
CALLEE: Recovering Call Graphs for Binaries with Transfer and Contrastive Learning

Wenyu Zhu†‡, Zhiyao Feng†‡, Zihan Zhang†‡, Jianjun Chen†§, Zhijian Ou†, Min Yang?, Chao Zhang†‡§∗
† Tsinghua University, Beijing, China ‡ BNRist § Zhongguancun Laboratory

? Fudan University, Shanghai, China
∗ Corresponding author

Abstract—Recovering binary programs’ call graphs is crucial
for inter-procedural analysis tasks and applications based on
them. One of the core challenges is recognizing targets of indi-
rect calls (i.e., indirect callees). Existing solutions all have high
false positives and negatives, making call graphs inaccurate.
In this paper, we propose a new solution CALLEE combining
transfer learning and contrastive learning. The key insight is
that, deep neural networks (DNNs) can automatically identify
patterns concerning indirect calls. Inspired by the advances in
question-answering applications, we utilize contrastive learn-
ing to answer the callsite-callee question. However, one of
the toughest challenges is that DNNs need large datasets to
achieve high performance, while collecting large-scale indirect-
call ground truths can be computational-expensive. Therefore,
we leverage transfer learning to pre-train DNNs with easy-to-
collect direct calls and further fine-tune DNNs for indirect-
calls. We evaluate CALLEE on several groups of targets, and
results show that our solution could match callsites to callees
with an F1-Measure of 94.6%, much better than state-of-the-
art solutions. Further, we apply CALLEE to two applications –
binary code similarity detection and hybrid fuzzing, and found
it could greatly improve their performance.

1. Introduction
Indirect calls (icalls for short) allow programs to de-

termine the choice of functions to call (i.e., callees) until
runtime, enabling programmers to realize dynamic features,
and thus are commonly used in object-oriented program-
ming as well as some large-scale programs such as the Linux
kernel. Meanwhile, icalls play an important role in program
analysis and related tasks. One can complement Call Graphs
(CGs) of programs by recognizing targets of indirect calls
(icallees for short), and many tasks can benefit from pre-
cise CGs such as inter-procedural data-flow analysis [1],
binary code similarity detection [2], and even test case
generation for fuzzing [3]. For example, SelectiveTaint[4]
relies on CG reconstruction for taint analysis, αDiff [5] and
DeepBinDiff [6] perform binary diffing with CG features,
and TEEREX[7] requires precise CGs to perform symbolic
execution. Conversely, imprecise icallee analysis will lead
to obstacles in many applications, such as false positives in
bug detection [8], [9], [10] and path explosion in symbolic
execution [11], [12].

In practice, it is common to utilize static analysis to
infer icallees, because dynamic techniques can miss many

legitimate callees due to poor code coverage . Given target
programs with or without source code, applicable static
analysis solutions are different. When the source code is
available, points-to analysis [13], [14] and type-based anal-
ysis [15], [16] are the most common methods. Otherwise
statically determining icallees is much more challenging,
since much information (e.g., type) is missing in binaries.

Existing binary-level solutions in general apply an ap-
proximation algorithm to recognize icallees. For instance,
binary analysis tools that are widely used in practice (e.g.,
IDA Pro [17], Angr [12], GHIDRA [18]) and PathAr-
mor [19] identify icallees by constant propagation, and
can only resolve very few targets. On the other hand,
CCFIR [20] adopts the address-taken policy and treats all
address-taken functions as potential icallees, thus having
high false positives. τCFI [21], TypeArmor [22] and its
refinement [23] reduce icallees to reduce false positives
by first recovering function prototypes and then performing
type-based matching, but have low guarantees of correct-
ness. The state-of-the-art solution BPA [24] performs a
delicate pointer analysis based on a block memory model
and a special intermediate representation language (with
only support for x86) to infer icallees, but the prototype
did not support C++ binaries and still has relatively low
precision. A better solution to recognize icallees in binaries
is therefore demanded.

In this paper, we propose a deep-learning solution
CALLEE to recognize icallees at the binary level. Given an
indirect callsite (icallsite for short), CALLEE will answer
which callees could be its potential targets. The key insight
is that, with sufficient data, DNNs can automatically identify
patterns concerning icalls, which can be much more effi-
cient than introducing approximation algorithms or heuristic
rules to handle various cases. Specifically, combining con-
trastive learning and transfer learning, DNNs can learn to
match callsites and callees by comprehending their contexts,
i.e., instructions nearby callsites and of callees.

Contrastive learning aims to represent similar inputs with
similar embeddings in the latent space, and has been proved
effective in question-answering scenarios [25], [26]. Thus
regarding a callsite as a question and a callee as its corre-
sponding answer, we build a contrastive-learning framework
to match callsites with callees. Beforehand, we perform
slicing to extract instructions for callsites and callees based
on the calling convention, and embed the generated slices
by adjusting a popular representation learning technique

2357

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Wenyu Zhu. Under license to IEEE.
DOI 10.1109/SP46215.2023.00112

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

48
2

doc2vec [27] to the assembly language. In addition, we
propose a new symbolization policy to symbolize assembly
tokens to improve the model performance and meanwhile
handle the out-of-vocabulary (OOV) problem.

Moreover, DNNs need large datasets to achieve high
performance, while collecting icall ground truths requires
computational-expensive dynamic analyses . Whereas direct
calls (dcalls for short) can be easily obtained with static
analyses. Thus it would be exceedingly beneficial if we
can train DNNs for icalls with dcalls, i.e., transfer learning,
which reuses a pre-trained model for one task as the starting
point for a model on another task. It has been proved
efficient to transfer knowledge between languages, images
and voices [28], and recently in program analysis [29].
Considering that dcalls and icalls share similar calling con-
ventions, it is possible to transfer knowledge learned from
dcalls to icalls. Therefore, we leverage transfer learning to
train DNNs for icalls based on abundant dcalls. Specifically,
we utilize contrastive learning to answer the callsite-callee
question for both dcalls and icalls, while the icall DNN is
initialized with a pre-trained dcall DNN.

We have implemented a prototype of CALLEE and evalu-
ated it on targets that have abundant icalls such as the Linux
kernel and the Firefox browser [30]. The evaluation results
show that CALLEE could match callsites to callees with an
F1-Measure (F1) of 94.6%, , recall of 90.9%, and precision
of 97.3%, outperforming BPA [24], TypeArmor [22] as well
as real-world binary analysis tools such as IDA Pro [17] .

Further, we have demonstrated that CALLEE can benefit
down-stream applications based on call graphs. Firstly, we
applied CALLEE to binary code similarity detection and
greatly improved the state-of-the-art solution DeepBinDiff
with an average increase of 4.6% F1 in cross-version bi-
nary diffing and 13.7% in cross-optimization binary diffing.
Moreover, CALLEE is applied to the widely-used hybrid
fuzzing solution Driller [31]. In three 24-hour fuzzing cam-
paigns, it can help the fuzzer find 50% more paths on
average in all 8 CGC [32] challenges that have icalls.

Additionally, we have made an attempt to interpret the
neural network with a case study where CALLEE surpassed
other solutions. It showed that the proposed model can well
capture semantic features of tokens in assembly instructions,
and tokens related to arguments and return values contribute
the most to icallee recognition, which is consistent with the
domain knowledge of binary analysis.

In summary, we make the following contributions:
• We present the first transfer- and contrastive-learning

approach CALLEE integrated with expert knowledge to
recognize icallees and recover call graphs for binaries.

• We propose a new symbolization method for machine-
learning solutions on assembly language, which can pre-
serve data-flow information of assembly contexts and
meanwhile does not introduce the OOV problem.

• We have collected the largest set of callsite-callee train-
ing data. The dataset and nerual model are available at
https://github.com/vul337/Callee.

• We evaluate CALLEE with real-world programs and
demonstrate that it outperforms state-of-the-art solutions

on the callsite-callee matching task.
• We demonstrate that CALLEE is highly effective at pro-

moting tasks based on CGs, e.g., binary code similarity
detection or hybrid fuzzing.

2. Background and Related Work

2.1. Transfer Learning

Given a source domain DS = {XS , fS(X, θS)} and
learning task TS , a target domain DT = {XT , fT (X, θT)}
and learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT in DT

using the knowledge in DS and TS , where DS 6= DT , or
TS 6= TT . In general, one of the most common methods to
perform transfer learning is to initialize fT with parameters
of the pre-trained fS , i.e. using θS as the initial value of θT .

In fields of Natural Language Processing (NLP),
transfer-learning techniques [33] have been proposed to
transfer knowledge between two languages (e.g., English
and Nepali). Recently, PLATO [29] proposed a cross-lingual
transfer-learning framework for statistical type inference
in source code. And StateFormer [34] utilized a pretrain-
finetune architecture to recover function type information
from assembly code, shedding light on applications of trans-
fer learning on program analysis.

2.2. Contrastive Learning

Contrastive learning aims to teach a neural model to pull
together the representations of matching samples in a latent
space, and meanwhile separate non-matching ones. The
most common method is through a Siamese network [35],
which is a structure with two parallel networks to extract
feature vectors of two input samples, and calculate the
distance with another neural network or pre-defined norms.
At first, the Siamese network was proposed to compare
the similarity of two inputs. It consists of two identical
networks with identical structures and weights. Distance
between the feature vectors of inputs will be calculated and
used as the similarity/difference score. Previous studies such
as αDiff [5] and NMT [36] have shown that the Siamese
network could be utilized to extract fine-grained semantic
features of binary code, even if the code is from cross-
version or cross-architecture binaries.

Recently, another type of Siamese network is introduced
to address more complicated problems. The new structure,
also called a pseudo-Siamese network, allows two networks
to be different or not to share weights to adapt to application
scenarios which require different categories of inputs. As

Q

A

Feature
Extraction

Feature
Extraction

q

a

f

Figure 1: Illustration of the Siamese network

22358

shown in Figure 1, in the question-answering scenario, two
different networks can be utilized to extract features of a
question (Q) and an answer (A) respectively. To calculate
the similarity/difference, the extracted feature vectors q and
a could be concatenated together as a feature vector f, which
will be further fed into a following classifier network Σ. The
classifier will output a score indicating how much Q and A
matches. This structure could be trained to match questions
with answers, as shown in [37], [38], [39].

2.3. Applications based on Call Graphs

Binary program analysis applications often have to track
data flow between functions to comprehend the semantics
of programs, and thus have to conduct inter-procedural
program analysis by traversing programs’ Call Graphs (CGs)
which represent functions calling relationships to track in-
formation flow or capture the semantics. Such applications
include but are not limited to the followings.

Binary Similarity Detection. BinDiff [40] matches
functions based on their position or neighborhoods in CGs.
αDiff [5] extracts inter-function and inter-module features
based on CGs, and further calculates feature distances with
a Siamese neural network. DeepBinDiff [6] utilizes CGs to
construct inter-procedural control-flow graphs (ICFGs) and
performs random walks on them to embed each basic block.

Hybrid Fuzzing. Driller [31] leverage symbolic execu-
tion engines to solve inputs for program paths when the
AFL [41] fuzzer gets stuck, and SymQemu [42] further
proposes a compilation-based symbolic execution policy to
boost the speed of the symbolic executor. However, they do
not resolve icallees due to the path-explosion problem. Thus
by providing symbolic execution engines with a limited set
of candidate targets, we can ease the path-explosion problem
and thereby enable hybrid fuzzers to resolve icallees to
improve the code coverage.

