
OWL: Compositional Verification of Security Protocols via an

Information-Flow Type System

Joshua Gancher Sydney Gibson Pratap Singh Samvid Dharanikota Bryan Parno
Carnegie Mellon University

Abstract
Computationally sound protocol verification tools promise to

deliver full-strength cryptographic proofs for security protocols.

Unfortunately, current tools lack either modularity or automa-

tion. We propose a new approach based on a novel use of in-

formation flow and refinement types for sound cryptographic

proofs. Our framework, OWL, allows type-based modular de-

scriptions of security protocols, wherein disjoint subprotocols

can be programmed and automatically proved secure separately.

We give a formal security proof for OWL via a core language

which supports symmetric and asymmetric primitives, Diffie-

Hellman operations, and hashing via random oracles. We also

implement a type checker for OWL and a prototype extraction

mechanism to Rust, and evaluate both on 14 case studies, in-

cluding (simplified forms of) SSH key exchange and Kerberos.

1 Introduction
Cryptographic protocols (e.g., Kerberos, TLS, QUIC, or Signal)

are widely deployed and yet frighteningly brittle. Their ubiquity

means that when a core component like TLS breaks, the neg-

ative effects are pervasive, as illustrated by headline-grabbing

attacks like FREAK [17] and Logjam [2].

Formal protocol verification can, in theory, rule out such at-

tacks, and indeed, the academic community has developed a

host of tools for this purpose [10, 24, 33]. However, existing

methods for computer-aided security proofs struggle to handle

the complexity of (and the threats faced by) modern protocols

like TLS or QUIC. We posit (§2) that this is because no tool

has simultaneously achieved modularity, automation, and com-
putational security.

Modular Verification. Traditional on-paper cryptographic

proofs that use game-hopping or simulator-based techniques

typically consider an entire protocol at once. Possibly as a con-

sequence, many tools for automating cryptographic proofs also

employ monolithic reasoning [7, 23, 25, 59], meaning that se-

curity proofs for protocols cannot be constructed out of smaller

proofs for subprotocols. Unfortunately, this approach does not

scale with the complexity of modern protocols, as the effort re-

quired to use such tools to verify P composed with Q is gen-

erally much larger than the effort to verify P and Q separately.

Furthermore, even when successful, monolithic verification ef-

forts harm proof reuse and understandability, preventing subse-

quent verification efforts from benefiting from previous ones.

Proof Automation. On the other hand, tools that do support

modular verification of protocols [11, 31, 57] provide so much

generality that they can be difficult to automate, requiring an

expert in both cryptography and verification to manually write

the various cryptographic simulators needed to perform crypto-

graphic reduction steps for the proof. While potentially feasible

for simplified on-paper models, realistic protocols feature many

moving parts – not all of them cryptographic in nature – and

thus require automation to make verification feasible.

Indeed, security protocols such as TLS are not designed with

cryptographic reduction steps in mind; instead, they are de-

signed to protect confidentiality and integrity assuming that the

underlying cryptographic mechanisms are secure. Verification

tools should match this intuition and hide low-level crypto-

graphic arguments from the user when possible.

Computational Security. Ideally, cryptographic protocols

should be verified in the “gold standard” computational model

(which is used ubiquitously in on-paper cryptography), since

such a model makes the weakest assumptions about possible

adversaries, and hence provides the strongest guarantees. Un-

fortunately, this focus on expressiveness and fidelity typically

hinders automation and scalability [10].

Hence, to increase automation, considerable work verifies

protocols in the presence of symbolic attackers [15, 18, 19,

35, 53]. These results give some assurance, but pen-and-paper

proofs are prone to subtle errors [51], and simplified attacker

models may abstract away key facets of a protocol’s design

that leave it vulnerable to attack. Indeed, “verified” versions of

TLS [53] and SSH [15] have been successfully attacked [3, 63],

due to limitations in the models the proofs employed.

