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Abstract—Unauthorized covert voice recording brings a re-
markable threat to privacy-sensitive scenarios, such as confi-
dential meetings and private conversations. Due to the minia-
turization and disguise characteristics, hidden voice recorders
are difficult to be noticed in their surroundings. In this paper,
we present DeHiREC, the first proof-of-concept system that can
detect offline hidden voice recorders from their electromagnetic
radiations (EMR). We first characterize the unique patterns of
the emanated EMR signals and then locate the EMR source, i.e.,
the analog-to-digital converter (ADC) module embedded in the
mixed signal system-on-chips (MSoCs). Since these unintentional
EMR signals can be extremely noisy and weak, accurately
detecting them can be challenging. To address this challenge, we
first design an EMR Catalyzing method to stimulate the EMR
signals actively and then employ an adaptive-folding algorithm to
improve the signal-to-noise ratio (SNR) of the sensed EMRs. Once
the sensed EMR variation corresponds to our active stimulation,
we can determine that there exists a hidden voice recorder.
We evaluate the performance of DeHiREC on 13 commercial
voice recorders under various impacts, including interference
from other devices. Experimental results reveal that DeHiREC
is effective in detecting all 13 voice recorders and achieves an
overall success rate of 92.17% and a recall rate of 86.14% at a
distance of 0.2 m.

Index Terms—hidden voice recorder, electromagnetic radiation
(EMR), analog-to-digital converter (ADC).

I. INTRODUCTION

Unauthorized voice recording has become one of the great-

est threats to commercial secrets and personal privacy [1]. It is

estimated that the leakage of trade secrets can cause more than

billions of dollars of loss every year [2]. With the proliferation

of micro-electromechanical system (MEMS) microphones,

voice recorders are getting smaller in size, and therefore also

become harder for human to notice especially when they are

hidden, e.g., in a pocket or underneath a document. Some voice

recorders are even designed in disguise of regular pens or USB

sticks [3]. Therefore, in secured conference rooms such as

Sensitive Compartmented Information Facility (SCIF), where

smartphones and laptops are generally prohibited or strictly

inspected, detecting the presence of hidden voice recorders

is essential for protecting confidential meetings and private

conversations.

†Corresponding author
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Fig. 1. Illustration of DeHiREC. An attacker attempts to secretly carry a
hidden voice recorder and then surreptitiously record a confidential meeting
or a private conversation. DeHiREC detects the recorder by screening and
verifying the unintentional EMR signals leaked from the voice recorder.

However, detecting a hidden voice recorder is non-trivial

because voice recording is essentially a passive process. Un-

like active sensors such as radars and night-vision cameras,

microphones by design do not actively emit any signals to

the environment; they only passively measure the vibrations

induced by sounds and convert them to electrical signals

for sampling and storage. In addition, most voice recorders

work offline, meaning that they do not initiate any wireless

connections. They are also battery-powered and do not leak

any traces in the powerline. All of the above evidence suggests

that existing methods on detecting hidden cameras, e.g., by

the infrared radiation [4], wireless traffic [5]–[8], or power

traces [9], cannot apply to hidden voice recorders.

This paper aims to detect hidden voice recorders despite

of these challenges. Our key insight is that although voice

recording is passive, all electronic devices will inevitably emit

electromagnetic radiations (EMR) to the environment due to

the variation of currents. We believe voice recorders are no

exception. Therefore, we may be able to detect a functioning

hidden voice recorder if we can receive and identify its unique

EMR traces over the air. To achieve this goal, we need to

answer the following research questions.

• RQ 1: what are the characteristics of the EMR traces

leaked from a voice recorder?
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• RQ 2: how to verify that the EMR is indeed generated

by a voice recorder when there can be interference from

other devices in a similar spectrum?

• RQ 3: how to effectively measure an extremely weak

EMR from a voice recorder that is typically low-powered,

especially when it is covered or at a distance?

We first conduct a feasibility analysis to investigate RQ
1&2. Our spectrum analysis observes that the EMR peaks of

voice recorders appear around the devices’ clock frequencies

with an equal interval, which we assume is a result of signal

coupling inside the circuits. Additional hardware analysis

suggests that the analog-to-digital converter (ADC) module

integrated in the mixed signal system-on-chip (MSoC) is a

primary source of such radiations, and the equal interval on

the spectrum presents the ADC clock frequency. Nonetheless,

signals in a similar frequency band may interfere with the

detection, especially those radiated from devices that adopted

a similar type of MSoC such as loudspeakers. To increase

the confidence, we seek for potential EMR patterns that

are unique to voice recorders. As the strength of EMR is

closely related to the current amplitude, our key idea is to

actively change the current flowing through the ADC and

simultaneously measure the EMR variation for correlation.

In light of prior work illustrating that ultrasound [10] and

electromagnetic interference (EMI) [11] can inject signals into

microphones inaudibly, we perform proof-of-concept experi-

ments and verify the idea’s feasibility with EMI injection. We

name such an active stimulation method as EMR Catalyzing,

which follows the overarching “probe-respond-detect” design

principle with [12]–[15] but is the first method that can actively

change the EMR strength radiated from the ADCs and derive

the unique feature of the variation to identify hidden voice

recorders.
Based on the feasibility analysis, we propose DeHiREC,

the first proof-of-concept system that can detect hidden voice

recorders from their electromagnetic radiations. In particular,

to increase the signal-to-noise ratio (SNR) for weak EMRs

(raised in RQ 3), we propose an enhanced signal processing

algorithm, called adaptive-folding, which folds the spectrum

with a phase alignment method to accumulate the EMR peaks

and boost detection. Using this method, we are able to increase

the detection distance from a few centimeters to a maximum

of 0.5 m with our lab-grade equipment. Our evaluation in a

meeting scenario on 13 consumer voice recorders of different

makes and shapes under the interference of other 21 electronic

devices shows that DeHiREC can effectively detect all of the

voice recorders when they are hidden with an overall success

rate of 92.17% and a recall rate of 86.14% at a distance of

0.2 m. As the initial work on detecting hidden voice recorders,

we believe the proof-of-concept detection method can also

provide new insights and inspirations to the detection of other

hidden devices in different scenarios.
Our Scope. DeHiREC is designed to catch attendees that

sneak hidden voice recorders into a meeting hosted in a

secured conference room, where smartphones and laptops

are generally prohibited or strictly inspected. As the location

Mic.
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Fig. 2. The workflow of a typical voice recorder. Notably, there are two
common types of ADCs, i.e., SAR-ADC and ΣΔ-ADC, and they vary in the
clock frequency.

of people is easy to predict in the conference room, we

envision that the host can use DeHiREC to protect confidential

meetings and private conversations with a proper setup of the

system beforehand, as illustrated in Fig. 1.

In summary, this paper makes the following contributions.

• We discover the shared EMR patterns resulting from the

ADCs embedded in the MSoCs and show that they can

be used for the detection of hidden voice recorders.

• We propose EMR Catalyzing, an active stimulation

method that can trigger an ADC’s EMR to vary in

reaction of EMI. We show that it can be used to uniquely

identify voice recorders and increase the confidence.

• We design DeHiREC, the first proof-of-concept system

enabled with our enhanced adaptive-folding algorithm

that can detect hidden voice recorders based on weak

EMR signals. Our evaluation on 13 voice recorders and

21 interfering devices demonstrates its effectiveness.

II. BACKGROUND

In this section, we describe the architecture and workflow

of a typical voice recorder and two common types of ADCs

adopted in voice recorders. Additionally, we introduce some

background on electromagnetic radiation of MSoC.