Except for aforementioned applications, CGs are also
vital in malware detection [43], bug detection [44], [45] and
many other scenarios [46], [47], [48].

Therefore the completeness and accuracy of CGs greatly
affect the results of these applications. Otherwise, it may
cause issues like false positives in bug detection, path ex-
plosion in symbolic execution, etc.

2.4. Recognizing Indirect Callees in Binaries

At the core, constructing a complete and accurate CG
requires to precisely recognize icallees. Many solutions
have been proposed to address this problem, but few can
recognize icallees for binaries.

Type-based Analysis. Identifying icallees in binary pro-
grams in general requires type recovery analysis [49] which
is error-prone, as shown in τCFI [21], TypeArmor [22] and
its refinement [23]. Otherwise, a coarse-grained address-
taken policy would be applied, as shown in CCFIR [20],
in which arbitrary address-taken functions are marked as
legitimate icallees, causing more false positives.

Pointer Analysis. SVF [13] leverages Andersen’s al-
gorithm and constructs an inter-procedural static single as-
signment (SSA) form to capture def-use chains of both
top-level and address-taken variables, While whole-program
analyses such as SVF and SUPA [14] have troubles on
programs composed of separately compiled modules. K-
Miner [50] splits kernel code based on system calls, and
PeX [51] leverages the common programming paradigm
used in kernel abstraction interfaces, but they have not
scaled to user-mode binaries. Some binary analysis tools
such as BAP [52] and Angr [12] leverage value-set analysis
to resolve pointers, but face challenges on complex real-
world programs. BDA [53] proposes a path sampling al-
gorithm to perform dependency analysis while introducing
huge runtime overhead, even more than dynamic testing on
multiple targets from the SPECINT2000 benchmark [54],
making it impractical. Recently, BPA [24] adds scalable
pointer analysis support for binaries based on a special block
memory model and intermediate representation (IR), while
the prototype currently supports 32bit C programs only.

2.5. DNN-based Binary Analysis

Recent research has leveraged DNNs to solve many
program analysis problems.

Function Recovery. Shin et al. [55] show that recurrent
neural networks (RNNs) can identify functions in binaries
precisely. It converts each byte into a vector with one-
hot encoding, and concatenates vectors of all bytes as the
representation of functions. Then it trains an RNN and
uses the softmax function to predict whether a byte begins
(or ends) a function. XDA [56] improves the performance
by applying a BERT [57] model. EKLAVYA [58] and
StateFormer [34] further recovers function signatures from
assembly code. EKLAVYA embeds each instruction into a
vector and concatenates them to represent functions, and
predicts a type tuple for all the parameters of a function
with an RNN. StateFormer [34] utilizes transfer learning
with a transformer [59] model to learn type inference rules.
However, they both cannot recover the signature of a callsite,
and thus cannot recognize icallees.

Value-set Analysis (VSA). DEEPVSA [60] uses DNNs
to facilitate VSA by learning semantics of instructions and
capturing dependencies in contexts at the binary level, which
can further assist alias analysis for crash diagnosis. But the
application in resolving icallees needs further study.

Binary Similarity Detection. αDiff first utilizes a DNN
to learns code features from raw bytes, then extracts inter-
function and inter-module features and adopts a Siamese
neural network to detect similarity between binaries. Bina-
ryAI [61] uses BERT to pre-train the binary code on several
tasks and adopts convolutional neural network (CNN) to
extract the order information of CFG’s nodes. NMT [36]
proposes a DNN-based cross-lingual basic-block embed-
ding model to measure the similarity of two blocks, which
achieves cross-architecture similarity detection. By regard-
ing instructions as words and basic blocks as sentences, they
use word2vec [62] to embed instructions and use LSTM [63]

32359

Binaries

Direct
Calls

Indirect
Calls

Transfer

Prediction

Function 1

Function 3

Function 2

Context Extraction

Function
Extraction

Slicing

Context Embedding

Tokenization

Symbolization

Doc2vec

Embedding

Callsite-Callee Matching
Siamese Network

Q

A

dLearner

iLearner

Figure 2: Overview of our solution CALLEE.

to embed basic-blocks. The state-of-the-art DeepBinDiff [6]
uses both the code semantics and the program-wide control-
flow information to generate basic block embedding.

To the best of our knowledge, we are the first to use
deep learning to comprehend contexts of call instructions
and recognize icallees, and utilize it to recover CGs for
binaries with a high precision.

3. Overview

Our goal is to design a callsite-callee matching system
that can automatically recognize which callees are potential
targets for a given callsite. In this section, we describe the
overview of our solution CALLEE.

Overall workflow. As shown in Figure 2, we first
train a contrastive-learning framework Learner with dcalls
(denoted by dLearner), and transfer the learned knowledge
into a icall Learner (denoted by iLearner). In detail, pa-
rameters of the iLearner are initialized with the pre-trained
dLearner. The iLearner will further be trained with icalls
and used to perform icallee prediction. To build such a
Learner framework, we employ three major modules, i.e.,
context extraction module, context embedding module, and
callsite-callee matching module. The key insight is that,
neural networks can learn to match callsites with callees
by comprehending their contexts, i.e., instructions nearby
callsites and of callees.

3.1. Core Modules of the Learner

3.1.1. Context Extraction. Contexts related to callsites
and callees form the basis of decisions made by neural
networks. Therefore, given a binary program, we first need
to extract proper contexts from the binary. Full contexts,
i.e., all instructions of a function, make it difficult to con-
struct favorable embeddings of limited vector dimensions.
Therefore, shrinking the contexts while keeping necessary
information is critical. We adopt inter-procedural slicing
with expert knowledge to extract related contexts.

3.1.2. Context Embedding. Since neural networks re-
quire vectors as inputs, contexts of callsites and callees
have to be represented in the form of vectors. Existing
studies [5] have shown that NLP solutions are effective
at binary analysis. We thus utilize a popular NLP model
doc2vec to embed program slices. Moreover, we adjust the
doc2vec model with domain knowledge, i.e., differences
between assembly and natual languages.

3.1.3. Callsite-callee Matching. Inspired by question-
answering scenarios, CALLEE regards a callsite as a question
and a callee as its corresponding answer. To compute the
difference score of a callsite and a callee, CALLEE adopts
contrastive learning, i.e., a Siamese neural network. The
network takes a pair of callsite and callee embeddings as
input, and generates their feature vectors, which will be
concatenated together and fed into a classifier to calculate
the difference score of the input pair.

3.2. Workflow of the Learner

The input to the Learner is plenty of binaries, and
outputs are models that could be used to embed program
slices and report difference scores. In total, there are 5 steps.
* 1: Collecting ground-truth callsite-callee pairs. For

dcalls, we simply extract callsite-callee pairs based on
call instructions. For icalls, we dynamically run several
testing programs with provided test suites and collect
callsite-callee pairs at runtime. Specifically, we utilize
Intel PT [64] to collect traces for user-mode binaries and
PANDA [65] for the Linux kernel.

* 2: Statically extracting callsite-callee pair slices and
functions from binaries. With collected ground truths,
we apply an inter-procedural slicing algorithm on binaries
to extract slices for each callsite and its associated callee.
Meanwhile, we build a function dataset from training
binaries to train an embedding model later.

* 3: Slice preprocessing and embedding. In this step, we
symbolize instructions in the slices to reduce dimensions
of data used in the following embedding model and

42360

neural network to make those models converge faster.
Meanwhile, we train a doc2vec model using the collected
function dataset. The doc2vec model is then used to
embed slices into vectors required by the neural network.

* 4: Establishing a vectorized callsite-callee dataset. In
this step, we vectorize positive (matching) and nega-
tive (non-matching) callsite-callee pairs with the trained
doc2vec model. Subsequently, we label positive ones as
1 and negative ones as 0.

* 5: Training a Siamese neural network. In this step,
we construct a Siamese neural network with two parallel
feature extraction layers, and train the network with the
labeled dataset to produce difference scores.

3.3. Workflow of the Transfer Learning

With the proposed Learner framework, we perform
transfer-learning between dLearner and iLearner.
* 1: Pre-training the dLearner. With collected binaries,

we first train the dLearner with statically-extracted dcall
pairs, following the standard train-validation-test proce-
dure. After pre-training, we select the best-performance
models for transfer learning.

* 2: Initializing the iLearner. We initialize parameters of
models in iLearner with values of corresponding param-
eters of the selected models, including the parameters of
the doc2vec model and the Siamese network.

* 3: Fine-tuning the iLearner. Finally, we train the models
of iLearner with dynamically-collected icall pairs after
initialization, i.e., fine-tuning.

4. Methodology

We first introduce the contrastive Learner in detail, i.e.,
context extraction, context embedding and callsite-callee
matching, and then describe the transfer learning.

4.1. Context Extraction via Slicing

Recent studies have shown that DNNs trained in a com-
pletely data-driven way without domain knowledge may be
non-explainable and unpredictable, whose results may even
conflict with prior expert knowledge. However, a system
based completely on expert knowledge may have limitations
in the scope and capability of solving problems, due to
insufficient knowledge or improper inference logic.

Therefore, we integrate expert knowledge into the deep
learning system. Specifically, we perform program slicing in
advance. The slicing step aims at using expert knowledge to
preliminary extract useful information for matching callsite
and callee pairs. Besides, shorter code gadgets after slicing
are more favorable for embedding.

The principle of slicing is to identify and preserve
instructions related to data dependencies between icallsites
and icallees, including local variables that passed between
functions (arguments and return values) and global variables.
To get as much information as possible, we perform a
depth-first traversal of all basic blocks in callsite and callee

TABLE 1: Data passing rules in the calling convention of
the System V AMD64 Application Binary Interface (ABI).

Data Type Example Passing
INTEGER,
POINTER

char, short,
int, long

Argument: rdi, rsi, rdx, rcx, r8, r9
Return value: rax, rdx

SSE,
SSEUP

float,
double

Argument: xmm0 to xmm7
Return value: xmm0, xmm1

X87, X87UP,
COMPLEX_X87 long double

Argument: stack
Return value: st0, st1

MEMORY struct,
array, union

Argument: stack
Return value: (address in) rax

function’s control-flow graph (CFG). For global data depen-
dencies, we keep instructions whose operands are related
to values in the data segment. For inter-procedural local
data dependencies, we keep those concerning stack memory
and registers used for function arguments and return values,
based on rules of data passing [66] shown in Table 1. To
be conservative, we do not drop control-flow instructions.
Details of slicing algorithms are presented in Section 5.2.

4.2. Context Embedding

Required by most neural networks, inputs need to be em-
bedded into vectors or tensors. Therefore, we adopt doc2vec,
a common approach in the field of NLP, to embed slices.

Before embedding, instructions should be tokenized
to avoid nonexistent tokens caused by punctuation. For
instance, instruction mov rax, [rdi] should be to-
kenized into "mov", "rax", ",", "[", "rdi",
"]". Moreover, instructions from a fresh binary may have
tokens unseen in the trained doc2vec model, known as the
Out-of-Vocabulary (OOV) phenomenon. Thus we need to
symbolize slices before embedding.