Our Approach. We introduce OWL, the first language and for-

mal tool to achieve automated, modular proofs of protocols in

the computational model. OWL’s modularity means that higher-

level protocols (e.g., for creating and using a secure channel)

may safely assume secure implementations of lower-level spec-

ifications (e.g., for key exchange), which can later be instanti-

ated in different ways (e.g., via pre-shared keys or a PKI). Pro-

tocols written in OWL are verified in the computational model,

which treats all values as bit strings, all cryptographic primitives

as algorithms over them, and attackers as arbitrary polynomial-

time probabilistic algorithms.

Automating computational reasoning is challenging, since

computational hardness assumptions – such as IND-CPA and

INT-CTXT for authenticated encryption, and EUF-CMA for

digital signatures – are usually expressed as pairs of security

games. This representation requires a reduction from the pro-

tocol at hand to (an instantiation of) the security game. Since

security games are typically specified as pairs of general prob-

1130

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Joshua Gancher. Under license to IEEE.
DOI 10.1109/SP46215.2023.00166

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

47
7

abilistic programs, reductions cannot easily be automated. The

result is laborious security proofs consisting of multiple hand-

written cryptographic games, as seen in computational verifica-

tion frameworks such as CertiCrypt [12] and EasyCrypt [13].

The core insight underlying OWL is that for a wide class of

hardness assumptions (including those mentioned above), we

can automate reductions to security games by restricting the

protocol’s allowed dataflows. Once these dataflow restrictions

are met, OWL’s type system guarantees the existence of cryp-

tographic reductions via a once and for all proof effort which,

crucially, users of OWL do not need to understand to conduct

proofs of protocol security.

OWL enforces these dataflow restrictions via a novel

information-flow control (IFC) [67] type system augmented

with refinement types [48]. Specifically, in OWL, security goals

are expressed as either secrecy or authenticity properties. Se-

crecy properties are proven through information-flow labels.

For example, if a message c has label adv, then the sound-

ness of OWL’s type system guarantees that any probabilistic

polynomial-time adversary’s view of c can be simulated using

information the adversary already knows, even if c is derived

from secret data using cryptographic operations (e.g., even if c
is a ciphertext computed from a secret key).

Integrity properties are stated through safety properties, or

refinements attached to data in the protocol. For example, au-

thenticity for an ideal secure channel guarantees that if an hon-

est party receives a message from the channel, then an honest

sender must have previously sent that message.

OWL’s typing rules are proven sound (on paper) once-and-

for-all based on standard cryptographic assumptions. They can

then be applied to automatically type-check arbitrary protocols.

As our OWL prototype shows [44], we can perform this type-

checking in seconds, enabling the user to iteratively fix their

protocol, guided by typing errors from the tool.

OWL currently supports a variety of cryptographic primitives,

including MACs, public-key signatures, hash functions, (au-

thenticated) symmetric and public key encryption, and Diffie-

Hellman key exchange [39]. This collection has sufficed to ver-

ify the rich collection of case studies described below. OWL can

be modularly extended with additional primitives by adding ap-

propriate typing rules and proving them sound against the cor-

responding cryptographic security definitions.

To evaluate the expressiveness and usability of OWL, we im-

plement, verify, and extract 14 case studies (§6) from a variety

of domains, including classics like Needham-Schroeder [61],

various RFID protocols, and (simplified forms of) SSH key ex-

change and Kerberos. This collection covers all of the case stud-

ies from two state-of-the-art tools [7, 23], allowing us to analyze

how verification using OWL differs.

OWL is useful not only for abstract security proofs, but is

designed with realistic implementations of protocols in mind.

The protocol language in OWL introduces a number of features

which both aid in security analysis and guide the automatic ex-

traction of executable implementations. We demonstrate this

by developing an automatic extraction mechanism to Rust, gen-

erating prototype implementations of protocols by a relatively

direct translation of the OWL source code.

However, like all verification, OWL’s guarantees rely on the

correctness of our tools (OWL and its SMT solver, Z3 [36]),

and on the developer to correctly write down the security spec-

ification they desire. Further, the guarantees OWL provides

are asymptotic in the security parameter, rather than concrete

bounds. OWL currently only supports static corruptions, so

the adversary cannot spontaneously corrupt a party in mid-

protocol exchange. Finally, to provide strong automation,

OWL’s type system deliberately overapproximates possible in-

formation flows, so it provides less generality than tools that

support manual proofs of arbitrary probabilistic programs. For-

tunately, our case studies suggest that OWL is still expressive

enough to capture a wide variety of protocols and properties.