A. Voice Recorder

A voice recorder is an electronic device that converts analog

voice into a digital signal. Fig. 2 presents the typical architec-

ture and workflow of a voice recorder. First, the microphone

records external voice through sound vibration and converts

it into an electrical signal. The amplitude of such electrical

signals will increase as the voice intensity grows, generally

reaching a maximum of 250 mV [16]. Second, an external

amplifier is employed to increase the recorded analog signal.

Third, the system on a chip (SoC) utilizes a programmable

gain amplifier (PGA) to adaptively adjust the amplitude of the

input signal via automatic gain control (AGC) and leverages

a low-pass filter (LPF) to remove the high-frequency noise.

Finally, the built-in ADC of the SoC will convert the analog
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Fig. 3. The illustration of the energy distribution of a 48 MHz spread clock
signal.

signal into a digital signal, which is further sent to a digital

signal processor (DSP).

There are two common types of ADCs used in the voice

recorder, i.e., successive-approximation ADC (SAR-ADC) and

Sigma-Delta ADC (ΣΔ-ADC). Fig. 2 presents their block

diagrams. A common SAR-ADC generally consists of four

sub-circuits: a sample-and-hold (S-H) circuit, an analog volt-

age compactor, an internal reference DAC, and a successive

approximation register. When a new conversion starts, the

input signal is sampled by the S-H circuit and then compared

multiple times to the reference voltage. Finally, SAR-DAC

stores the results and outputs the digital signals until a whole

conversion finishes. Compared with SAR-ADC, ΣΔ-ADC

concentrates the high-frequency noise in the analog signals

by oversampling and noise shaping, and then removes it

through a digital filter. Thus, ΣΔ-ADC can achieve a higher

resolution than SAR-ADC. Specifically, the resolution of ΣΔ-

ADC can be up to 24-bits while the one of SAR-ADC

generally ranges from 8-bits to 16-bits. Notably, the number

of ADC bits determines the recorder’s resolution and affects

its clock frequency. Generally speaking, the clock frequency

required for SAR-ADC is below 10 MHz, while that for ΣΔ-

ADC is in the range of 10-30 MHz.

B. EMR of MSoC

Maxwell’s equation along with Lorentz force law describes

how electric and magnetic fields are generated by charges,

currents, and changes in the fields [17]. They also demonstrate

how fluctuating electric and magnetic fields propagate in

space, which is known as electromagnetic radiation. Since

an MSoC is composed of digital, analog, and power circuits,

the time-varying current flow inside the MSoC will always

cause an EMR [18]. Existing techniques and regulations

on electromagnetic interference (EMI) and electromagnetic

compatibility (EMC) have made much effort to reduce the

unintentional EM emanations leaked from MSoC. However, it

is still inevitable that MSoC will produce EMR at the clock

frequency when there are fluctuating currents.

Therefore, when we use a near-field probe close to any

exposed MSoC that is running, we can get a result similar to

Fig. 3, which is the EMR signal power spectrum of a 48 MHz

clock MSoC. The peak shape in Fig. 3 indicates that the peaks

will appear in a range when we take a long-time FFT window,

around 1 second. The simplest form of a clock is a square wave

of which the energy is all concentrated at the fundamental

frequency or harmonics of the clock frequency. However, this

leads to a high EMR intensity that may violate the regulatory

requirements for EMC. To walk around this issue, modern

clock generators use spread-spectrum techniques to reshape

the energy distribution of the clock [19]. In other words,

the oscillator on the chip will generate a clock output that

varies within a certain range, generally -8% to +8% of the

calibration frequency. Therefore, when we capture the RF

leakage generated by clock signals, we will find that the power

distribution changes among different samplings.

III. THREAT MODEL

The attacker’s goal is to surreptitiously record the contents

of a confidential meeting or private conversation with a hidden

voice recorder described in Fig. 1. As a detector, DeHiREC
tries to detect the above hidden voice recorders among com-

plex environments during the meeting.

A. Attacker Model

We make the following assumptions about the attackers.

Type of Voice Recorder. Considering that a confidential

meeting may deploy signal blocking devices to disable the

network connection, we assume that the malicious attacker

prefers to use voice recorders without wireless transmitters,

e.g., Wi-Fi or Bluetooth. Nevertheless, the attacker can use

the recorders with wireless transmitters and DeHiREC can

detect it. Moreover, we have no restrictions on the appearance

and the manufacturer of the voice recorder. For example, the

attacker may choose a pen-like voice recorder due to its high

stealthiness.

Location of Voice Recorder. In the conference room, we

assume that the voice recorder is placed in proximity to the

attackers while the location of the attackers is relatively fixed.

As such, the attacker may put the hidden voice recorder in

the pocket, under the desk, on the chair, and so on. Thus, it

is convenient for the attacker to have full control of the voice

recorder, such as choosing whether and when to start or stop

recording.

In addition to the type and location of voice recorder,

we assume that the attacker has no prior knowledge of our

detection system, i.e., he doesn’t know whether the detection

system exists and where it is.

B. Capability of the Detection System

Detection Equipment. The RF capturing device can capture

the signal whose frequency band matches with that of the EMR

signal of the voice recorders. A typical detection system of

DeHiREC shall consist of the following devices: 1) broadband
antenna that can emit and capture the RF signal, 2) low noise
amplifier (LNA) that can amplify weak signals, 3) software
defined radio (SDR) that can down-convert and digitize the

signal, and 4) PCs that can analyze the characteristics of EMR

spectrum and run detection algorithms remotely.

Location of DeHiREC. The DeHiREC system can be

placed anywhere in the meeting room to be protected. To

achieve a better detection performance, we can deploy multiple
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detection devices near each seat in the confidential meeting

room in advance. Moreover, these detection devices can be

embedded into tables, chairs, or other decorations to improve

their concealment.

Environment. In a scene of a confidential meeting or

privacy conversation, there will inevitably be various other

electronic devices, especially some legal or authorized record-

ing devices, which will also generate EMR and interfere

with the detection. However, as a detector, the system should

know the positions of the above-mentioned devices and the

characteristics of their EMRs to mitigate such interference.

IV. PRINCIPLE OF DEHIREC

To clarify why recorders can be detected by the radiated

EMR, we first conduct a preliminary experiment to investigate

the characteristics of the EMR signals from voice recorders.

Then we locate these EMR signals and investigate their

causes in order to devise a validation method to uniquely

determine the EMR signal from recorders. Finally, we design

an algorithm to boost the strength of the weak signals from

a low-powered voice recorder in order to achieve a longer

detection distance.

A. Characterizing the EMR Signals from Voice Recorders

Since every electric device generates more or less EMR,

we focus on the particularity of the recording process to avoid

interference from other devices during detection.

1) Experimental Setup: To show the generalizability, we se-

lect 13 voice recorders on a top online shopping website based

on the ranking of sales volume. For those with similar sales

volume, we try to diversify the selection by choosing recorders

with different appearances or shell materials such as plastic,

glass, and metal. Table II presents the model, MSoC type,

ADC type, and shell material of 13 voice recorders. While

the voice recorder is recording offline, i.e., not transmitting

data through a wireless channel, we use a near-field probe

to sense the EMR signals leaked from the voice recorder.

To mitigate signal attenuation, we take off the metal shell of

the voice recorders during the feasibility test. The distance

between the probe and the target voice recorder is set to

3 cm. We search for the EMR components over a wideband

that ranges from 20 MHz to 1 GHz. Meanwhile, the near-

field probe is connected to an LNA that can amplify the weak

signals with a gain of 35 dB. Next, the amplified signals are

down-converted and digitized by SDR. Finally, we utilize a

laptop to analyze the spectrum of received EMR signals and

perform signal processing algorithms.