4.2.1. Symbolization. The general idea of symbolization is
to replace open-set tokens with closed-set tokens. Open-set
tokens are tokens that can have many variants, including im-
mediate operands, user-defined function names, user-defined
variables, and so on. Contrastively, closed-set tokens refer
to tokens that have limited variants. For example, 20h is an
open-set token in instruction mov eax, 20h. It can be
replaced by num, which is a closed-set token.

Further, the intensity of symbolization should be taken
into account. We compare two symbolization policies: strict
symbolization and loose symbolization. By strict, it means
that the symbolization process transforms open-set tokens in
the same kind into a single closed-set token. For instance,
given an open set of user-defined function names foo_0,
foo_1,...,foo_∞, any token in it will be replaced by
the same closed-set token fun. Strict symbolization is the
most commonly used policy in preprocessing, because it
can eliminate OOV. However, strict symbolization may lose
data-flow information, which often contributes to the de-
termination of the function call targets. For example, strict
symbolization turn all strings into one token "str".

Hence we propose loose symbolization to preserve data-
flow information and meanwhile maintain a finite-size to-
ken corpus. Through modulo arithmetic, an open set like

52361

TABLE 2: Symbolization Rules.
Symbolization loc_ABCD arg_ABCD sub_ABCD var_ABCD struct_ABCD unk_ABCD byte_ABCD off_ABCD *word_ABCD flt_ABCD dbl_ABCD a_String

Strict loc arg fun var struct unk byte offset word flt dbl str
Loose loc+ABCD%N arg+ABCD%N fun+ABCD%N var+ABCD%N struct+ABCD%N unk+ABCD%N byte+ABCD%N offset+ABCD%N *word+ABCD%N flt+ABCD%N dbl+ABCD%N str+len(String)

{foo_0, foo_1,...,foo_∞} can be transformed into {foo_0,
foo_1,...,foo_(N − 1)} where N is a hyperparameter. As
for strings, we simply take the length of a string as a suffix,
and replace the string with str_len. Additionally, several
kinds of tokens are symbolized according to their semantics.
For example, operands of a dcall instruction are considered
to be a function, and thus we replace them with "fun".
Detailed rules of symbolization are summarized in Table 2.

4.2.2. Vectorization. After symbolization, CALLEE adopts
doc2vec, a popular model used in NLP, to embed slices
into vectors. A doc2vec model takes paragraphs of to-
kens as input and calculates the distributions of both para-
graphs and tokens. To capture the semantic information
of low-frequency tokens, we choose the Distributed Bag
of Words of Paragraph Vector (PV-DBOW) model [27],
and adjust it to apply to assembly language. Note that,
compared with word2vec and PalmTree [67] (For detailed
evaluation of different embedding techniques, please refer
to Appendix C.), doc2vec is able to calculate the word
embedding and paragraph embedding at the same time, and
the paragraph embedding is shared during multiple training
of word embeddings in one paragraph. Thus the generated
word embedding in fact involved both inter-token and inter-
instruction information.

Formally, an m-token callsite slice ~πi =
{u0, u1, ..., um|u ∈ Rj} and an n-token callee slice
~αi = {t0, t1, ..., tn|t ∈ Rj} are mapped into

G(~πi)→ ~Qi = { ~Eu0
, ~Eu1

, ..., ~Eum
| ~E ∈ Rk}, and

G(~αi)→ ~Ai = { ~Et0 ,
~Et1 , ...,

~Etn | ~E ∈ Rk}

where G is the doc2vec model as a mapping G : X → Z
between the token space X : Rj and the embedding space
Z : Rk. Note that embeddings for each token in a paragraph
are concatenated together, i.e. ~Qi ← ~Eu0

⊕ ~Eu1
⊕ ... ~Eum

;
~Ai ← ~Et0 ⊕ ~Et1 ⊕ ... ~Etn .

However, doc2vec is designed to be applied to natural
languages (e.g., English). But the prior knowledge of nat-
ural languages is quite different from the assembly. Thus
CALLEE adjusts two parameters of doc2vec intuitively.
• sample: In natural languages, high-frequency tokens

are mostly function words. Therefore, these tokens are
usually downsampled to reduce their frequency. Yet high-
frequency tokens in assembly language can carry much
information (e.g., comma to distinguish operands). As a
result, we do not downsample high-frequency tokens.

• min_count: Low-frequency words caused by wrong
segmentation results of sentences are often ignored during
training an embedding model of natural languages. On
the contrary, low-frequency tokens in program analysis
scenarios can be semantically deterministic. Hence we set
the min_count parameter to 0.

4.3. Structure of the Matching Network
For embedded callsites and callees, we further build a

Siamese neural network to predicate their difference scores.
An embedded callsite slice ~Qi will pass through fea-

ture extraction layers φ that output a feature vector ~qi =
{φ(~Qi)|φ : Z → F}, where F : Rf is the feature space.
Similarly, for an embedded callee slice ~Ai we can obtain
a feature vector ~ai = {φ′(~Ai)|φ′ : Z → F} with another
set of feature extraction layers φ′. Then to calculate the
matching score, we concatenate two feature vectors together,
considering that currently there is no theoretical proof of
which distance measure is optimal for feature vectors. In
other words, different data/scenarios may need different
distance measures. Therefore we utilize a fully-connected
network (FCN) to predict a score with the concatenated
vector, i.e., "let the data talk". The FCN σ is essentially
an adaptive (trainable) "distance": di = σ(~qi ⊕ ~ai).

The contrastive loss [68] is used as the optimization goal
of our Siamese network:

L =
1

2N

N∑
i=1

[yid
2
i + (1− yi) max{1− di, 0}2]

where N is the number of input pairs, yi (i.e., 1 or 0) is the
label of the input pair (i.e., match or not). The optimization
goal indicates that, if the input pair match (yi = 1), then the
output (difference score) di should be close to 0; otherwise,
the output should be close to 1.

According to the output d, we can set a threshold to
determine whether the callsite and callee match:

matching =

{
yes d <threshold
no otherwise

4.4. Transfer Learning
With the proposed Learner framework, we utilize a two-

stage transfer-learning training mechanism, i.e., pre-training
with dcalls and fine-tuning with icalls. Specifically, given
two Siamese neural networks

Λd = σd(φd(~Qi, θd)⊕ φ′d(~Ai, θ
′
d))

and
Λi = σi(φi(~Qi, θi)⊕ φ′i(~Ai, θ

′
i))

for dcalls and icalls respectively, where θ indicates parame-
ters of φ. we first train Λd with dcall pairs, and then initialize
φi and φ′i with φd and φ′d, and further fine-tune Λi with icall
pairs. Note that σi is trained from scratch, and the doc2vec
model follows the same training mechanism.

5. Implementation
5.1. Dataset Collection

The datasets that CALLEE used require two kinds of
data: assembly functions for training the doc2vec model and
callsite-callee pairs for training the Siamese neural network.

62362

Algorithm 1: Slicing of a callsite
Input: CallsiteSet
Output: CallsiteResult

1 CallsiteResult← {}
2 foreach Callsite in CallsiteSet do
3 StackSet,RegSet,GlobalVarSet,CrtlFlowSet← {}
4 for Insn← FuncStart : Callsite do
5 if isStackInsn(Insn) then
6 StackSet← StackSet ∪ {Insn}
7 else
8 foreach Op in InsnOperands do
9 if isArgRegInOp(Op) then

10 RegSet← RegSet ∪ {Insn}

11 for Insn← Callsite : FuncEnd do
12 foreach Op in InsnOperands do
13 if isRetRegInOp(Op) then
14 RegSet← RegSet ∪ {Insn}

15 GlobalVarSet← getGlobalVarXref(Function)
16 CrtlFlowSet← getCrtlFlowInsn(Function)
17 SliceResult← StackSet ∪ RegSet ∪GlobalVarSet ∪

CrtlFlowSet
18 CallsiteResult← CallsiteResult ∪ {SliceResult}

19 return CallsiteResult

5.1.1. Functions. In analogy with natural languages, we
regard functions as the "paragraphs", instructions as "sen-
tences", opcodes and operands as "words", and train a
doc2vec model to embed slices into vectors.

We write a Python script for IDA Pro to extract functions
from binaries. Note that only functions in the .text section
are extracted. As for those in other sections, we have to
identify which shared libraries they are in. All involved
shared libraries are analyzed later to extract their functions.

5.1.2. Callsite-callee pairs. The primary goal is to record
addresses of callsite-callee pairs in binaries.

Direct-call pairs can be easily obtained with IDA Pro
by simply traversing binaries and recording addresses of
callsites and callees. For icalls, we utilize dynamic anaylses
to collect ground truths. For user-mode binaries, we instru-
ment all icallsites with an LLVM pass to output the callee
at runtime. With coverage-guided fuzzers such as AFL [41]
and program test suites as fuzzing seeds, we can cover most
functional code. After fuzzing, the indirect callsite-callee
pairs are collected by running the program with generated
inputs. For the kernel, we emulate it in PANDA [69]. By
parsing emulation logs, we can obtain the icall pairs. For
more details, please refer to Appendix A.

5.2. Slicing

We implement the slicing algorithm with the IDAPython
[70] SDK provided by IDA Pro. Before slicing, we filter out
cases where IDA Pro fails or goes wrong.

We extract slices from callsites (Algorithm 1) and callees
(Algorithm 2), then combine them according to the re-
quirements of training or testing. First, we get the function
where the callsite or callee address is located. Since the
function boundary of a target function called in an indirect
way may not be correctly recognized by static analysis, we

Algorithm 2: Slicing of a callee
Input: CalleeSet
Output: CalleeResult

1 CalleeResult← {}
2 foreach Callee in CalleeSet do
3 Function← makeFunction(Callee)
4 StackSet,RegSet,GlobalVarSet,CrtlFlowSet← {}
5 for Insn← FuncStart : FuncEnd do
6 if isStackInsn(Insn) then
7 StackSet← StackSet ∪ {Insn}
8 else
9 foreach Op in InsnOperands do

10 if isArgRegInOp(Op) then
11 RegSet← RegSet ∪ {Insn}
12 else if isRetRegInOp(Op) then
13 RegSet← RegSet ∪ {Insn}

14 GlobalVarSet← getGlobalVarXref(Function)
15 CrtlFlowSet← getCrtlFlowInsn(Function)
16 SliceResult← StackSet ∪ RegSet ∪GlobalVarSet ∪

CrtlFlowSet
17 CalleeResult← CalleeResult ∪ {SliceResult}

18 return CalleeResult

force callee addresses to be starts of functions when slicing
callees. Then, we walk through instructions of the function,
deciding whether to keep them based on operands. To pre-
serve local variables’ inter-procedural data dependencies, we
identify and retain the information about function signatures.
For arguments, we extract instructions concerning stack
memory and registers used for arguments from the first half
of the callsite function (i.e., instructions before this call
instruction) and the whole callee function. For return values,
we extract instructions containing registers used for return
values from the second half of the callsite function (i.e.,
instructions after this call instruction) and in callees. To
preserve global variables’ data dependencies, we get cross-
reference instructions of global variables in both callsite and
callee functions. Finally, we gather control-flow instructions,
and the union of those parts is taken as the result.

5.3. Embedding

CALLEE utilizes IDA Pro to disassemble instructions,
so we take advantage of its naming rules to symbolize
instructions. By default, data structures are named according
to their addresses. For example, a user-defined function at
address 0x43B9D0 in the .text section is named as
sub_43B9D0. Therefore, we can symbolize the function
as fun (strict) or func0 (loose), assuming that the hyper-
parameter N is set to 10. As shown in Table 2, we consider
12 situations in total.

