nal has been reflected back. The MCD and WER of plastic
materials (i.e., plastic and polybag) are higher than tinfoil
since plastic has higher stiffness and lower reflectivity. The
front side of a projector screen cloth is white plastic glass
fiber (to scatter the light from a projector), but its backside is
more reflective. In our attack scenario, the mmWave radar is
outside a room. Hence, it would likely point at the backside
of a projector screen. From the backside of the projector
screen cloth, mmEcho can reconstruct the audio with an
MCD of 4.02 and WER of 26.67%. The MCD and WER of
leather are slightly better than that of the projector screen
due to the leather’s smoother surface, which allows a limited
improvement in terms of signal reflectivity. In Figure 16, we
can notice that the SNR is not directly related to the audio
reconstruction performance on different reverberators. In
particular, although some materials (i.e., projector, leather,
and laptop lid) have a higher SNR than the other materials,
they have worse MCD and WER because of their high
stiffness and poor elasticity.

The results of this experiment show that the average
MCDs and WERs of the considered reverberators are all
below 4.36 and 36.53%, which indicates a significant simi-
larity between the original and reconstructed audio, and high
comprehensibility.
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Figure 16. Performance of audio reconstruction on various reverberator materials

We further evaluate the performance of mmEcho with
MOS. Figure 16(c) shows the MOS for the above-mentioned
reverberators based on the rating of 30 volunteers on nine
reconstructed audio samples. We further discuss the MOS
results in Appendix B to show the relationship between
MOS and reconstructed words. We can observe that each
kind of reverberator has a median MOS value higher than
3 on all audio samples. These results further indicate that
mmEcho can reconstruct human intelligible audio.

6.4.5. Impact of Different Acoustic Insulators. In our
attack model, we assume that the victim uses a soundproof
insulator (e.g., acoustic insulation glass, acoustic foam,
wood panels) to prevent eavesdropping. In this experiment,
we evaluate the influence of different insulation materials
on the performance of mmEcho. We place a reverberator
made of tinfoil at a distance of 1m from the insulator and
the insulator closely in front of the radar. A loudspeaker
is placed at a distance of 1m from the reverberator, and
we play English audios from different users. We select
five common acoustic insulation materials in the modern
building for evaluation, which are dense wood, glass, frosted
glass, cotton, and polyester.

In Figure 17, we report the results in terms of MCD
and WER of the reconstructed audio considering different
insulators. On the top side of figures 17(a) and 17(b), we
also show the measured SNR of the radar transceiver signals
for reference. Among the considered insulators, normal glass
has the worst MCD and WER due to its strong reflectivity
[44], [45]. Nevertheless, the altered surface of frosted glass
reduces its reflectivity, which makes the MCD and WER
for frosted glass better than the one for normal glass. We
can also observe that we achieve the lowest MCD and WER
values with insulators made of cotton and polyester, which is
due to their low reflectivity for millimeter wave. In general,
the audio reconstructed from male speech achieves a better
MCD and WER than the one from female speech since a
male voice typically has a lower frequency range than a
female voice [46]. In Figure 17, we can observe that an
insulator’s physical properties affect the SNR of the radar
signal and, in turn, the reconstruction accuracy. Nonetheless,
mmEcho achieves an MCD lower than 3.65 and a WER
lower than 13.25% for all the considered settings. Therefore,
we can conclude that mmEcho can effectively reconstruct
audio by penetrating an acoustic insulator, which makes
eavesdropping possible in common indoor spaces.
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Figure 17. The impact of various acoustic insulators (for each insulator,
SNR is provided).
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Figure 18. The impact of the various sound volume.