2) Experimental Results: The characteristics of captured

EMR signals are provided in Table II, and Fig. 4 shows an

example of the signal power spectrums of Sogou C1 and iFLY

B1 for the follow-up analysis. We derive three observations

from the preliminary test.

First, all voice recorders have EMRs in the frequency
band of about 20-150 MHz. In addition, the characteristics of

the signals become more stable with the times of capturing in-

crease, as can be seen from the comparison between Figs. 4(a)

and 4(d), which represents a single sample, with Figs. 4(b)

and 4(e), which represents an average of 100 samples.

Second, the leaked signals appear as equally spaced
peaks on the power spectrum, i.e., present a stable period-
icity. The peaks in the power spectrum of EMR signals from

different recorders can be various. Take Sogou C1 and iFLY

B1 for example, the average peak intervals are 3.2264 MHz

for the former and 24.0729 MHz for the latter according to

Fig. 4(b) and Fig. 4(e).

Third, the EMR signals are strongly related to the modes
of the voice recorder. Fig. 4(b) and Fig. 4(c) present the power

spectrum of Sogou C1 under two modes, i.e., recording and

standby. The average peak interval is around 26.0013 MHz

when the voice recorder is on standby while the one is about

3.2264 MHz when the voice recorder starts recording. The

same phenomenon also occurs on the iFLY B1 according to

Fig. 4(e) and Fig. 4(f). Thus, we infer that the recording

process introduces extra EMR signals.

Through the above preliminary experiment, we character-

ize the features of the EMR signals emanated from voice

recorders, which can be further utilized to perform hidden

voice recorder detection.

B. Why Do Voice Recorders Emit EMRs: ADC Induced

Here we dig out the EMR sources inside the voice recorder

and explain the reason why the EMR signals vary under

different modes. Comparing Fig. 4(b) with Fig. 4(c), as well

as Fig. 4(e) and Fig. 4(f), we find that the EMR signals are

similar to the modulation of two components, which we call

carrier and baseband respectively.

Carrier. In Fig. 4(c), the average peak interval of Sogou

C1 on standby mode is 26.0013 MHz, which is the same

frequency as the system clock of MT2523S according to its

datasheet [20], i.e., the MSoC used in Sogou C1. Meanwhile,

the shape of these peaks matches the spectrum patterns of the

clock that are reshaped by spread spectrum techniques. Thus,

we infer that the carrier of the EMR signals is derived from

the system clock of the MSoC, and it will exist whenever the

recorder is on. iFLY B1 also has a 48 MHz clock carrier with

the same characteristics according to Fig. 4(f).

Baseband. Fig. 4(b) reveals that the power spectrum of the

EMR under the recording mode not only contains all peaks of

the carrier but also brings extra peaks with an average peak

interval of 3.2264 MHz. This number corresponds to the clock

frequency of the ADC module used in the MT2523S [20].

Similarly, 24.0729 MHz in Fig. 4(e) is also the ADC’s clock

frequency of iFLY B1. The measured peak intervals of the

other 11 voice recorders in Table II also match with their

ADC clocks as well. As a result, we infer that the baseband

of the EMR signals is derived from the ADC module.

In sum, we make the hypothesis that the EMR signal of
a voice recorder is mainly derived from the system clock’s
EMR (i.e., the carrier) onto which the ADC’s EMR (i.e.,
the baseband) is modulated. In other words, the EMR signals

of the system clock and the ADC within the same chip will
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(a) Single sampling of Sogou C1 (b) 100-times average of Sogou C1 (c) Standby of Sogou C1

(d) Single sampling of iFLY B1 (e) 100-times average of iFLY B1 (f) Standby of iFLY B1

Fig. 4. The power spectrum of the EMR emanated from two voice recorders, Sogou C1 and iFLY B1. The first column is the results of single sampling
while the second column represents 100-times average samples under recording. The third column is the EMRs when two recorders are on standby but not
recording. We use the red horizontal line to distinguish the signal component from the noise. Results reveal that the peak interval of different voice recorders
can be various, yet present a stable periodicity. Also, the power spectrum of the EMRs emanated from recorders is different under two modes, i.e., standby
and recording.
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Fig. 5. The power spectrum of the EMR signals emanated from Sogou C1
with or without a microphone under recording mode. An illustration of the
wire we disconnected is on the right.

be coupled and emanate to the outside. The frequency of this

EMR signal can be formalized as the following.

fEMR = k · fclk ± l · fadc k ∈ N+, l ∈ N (1)

where fclk and fadc denote the frequency of system clock and

ADC clock, respectively.

Besides the numerical results of the above preliminary ex-

periments matching our hypothesis, we also conduct a separa-

tion experiment to further validate our hypothesis. Specifically,

we manually disassemble a voice recorder (Sogou C1) and cut

off the wire connecting the microphone and the MSoC. Then

we compare the EMR signals of the voice recorder with or

without the microphone. Fig. 5 depicts the resulting power

spectrums, showing that the strength of the EMR without a

microphone is much lower than the one with a microphone.

This is because the power consumption of the ADC module

is related to the input of the microphone, which can be

represented as an AC voltage with a DC bias.

Above all, we successfully locate and validate the EMR

sources inside the voice recorders, i.e., the system clock and

the ADC module. However, it still leaves us a challenge that

whenever we find a suspicious signal with similar character-

istics, how can we validate whether it is from a hidden voice

recorder?
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Fig. 6. The power spectrum of the EMRs under two stimulations. Results
show that electromagnetic interference can significantly increase the intensity
of EMR, yet inaudible sound injection presents poor performance.

C. Identifying the EMR from a Voice Recorder

During a real-world detection, signals coming from other

devices will inevitably interfere with our judgment on the

EMR of the voice recorder, especially the devices that also

run the ADC module. Therefore, we need to separate or verify

the component belonging to the EMR of voice recorders from

a power spectrum. Recall from the finding that the strength of

the emanated EMR signals is highly related to the fluctuating

current that comes from the microphone. As such, the problem

of signal identification can be transformed to find a method to

stimulate the input current of the ADC module actively, which

will then make the strength of EMR changes correspondingly.

Notably, our detection system cannot make physical contact

with the hidden voice recorder directly as well as alert the

malicious attacker. Thus, our proposed method shall be non-

contact and covert. Motivated by previous work (i.e., Dolphi-

nAttack [10] and GhostTalk [11]), we propose two candidate

active stimulation methods.

• Increase the microphone’s output: Intuitively, the am-

plitude of the microphone’s output will affect the input

current of the ADC module. Thus, we can leverage

inaudible sound injection [10] to increase the output of

the microphone covertly.

• Increase the transmission current: GhostTalk [11] has

validated that EMI can affect circuits by inducing volt-
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(c) Lenovo C2 (Plastic)

Fig. 7. Comparison of the power spectrum of the EMR signals generated by three voice recorders before and after the catalyzing, the shell material of the
recorder is indicated in brackets.

ages on wires. Thus, we can increase the input current

of the ADC module via electromagnetic interference

directly.

We follow the same device setups as the above two works,

and Fig. 6 presents the performance of the two methods.

Results reveal that electromagnetic interference (red line) can

significantly increase the strength of EMR signals, yet inaudi-

ble sound injection (blue line) presents poor performance. This

is because the increment introduced by the inaudible sound

injection is limited by the maximum output of the microphone,

while the EMI bypasses the microphone and couples directly

into the wire.

EMR Catalyzing. To answer RQ2, we design EMR cat-

alyzing, which emits an EMI bait signal to actively change

the EMR strength of the recorders. Intuitively, the larger the

intensity of EMR variation, the easier it is to identify the signal

component emits from a hidden voice recorder in a spectrum.

Moreover, the induced voltage caused by the EMI reaches

the maximum when the frequency of the injected EMI signal

matches the resonant frequency of the receiving circuit. Thus,

the key to improving the intensity of EMR signals is to find

the most effective EMI frequency.