6. Evaluation
We evaluate CALLEE from the following aspects:
• Performance of icallee recognition. We compare

CALLEE with SOTA solutions, conduct ablation stud-
ies, and discuss its generalization and time efficiency.

• Applications of CALLEE. We apply CALLEE to binary
similarity detection and hybrid fuzzing to examine
whether it can promote their performance.

72363

• Interpretability of CALLEE. We interpret the Learner
framework used by CALLEE.

6.1. Evaluation Setup

Experiments are performed on a machine equipped with
Ubuntu 18.04 LTS. The machine has an Intel CPU (Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz), four NVIDIA
GPUs (A100 PCIE) and 768GB RAM, and is installed with
LLVM 12.0.1, GCC 7.5.0, libipt 2.0.0 (commit 892e12c5),
a docker image of PANDA (git tag: 0729fd0d), IDA Pro
7.6, and Python 3.6.9. The Python is equipped with gensim
4.2.0 and PyTorch 1.9.0.

TABLE 3: Dataset Statistics.
Dataset # Projects # Binaries # Functions # Pairs

Direct Call 19K 261K 68M 406M
Indirect Call 52 183 343K 30K

GNU Binutils∗ 1 694 963K 5M
* For cross-compiler and cross-version evaluation.

6.1.1. Datasets. Table 3 shows statistics on the number
of projects, binaries, functions and callsite-callee pairs of
the datasets we collect. All binaries are in the x64 ar-
chitecture. For the dcall dataset, we first build enormous
binaries automatically with the apt package manager and
then extract functions and direct callsite-callee pairs. For
the icall dataset, we collect binaries rich in icalls, including
the Linux kernel (v5.3.11), the Firefox browser (v72.0a1),
and corresponding shared libraries. After dynamic testing,
we extract functions from them and perform the slicing.
To build a balanced dataset, we set the ratio of positive
pairs to negative pairs to 1:1 and assemble negative pairs
by randomly choosing unmatched callsites and callees from
the ground truths. To avoid negative pairs that are actually
positive pairs not covered by dynamic testing, we addition-
ally check the source-level type of the unmatched pairs
with the help of debug information, which contains type
information of function calls. Note that different projects
usually have different contributors, whose coding styles can
be varied, e.g., Firefox has over 100 contributors in the last
90 days [71], and thus we believe the datasets are diversified
based on the number of projects.

Additionally, we study the distribution of callsites and
callees in the icall dataset. For a malformed dataset whose
callsites generally have the same small set of callees, almost
any algorithm will do well by just guessing those callees the
majority of the time. As shown in Figure 3, the number of
"callsites per callee" is small for the majority of callees,
indicating that the callsites with common callees will be
few. And the number of "callees per callsite" is small for
the majority of callsites, further demonstrating the diversity
of the dataset.

Dataset split. A common split method is cross-
validation: randomly choosing, e.g., 70% pairs for training,
20% for validation and 10% for testing, without considering
the distribution of the data (e.g., the originating binaries).
But it can lead to severe overfitting issues, i.e., the model

0 20 40 60 80 100
Callees per Callsite

0.00e4

0.25e4

0.50e4

0.75e4

1.00e4

1.25e4

1.50e4

1.75e4

Co
un

t

(a) Callee Distribution

0 50 100 150 200 250 300
Callsites per Callee

0.00e4

0.25e4

0.50e4

0.75e4

1.00e4

1.25e4

1.50e4

1.75e4

Co
un

t

(b) Callsite Distribution

Figure 3: Distribution of callees per callsite (left) and call-
sites per callee (right) in the icall dataset.

overfits patterns of data from binaries in the dataset and
cannot generalize to data from binaries outside the dataset.

We have conducted an experiment following this split
method. The final F1 scores of the model on the icall dataset
are 98.9% for training and 94.6% for testing. However, when
we apply the trained model to data extracted from binaries
outside the dataset, the F1 drops sharply to about 53.7%,
indicating that the trained model’s generalization ability is
poor. In other words, the model overfits the dataset.

To acquire a better generalization ability across binaries,
we extract pairs from different binaries for training and
testing to evaluate the generalization performance across
different binaries. Therefore, we first randomly choose 80%
of the binaries for training, 10% for validation, and 10% for
testing. Then pairs are further extracted from these binaries.
Since the dataset consists of binaries by different authors,
thus there is little shared code across the split datasets.

6.1.2. Hyperparameters. We set the batch_size to
512, and train the network 20 epochs. The optimizer is
rmsprop, the learning rate is 0.001, the threshold for the
final decision is 0.5, and the embedding dimension of the
doc2vec model is 100. The final classifier network of the
Siamese neural network is an FCN consisting of three layers
with 512, 512, and 1 neuron(s) respectively. The sigmoid
function is used as the final activation function. We adopt
Batch Normalization [72] and Dropout [73] to help the
network converge, and the dropout rate is set to 0.2. The
hyper-parameter N of loose symbolization is set to 10. Note
that, these hyperparameters are selected based on several
rounds of dry-run experiments.

6.1.3. Evaluation Metrics. We choose the common metrics
Precision, Recall and F1-Measure (F1) to evaluate the per-
formance of models. These metrics are computed from the
number of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). An FP is a pair
classified as match but actually does not match. An FN is
a pair classified as unmatch but actually matches.

6.2. Performance of CALLEE

6.2.1. Overall Performance. Overall, we choose the loose
symbolization method and FCN feature extraction layers and
train the Siamese neural network on sliced contexts with the
transfer-learning technique. As shown in Table 4, CALLEE
has an F1 of 94.6%, recall of 90.9%, and precision of 97.3%.

82364

TABLE 4: Performance of CALLEE (in bold) on the icall dataset. Results not in bold are presented for ablation studies.

Setting Context Symbolization Siamese
Network Mode Train Test

Precision Recall F1 Precision Recall F1
0 Sliced Loose FCN dcall 93.4% 87.9% 90.6% 93.8% 87.5% 90.5%
1 Sliced Loose FCN icall 76.8% 75.6% 76.2% 70.3% 63.7% 66.8%
2 Sliced Loose FCN transfer 99.2% 96.8% 98.0% 97.3% 90.9% 94.6%
3 Sliced Loose FCN zero-shot - - - 93.0% 85.9% 89.3%
4 Full Loose FCN icall 74.1% 72.9% 73.5% 57.4% 53.0% 55.1%
5 Sliced Strict FCN icall 75.3% 74.2% 74.7% 61.9% 56.6% 59.1%
6 Sliced Loose LSTM icall 71.0% 70.1% 70.5% 67.8% 61.5% 64.5%
7 Sliced Loose TextCNN icall 73.7% 72.3% 73.0% 69.5% 63.0% 66.1%
8 Sliced Loose 1dCNN icall 77.3% 75.7% 76.5% 68.4% 61.7% 64.9%

6.2.2. Comparison with state-of-the-art solutions. We
compared CALLEE with several closely relevant solutions
which recognize icallees as well. Since the refinement of
TypeArmor fails to discuss their precision/recall in recogniz-
ing icallees and has not open-sourced yet, we only compare
CALLEE with BPA and TypeArmor as well as popular binary
analysis tools such as IDA Pro, Angr and GHIDRA. We use
the same binaries as BPA: the SPEC CPU 2006 benchmark
and 4 server applications (memcached-1.5.4, lighttpd-1.4.48,
exim-4.89, and nginx-1.10).

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(0.9997, 0.6632)

Figure 4: Precision-Recall Curve of CALLEE.

Since BPA is not open-sourced, we adopt the re-
sults from their paper: based on a dynamically collected
dataset [24], BPA and TypeArmor have precision of 57.6%
and 35.1%, recall of 100% and 99.9%, and thus F1-measures
of 73.1% and 51.9% respectively. For fair comparison, we
report CALLEE’s precision-recall (PR) curve in Figure 4.
As shown, the precision drops as the recall increases, and
the precision remains 66% when recall reaches 99.9%.
As for real-world binary analysis tools such as IDA Pro,
Angr, GHIDRA, etc., they identify icall targets by constant
propagation. Although constant propagation can avoid false
positives, i.e. has a 100% precision rate, it can only resolve
very few targets and has high false negatives, i.e. has a recall
rate close to zero, and thus has an F1-measure close to 50%.
For icallsites of subject binaries in Table 5, constant prop-
agation can at most recognize 8 targets in 403.gcc, and
cannot recognize any target(s) in over half of the binaries.

We also calculate the average indirect call target (AICT)
metric that TypeArmor and BPA used, and the results are
shown in Table 5. Additionally, we include a source-level
type analysis solution LLVM-CFI [15] as a reference. Col-
umn #Functions indicates the number of all functions in
a binary, and columns #iCallsites and #AT indicate the
number of icallsites and address-taken functions respec-

TABLE 5: AICT evaluation results. #AT indicates numbers
of address-taken functions and #CP indicates numbers of
callees found by constant propagation.

Binary #Functions #iCallsites #AT #CP AICT
TypeArmor BPA CALLEE LLVM-CFI

nginx 1118 220 744 4 420.5 525.1 383.0 21.5
lighttpd 360 56 279 0 24.7 33.9 31.7 7.0

exim 622 78 344 0 38.0 30.6 22.4 5.7
memcached 244 50 109 0 21.6 1.4 11.3 1.1

400.perlbench 1793 117 664 6 536.6 363.7 354.0 24.0
401.bzip2 79 22 2 0 1.0 2.0 1.4 1.0
403.gcc 4678 44 1050 8 581.3 427.8 338.0 9.3
433.milc 245 6 3 0 2.0 2.0 2.0 2.0

445.gobmk 2537 46 1672 1 1,413.3 1,297.2 672.4 600.9
456.hmmer 506 12 20 1 22.0 2.8 7.2 10.0
458.sjeng 145 3 8 0 7.0 7.0 7.0 7.0

464.h264ref 533 354 40 0 28.9 26.4 20.9 2.1
482.sphinx 336 10 7 0 1.9 0.7 5.6 5.0

Average 1,015.1 78.3 380.2 1.5 - - - -

tively. For fair comparison, we use the set of icallees when
CALLEE’s recall is 99.9%. We assume the recovering results
of TypeArmor are absolutely correct, though the accuracy
of TypeArmor in identifying argument numbers is about
83%, and much lower in identifying the usage of return
value (less than 20%). Nonetheless, it shows that CALLEE
has smaller AICTs than state-of-the-art solutions on most
binaries, and can reduce 40.1% icallees than TypeArmor
on average, which is better than BPA and the refinement
solution. While as expected, LLVM-CFI still outperforms
CALLEE, since it is a source-level solution which could
utilize function type information.

6.2.3. Ablation Studies. To evaluate how key parts of
CALLEE influence the performance, we perform ablation
studies of transfer learning, slicing, symbolization and fea-
ture extraction layers of the Siamese network.

Effect of Transfer learning. To evaluate the effect of
transfer learning, we perform model training with 4 modes:
training and testing with dcall and icall datasets respectively,
training on dcall dataset first and fine-tuning with icall
dataset (i.e. transfer-learning), and training on dcall dataset
and testing on icall dataset (i.e. zero-shot learning). Table
4 shows that merely training with icall dataset can only
achieve a 66.8% F1 on the test set, and meanwhile suffers
from over-fitting (F1 drops 9.4% from training to testing).
While transfer-learning can boost the F1 during testing to
over 94%. Even in the zero-shot learning setting, where
we test the pre-trained dcall model with the icall dataset
without fine-tune, the F1 can still reach 89%, indicating
that dcall and icall pairs can share many common patterns,
and thereby transfer-learning can greatly improve CALLEE’s
performance.