6.4.6. Impact of Sound Volume. The sound volume of
the audio source has a direct influence on the intensity of
vibration on a reverberator. In this experiment, we assess the
impact of the sound level on the performance of mmEcho.
We keep the same setting of our previous experiment in Sec-
tion 6.4.5 and use frosted glass as an insulator and tinfoil as
a reverberator. We place the loudspeaker at a fixed distance
(1m) from the reverberator and vary the sound level from
65 to 80dB. Figure 18 shows the performance of mmEcho
at different sound levels. As expected, the MCD and WER
of the reconstructed audio increase with the decrease of the
sound volume. At the voice level of a normal conversation
(around 65dB) [42], [47], [48], the average MCD and WER
are below 4 and 30% respectively, which indicates mmEcho
can effectively reconstruct audio to eavesdrop on the speech.

6.4.7. Impact of Different Languages. The spoken lan-
guage of the original audio may affect the quality of re-
construction due to the different combinations of phonemes
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Figure 19. Performance of audio reconstruction in different languages

used [43], [49] (i.e., phonotactics). For this reason, we
evaluate the performance of mmEcho on different spoken
languages: English, Chinese, Italian, Spanish, and French.
For English, we use the audio of User1. And for Italian,
Chinese, French, and Spanish, we use the audio from User5
to User8 respectively. In this experiment, we use the same
experimental settings as the previous experiment in Sec-
tion 6.4.6. In Figure 19(b), we report the MCD, WER,
and MOS scores for the reconstructed audio with different
languages. MCD for all considered languages is below 3.28.
For WER, we can observe there is a small variance, and this
is because different languages have different phonology and
morphology [49], which leads to different accuracy when
the reconstructed audio is processed by a speech recognition
system. As shown in Figure 19(b), all the researched lan-
guages have a WER below 15%. To exclude errors due to the
speech recognition system, we further evaluate the impact of
language via the subjective metric MOS. Figure 19(c) shows
the evaluation from 30 volunteers, and we can observe that
the median MOS of all five subject languages is above 4.45,
which indicates that mmEcho has the ability to reconstruct
different languages.

6.4.8. Impact of a Moving Audio Source. In a real-world
scenario, the audio source can move around within the room.
For example, a user may have a phone call while walking or
sitting. Therefore, we assess the influence of a mobile audio
source on the performance of mmEcho. In this experiment,
we use a reverberator made of tinfoil and fix the radar-
to-reverberator distance at 1m and direction angle at 0◦.
During the experiment, we keep moving the loudspeaker
with a speed of 0.5m/s in a reciprocating motion, varying
the reverberator-to-source distance between 1 and 3m. The
loudspeaker plays the English audio from User1 to User4.
We report the results in terms of MCD and WER in Fig-
ure 20. Despite a slight increase of MCD compared to a
stationary audio source (see Figure 14(a)), the average MCD
is below 3.5 for all users. Moreover, the average WER for
the four users is 18.72%, with a maximum value of 30.5%.
Our results show that mmEcho can reconstruct the original
audio even when the audio source is in motion.

6.4.9. Multi-Source Reconstruction. In real-world scenar-
ios, multiple audio sources can be present within the same
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Figure 20. The impact of mobile audio source on mmEcho

room, e.g., people engaging in a conversation in person or
over the phone. mmEcho enables eavesdropping on mul-
tiple audio sources simultaneously. We provide a proof-
of-concept experiment to demonstrate this capability. As
depicted in Figure 21(a), we place a reverberator (i.e., chip
bag) at 1m distance from the radar and separate them with
an insulator (i.e., drywall). We position the two loudspeakers
(i.e., Speaker1 and Speaker2) at the same distance (0.5m)
from the reverberator and space them 0.5m apart from each
other. We use Google speech synthesis system10 to generate
a conversation between two individuals, i.e., Source1 and
Source2, and play their audio on Speaker1 and Speaker2,
respectively. We report the resulting spectrogram for this
experiment in Figure 21(b). The reverberator captures the
sound from multiple audio sources. Hence, mmEcho can
reconstruct the audio content of the whole conversation.

To further investigate the superposition of sound waves
on the reverberator, we perform an additional experiment
using the same setup in Figure 21(a) where Speaker1 and
Speaker2 simultaneously play an incremental sweep-tone
from 10Hz to 3kHz (Source1) and a decremental sweep-
tone from 3kHz to 10Hz (Source2), respectively. From the
resulting spectrogram in Figure 21(c), we can observe that
mmEcho correctly reconstructs the sweep-tones. Therefore,
mmEcho enables simultaneous eavesdropping from multiple
audio sources.