We notice that the built-in microphone of a voice recorder

is typically separated from the PCB mainboard, and they are

connected with a wire. Meanwhile, the length of this wire can

be similar (i.e., about 3 cm) among various kinds of voice

recorders due to the size limitation. This observation makes

it possible to find an available EMI frequency that can be

applied to different voice recorders. According to Maxwell’s

equations, the frequency of the available EMI signal heavily

relies on the electrical length of the receiving antenna, which

can be formulated as f = c/20l, where c is the light speed

and l is the length of the antenna [21].

In our case, the length of the antenna (i.e., the wire) is

typically 3 cm. Thus, the frequency of our generated EMI

shall be higher than 500 MHz. To search for the optimal

frequency, we modulate a 1 kHz sine signal on a high-

frequency carrier which ranges from 400 MHz to 1.5 GHz.

Although the optimal coupling frequencies differ among each

recorder, we can observe stable and various increments of the

EMR produced by 13 voice recorders in Table II when the

frequency of the EMI signal is set to 980.00 MHz. Fig. 7

gives an illustration of the signal gain brought by the EMR

catalyzing method for three recorders, which represent three

shell materials respectively.

In sum, once we find a suspicious signal with similar char-

acteristics to the voice recorder, we will inject EMI signals to

perform a secondary confirmation. If the intensity of the EMR

signals increases after the active stimulation, we determine it

as a voice recorder.

D. Augmenting the Strength of the Weak EMR Signals

The above preliminary experiments have demonstrated the

feasibility of exploiting EMR signals leaked from the MSoC

for hidden voice recorder detection. However, since the origi-

nal EMRs from voice recorders are generally weak, we try to

improve the SNR of the received signals algorithmically.

Thus, we utilize the folding algorithm, which is generally

used for amplifying periodic astronomical signals. For a

known spectrum, the objective of folding algorithm is to search

for a signal with a period of T , then divide the spectrum

according to the time window T , and fold up all the small

segments. When T is equal to the period of the signal, the

energy of the signal will become stronger after folding, while

the noise will be balanced out due to its randomness. In our

scenario, when the window T is equal to the ADC clock

frequency of the recorder, the SNR of EMR after folding will

be greatly enhanced.

However, We also notice that in Fig. 4 although the peaks

are distributed at intervals, the precise interval value of each

adjacent peak is not fixed. Such characteristics may be due

to the spread spectrum techniques of the clock, or the noise

interference. In any case, we need to optimize the folding

algorithm to better improve the SNR.

Adaptive-folding Algorithm. For this purpose, we design

a new optimization algorithm, called adaptive-folding. The

core of this algorithm is to align the phase of the peaks in

each segment before folding. Specifically, we find the peaks

in each segment and shift the power spectrum according to

the deviation, so that the peaks can be located in the same

position.

Fig. 8 shows an example of the normalized spectrums

containing EMR signals of Sogou C1 which are measured

from different distances. The red line represents the signal

component after folding and the blue line represents that after

adaptive-folding. The calculated SNRs indicate that adaptive-

folding has a better effect compared to folding. In Fig. 8(f),

we can hardly find the peaks of the original signal, the black

line, by visual search at a distance of 30 cm. However, we

can achieve a 7.23 dB gain after adaptive-folding, which is

enough to be distinguished from changes in noise.
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Fig. 8. Effects of detecting evenly spaced peaks using folding (red) or adaptive
folding (blue) algorithm. The grey line represents the original EM signal, and
the threshold about 3 dB for criterion is marked by cyan line. The adaptive-
folding algorithm can effectively improve SNR.

Besides, we also compare the performance of our adaptive-

folding algorithm with other weak signal detection algorithms,

which are folding, fast fourier transform (FFT), and variational

mode decomposition (VMD). We use the original spectrum in

Fig. 8 as input to evaluate the effect of the above algorithms.

Table I shows the comparison between the four algorithms, and

we can conclude that the effects of the four algorithms are all

well when the original signal component is obvious. With the

attenuation of the signal, the robustness of our adaptive-folding

algorithm is revealed.

The reason why the folding algorithm has always been

inferior to the adaptive-folding algorithm is due to some signal

loss since the peak interval is not a fixed value in the spectrum.

Meanwhile, the FFT and VMD algorithms perform poorly at a

distance. Briefly, FFT fails to identify the peak interval due to

its poor resolution. VMD algorithm is able to decompose the

spectrum but shows an insufficient ability to detect periodic

signals with severe attenuation.

Overall, by using the adaptive-folding algorithm, we are

able to improve the SNR of the EMR signal, thereby increasing

the detection distance.

V. DEHIREC

Based on the EMR catalyzing and adaptive-folding al-
gorithm, we propose our detection system DeHiREC and

provide its detailed design as follows. Fig. 9 presents the

overview of DeHiREC, which can be mainly divided into

two stages. The role of Stage 1 is to determine whether there

TABLE I
THE COMPARISON BETWEEN ADAPTIVE FOLDING, FOLDING, FFT AND

VMD ALGORITHMS UNDER VARIOUS DISTANCE.

Distance
SNR

Adaptive-folding Folding FFT VMD

1 cm 36.48 dB 26.82 dB 22.63 dB 29.14 dB

5 cm 24.48 dB 13.65 dB 8.44 dB 9.58 dB

10 cm 22.32 dB 9.19 dB 3.65 dB 4.11 dB

15 cm 16.59 dB 7.57 dB 2.82 dB 2.69 dB

20 cm 12.79 dB 3.10 dB 1.42 dB 2.03 dB

30 cm 7.23 dB 1.48 dB 0.00 dB 0.21 dB

exists a suspected EMR signal with the characteristics of a

voice recorder. Once there is, the system moves on to Stage
2, where stimulation and verification are performed to actively

distinguish whether the signal is from a voice recorder.

A. Stage 1: Preliminary Screening

Through capturing and processing the RF signals in the

surrounding environment, DeHiREC firstly analyzes whether

there are suspected spectrum characteristics caused by a voice

recorder. We define one screening here as the average value

of continuous 100 samples of collected EMR signal, thus

ensuring that the influence of noise can be reduced.

Candidate Peak Search. Once the system completes a

round of screening and captures the RF signal data, it immedi-

ately starts to search for potential peaks. The interval between

every two peaks is then calculated to determine if there is a

dominant frequency. Recall from Section IV, we focus on the

clock frequency of the ADC module in the voice recorder,

which is basically between 2 MHz and 30 MHz.

Adaptive Segmentation. After a dominant frequency is

obtained, the system will perform spectrum segmentation and

then adaptive-folding. After that, we compare the noise with

the folded peak to calculate the SNR, denoted as ξsignal.

Frequency Feature Extraction. When the inequality in

Eq. (2) is satisfied, we consider it to be a suspected signal and

mark the frequency of peaks and intervals fpeak automatically

to facilitate tracking.

Ave(

1000∑

1

ξsignal) ≥ η (2)

After measuring 100 samples of the noise in a laboratory en-

vironment, we calculate the difference between the maximum

and average value of noise power is approximately 2.6 dB.

Considering a certain margin, we position the threshold η at

3 dB. We will also evaluate the impact of η on the detection

accuracy in Section VI.

ADC Database Matching. To determine whether the fpeak
might come from a recorder’s EMR, we match it against the

ADC database. This database is collected by ourselves, i.e., the

ADC clock frequency of each MSoC in Table II. When this

matching holds, the system will consider this to be a suspected

EMR signal and enter the second stage.
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Fig. 9. Overview of DeHiREC. (1) Preliminary Screening: find the suspected spectrum by peak searching, adaptive segmentation and feature extraction. (2)
Stimulation & Verification: comfirm the signal by EMR catalyzing, adaptive-folding, SNR calculation and comparison.