92365

Effect of Slicing. To evaluate the effect of slicing, we
first fixate other parts of CALLEE. Based on the icall dataset,
we compare two situations: full context and sliced context
(Settings 1, 4 in Table 4). As shown, the model trained
with full context suffers from severe over-fitting: F1 drops
18.4% from training to testing, showing that processing
binaries with slicing could greatly help the Siamese network
comprehend the context. It also indicates that full contexts
of one binary can significantly differ from those in another
binary, considering that different binaries in the icall dataset
are compiled with different compilers and there is manually
written assembly code in the Linux kernel. Therefore the
network overfits code patterns in training binaries. Whereas
performing slicing can "uniform" the assembly context from
different sources, and thus can restrain the overfitting.

Effect of Symbolization. Similarly, we fixate the
Siamese neural network (FCN feature extraction layers) of
CALLEE, and compare different symbolization policies on
the icall dataset (Settings 1, 5 in Table 4). As shown, strict
symbolization has worse performance than loose symboliza-
tion. It confirms that the strict symbolization discards too
much data-flow information, as discussed in Section 4. Ad-
ditionally, the performance of strict symbolization degrades
steeply (15.6% F1) from training to testing, which means
that strict symbolization leads to worse over-fitting. In other
words, strict symbolization leads to poor generalization per-
formance. Therefore, embedding with loose symbolization
could better preserve data-flow information.

Effect of Feature Extraction Layers of the Siamese
Neural Network. We have tested the performance of
Siamese networks with different feature extraction layers on
the icall dataset (Settings 1, 6, 7, 8 in Table 4). The FCN
we test has 3 hidden layers with 512 neurons. The LSTM
model has 512 neurons. The 1dCNN has 1 convolutional
layer with 512 filters. The TextCNN is adopted from [74].
We use ReLU as the activation function for these models.
As shown, Siamese networks with FCN layers have the
best performance, achieving an F1 of 66.8%. TextCNN
layers perform slightly worse than FCN layers, with an F1
of 66.1%. 1dCNN layers perform best on the training set
but have the worst overfitting, leading to relatively poor
performance on the testing set. The F1 drops 11.6% from
training to testing. LSTM layers have the worst performance.
One explanation is that Recurrent Neural Networks such as
LSTM usually take longer to converge due to the vanishing
and exploding gradient problems [75], even if LSTM tried
to ease gradient problems by introducing gates [63]. Overall,
we choose FCN layers as feature extraction layers.

6.2.4. Generalization across Compilers and Program
Versions. Apart from the generalization ability across bi-
naries, we also evaluate the generalization ability across
compilers and program versions. The zero-shot learning
results have shown that icall pairs share common patterns
with direct ones, and we thus believe they have common
behavior in generalization. Therefore, we perform experi-
ments based on the large-scale dcall dataset. Specifically, we
build 7 versions (from 2.25 to 2.31) of GNU Binutils with

gc
c-7

gc
c-9

cla
ng

-6

cla
ng

-12

Test Compiler

gcc-7

gcc-9

clang-6

clang-12

Tr
ai

n
C

om
pi

le
r

0.913 0.877 0.784 0.798

0.879 0.915 0.778 0.784

0.760 0.754 0.910 0.883

0.768 0.764 0.882 0.908

F1

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

(a) Cross-Compiler

2.2
5

2.2
6

2.2
7

2.2
8

2.2
9

2.3
0

2.3
1

Test Version

2.25

2.26

2.27

2.28

2.29

2.30

2.31

Tr
ai

n
Ve

rs
io

n

0.866 0.858 0.823 0.811 0.830 0.823 0.807

0.837 0.875 0.843 0.834 0.829 0.824 0.819

0.833 0.853 0.872 0.855 0.823 0.817 0.805

0.831 0.840 0.856 0.866 0.846 0.837 0.828

0.825 0.830 0.837 0.835 0.870 0.857 0.840

0.809 0.825 0.827 0.834 0.842 0.867 0.852

0.782 0.821 0.821 0.830 0.827 0.850 0.869

F1

0.80

0.82

0.84

0.86

(b) Cross-Version
Figure 5: Generalization performance on GNU Binutils.

4 compilers (gcc-7, gcc-9, clang-6, clang-12) and further
extract dcall pairs from them. To evaluate the generalization
ability across compilers, we train the model on pairs from
binaries compiled with one compiler (e.g. gcc-7) and test
on pairs from binaries compiled with another (e.g. gcc-
9). Figure 5(a) shows the F1 of the cross-compiler setting.
Data in the diagonal line indicates the upper limit of the
model, where training set and testing set are the same. In
most difficult scenarios such as clang-12 vs gcc-7, whose
generated assembly can have huge differences, the model
can still achieve an F1 of 76%, and in easier scenarios
such as gcc-7 vs gcc-9, the model achieves a substantial
performance with only a 2%-4% drop of F1. The model
behaves likewise in the cross-version setting, as shown in
Figure 5(b). Across two most different versions 2.31 vs
2.25, to which 44 contributors have pushed over 5,000
commits [76], the model still achieves a 78% F1. Thus
CALLEE has a substantial generalization performance in
both cross-compiler and cross-version settings.

6.2.5. Time Efficiency. Suppose a binary has M icallsites
and N candidate callees, CALLEE pair the callsites with each
candidate callee and output a score for each input pair, so
the time complexity is O(MN). However, only address-taken
functions are considered as possible candidates. And modern
machine learning frameworks such as PyTorch provide batch
inference, which takes advantage of scalable computation
resources to generate many predictions at once. Suppose the
batch_size is B, the time complexity will be O(MN

B). Ideally,
if the RAM is sufficient to load all pairs, i.e. B=MN, the
model only needs to infer once.

After the one-time-effort pre-train, we measure the time
consumption of key parts of CALLEE with merely CPU. It
takes about 23s to fine-tune the doc2vec model and 2,407s
to fine-tune the Siamese network. After fine-tuning, on aver-
age, it takes about 0.0027s to perform slicing for a callsite-
callee pair, 0.0042s to embed a slice with the doc2vec model
and 0.0011s to infer one pair with the Siamese network. For
binaries in Table 5, it takes 4~30 seconds in total to analyze
a binary with CALLEE and 6~45 seconds with TypeArmor.
However, as a pointer analysis, BPA needs more than 100
seconds to analyze small programs such as lighttpd, and
more than 7 hours to analyze large programs like gcc.

In summary, we could draw the following conclusion:
CALLEE is more efficient and effective at recognizing

102366

icallees than state-of-the-art solutions such as BPA, TypeAr-
mor as well as binary analysis tools.

6.3. Applications of CALLEE

6.3.1. Promoting binary similarity detection. With the fi-
nal network trained and fine-tuned with pairs of all optimiza-
tion levels, we utilize CALLEE to promote a fundamental
task in binary similarity detection: binary diffing.

The state-of-the-art solution DeepBinDiff [6] leverages
the program-wide control flow information to generate ba-
sic block embeddings. Specifically, it relies on an inter-
procedural CFG (ICFG) generated by Angr, which is a
combination of CGs and CFGs, to provide program-wide
contextual information. Given two binaries, DeepBinDiff
first generates an ICFG for each binary, merges them based
on library functions, and runs the Text-associated Deep-
Walk (TADW) algorithm [77] to embed basic blocks. With
generated embeddings, DeepBinDiff utilizes a k-hop greedy
matching algorithm to match basic block pairs. In principle,
if two icallsites in two binaries have similar callees, the two
basic blocks they belong to should be similar too. Therefore,
we can speculate that, with the CGs recovered by CALLEE,
DeepBinDiff would have better performance.

Our experiments are performed on the same set of
binaries used by DeepBinDiff, i.e., printenv, md5sum,
split, uniq, ls, who, cp, rmdir, yes, tty from
five versions of GNU Coreutils (v5.93, v6.4, v7.6, v8.1,
v8.3) with four optimization options (O0, O1, O2, O3). The
binaries are compiled with the same compiler Clang, and
we adopt the same metric used by DeepBinDiff, which is
Precision, Recall, and F1-score of basic block matching.
Parameters of DeepBinDiff are fixed to k=4, threshold=0.6,
which are the optimal parameters according to their paper.
To eliminate the influence introduced by randomness in
TADW, we repeat each experiment three times and calculate
the average metrics.

We compare the performance of DeepBinDiff in diffing
binaries across different versions and optimization levels,
based on the original CGs and the CGs recovered by
CALLEE respectively. To further verify the usefulness of
CGs recovered by CALLEE, we also tested DeepBinDiff
on crafted CGs that are generated by adding random edges
between icallsites and potential callees.

Cross-optimization-level diffing. Table 6 shows the
F1-scores of cross-optimization-level diffing. We compile

TABLE 6: Cross-optimization-level binary diffing F1 scores
of DeepBinDiff on the original CGs, on CGs with random
edges, and on CGs recovered by CALLEE.

Optimization Levels DeepBinDiff +Rand +CALLEE
O3 vs O2 89.0% 85.3% 93.7%
O3 vs O1 69.7% 67.8% 78.4%
O3 vs O0 10.8% 9.3% 25.6%
O2 vs O1 74.5% 72.0% 92.1%
O2 vs O0 11.2% 9.9% 28.6%
O1 vs O0 13.7% 12.8% 32.6%
Average 44.8% 42.9% 58.5%

TABLE 7: Cross-version Binary Diffing Results.
Versions DeepBinDiff +Rand +CALLEE

v5.93 vs v8.3 72.5% 70.6% 78.2%
v6.4 vs v8.3 75.9% 73.3% 85.8%
v7.6 vs v8.3 95.5% 93.3% 96.7%
v8.1 vs v8.3 97.1% 94.6% 98.8%

Average 85.3% 83.0% 89.9%

Coreutils-v7.6 and setup 6 experiments (O3 vs O2, O3 vs
O1, O3 vs O0, O2 vs O1, O2 vs O0, O1 vs O0). As
shown, compared to the original CGs, adding random edges
would cause DeepBinDiff drop a 1.9% F1-score (i.e., from
44.8% to 42.9%) on average, while adding edges recovered
by CALLEE would cause DeepBinDiff to increase the F1-
score by 13.7% (i.e., from 44.8% to 58.5%) on average.
Detail statistics of the F1 scores of DeepBinDiff in different
settings on different binaries are presented in Appendix B.

Note that, adding random edges decreases all settings’
F1-scores, because it would significantly change the con-
texts of basic blocks that ought to be similar. Whereas
adding edges recovered by CALLEE increases all settings’
F1-scores, showing that precise CGs are useful for binary
diffing and CALLEE is effective at recovering CGs.

Cross-version diffing. Table 7 shows the F1-scores of
cross-version diffing. We fix the Coreutils’ optimization
level to O1, and perform 4 experiments (v5.93 vs v8.3,
v6.4 vs v8.3, v7.6 vs v8.3, v8.1 vs v8.3). Compared with
DeepBinDiff, adding random edges leads to a 2.3% F1-
score decrease on average, while adding edges recovered
by CALLEE increases the F1-score by 4.6% on average.
Detailed statistics in different settings on different binaries
are presented in Appendix B. Consistent with the cross-
optimization-level diffing results, we can see that, adding
random edges decreases all settings’ F1-scores and adding
CALLEE edges behaves in contrast.