6.4.10. Comparison with Other mmWave-Based Eaves-
dropping Methods. In this section, we compare the audio
reconstruction performance of mmEcho with two recent
machine learning based works: mmSpy [18] and MIL-
LIEAR [17]. We report the comparative results in terms
of the evaluation metrics used in these two works. For the
sake of fairness of comparison, we apply mmEcho to the
attack scenarios defined by mmSpy and MILLIEAR for
performance evaluation.
Applying mmEcho in the Attack Model of mmSpy.
In this comparative analysis, we assess the reconstruction
accuracy of mmEcho under the scenario and experimental
settings considered by mmSpy in [18]. During a phone
call, mmSpy aims to recover the remote caller’s speech by
measuring the vibrations produced by the phone’s earpiece.
According to the attack model of mmSpy, we point our
mmWave radar towards the backside of the phone under test
to measure the vibrations induced by its earpiece while play-

10. Google Text-To-Speech, https://cloud.google.com/text-to-speech
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Figure 21. Multi-source reconstruction setup and results.

ing audio from the same dataset (i.e., AudioMNIST [50]).
We compute the accuracy of the audio reconstructed by
mmEcho via the Google Speech-to-Text system since, unlike
mmSpy, mmEcho does not classify each word individually.
Figure 22 shows the reconstruction accuracy of mmSpy
reported in [18] and our mmEcho for the considered phones
varying the radar-to-phone distance from 1 to 6ft (i.e., 30.48
to 182.88cm). The average accuracy of mmSpy is 61.89%.
In comparison, the average accuracy of mmEcho is 86.27%
(i.e., WER 13.73%), corresponding to a 24.38% improve-
ment. Along with the increase in distance, the performance
of mmSpy degrades rapidly while our scheme maintains a
reasonable performance.
Applying mmEcho in the Attack Model of MILLIEAR.
MILLIEAR aims to reconstruct the audio played by a
loudspeaker by measuring the vibrations on the speaker’s
drive via a mmWave radar. In this analysis, we evaluate
the reconstruction accuracy of mmEcho on the attack model
considered by MILLIEAR in [17]. In particular, we position
the mmWave radar and the loudspeaker (Philips SPA311) at
a radar-to-speaker distance of 1.5m and separated by a glass
insulator. We point the radar directly at the loudspeaker’s
drive. From the audio dataset used by MILLIEAR in [17],
we play the audio of four users on the loudspeaker, i.e.,
User1 from Barack Obama, User2 from Taylor Swift, User3
from Bill Gates, and User4 from Anne Hathaway. Figure 23
shows the reconstruction performance in terms of MCD
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of mmEcho and MILLIEAR. The average value of MCD
for MILLIEAR is 3.71 while the one of mmEcho is 2.77,
corresponding to a 25.34% performance improvement.

7. DISCUSSION

In this section, we discuss several insights from our
experiments, the advantages and limitations of our approach,
and possible future work.

Key Factors Influencing the Audio Reconstruction.
As a result of the evaluation in Section 6, the audio
reconstruction performance of our system is affected by
five key factors: radar-to-reverberator angle and distance,
reverberator-to-source distance, reverberator’s material, and
insulator’s material. The reberberator’s distance from the
audio source and inherent properties of reverberator’s mate-
rial (e.g., elasticity and reflectivity) influence the amplitude
of the sound-induced vibrations on the reverberator. The
other factors influence the SNR of the radar signal due to
signal attenuation [51]. Nonetheless, we could improve the
SNR by increasing mmWave radar transmission power or
relying on multi-antenna techniques, such as beamforming
and MIMO [52].