B. Stage 2: Stimulation & Verification

Once there is a suspicious EMR signal, we start to conduct

EMR catalyzing to verify. The key for DeHiREC is to observe

whether the tailored bait signal can cause changes in the power

spectrum.

EMR Catalyzing. During frequency sweeping in Sec-

tion IV, we observed that the increments of all recorders

will dynamically change, and the frequencies of the highest

increment are all distributed in a band of 900-1050 MHz.

Therefore, in order to ensure the EMI has a better coupling

effect for each recorder, we consider emitting an EMI signal

that modulates a 1 kHz sine signal on a multi-frequency

carrier composed of 900, 940, 980, and 1020MHz for EMR

catalyzing.

DeHiREC collects the EMR signal while the EMI is emit-

ting, define one stimulated sample here as the average value

of continuous 100 samples of collected EMR signal.

Adaptive Folding & SNR Calculation. To quantify the

change in EMR strength, we define the ξinject represents

the SNR under EMR catalyzing. After adaptive-folding the

spectrum with the marked intervals fpeak, the ξinject are

generated.

Ave

1000∑

1

(ξinject − ξsignal) ≥ η (3)

Verification. Due to the presence of noise and other inter-

ference, we apply the threshold η in the first stage again to

determine the amount of change produced in the stimulation.

Finally, if Eq. (3) is satisfied, we determine that there is

a synchronous change on the spectrum and a hidden voice

recorder is located nearby.

VI. EVALUATION

In this section, we describe our experimental setup and

evaluate the performance of DeHiREC. We start by examining

the SNR and TPR under various distances when there are no

other devices and evaluating the impact of different factors.

We then consider the case when there are interference devices

trying to confuse the system. Finally, we evaluate the detection

accuracy in a real-world scene.

Fig. 10. The experimental setup for DeHiREC is composed of two categories.
(1) EMR receiver (right). We adopt a whip antenna to capture the weak EMR
signals, connecting to a low noise amplifier to filter noise and amplify the
signal. The EMR signal is then transmitted to the laptop by USRP and then
adopt signal analysis. (2) EMI transmitter (left). We modulate the baseline
signal and carrier by USRP and amplify the EMI signal by the power amplifier.
The generated EMI signal is emitted by a whip antenna.

Fig. 11. The appearance (left) and internal PCB circuit (right) of 13 chosen
recorders, the label applies to both figures. We use the white boxes to indicate
the positions of MSoCs.

A. Experimental setup

Equipment. The equipment utilized in our experiment can

be divided into two categories: the EMR receiver and the EMI

transmitter. For the EMR receiver side, we use the USRP

(Universal Software Radio Peripheral) N210 [25] with two

kinds of receiving antennas (i.e., a magnetic field probe NFP-

3 from 30 MHz to 3 GHz [26] and a portable whip antenna

GT512 from 20 MHz to 512 MHz) to sense the EMR signals

leaked from the voice recorder. Then an LNA-250 low noise

amplifier [27] is utilized to further augment the sensed signals

and remove extra noise. For the EMI transmitter side, we adopt

a USRP B210 [28] and an MPA-10-40 power amplifier [29]

(typically 30 dB gain) to generate the EMI signal and use a

portable whip antenna (850 MHz to 1200 MHz) to emit. The

emitting EMI signal power we measured at 50 cm away from

the antenna is 18 dBm, which is 64 milliwatts. Fig. 10 presents

the overview of our experimental setup.

Environment. In order to minimize uncontrollable inter-
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TABLE II
DETAILED INFORMATION AND OVERALL PERFORMANCE OF 13 VOICE RECORDERS. THE LAST 5 COLUMNS ARE THE RESULTS FROM OUR EXPERIMENTS.

Record Model MSoC Type Shell Material ADC Type
ADC Clock Frequncy Peak Interval Max Distance d = 10 cm

(MHz) Min(MHz) Max(MHz) (cm) SNR(dB) TPR

Sogou C1 MT 2523S [20] Plastic SAR 3.25 3.2168 3.2587 42 21.67 100%

Sogou C1 pro RTL 8722CS [22] Plastic SAR 5 4.8932 5.1052 30 19.56 98%

Newsmy V03 ATJ 2127 [23] Metal ΣΔ 24 23.8913 24.3085 15 7.64 88%

Newsmy XD01 MT 2523S Metal SAR 3.25 3.2212 3.2701 16 6.13 86%

Newsmy RV100 WS 200 Metal ΣΔ 12 11.7852 12.1855 15 7.82 88%

Aigo R6811 ATJ 2127 Metal ΣΔ 24 23.5140 24.2502 22 8.65 92%

Aigo R8822 ATJ 3315 [24] Metal ΣΔ 24 24.0342 24.8463 23 7.64 92%

Lenovo C2 ATJ 3315 Plastic ΣΔ 24 23.7901 24.5103 34 15.58 98%

Shinco RV-18 JL AC6901 Plastic SAR 6 5.8161 6.2299 33 14.11 96%

Lenovo B460 AK 2115C Plastic ΣΔ 24 23.7193 24.1712 40 13.24 98%

iFLY TEK H1 ATS 2837 Glass ΣΔ 24 23.8748 24.9912 55 13.27 96%

iFLY TEK B1 ATS 2837 Plastic ΣΔ 24 23.6139 24.1062 39 22.76 100%

Philips VTR5102 ATS 2837 Glass ΣΔ 24 23.7035 24.3313 45 19.77 99%

SN
R

 (d
B)

3dB

Fig. 12. The effect of the adaptive-folding algorithm. Each line represents
the trend of EMR’s SNR of a recorder with distance. The distance below the
red line (3 dB) is considered undetectable due to noise interference.

ference, we conduct most of the experiments excluding real-

world scenes in an EM shielded and silent room. For those

experiments to evaluate performance under various impacts,

we will explain the specific setups clearly at the beginning of

each subsection.

Evaluation Metrics. We adopt the following metrics

throughout the evaluation. As a premise, we consider voice

recorders that are recording as the “positives" for our system,

and any device else should be a “negative".

• SNR: characterizes the ratio of the EMR signal power to

the noise power.

• True Positive Rate (TPR): characterizes the probability

that the system correctly detects the positive samples.

• True Negative Rate (TNR): characterizes the probability

that the system correctly ignores the negative samples.

• Max Distance: indicates the maximum distance that the

system can detect the recorder with a TPR above 50%.

• Accuracy & Recall:

Accuracy =
TP + TN∑
samples

, Recall =
TP

TP + FN
(4)

The targeted voice recorders are the 13 ones used in

Section IV.

TP
R
(%

) 94.46%
84.54%

73.62%
61.77%

49.62%
37.08%

23.15%

Fig. 13. The relationship between the average TPR and the detection distance,
which is derived from 1300 experiments for 13 recorders.

B. Performance of DeHiREC

We conduct 100 times of detection for each voice recorder

at each distance that ranges from 1 cm to 50 cm with a step

length of 5 cm. When DeHiREC failed to detect at a certain

distance, we will reduce the distance in steps of 1 cm to get an

accurate maximum distance. During the experiment, a speech

video is played with a volume of about 81.5 dBA.

Table II summarizes the resulting peak interval of the sensed

EMR signals for each model of voice recorders. Due to

the spread spectrum techniques, we give the maximum and

minimum peak interval of all samples for each voice recorder.

Nevertheless, we find that the average peak interval of the

sensed EMR signals always matches the clock frequency of

the ADC module.