Additionally, the evaluation shows that, compared with
cross-version diffing, cross-optimization-level diffing is
more difficult, and larger increments appear in the cross-
optimization-level settings involving the O0 level, i.e. O3-
O0, O2-O0, O1-O0, compared with other settings. It indi-
cates that optimization levels’ effect is larger than versions’,
which is consistent with conclusions of DeepBinDiff and
BINKIT [78]. Thus we can obtain larger promotion in cross-
optimization-level diffing by complementing the ICFG.

In summary, CALLEE can improve the performance of
DeepBinDiff by a large margin, especially in the cross-
optimization-level diffing task.

6.3.2. Promoting hybrid fuzzing. We further apply
CALLEE to hybrid fuzzing. Driller [31] is a hybrid fuzzer
that augments the famous grey-box fuzzer AFL [41] with
symbolic execution when AFL gets stuck. Specifically,
driller takes all untraced paths in AFL’s queue and looks for
basic block transitions AFL failed to find satisfying inputs
for. Driller will then use Angr to solve inputs for these
transitions and pass them to AFL. However, driller does
not monitor transitions invoked by icalls, and thus we could
speculate that augmenting driller with the CGs recovered by

112367

TABLE 8: Hybrid Fuzzing Results.

Challenge # Paths Found Crash?
Driller +Rand +CALLEE Driller +Rand +CALLEE

NRFIN_00026 26 25 20 8 8 8
LUNGE_00002 39 37 120 X X X
YAN01_00007 45 45 125 8 8 8
NRFIN_00074 412 404 489 X X X
KPRCA_00017 246 221 283 8 8 X
KPRCA_00003 11 10 9 X X X
KPRCA_00060 140 113 394 X X X
NRFIN_00076 45 42 47 8 8 8

Average 120.5 112.1 185.9 - - -

CALLEE can help driller cover more paths, i.e., improve the
code coverage. We have modified driller to solve symbolic
constraints to generate testcases when it hits an icall.

Our experiments are performed on the same binaries
used by driller, i.e., the DARPA CGC chanllenges [32]. We
choose all 8 challenges that involve icall in the code, and
fuzz the binaries for 24 hours, Experiments are repeated 3
times and we calculate the average number of results. We
compare the number of triggered paths of each challenge
between the vanilla driller and driller with icall resolving
based on the CGs recovered by CALLEE. Analogically, we
also include a driller with icall resolving based on the CGs
with added random edges.

As shown in Table 8, on average, adding random edges
to CGs decreases the number of paths by 8, while adding
edges recovered by CALLEE can increase the numbers by
over 50%, because adding random edges could misguide
the symbolic execution engine to solve unreachable edges.
Note that the fuzzer may spend more time solving symbolic
constraints introduced by icalls than conditional branches,
known as the exploration-exploitation trade-off problem, as
shown in NRFIN_00026 and KPRCA_00003. But over-
all adding edges recovered by CALLEE can increase the
code coverage, demonstrating the effectiveness of CALLEE.
We additionally examine the crashes found by the fuzzers,
and results show that adding icall edges can also benefit
slightly. For example, on the KPRCA_00017 challenge,
vanilla driller and driller+Rand failed to trigger crash within
24 hours while driller+CALLEE can.

In summary, we could draw the following conclusion:
CALLEE can promote binary similarity detection and im-
prove the code coverage in hybrid fuzzing.

6.4. Interpretability of CALLEE

To examine whether CALLEE has learned interpretable
knowledge, we visualize the embedding model as well as
the weights of the Siamese neural network.

6.4.1. Embedding Model. We use T-SNE [79] to project
high-dimensional vectors to a 2D space to examine whether
the embedding model could group semantically-close tokens
together. There are 3,330 tokens after Loose symbolization.
The smaller the distance between tokens, the more similar
their semantic features are. For example, token jb and jnb
are both instructions related to conditional jump, so they
are clustered together in Figure 6. Therefore, word vectors
generated by the doc2vec model can well capture semantic
features of tokens in assembly instructions.

jnjzz

jle

jmp

jnbjbe jajb

jg
jl
jge

loc_6

loc_9

loc_5loc_3

0
loc_8

loc_7loc_2loc_

loc_1

loc_4

str15str10

str12
s

tr4str5s

str9

str11

str14

tr8str7

str13

str6

bytes_unk8

2
bytes_unk6
bytes_unk0bytes_unk
bytes_unk4

rax

rdi

eax

rbx

r14r
r12
15

rbp

r13

rcx

r11r10

rdx
rsi

lea

r8
r9

Figure 6: T-SNE visualization of tokens in doc2vec

6.4.2. Siamese network. We utilize the saliency map to
interpret the network to deduce the sensitivity of output
regarding input vectors. First, we compute partial deriva-
tives for input pairs. Given a callsite or callee slice (after
vectorization) x ∈ Rl×d, l is the length of the slice, and d
is the dimension of a token’s embedding. f(x) is the output
of the Siamese network. The partial derivatives is given by:

∇xf(x) =
∂f

∂x
= [

∂f

∂xi,j
]i∈1...l,j∈1...d

This partial derivative consists of gradients of each input
token. To measure the sensitivity of each token, we further
compute the magnitude of gradient. The saliency map S(x)
is defined as:

S(x)[i] =

√
(
∂f

∂xi,1
)2 + (

∂f

∂xi,2
)2 + ...+ (

∂f

∂xi,d
)2

With the saliency map to interpret CALLEE, we present
a case study of a pair from lighttpd on which CALLEE
surpasses TypeArmor. With the help of debug info, we
could map the assembly pair to source code: the callsite
is a->data[i]->fn->free(a->data[i]) in func-
tion array_free_data, and the callee is function void
array_data_string_free(ptr *p). However, Ty-
peArmor wrongly reports the callee as "non-void" function,
and thus could lead to type-matching mistakes. CALLEE
predicted the pair as "match", and the saliency map is
shown in Figure 7. In the saliency map, a token with darker
color means a larger S(x)[i], i.e. a greater contribution
to model decision, according to the definition of saliency
map. Thus in the slices of the callsite and callee, the most
important tokens are all related to the argument register
rdi, and meanwhile tokens concerning the return value
register rax has little contribution. It demonstrates that the
network indeed can capture important features of the calling
convention. In other words, the network has learned patterns
consistent with domain knowledge.

In summary, we could draw the following conclusion:
The embedding model reasonably represents tokens in a
high-dimensional space, and the Siamese neural network
can learn patterns consistent with domain knowledge.

122368

push rbp
mov rbx , rdi
sub rsp , 8
mov rdi , [rdi + 8]
test rdi , rdi
jz short loc 1AD86
call free
xor ebp , ebp
cmp r13d , ebp
jbe short loc 1ADA9
mov rdi , [r12 + rbp * 8]
test rdi , rdi
jz short loc 1ADA4
mov rax , [rdi + 10h]
call qword ptr [rax + 8]
jmp short loc 1AD8F
call free
pop rax

mov rbx , rdi
mov rdi , [rdi]
call free
mov rdi , [rbx + 20h]
call free
mov rdi, rbx
jmp free

Callsite Slice Callee slice

Figure 7: Saliency map of the pair from lighttpd.

7. Discussion and Limitations

Cross-optimization-level evaluation of CALLEE.
Cross-optimization-level callsite-callee matching, e.g. train-
ing with GCC-O0 pairs only and testing with GCC-O3
pairs, is not common in production environments. Instead,
CALLEE trains one unified model with pairs of functions
that are compiled with all optimization levels before deploy-
ment to answer users’ callsite-callee matching questions.
Nevertheless, we have compared the performance of this
unified model with the performance of multiple models
for individual optimization levels, i.e., each model is only
trained with pairs of functions compiled with the same
optimization level, and results show that our unified model
has very close performance (less than 1% F1). Thus we use
the unified model for downstream applications.

Mechanism of neural networks. Although we have
used T-SNE to visualize the distribution of token embed-
dings and calculated the saliency map of the Siamese net-
work, CALLEE is designed to provide a reference for, rather
than teaching human experts to analyze binaries, because the
robustness of interpretation of neural networks has not been
theoretically proved [80], and currently there is no standard
method to interpret DNNs for binary analysis.

Indirect jumps. Currently, CALLEE only handles icalls
and does not support indirect jumps. In general, indirect
jumps are used for switch statements or tail calls. For the
former, their targets can be recovered from the associated
jump table generated by compilers [16]. For the latter, they
are almost the same as icalls. Our solution could be extended
to support them in the same way, i.e., slicing, preprocessing,
embedding and matching with a Siamese network.

Variadic functions. Type-based solutions cannot well
support variadic functions, i.e. functions with a variable
number of arguments. While CALLEE matches callsites with
callees by apprehending their contexts and has no requests
on the arguments. As long as the instructions concerned
with arguments are all kept in the context, the network can
extract features automatically from the context.

Applicability to programs with other calling con-
ventions or in other architectures or obfuscated. The
software ecosystem has various calling conventions and
architectures. For example, for 32-bit programs using the

x86 cdecl calling convention, function arguments are passed
via the stack. Another example is that, smart contracts
written in Solidity run in a stack-based virtual machine. To
apply CALLEE to programs with other calling conventions,
one needs to adjust the current policies of slicing and
symbolization. In the same way can one apply CALLEE to
programs in other architectures or obfuscated ones. Overall,
the idea of comprehending contexts of callsites and callees
and matching them in a question-answering way is theo-
retically reasonable for all programs. We leave it as future
work.

Applicability to tasks that require a 100% recall.
Tasks such as Control-flow integrity (CFI) and binary rewrit-
ing usually require a 100% recall to avoid compatibility
issues caused by false negatives. However, due to the ran-
dom nature of neural networks, one cannot ensure neural
networks achieve a 100% recall, therefore to apply CALLEE
to those tasks, additional efforts are required to eliminate
false negatives. Actually, even TypeArmor can have false
negatives as well [24], and BPA achieves a 100% recall on
top of binary profiling. Except for binary profiling, one can
ease the false-negative problem by increasing the matching
threshold, while introducing more false positives.

Working on assembly rather than IR. Lifting binaries
to IR actually relies on indirect control-flow resolution [81].
Besides, existing binary lifting tools can generate redundant
or even incorrect IR [82]. Therefore, we believe that lifting
binaries to IR may lead to more information loss, enlarging
the difficulty for neural networks to comprehend the context.

8. Conclusion
In this paper, we present CALLEE, a transfer- and

contrastive-learning approach that effectively recognizes
icallees at the binary level. By slicing the contexts of
callsites and callees, CALLEE trains an assembly-centric
doc2vec model and a Siamese neural network to match
callsites with callees. Evaluation results show that, CALLEE
can recognize icallees with high precision and recall, and
can recover call graphs to promote downstream applications,
e.g., binary code similarity detection and hybrid fuzzing. By
interpreting the embedding model and the Siamese neural
network, we demonstrate that CALLEE learns knowledge
similar to human experts, and thus can apprehend the as-
sembly language to some extent. Therefore, we believe
that transfer-learning approaches are promising for binary
program analysis tasks.