Multi-object Simultaneous Eavesdropping. We can carry
out an eavesdropping attack with the vibration of multiple
reverberating objects to improve audio reconstruction. This
is possible since distinct objects fall in different range bins
in the Range-FFT spectrum. While we currently set a range
gate on a single target object to exclude other objects, we
can also measure the vibrations on another object (or more
of them) by considering its range gate. The sound wave
propagation in the air induce different vibration intensity on
different objects (due to their distance and material). Hence,
we can combine the variation of vibration measurements on
multiple objects to further improve the audio reconstruction.
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Eavesdropping from Audio Sources vs. Reverberating
Objects. Several of the research work carry out eavesdrop-
ping by directly targeting loudspeakers as audio sources [9].
However, audio sources have many other forms, such as
human beings and mobile devices (e.g., smartphones and
tables). Different from the diaphragm in a loudspeaker,
such audio sources do not expose a suitable surface to
reflect the millimeter-wave signal. For example, the built-
in loudspeaker on a mobile device presents a tiny surface
while the signal reflected by a human being is negligible
(i.e., the millimeter-wave easily penetrates organic material).
In the case of a loudspeaker with a sufficiently large reflec-
tive surface (i.e., loudspeaker drive), a mmWave radar may
not effectively capture vibrations due to the loudspeaker’s
orientation. Moreover, an audio source may change its po-
sition, which makes it unfeasible for the mmWave radar
to point precisely and directly at such an audio source.
By indirectly reconstructing audio from the vibration on
reverberating objects, mmEcho can provide a novel and re-
liable eavesdropping approach even under those unfavorable
settings to other state-of-the-art works. mmEcho only needs
a stationary reverberating object and within the mmWave
radar range, even behind an insulator among the ones in
Section 6.4.5. In addition, the loudspeaker’s diaphragm itself
can be used as reverberator to reconstruct the human voice.
As a future work, we will investigate the potential of mmE-
cho to eavesdrop from moving reverberating objects. Since
adjacent chirps occur within 0.1ms and they propagate much
faster than a moving object, measuring the sound-induced
vibrations on such an object should have a negligible effect
on the reconstructed audio.

Frequency of the Reconstructed Audio Limited by Chirp
Rate. We utilize the intra-chirp method, i.e., we obtain
the exact distance information from a single chirp and
then extract the vibration information in the time domain.
Therefore, the chirp rate also determines the sampling rate
of the reconstructed audio thus, according to Nyquist’s
theorem [53], [54], we can reconstruct frequencies up to
half of the chirp rate. In our work, the mmWave radar we
use has a chirp rate of 10kHz. Hence, we can reconstruct
audio up to 5kHz. Consequently, our audio reconstruction
performance is limited by the radar parameters. Therefore,
we believe that we could achieve even better performance
by relying on customized radar with a higher chirp rate.

Signal Processing Unaided by Machine Learning. We
implemented mmEcho using signal processing techniques
without resorting to machine learning. Compared to machine
learning, which is dataset-dependent and requires extensive
training, the sole application of signal processing allows
mmEcho to achieve practical and efficient eavesdropping
while avoiding any dependence on data. In other words, our
system can reconstruct the complete audio without requiring
any information about the target (e.g., voice samples of
the user, audio source’s location), which enables a more
practical eavesdropping, i.e., unconstrained vocabulary and
no prior knowledge required.

Defenses against mmWave-Based Eavesdropping. As
practical countermeasures against our attack, we propose
RF shielding and signal jamming. The use of RF shielding
methods is a possible countermeasure since they aim to
thwart RF signals. The ideal yet unrealistic solution is to
enclose the entire victim’s room in a Faraday cage [55]
to block every external electromagnetic field, including
mmWaves. Working on a similar principle, applying an RF
shielding mesh is a more practical solution to attenuate RF
signals from outside the victim’s room [56]. Therefore, we
experimentally evaluate the effect of such a solution on the
audio reconstruction results of mmEcho. Considering the
experimental setup in Section 6.4.2, we apply a metal mesh
(stainless steel, 5mm aperture, and 0.5mm wire diameter) on
the insulator as an RF shield. The SNR of the received radar
signal decreases from 28.78 (without) to 19.46dB (with RF
shielding mesh). Likewise, the MCD of the reconstructed
audio increases from 3.26 to 11.39. Therefore, this counter-
measure is effective since the MCD of the reconstructed
audio is higher than 8, i.e., speech recognition systems
cannot recognize the content of such audio [40].