Time Overhead. With an i5-11300H&16G, the time to

detect a hidden voice recorder is around 3.8 seconds in total

which includes 1.5 seconds of EMR sensing and 0.4 seconds

of data processing for each stage in Fig. 9.

1) Detection Distance: To illustrate the detection perfor-

mance under various distances, Fig. 12 and Fig. 13 show the

signal SNR of 13 recorders, and the average TPR at various

distances. The maximal detection distance of all 13 voice

recorders is more than 15 cm while the largest one can even

reach 55 cm. We find that the recorders with metal shells

generally have a lower detection distance, which is due to the
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Fig. 14. SNR and TPR of detection under different noise volume in a cafe.
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Fig. 15. SNR and TPR of detection under different noise volume in a meeting
room.

stronger attenuation by the metal than by plastic or glass. To

better demonstrate the performance of our system, we show

the SNR and TPR for each recorder at a distance of 10 cm in

Table II.

The results show that our detection system can effectively

detect recorders in the scenarios described in Section III, in

which the attacker is supposed to hide the voice recorder near

the table, e.g., on the seat or in the pocket during a meeting.

Our receiving antenna is mounted underside the table and the

distance from every possible location of a recorder is kept less

than 20 cm.

2) Noisy Environment: To study the impact of background

noise on the detection performance of DeHiREC, we simulate

two environments (cafe and meeting room) by playing light

music and lectures through speakers at six volume levels. The

distance between the recorder and the antenna is 10 cm, and

each recorder is tested 10 times in each case.

Fig. 14 and Fig. 15 show the SNR and TPR in the cafe and

meeting room, respectively. The lighter blue line with dots

represents the measured SNR in Stage 1, and the darker blue

line represents the measured SNR in Stage 2. The difference

between lines (shaded) indicates the EMI response of the

recorders, and a larger difference means a stronger response to

the EMI. We also present the experimental measurement error

in the form of boxplots in the figures. The dashed lines in the

right figure represent the TPR at different volume levels. The

results show that a noisier background can slightly increase

the EMR strength in Stage 1, but it also slightly decreases the

recorder’s response to EMI in Stage 2. Overall, the system’s

accuracy is almost unaffected in a volume-noisy environment.

3) Threshold Selection: 3 dB is an empirical value that we

obtained through experiments to distinguish between signal

and noise. To choose it, we measure the accuracy of the

system under different η. We reuse the samples from Noisy
Environment experiments, and each recorder has a total of 120

Fig. 16. The ROC curve under various thresholds between 2.0 dB and 4.0 dB
with a gradient of 0.1.

TABLE III
DETECTION PERFORMANCE UNDER METAL CASING.

Material Mic. EMR TPR Audio SNR
No. of detectable SNR(dB) (dB)

None unwrapped 13 20.76 100% 76.04

faraday pouch wrapped 0 - 0% 39.17

anti-static bag wrapped 4 5.15 23.07% 55.24

tin foil wrapped 0 - 0% 62.37

tin foil unwrapped 6 8.33 43.85% 75.13

samples. We carry out the detection procedures under various

thresholds ranging from 2.0 dB to 4.0 dB with a gradient of

0.1, and draw the ROC curve in Fig. 16.

The ROC curve shows that the threshold affects the trade-

off between TPR and FPR. We choose 3.0 dB as the threshold

because it achieves a low FPR while keeping a reasonable

TPR. In practice, the system designer may choose the thresh-

old based on the performance requirement and an adaptive

measurement of the deployed noise environment.

4) Metal Casing: A rigorous attacker may wrap recorders

with metal materials to shield EMR signals, which may ad-

versely affect the detection. Thus, we evaluate the performance

of DeHiREC under metal casing, e.g., using commercial

shielding bags and handcrafted wrapping with metal foil.

Specifically, we choose a faraday pouch and an anti-static

bag available online which are dedicated to shielding RF sig-

nals [30], and tin foil for handcrafted wrapping. Additionally,

we divide the degree of handcrafted wrapping into two types,

which are 1) completely wrapped, and 2) wrapped without

covering microphones (to make the recording clearer). For

each case, we measure each recorder 20 times at a distance of

5 cm in an EM-shielded room and then calculate the SNR and

TPR. We play music with a volume of 84.5 dBA throughout

the experiment. We also analyze the audio files recorded in

each case to evaluate the recording quality. We report the

number of detectable recorders, the average SNR of EMRs,

the TPR, and the average recording SNRs in each case in

Table III.

The results suggest that 1) our system may fail to detect a

hidden voice recorder when it is fully wrapped by a faraday

bag or metal foil. If the microphone is left uncovered, 6

recorders can be detected at a reduced SNR and TPR. 2)

The recording quality will degrade if the recorder is wrapped.

Results show that the SNR of the recorded audios degraded

by 20 dB when the recorders are completely wrapped. 3) 4
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TABLE IV
DETAILED INFORMATION AND OVERALL PERFORMANCE OF OTHER 21 INTERFERENCE ELECTRONIC DEVICES.

Category Type Label Case MSoC Type EMR Pattern EMI response TNR

Category 1:
Authorized Recording Devices

Conference System

A1 Thinkplus MCP01 ATS 2836 3.1521 MHz Y 75%

A2 Runpu RP-M10S N/A 2.3523 MHz Y 70%

A3 UGreen 30755 ATS 2831 2.4135 MHz Y 70%

Recording Smartphone
B1 iPhone 12 N/A - - 100%

B2 OPPO Reno 3 N/A - - 100%

Recording Laptop
C1 Lenovo yoga C940 N/A - - 100%

C2 ThinkPad X1 Nano N/A - - 100%

Smart Speaker
D1 Xiaomi Play BES 2300 24.1178 MHz N 100%

D2 XiaoDu AI Speaker 2 ES 2743 3.3795 MHz N 100%

Category 2:
Non-Recording Devices

That May Emit Similar EMR

Smartphone
B1 iPhone 12 N/A - - 100%

B2 OPPO Reno 3 N/A - - 100%

Laptop
C1 Lenovo yoga C940 N/A - - 100%

C2 ThinkPad X1 Nano N/A - - 100%

Earphone
E1 Samsung Buds 2 BES 2500 24.0413 MHz N 100%

E2 Xiaomi TWS BES 2500 24.0150 MHz N 100%

Speaker
F1 AOMAIS A27 JL 6928 24.0138 MHz N 100%

F2 JBL GO2 N/A 32.6512 MHz N 100%

TV
G1 Samsung NUF302 N/A - - 100%

G2 KONKA LED58U5 N/A - - 100%

Category 3:
Non-Recording Devices

Without DACs

Monitor
H1 AOC 27B2H N/A - - 100%

H2 DELL S2421HSX N/A - - 100%

Projector
I1 EPSON CB-FH06 N/A - - 100%

I2 BenQ E520 N/A - - 100%

Rounter
J1 Huawei AX3 pro N/A - - 100%

J2 TP-LINK AC1200 N/A - - 100%

recorders can still be detected even if they are inside the anti-

static bag, which is an interesting indication that the anti-static

bag’s shielding capacity is not as effective as advertised. As

EMR is by nature an extremely weak signal, the law of physics

inherently determines that the signal will be greatly attenuated

after shielding. Thus, metal casing will degrade the detection

performance of all EMR-based solutions.

C. Interference from Other Devices

Since all electronic devices will radiate EMR, we evaluate

the impact of 21 electronic devices which are common in

a meeting room, especially the authorized recording devices

which may emit EMR with similar patterns and respond to

EMI. We first divide these devices into three categories as

follows.

Category 1: Authorized recording devices. The meeting

organizer may record the conversation with authorized devices,

which are most likely to interfere with our system because

the ADCs may emit similar EMR and respond to the EMI

probing. We select 9 audio input devices for this category,

including smartphones, laptops, and conference systems for

recording and smart speakers that are always listening. Note

that two selected conference systems (Think plus MCP01 and

UGreen 30755) have the same series of MSoC with one of

the experimented hidden voice recorders.