Contributions. In summary, this paper contributes:

1. The first protocol verification tool, OWL, for delivering

modular, automated proofs of computational security;

2. A novel use of information flow and refinement types to

enforce cryptographic protocol security; and

3. A number of case studies in OWL, exercising a wide range

of language features and cryptographic primitives, and

which extract to executable code.

2 Motivation and Related Work
The rich history of work on verifying cryptographic protocols

has prompted multiple surveys, both of early foundational re-

sults [24, 33] and of quite recent work [10]. However, this

community effort has not yet produced a tool that simultane-

ously supports automation, modularity, and computational se-

curity guarantees. Below, we restrict our discussion to recent

work that targets a subset of these goals, deferring to the sur-

veys for a broader perspective.

Symbolic Models. Most mechanized analyses of large-scale

security protocols [18, 19, 32, 34, 35, 47, 50] are done in

the symbolic model [40], which typically aids automation but

overly constrains adversaries, relies on monolithic reasoning,

and sometimes still requires manual intervention.

In the symbolic model, all values (e.g., keys or nonces)

are represented as symbolic terms: these terms are considered

atomic, meaning that they cannot be split into smaller pieces

(the way real-world bit strings could be). Cryptographic prim-

itives are modeled via equational theories that describe how an

adversary can manipulate the relevant terms; e.g., symmetric

encryption might have a rule that says Dec(Enc(m,k),k) = m,

which says that decrypting the ciphertext produced by encryp-

tion results in the original message. Automated tools (e.g.,

Tamarin [59] or ProVerif [25]) can then apply these rules to

exhaustively determine what an adversary might learn from the

protocol. However, such automation comes at the cost of re-

quiring the security researcher to enumerate all computations

the adversary may perform. Failing to provide sufficiently rich

rules can unrealistically constrain the modeled adversary, lead-

ing to “verified” protocols [15, 53] succumbing to attacks that

exploit adversary capabilities not captured by the model. Unfor-

tunately, adding rules that enhance the adversary’s capabilities

(sometimes even something as simple as specifying that XOR

is associative and commutative) can overwhelm the automation.

1131

Tool RF Auto Modular CB Link TCB

CertiCrypt [12] Coq
CryptHOL [57] Isabelle
EasyCrypt [13] self, SMT
FCF [64] Coq
F� [68] self, SMT
CryptoVerif [23] self
Squirrel [7] self

OWL self, SMT

Reasoning Focus (RF) Concrete Bounds (CB) Modular

– automation focus –Yes –tool is modular
– expressiveness focus – No –modular with on-paper proofs

Figure 1: Comparison With Other Computational Tools. Un-
like prior computational tools, OWL supports both automation and

modular reasoning. It provides a Link to executable code, but it only
proves asymptotic, rather than concrete, security bounds.

Most symbolic tools also employ monolithic reasoning,

meaning that they must consider the entire protocol as a whole,

rather than reasoning about the protocol’s components in isola-

tion and then composing the results. This hinders proof reuse,

and it leads to challenges with scale.

Although largely automated, some symbolic tools (e.g.,

Tamarin [59]) still rely on developers to manually add lemmas

to help partition the search space.

Computational Models. Unlike the symbolic world, compu-

tational models (which are used ubiquitously in on-paper cryp-

tography) treat all values as bit strings, and cryptographic prim-

itives are algorithms over them. Computational security prop-

erties are probabilistic and reason about the behavior of adver-

saries represented as Turing machines. Because keys are bit

strings, an adversary can potentially learn some (but not all) of

a key’s bits and hence reduce the resources needed to recover

an encrypted ciphertext. All of this additional detail and com-

plexity provides greater confidence that positive verification re-

sults [19, 50, 56] imply real-world security, but they typically

hinder automation and scalability [10].

Since OWL falls into this category, we compare it to other

such tools in Figure 1, using the comparison criteria from a re-

cent SoK [10], and in more detail below.