Acknowledgment
We thank the anonymous reviewers and our shep-

herd for their insightful feedback, especially the sugges-
tion of transfer learning. This work was supported in part
by the National Key Research and Development Program
of China (2021YFB2701000, 2021YFB3101200), National
Natural Science Foundation of China (61972224, 62272265,
U1836213), and Beijing National Research Center for In-
formation Science and Technology (BNRist) under Grant
BNR2022RC01006. Any findings are those of the authors
and do not necessarily reflect the views of our sponsors.

132369

References
[1] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:

Fast and precise sparse value flow analysis for million lines of
code,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2018, pp. 693–
706.

[2] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code sim-
ilarity detection,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017, pp. 363–376.

[3] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee,
“Hfl: Hybrid fuzzing on the linux kernel,” in Network and Distributed
System Security Symposium, 2020.

[4] S. Chen, Z. Lin, and Y. Zhang, “Selectivetaint: Efficient data flow
tracking with static binary rewriting,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[5] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou,
“αdiff: cross-version binary code similarity detection with dnn,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 667–678.

[6] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” in Network and Dis-
tributed System Security Symposium, 2020.

[7] T. Cloosters, M. Rodler, and L. Davi, “Teerex: Discovery and ex-
ploitation of memory corruption vulnerabilities in {SGX} enclaves,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020, pp. 841–858.

[8] S. Jana, Y. J. Kang, S. Roth, and B. Ray, “Automatically detecting
error handling bugs using error specifications,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 345–362.

[9] Y. Kang, B. Ray, and S. Jana, “Apex: Automated inference of error
specifications for c apis,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016,
pp. 472–482.

[10] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim, “Precise and
scalable detection of double-fetch bugs in os kernels,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 661–678.

[11] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, 2011.

[12] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al.,
“Sok:(state of) the art of war: Offensive techniques in binary analy-
sis,” in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
2016, pp. 138–157.

[13] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis
in llvm,” in Proceedings of the 25th international conference on
compiler construction, 2016, pp. 265–266.

[14] ——, “Value-flow-based demand-driven pointer analysis for c and
c++,” IEEE Transactions on Software Engineering, vol. 46, no. 8,
pp. 812–835, 2018.

[15] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in GCC & LLVM,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 941–955.

[16] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[17] Hex-Rays SA, “IDA Pro: a cross-platform multi-processor disas-
sembler and debugger.” http://www.hex-rays.com/products/ida/index.
shtml.

[18] NSA, “Ghidra Software Reverse Engineering Framework.” https://
ghidra-sre.org/.

[19] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
cfi,” in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, 2015, pp. 927–940.

[20] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and

randomization for binary executables,” in Proceedings of the 2013
IEEE Symposium on Security and Privacy, ser. SP ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 559–573. [Online].
Available: http://dx.doi.org/10.1109/SP.2013.44

[21] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert,
“τ cfi: Type-assisted control flow integrity for x86-64 binaries,” in
International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2018, pp. 423–444.

[22] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida,
“A tough call: Mitigating advanced code-reuse attacks at the binary
level,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 934–953.

[23] Y. Lin and D. Gao, “When function signature recovery meets compiler
optimization,” in 2021 IEEE Symposium on Security and Privacy,
2021.

[24] S. H. Kim, C. Sun, D. Zeng, and G. Tan, “Refining indirect call targets
at the binary level,” in Network and Distributed System Security
Symposium, 2021.

[25] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman, “Deep
learning for answer sentence selection,” in NIPS Deep Learning
and Representation Learning Workshop, Montreal, 2014. [Online].
Available: http://www.dlworkshop.org/accepted-papers

[26] D. Wang and E. Nyberg, “A long short-term memory model for
answer sentence selection in question answering,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), 2015, pp. 707–712.

[27] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014,
pp. 1188–1196.

[28] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings
of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[29] Z. Li, X. Xie, H. Li, Z. Xu, Y. Li, and Y. Liu, “Cross-lingual transfer
learning for statistical type inference,” in International Symposium on
Software Testing and Analysis (ISSTA), 2022.

[30] Mozilla , “Mozilla firefox,” https://hg.mozilla.org/mozilla-central, ac-
cessed: 2020-04-24.

[31] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16,
2016, pp. 1–16.

[32] D. DARPA, “Cyber grand challenge,” Retrieved June, vol. 6, p. 2014,
2014.

[33] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt language
models to domains and tasks,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 8342–8360.
[Online]. Available: https://aclanthology.org/2020.acl-main.740

[34] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-King,
V. Ummadisetty, J. Yang, B. Ray, and S. Jana, “Stateformer: Fine-
grained type recovery from binaries using generative state modeling,”
in IEEE S&P, 2021.

[35] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Sig-
nature verification using a" siamese" time delay neural network,” in
Advances in neural information processing systems, 1994, pp. 737–
744.

[36] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural ma-
chine translation inspired binary code similarity comparison beyond
function pairs,” in Proceedings of the 2019 Network and Distributed
Systems Security Symposium (NDSS), 2019.

[37] S. Minaee and Z. Liu, “Automatic question-answering using a deep
similarity neural network,” in 2017 IEEE Global Conference on
Signal and Information Processing (GlobalSIP). IEEE, 2017, pp.
923–927.

[38] M. Yu, W. Yin, K. S. Hasan, C. dos Santos, B. Xiang, and B. Zhou,
“Improved neural relation detection for knowledge base question
answering,” in Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers),

142370

2017, pp. 571–581.
[39] W. Zhao, T. Chung, A. Goyal, and A. Metallinou, “Simple question

answering with subgraph ranking and joint-scoring,” in Proceedings
of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 2019, pp. 324–334.

[40] Zynamics, “BinDiff.” https://www.zynamics.com/bindiff.html.
[41] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,

2018, online: accessed 01-May-2018.
[42] S. Poeplau and A. Francillon, “Symqemu: Compilation-based sym-

bolic execution for binaries,” in Proceedings of the 2021 Network and
Distributed System Security Symposium, 2021.

[43] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM confer-
ence on Computer and communications security, 2009, pp. 611–620.

[44] X. Bai, L. Xing, M. Zheng, and F. Qu, “idea: Static analysis on the
security of apple kernel drivers,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
2020, pp. 1185–1202.

[45] S. Shen, S. Shinde, S. Ramesh, A. Roychoudhury, and P. Saxena,
“Neuro-symbolic execution: Augmenting symbolic execution with
neural constraints.” in Network and Distributed System Security Sym-
posium, 2019.

[46] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin, “Patch-
scope: Memory object centric patch diffing,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 149–165.

[47] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µrai:
Securing embedded systems with return address integrity,” in Network
and Distributed Systems Security (NDSS) Symposium, 2020.

[48] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu et al., “Deepintent: Deep icon-behavior learning for
detecting intention-behavior discrepancy in mobile apps,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2421–2436.

[49] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse en-
gineering of types in binary programs,” in Network and Distributed
System Security Symposium, 2011.

[50] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi, “K-miner: Uncover-
ing memory corruption in linux.” in Network and Distributed System
Security Symposium, 2018.

[51] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang,
“Pex: A permission check analysis framework for linux kernel,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1205–1220.

[52] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 463–469.

[53] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang, “Bda:
practical dependence analysis for binary executables by unbiased
whole-program path sampling and per-path abstract interpretation,”
Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 1–31, 2019.

[54] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “{X-
Force}:{Force-Executing} binary programs for security applications,”
in 23rd USENIX Security Symposium (USENIX Security 14), 2014,
pp. 829–844.

[55] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 611–626.

[56] K. Pei, J. Guan, D. W. King, J. Yang, and S. Jana, “Xda: Accurate,
robust disassembly with transfer learning,” in Proceedings of the 2021
Network and Distributed System Security Symposium (NDSS), 2021.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” in NAACL-HLT (1), 2019.

[58] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 99–116.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in

Advances in neural information processing systems, 2017, pp. 5998–
6008.

[60] W. Guo, D. Mu, X. Xing, M. Du, and D. Song, “{DEEPVSA}:
Facilitating value-set analysis with deep learning for postmortem pro-
gram analysis,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1787–1804.

[61] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters:
Semantic-aware neural networks for binary code similarity detection,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, 2020, pp. 1145–1152.

[62] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[63] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[64] Intel Inc., “Processor tracing,” https://software.intel.com/en-us/blogs/
2013/09/18/processor-tracing.

[65] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee
(north) bridge: mining memory accesses for introspection,” in Conf.
on Computer and Communication Security, 2013.

[66] H. Lu, M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v
application binary interface,” AMD64 Architecture Processor Supple-
ment, 2018.

[67] X. Li, Q. Yu, and H. Yin, “Palmtree: Learning an assembly language
model for instruction embedding,” arXiv preprint arXiv:2103.03809,
2021.

[68] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2. IEEE, 2006, pp. 1735–1742.

[69] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan,
“Repeatable reverse engineering with panda,” in Proceedings of the
5th Program Protection and Reverse Engineering Workshop, 2015,
pp. 1–11.

[70] IDAPython Team, “Idapython project for hex-ray’s ida pro,” https:
//github.com/idapython/src.

[71] Mozilla, “Mozilla top contributors,” https://support.mozilla.org/
en-US/community/top-contributors/questions?product=firefox, 2022,
online: accessed 18-August-2022.

[72] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[74] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[75] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157–166, 1994.

[76] GNU, “Gnu binutils diff,” https://github.com/bminor/binutils-gdb/
compare/68b975a...af127c2, 2022, online: accessed 15-August-2022.

[77] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, vol.
2015, 2015, pp. 2111–2117.

[78] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary
code similarity analysis using interpretable feature engineering and
lessons learned,” Transactions on Software Engineering, 2021.

[79] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[80] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks
is fragile,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 3681–3688.

[81] A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou, A. Dabrowski,
D. Gens, Y. Na, S. Volckaert, C. Giuffrida et al., “Binrec: dynamic
binary lifting and recompilation,” in Proceedings of the Fifteenth
European Conference on Computer Systems, 2020, pp. 1–16.

[82] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in 2017

152371

32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 353–364.

[83] Intel Inc., “libipt,” https://github.com/intel/libipt.
[84] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX

Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.
[85] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, and K.-W. Park, “Learning

binary code with deep learning to detect software weakness,” in
KSII the 9th international conference on internet (ICONI) 2017
symposium, 2017.

[86] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 472–489.

Appendix

1. Callsite-callee pair collection

User-mode binaries. For user-mode binaries, we first
turn off the Address Space Layout Randomization (ASLR)
for convenience, then we have tried the following methods:
• LLVM. We instrument all indirect callsites by an LLVM

machine pass. When compiling binaries, this pass iden-
tifies all indirect call instructions, and inserts a one-byte
int3 instruction before them. We then write a debugger
script to automatically catch breakpoints caused by this
instruction and record runtime information, including call-
site addresses, the callee addresses, and virtual memory
maps of the binaries (to recognize addresses resided in
shared libraries).

• Fuzzing & Intel Processor Tracing (PT). We first use
coverage-guided fuzzers such as American Fuzzy Loop
(AFL) [41] to get inputs that can cover as much code
as possible. Then run the program with these inputs, and
use Intel PT [64] to record execution traces. Finally, with
the libipt [83] decoder library, we extract indirect call
instructions from the trace, take their next instructions as
targets and make pairs.