Category 2: Non-recording devices that may emit similar
EMR. We suspect that non-recording devices with DACs may

also emit similar EMRs, because audio ADCs and DACs have

similar clock frequencies. Thus, these devices may interfere

with the first stage of the system, but they shall be ruled

out by the second stage as they do not respond to the EMI

probing. We select 10 audio output devices that have audio

DACs for this category, including loudspeakers, earphones,

laptops, smartphones, and TVs.

Category 3: Non-recording devices without DACs. All

devices radiate EMR and may interfere with our system. To

narrow down our scope, we select 6 devices that are common

in offices or conference rooms, e.g., monitors, projectors, and

routers.

We select at least two typical devices in each type and

report device’s MSoC information if it uses the same MSoC

architecture as the voice recorders in Table IV. For each

device, We run DeHiREC 20 times at 10 cm away in an EM

shielded room and play speech audio with a volume of about

80.3 dBA during the experiment. Table IV lists the results, e.g.,

the EMR pattern (peak intervals), EMI response, and TNR.

Through experiment, we have the following observations for

each category.

Category 1: the overall TNR for 9 devices is 89.47%.

Among them, we find that 1) all 3 conference system devices

not only radiate a similar EMR pattern but also respond to

our EMI catalyzing, therefore resulting in a TNR of 71.67%.

After we disassembled A1 and A3, we find that they adopt the

same series of MSoC as that of voice recorders. 2) Although

the two smart speakers radiate similar EMR patterns, their

EMI responses are too weak to be detected at 10 cm. Further

experiments show that the EMI responses become observable

(higher than η) after decreasing the distance to 3 cm. 3) The
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Case Time TP TN Accuracy Recall TNR

None 130 58 65 94.62% 89.23% 100%

A1 130 56 63 91.54% 86.15% 96.92%

A2 130 56 64 92.31% 86.15% 98.46%

A3 130 55 64 91.54% 84.62% 98.46%

M 130 56 64 92.31% 86.15% 98.46%

A1, M 130 55 63 90.77% 84.62% 96.92%

Overall 780 336 383 92.17% 86.14% 98.20%

(c) Detection performance under 6 cases

Fig. 17. The setup in a real-world scene (a) (b) shows the location of each device, including targeted recorders (peach puff) and interference devices (labeled).
An enlarged snapshot of the antenna is presented in (b), RX is for EMR sensing while TX performs catalyzing. We simulate 6 cases, the first column in (c)
indicates which devices are working in each case, M denotes all other interference devices excluding A.

smartphones and laptops do not show similar EMR patterns

when they are recording.

Category 2: the overall TNR for 10 devices is 100%. The

results show that some non-recording devices (E1, E3, F1,

F2) do emit similar EMR signals, but they do not respond

to the EMI we inject. Note that these devices adopt similar

MSoCs that are embedded with both ADC and DAC modules.

However, as the ADC module is off, the EMR caused by DAC

will not respond to the EMI injected into the ADC’s input.

Category 3: the overall TNR for 6 devices is 100%. We did

not observe any EMR in the frequency band of 20-150 MHz.

Although the results show that some authorized recording

devices do interfere with the accuracy of the detection system,

we can avoid false detection with extra knowledge or human

intervention. We will continue to explore this issue in real-

world scenes.

D. Performance in a Real-world Scene

To investigate the practical impact of authorized recording

devices, we conduct further experiments in a meeting room

in our university. As a case study, we selected 6 devices

(A1, A2, A3, B1, C1, D2) in category 1, 5 devices (B2, C2,

E2, F1, G1) in category 2, and 1 device (J1) in category 3

from Table IV, and placed them at the locations where each

device would normally appear in a meeting. For example, the

conference systems were in the middle of the table, and our

detection system was placed at the edge of the table near where

participants would sit. Fig. 17 presents a detailed illustration.

Since the 3 conference systems (A1, A2, and A3) are more

likely to be detected as hidden recording devices, we evaluate

DeHiREC in 6 setups as shown in Fig. 17(c) (M denotes all

other negative devices excluding A).

We invite the participant (as an attacker) to bring one of

the recorders in Table II into the meeting room and sit in the

marked chair. We let the participants decide by themselves

whether to turn on the recorder for recording or not. The only

restriction is to place the recorder on the table or chair (within

the detection range). In each experiment, the participant sits

in the room for 2 minutes, after which he tells us if he

has recorded. During the experiment, we play course lecture

videos with a volume of about 86.5 dBA.

We conducted a total of 780 rounds of detection, the overall

detection accuracy is 92.17% and the TNR is 98.20%. In

comparison, when no interference device is turned on, the

accuracy is 94.62% and the TNR is 100%. Results show

that as long as the locations of DeHiREC and the authorized

electronic devices are reasonably planned, it is possible to

suppress the interference and improve the detection accuracy.

In case that the interference from the authorized devices is

inevitable even with planned device locations, we envision that

the defender may collect the EMR patterns of the authorized

recording devices in advance and build a whitelist to filter

out their interference. Last but not the least, the defender may

temporarily turn off the authorized recording devices to detect

hidden voice recorders.

VII. DISCUSSION

In this section, we discuss several considerations when

deploying DeHiREC in practice.

A. Application Scenario of DeHiREC

DeHiREC can help a meeting host detect hidden voice

recorders that attendees sneak into secured conference rooms,

e.g., SCIF. In this scenario, since the room is under control of

the host, the location of attendees, i.e., where recorders may

appear, is easy to predict, and the cost of deploying multiple

detection devices near attendees is easy to justify. However,

due to the distance limit, DeHiREC may not be as effective in

scanning hidden voice recorders inside rooms not controlled

by the user, e.g., an Airbnb house, where the recorder can be

stashed anywhere.

B. Precise Positioning via Active Scanning

To extend the application scenarios of DeHiREC in the

future, we may improve the system to achieve active scanning.

Since the EMR signal strength can be measured from the

power spectrum, it may be possible to estimate the distance

and orientation of the voice recorder according to the strength

variation. By walking around the room and observing the

signal strength, the user may scan hidden voice recorders.

Achieving this idea, however, depends on a portable detect-

ing system with higher resolution, greater detection distance,
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and a redesigned detection algorithm, which requires further

investigation and is left for future work.

C. Compliance with Radio Regulation

Note that when using DeHiREC, the power of EMI emis-

sion has to comply with local radio regulations. An enhanced

EMR catalyzing may require increased EMI emission power in

Stage 2. However, excessive transmission power may interfere

with normal communication in the 900-1020 MHz frequency

band, which is allocated for mobile or aeronautical commu-

nication [31]. Currently, the maximum power of the LNA we

use is 1 W and the actual output power we measured is about

64 mW, while the maximum power specified by the FCC

rule is 500 mW in a frequency band of 902-928 MHz [32].

We recommend complying with radio regulations when using

EMI-related methods such as EMR catalyzing.

D. Detecting Other Recording Devices

Table IV reveals that devices using a similar type of MSoC,

such as conference systems and smart speakers, will radiate

similar EMR and respond to EMI stimulation. However, for

those devices that have ADC modules (e.g., smartphones

and laptops), we cannot detect similar EMR signals. We

believe that there are two reasons. First, the better EMC

design of these devices will reduce the EMR. Secondly, after

investigating the internal circuits of smartphones, we found

that the ADC module of smartphones is not integrated with

other modules in the same chip as on voice recorders. Such

a discrete module design leads to less signal coupling. Thus,

smartphones that are recording do not cause false positives.