Traditional verifiers for computationally secure cryptography

include FCF [64], CryptHOL [57], and EasyCrypt [13]. These

tools work in roughly the same way, analyzing probabilistic pro-

grams interactively using higher-order logic. Such expressivity

comes at the cost of a higher proof burden, requiring verifica-

tion experts to manually construct cryptographic reductions to

prove protocols secure. It would be an interesting challenge to

use one of these expressive tools to formally prove OWL sound.

In contrast, CryptoVerif [23] performs computational proofs

by (semi-)automatically finding reductions from the protocol to

security games. Implemented as a stand-alone language, Cryp-

toVerif does not support modular protocol analyses, forcing the

entire protocol to be analyzed in one monolithic proof effort, or

analyzed using on-paper techniques [26].

A long line of work, beginning with Abadi and Rogaway [1],

attempts to combine the automation of the symbolic model with

the guarantees of the computational model. A promising pro-

posal in this space is the computationally complete symbolic
attacker (CCSA [8, 9]) framework, which blends symbolic and

computational techniques via proof steps inspired by on-paper

cryptographic security definitions. The most advanced instanti-

ation of this framework is the recent Squirrel prover [7], which

can express many proofs in the CCSA model. However, CCSA

(and hence Squirrel) makes extensive use of non-composable

syntactic side-conditions, which require whole-program analy-

sis. Squirrel also requires non-trivial manual proof help from

the developer, e.g., to write out both real and ideal versions of a

protocol and to interactively guide the proof via tactics.

Additionally, Squirrel and CryptoVerif do not directly sup-

port corruption models, instead requiring the developer to en-

code corruption indirectly through process functions.

Cryptographic Information Flow. There is some work on giv-

ing information-flow types to cryptographic mechanisms in a

computationally sound way [6, 43, 54]. However, these works

generally do not support the wide array of mechanisms found in

security protocols (e.g., digital signatures, key derivation func-

tions, and Diffie-Hellman-based key exchange). In contrast, we

use information-flow types to capture cryptographic dependen-
cies, instead of only program dependencies, for a wide variety

of cryptographic mechanisms. Our alternative view on informa-

tion flow allows a more straightforward, extensible proof strat-

egy for cryptographic security.

Abstraction-Based Analyses. Another line of work [20, 21,

37, 42] proposes to verify protocols through iterative instantia-

tion of modules with abstract interfaces in a dependently typed

language, and has been applied to parts of TLS [20, 21] and

QUIC [37]. While promising, this work hinges on complex

metatheoretic properties of the proof assistant [42], such as

parametricity properties of abstract types, and it requires sub-

tle on-paper analysis to relate trusted models of cryptography

in the proof assistant to on-paper cryptographic security guar-

antees.

3 OWL Overview
OWL enables a developer to write readable, high-level protocols

whose security guarantees are given by the types used to define

the protocol. As in other tools [7, 23, 25], we analyze security

in the setting where the adversary completely controls the net-

work, and is thus able to arbitrarily reroute and modify in-flight

messages. OWL is computationally sound, meaning that pro-

tocol parties operate directly on bitstrings, and the adversary is

an arbitrary polynomial time algorithm. As is common for se-

curity protocols [22], we analyze security in the static security

setting: before protocol execution, the adversary chooses a set

of information which it corrupts.

3.1 Running Example: Secure Transport
We demonstrate the use of OWL through this example of se-

curely sending a secret message msgi from Clienti to a Server.

Server
{kdatai}pski−−−−−−−−−−−−−−→ Clienti
{msgi}kdatai←−−−−−−−−−−−−−−

The Server starts with an existing pre-shared key (pski) for each

Clienti. When the Server wishes to receive the message from

Clienti, it generates an ephemeral key kdatai, encrypts it using

1132

1 locality Server
2 locality Client〈i〉
3 name msg〈i〉 : nonce @ Client〈i〉
4 name kdata〈i〉 : enckey (Name(msg〈i〉)) @ Server
5 name psk〈i〉 : enckey (Name(kdata〈i〉)) @ Server, Client〈i〉

Figure 2: Name declarations for Secure Transport in OWL.

symmetric encryption under pski, and sends the ciphertext over

the network. In return, Clienti encrypts msgi under kdatai, and

sends the ciphertext back to the Server. Even for this simple

protocol, a developer would reasonably want a variety of secu-

rity properties:

• Secrecy: Any attacker who listens in on the network can-

not learn the value of any secrets unless the corresponding

party has been compromised. Additionally, if Clienti is

compromised, then the security of Client j is unharmed.