...
0x00000000fffee96a: mov eax,ebx
0x00000000fffee96c: call 0xfffedac7

IN:
0x00000000fffedac7: mov ecx,edx
...
0x00000000fffedae8: ret

IN:
...
0x00000000fffee979: mov eax,ebx
0x00000000fffee97b: call 0xfffedac7

IN:
0x00000000fffee980: mov DWORD	PTR	[esp+0x4],eax
0x00000000fffee984: mov edx,ebp
...

Figure 8: Logging optimization of PANDA. Func-
tion call call 0xfffedac7 is continuously invoked
twice at address 0x00000000fffee96c and address
0x00000000fffee97b, but the function body (instruc-
tions) is only recorded once.

The Linux kernel. Likewise, we turn off Kernel Address
Space Layout Randomization (KASLR) when compiling the

kernel for the convenience of implementation. If KASLR
is on, addresses recorded during runtime are complicated
to be mapped back to the static addresses in the binary.
Afterward, the kernel is emulated in an open-source record
and replay platform PANDA [65], which is built upon the
QEMU [84] whole system emulator. We enable the "-d
in_asm" option of PANDA to log the target assembly code
and instruction addresses.

Kernel traces are stored in a log file, from which we
can extract the addresses of callsite-callee pairs. Usually,
the next instruction of a callsite should be the target callee,
however, there are two challenges in parsing the kernel trace
log:
• Hardware interrupt. When a hardware interrupt is encoun-

tered right after an indirect call, we do not record the
current pair, since we have no knowledge of hardware
interrupts.

• Logging optimization of PANDA. As shown in Figure 8,
when a function is invoked multiple times, PANDA may
log function body texts only once in the trace. Hence
we check indirect calls which are continuously invoked.
To avoid false callees, we only record the target of the
first indirect call (i.e. address of the first callsite’s next
instruction).

Rational behind the dynamic analysis to collect
ground truths. Recall that data as ground truths should all
be true positives. And an icall that can be invoked during
runtime without violating sanitizers is always legitimate and
thus dynamically collected icall pairs are all true positives.
Although potential legitimate pairs might be missed during
dynamic analysis, the collected ground truths are 100%
accurate. Besides, although dynamically-collected icall pairs
can be easy-to-trigger, it is orthogonal to the callsite-callee
matching because the complexity of a callsite’s control-flow
constraints does not influence the validity of its callees.

2. Detail statistics of DeepBinDiff

The performance of DeepBinDiff depends on the call
graphs it can get. In this section, we present the detailed
F1 scores of DeepBinDiff on different binaries in different
settings.

In the cross-optimization-level binary diffing setting,
the F1 scores of DeepBinDiff based on the original CGs,
CGs with random edges and CGs with edges recovered
by CALLEE are shown in Table 9, Table 10 and Table 11
respectively.

In the cross-version binary diffing setting, the F1 scores
of DeepBinDiff based on the original CGs, CGs with ran-
dom edges and CGs with edges recovered by CALLEE are
shown in Table 12, Table 13 and Table 14 respectively.

162372

TABLE 9: Cross-optimization-level binary diffing F1 scores of DeepBinDiff, based on original CGs.
Optimization Levels printenv md5sum split uniq ls who cp rmdir yes tty Average

O3 vs O2 87.8% 89.4% 91.4% 87.8% 84.8% 91.9% 92.1% 90.7% 87.6% 86.8% 89.0%
O3 vs O1 72.7% 72.9% 75.0% 69.8% 60.5% 65.8% 72.4% 64.6% 72.0% 71.6% 69.7%
O3 vs O0 9.0% 13.2% 10.6% 14.0% 8.0% 11.0% 11.8% 8.0% 11.4% 10.6% 10.8%
O2 vs O1 78.4% 78.1% 79.4% 75.7% 67.8% 68.6% 74.8% 66.9% 77.0% 77.8% 74.5%
O2 vs O0 12.9% 11.5% 11.6% 14.7% 8.6% 9.2% 14.0% 7.4% 11.4% 10.3% 11.2%
O1 vs O0 13.4% 13.7% 14.2% 15.8% 9.8% 14.2% 14.1% 10.0% 15.8% 16.4% 13.7%
Average 45.7% 46.5% 47.0% 46.3% 39.9% 43.5% 46.5% 41.3% 45.9% 45.6% 44.8%

TABLE 10: Cross-optimization-level binary diffing F1 scores of DeepBinDiff, based on CGs instrumented with random
edges.

Optimization Levels printenv md5sum split uniq ls who cp rmdir yes tty Average
O3 vs O2 83.8% 86.5% 87.1% 85.8% 81.4% 85.9% 87.9% 85.4% 84.1% 85.4% 85.3%
O3 vs O1 69.1% 71.7% 70.8% 70.1% 59.1% 64.7% 67.6% 62.6% 71.2% 71.5% 67.8%
O3 vs O0 8.1% 10.2% 8.8% 9.5% 7.8% 8.8% 11.8% 7.0% 11.8% 8.7% 9.2%
O2 vs O1 75.4% 74.1% 77.8% 73.9% 66.3% 66.2% 69.4% 67.1% 75.5% 74.6% 72.0%
O2 vs O0 10.9% 11.1% 9.4% 12.5% 8.3% 8.2% 10.3% 7.0% 10.3% 11.4% 9.9%
O1 vs O0 12.1% 14.1% 10.3% 15.6% 9.6% 14.7% 11.1% 8.8% 16.7% 15.3% 12.8%
Average 43.2% 44.6% 44.0% 44.6% 38.8% 41.4% 43.0% 39.6% 44.9% 44.5% 42.9%

TABLE 11: Cross-optimization-level binary diffing F1 scores of DeepBinDiff, based on CGs recovered by CALLEE.
Optimization Levels printenv md5sum split uniq ls who cp rmdir yes tty Average

O3 vs O2 89.7% 96.5% 99.0% 90.4% 93.0% 98.1% 96.1% 95.3% 89.4% 89.6% 93.71%
O3 vs O1 76.4% 76.0% 74.5% 76.2% 87.5% 81.5% 76.7% 81.6% 78.0% 75.4% 78.38%
O3 vs O0 27.7% 30.1% 25.6% 27.6% 18.7% 23.9% 28.7% 18.5% 27.1% 27.9% 25.58%
O2 vs O1 87.6% 93.6% 92.2% 92.7% 93.6% 94.3% 95.7% 97.6% 87.3% 86.1% 92.07%
O2 vs O0 26.8% 34.0% 28.3% 36.3% 20.4% 26.6% 30.4% 15.7% 32.7% 34.5% 28.57%
O1 vs O0 36.7% 33.3% 31.4% 37.0% 26.1% 32.3% 32.7% 24.7% 35.8% 35.7% 32.57%
Average 57.5% 60.6% 58.5% 60.0% 56.6% 59.5% 60.1% 55.6% 58.4% 58.2% 58.5%

TABLE 12: Cross-version binary diffing F1 scores of DeepBinDiff, based on original CGs.
Versions printenv md5sum split uniq ls who cp rmdir yes tty Average

v5.93 vs v8.3 61.7% 68.0% 74.3% 79.5% 76.5% 84.5% 75.5% 67.0% 68.2% 70.0% 72.5%
v6.4 vs v8.3 67.8% 77.2% 79.7% 82.2% 80.5% 87.3% 76.2% 69.5% 67.4% 71.4% 75.9%
v7.6 vs v8.3 92.5% 94.0% 97.0% 97.5% 94.5% 98.6% 93.7% 96.9% 94.7% 95.9% 95.5%
v8.1 vs v8.3 97.9% 97.9% 97.3% 98.4% 95.1% 96.7% 95.5% 97.6% 97.7% 97.2% 97.1%

Average 80.0% 84.3% 87.1% 89.4% 86.7% 91.8% 85.2% 82.8% 82.0% 83.6% 85.3%

TABLE 13: Cross-version binary diffing F1 scores of DeepBinDiff, based on CGs instrumented with random edges.
Versions printenv md5sum split uniq ls who cp rmdir yes tty Average

v5.93 vs v8.3 59.6% 68.9% 75.3% 79.1% 71.8% 82.5% 74.0% 59.7% 65.1% 69.8% 70.6%
v6.4 vs v8.3 65.5% 71.2% 72.5% 83.5% 78.9% 81.7% 73.2% 70.8% 66.7% 69.2% 73.3%
v7.6 vs v8.3 91.9% 92.8% 92.7% 96.4% 92.2% 96.7% 90.0% 93.4% 94.1% 93.1% 93.3%
v8.1 vs v8.3 97.0% 97.3% 92.6% 97.6% 93.8% 92.0% 92.3% 93.2% 95.8% 94.8% 94.6%

Average 78.5% 82.5% 83.3% 89.1% 84.2% 88.2% 82.4% 79.3% 80.4% 81.7% 83.0%

TABLE 14: Cross-version binary diffing F1 scores of DeepBinDiff, based on CGs recovered by CALLEE.
Versions printenv md5sum split uniq ls who cp rmdir yes tty Average

v5.93 vs v8.3 65.6% 79.7% 81.4% 83.5% 87.4% 84.8% 80.7% 70.7% 73.7% 74.7% 78.2%
v6.4 vs v8.3 79.5% 84.2% 88.7% 90.4% 89.1% 93.1% 85.0% 83.4% 81.2% 83.0% 85.8%
v7.6 vs v8.3 93.5% 95.4% 98.6% 96.0% 99.0% 98.0% 97.7% 95.3% 97.0% 96.3% 96.7%
v8.1 vs v8.3 98.7% 98.7% 99.1% 98.3% 99.0% 99.1% 99.5% 98.0% 99.0% 98.9% 98.8%

Average 84.3% 89.5% 92.0% 92.0% 93.6% 93.8% 90.7% 86.9% 87.7% 88.2% 89.9%

172373

3. Impact of embedding techniques

To evaluate the generalization ability of different embed-
ding techniques, we report the zero-shot performance, i.e.,
precision, recall and F1 scores when training with dcall pairs
and testing with icall pairs, of 5 common embedding meth-

As shown in Table 15, word2vec has the worst per-
formance because it does not consider the internal struc-
tures of instructions; Instruction2Vec achieves an accept-
able performance for its fine-grained instruction embedding
model. Asm2Vec [86] performs better than Instruction2Vec
but worse than PalmTree and doc2vec becasue it generates
instruction sequences by random walk, which may lead to il-
legitimate control-flow sequences and cannot guarantee code
coverage. F1-scores of PalmTree and doc2vec are close,
while PalmTree has a higher recall and doc2vec has a higher
precision. However, since PalmTree is a transformer-based

ods: Instruction2Vec [85], word2vec, PalmTree, Asm2Vec,
and doc2vec. Since Instruction2Vec and word2vec cannot
generate embeddings for instruction sequences directly, we
have averaged instruction/token embeddings to obtain the
sequence embedding.
solution, it will have a relatively low runtime efficiency.
Overall, we choose doc2vec as the embedding technique
for CALLEE.

TABLE 15: Zero-shot evaluation of embedding methods.
Embedding Precision Recall F1
word2vec 72.5% 78.4% 75.3%

Instruction2Vec 79.8% 82.7% 81.2%
Asm2Vec 92.6% 83.3% 87.7%
PalmTree 88.2% 90.1% 89.1%
doc2vec 93.0% 85.9% 89.3%

182374