VIII. RELATED WORK

In the following, we provide a summary of the existing work

on EM side-channels as well as eavesdropper detection.

A. EM side-channels

Previous work has revealed that electromagnetic radiations

can be exploited as a side-channel to perform information

reconstruction or anomaly detection. First, researchers validate

the feasibility of reconstructing display data or printed data

from the EMRs of cables [33], monitors [34], [35], and

printers [36], [37]. Camurati et al. [38] utilize the EM leakage

of wireless chips to crack the encryption key running on the

CPU. Sehatbakhsh et al. [39] exfiltrate the keystroke logging

by the EMRs of the power management unit. Choi et al. [40]

use EMRs of switching regulator and Bluetooth low energy

MSoC to infer audio information. Sehatbakhshk et al. [41]

leverage EM side-channel signals during response computation

for attestation in the embedded system, i.e., Arduino UNO. In

this paper, we utilize the EMRs of the ADC module to detect

the presence of hidden voice recorders.

B. Device Detection

Previous work has made much effort to detect wireless

hidden devices, such as wireless hidden internet-of-things

(IoT) devices [6], [8], [42], [43] and wireless hidden radio

frequency (RF) eavesdroppers [44]–[47]. These works heavily

rely on the wireless traffic or the RF signals which are

emitted, or leaked from the wireless module while the devices

are working. For example, Lumos [43] sniffs and collects

encrypted wireless packets over the air to detect and identify

hidden IoT devices. Ghostbuster [12] leverages the leakage

from the RF circuit of the wireless receiver to detect hidden

eavesdroppers. Earfisher [13] detects wireless eavesdroppers

by sensing memory EMR with a wireless-packet-bait technol-

ogy. However, the above methods are inapplicable for common

voice recorders, which generally save the real-time recorded

voice locally and neither need the function of active wireless

transmission (offline) nor require a wireless receiver (passive).

To detect offline and passive devices like voice recorders,

nonlinear junction detection (NLJD), also known as “illumina-

tion”, has been applied for counter-surveillance [14], [15] and

radar sensing [48], [49]. Illumination is a general method to

detect any electronic device by emitting strong EM signals

and monitoring the 2nd order harmonics reflected by the

nonlinear PN junctions in a device [50]. However, such a

method is unable to distinguish voice recorders from other

types of electronic devices. In comparison, DeHiREC manages

to identify voice recorders under the interference of other

electronic devices.

In summary, our work follows the overarching “probe-

respond-detect” procedure for detection, which is used in

related work such as Earfisher [13] and illumination [15]

as well. Nevertheless, we are the first to design the EMR

Catalyzing method (the “probe”) that can actively change the

EMR strength radiated from the ADC (the “respond”) and

use the unique feature embedded in EMR variation to identify

hidden voice recorders (the “detect”). Specifically, our method

is different from the related work in all three stages of the

procedure.

IX. CONCLUSION

This paper presents the first attempt to detect hidden voice

recorders in the surroundings. We find the shared EMR

patterns resulting from the ADCs which can be used for the

detection of hidden voice recorders. To uniquely identify voice

recorders, we design EMR Catalyzing, an active stimulation

method that can trigger an ADC’s EMR to vary in reaction

to EMI. Thus we design DeHiREC, the first proof-of-concept

system that can detect hidden voice recorders. Our evaluation

shows that DeHiREC can detect recorders under the interfer-

ence of 21 electronic devices. Moreover, we envision that our

method can be of profound significance for detecting other

low-power and wireless hidden devices, and we will further

study the potential applications of our work.
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X. APPENDIX

A. EMR Characteristics

We present the captured EMRs of all 13 voice recorders

in Fig. 18, including the after-processed power spectrum

with peaks found by the adaptive-folding, and the calculated

intervals (i.e., ADC clock frequency). The signals are captured

at a distance of 3 cm to ensure enough recognizability.

B. Performance under Other Impacts

Here we evaluate the performance of DeHiREC under

another two factors, including battery level and recorder’s

location.

1) Battery Level: Modern electronic devices will automati-

cally adjust their performance based on the state of the battery.

We believe that voice recorders have this function as well,

which will result in variations in the strength of the EMR

signal due to different power consumption. Therefore, we

measure the SNR of the EMR signal at 10 cm away 20 times

for each voice recorder when the battery of the recorder is

100%, 80%, 60%, 40%, and 20% respectively. However, there

are some voice recorders that do not have the function of

actively displaying the battery level, so we only evaluated 6

of them which have screens. Fig. 19 shows the correlation

curve between battery levels and the corresponding SNR.

The results show that different battery levels cause changes

in EMR strength, while the degree of influence varies among

voice recorders. Nevertheless, we find that the SNR remains

above 6 dB when the voice recorders are in a low battery state,

indicating that these EM leakage signals can still be observed

by our system from a distance.

2) The Impact of Voice Recorder’s Location: To evaluate

the performance of DeHiREC in relation to the location of

the voice recorder, we specifically design the following four

scenes where the voice recorder is (a) placed directly on the

table (i.e., baseline), (b) covered with a paper, (c) held in

hand, or (d) put inside the pocket. For each scene, we tested

DeHiREC 20 times for 13 voice recorders at a distance of

10 cm. Table V presents the TPR and SNR degradation of the

voice recorders under four scenes.

The results show that, despite the fact that the presence

of human body significantly reduces SNR, our system is

applicable to four scenes with reasonable performance.
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Fig. 18. The captured EMR signals of all 13 voice recorders and the peaks
found by the adaptive-folding algorithm are marked in the power spectrum.
We calculate the average peak interval for each recorder and present it in the
sub-caption.
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(a) Newsmy V03 (b) Newsmy XD01

(c) iFLY TEK H1 (d) Lenovo B460

(e) Aigo R6811 (f) Sogou C1 pro

Fig. 19. The impact of battery level. Results reveal that the SNR grows with
the battery level increases.

TABLE V
TPR AND SNR DEGRADATION UNDER FOUR SCENES, WHICH ARE: (A) ON

THE TABLE, (B) COVER WITH A PAPER, (C) HELD IN HAND, (D) INSIDE

THE POCKET.

Model Scene (a) Scene (b) Scene (c) Scene (d)

Sogou C1 100%; 0dB 100%; -1.53dB 85%; -6.13dB 75%; -14.94dB

Sogou C1 pro 100%; 0dB 100%; -1.34dB 75%; -5.35dB 70%; -12.13dB

Newsmy V03 100%; 0dB 90%; -1.32dB 65%; -3.36dB 55%; -4.03dB

Newsmy XD01 100%; 0dB 85%; -1.63dB 65%; -3.29dB 55%; -4.17dB

Newsmy RV100 100%; 0dB 85%; -1.02dB 75%; -3.27dB 60%; -4.94dB

Aigo R6811 100%; 0dB 95%; -0.57dB 75%; -2.35dB 60%; -4.13dB

Aigo R8822 100%; 0dB 90%; -1.43dB 70%; -2.66dB 60%; -4.54dB

Lenovo C2 100%; 0dB 100%; -2.15dB 80%; -4.41dB 70%; -8.63dB

Shinco RV-18 100%; 0dB 100%; -2.38dB 75%; -6.62dB 65%; -9.23dB

Lenovo B460 100%; 0dB 100%; -1.27dB 80%; -5.14dB 70%; -8.71dB

iFLY TEK H1 100%; 0dB 100%; -1.20dB 85%; -4.27dB 70%; -9.49dB

iFLY TEK B1 100%; 0dB 100%; -2.58dB 85%; -5.55dB 75%; -10.73dB

Philips VTR5102 100%; 0dB 100%; -2.36dB 80%; -6.25dB 65%; -9.87dB
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