Due to cost constraints, commercial mmWave radars
are typically not robust against signal interference. Hence,
a viable defense is to jam the signal of a target radar
(eavesdropper) using another radar (jammer). However, an
FMCW radar receiver expects to receive signals with a pre-
defined frequency pattern and filters signals from other fre-
quency bands. To address this issue, we can first obtain the
eavesdropper’s frequency band by using a spectrum analyzer
and then use the jammer to continuously transmit RF signals
in the same frequency band to degrade the eavesdropper’s
performance.

8. Conclusion

In this work, we propose a mmWave-based non-invasive
acoustic eavesdropping system that reconstructs the original
audio via signal processing techniques and without the aid
of machine learning or prior knowledge. The results of our
extensive evaluation show the effectiveness of our attack
in real-world scenarios and under different conditions, such
as distance, direction, reverberating material, sound insula-
tor, sound volume, and spoken language. Our method can
also eavesdrop on sound from multiple and moving audio
sources, which significantly improves the success rate of our
attack.
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Appendix A.
Computational and Time Overheads.

We implement the signal processing and audio recon-
struction in Python v3.10 using Cython v0.29.32, Scipy
v1.9.0, and Numpy v1.23 libraries. We collect the signal
from the radar sensor, buffering data batches of a duration of
d = 4 second. The processing time and amount of memory
required to store a batch is proportional to the duration d.
Regarding the memory requirements, processing of a signal
data batch with d = 4 requires at most 400MB of RAM.
At our current implementation, the overall time for signal
processing and audio reconstruction of an individual batch
using a single CPU core is around 1.8s on our laptop (see
Section 6). Since the overall processing time is lower than
a batch’s duration, we can attain a continuous audio stream
with a delay of around 6s (i.e., batch data collection and
processing time) from the start of signal acquisition.

Appendix B.
Intelligibility of the Reconstructed Audio

Mean Opinion Score (MOS) is a metric that provides
a subjective evaluation on the intelligibility of the recon-
structed audio as a numerical value. In Table 3, we shows
the rating scale for the MOS metric in a range from “Bad”
and “Excellent” that correspond to 1 and 5, respectively. We
also report examples of the relationship between the MOS
value given by the participants and the related sentences in
Table 4. We can notice that the MOS is associated with
unrecognized words’ length and significance in understand-
ing the meaning of an overall sentence. Moreover, partici-
pants’ failure to recognize uncommon (e.g., “drowsiness”)
or multiple consecutive words (e.g., “questions, and you”)
influences them to give a low MOS. When MOS is below
2, participants are unable to understand the audio content.
When MOS is in a range between 3 to 5, participants can
grasp useful information from the audio even if they do not
recognize a few individual words.

TABLE 4. MOS AND THE CORRESPONDING RECOGNIZED WORDS. WE
ENCLOSE IN PARENTHESES THE WORDS OR PART OF WORDS THAT

USERS FAIL TO RECOGNIZE.

MOS Participant’s understanding from the reconstructed audio

4∼5

...guide giving instructions to (a) group of international
students in Canada, preparing for (a) (whale) watching trip,
before you hear the talk, you have some time to look at
question...

3∼4

...(At) the end of the test, you will be given 10 minutes to
transfer your answers to (an) answer (sheet). Now (turn) to
section one, first you (have) some time to look at question
one to six...

2∼3
...and (questions), (and) (you) will have a chance to check
your (word), (all) the recordings will be played (once)
(only), the test (is) in four sections...

1∼2

...if you think you might get (seasick) take one of these
(patches) and (put) (it) on your (arm), it works on (pressure
points) of the body and will (release) (seasick)ness without
the (drowsiness) (you) can get (from) pills. (Are) there (any)
other questions...
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