• Correctness: Assuming the encryption scheme is authen-

ticated, unless the Server is corrupt, Clienti obtains the

correct key kdatai; similarly, unless Clienti is corrupt, the

Server should obtain the correct secret message msgi.

• Authentication: If the Server obtains msgi from Clienti,

then Clienti must have sent the corresponding ciphertext.

3.2 Secure Transport in OWL

Unlike existing tools (which try to verify arbitrary, possibly in-

secure protocols via model checking [25], direct security game

transformations [23], or user-guided proof rules [7]), OWL fol-

lows the intrinsic verification paradigm: protocols are strongly

typed to prove security properties.

Protocol Invariants through Names. In our example, to prove

that ciphertexts successfully decrypted under pski always re-

turn kdatai, we do not exhaustively check where pski may be

used [7, 23, 25, 59], but instead attach an invariant to pski which

guarantees this property by construction.

Cryptographic keys (along with other pieces of random data,

such as msgi) are defined by names, or abstract handles to ran-

domness which may be used by the parties. Names may not be

used arbitrarily, but are attached to invariants, or name types,

which specify how they may be used.

The name declarations for our running example are given in

Figure 2. Lines 1-2 define the localities for the protocol. Locali-

ties represent the set of parties, and are used to guide extraction

of protocols to implementations (§5.2). Localities may be in-
dexed, as in Client〈i〉, to define a large, symmetric set of parties.

Lines 3-5 declare the names for the protocol. Since our pro-

tocol has three logical pieces of randomness—msg, kdata, and

psk, for each i—we have three corresponding name declara-

tions, each of which is also indexed. All names in OWL are

annotated with name types, specifying invariants which must

hold throughout the protocol, and associated localities, specify-

ing where the name is initially stored or generated.

We treat the message msg〈i〉 from Client〈i〉 as opaque data, so

we give it the name type nonce on Line 3. On Line 4, we have

the key kdata〈i〉 generated by the Server. The protocol specifies

that kdata〈i〉 encrypts exactly msg〈i〉, so we give it the name type

enckey (Name(msg〈i〉)). This name type enforces that, unless the

1 enum Result〈i〉 {
2 | Ok Name(msg〈i〉)
3 | Err
4 }
5

6 def tr server〈i〉() @ Server :

7 if sec(kdata〈i〉) then Result〈i〉 else Data〈adv〉 =

8 let c = samp enc(get(psk〈i〉), get(kdata〈i〉)) in
9 output c to endpoint(Client〈i〉);

10 input inp, in
11 corr case kdata〈i〉 in
12 case dec(get(kdata〈i〉), inp)

13 | Some o =⇒ Ok〈i〉(o)

14 | None =⇒ Err〈i〉()

Figure 3: Definition of the Server in OWL.

adversary has corrupted the Server or Client〈i〉, any honest en-

cryption using the key kdata〈i〉 must contain exactly msg〈i〉. We

enforce this using a singleton type Name(n) which only contains

the value of name n. The declaration of psk〈i〉 on Line 5 is sim-

ilar, but is annotated with the two localities Server and Client〈i〉,
reflecting that it is assumed to be pre-shared.

Declaring cryptographic nonces and keys through names in

OWL has a number of advantages. First, it requires the protocol

designer to explicitly establish the invariants which keys must

protect, instead of leaving these invariants to ad-hoc analyses.

It also enforces a hierarchy among keys, which we will exploit

in our type system for providing information-flow guarantees.

Additionally, our formal tool OWL typechecks these invariants,

to ensure that they will guarantee secure protocol instantiations.

For example, name types for encryption keys rule out key cycles

by fiat, since encryption keys may only encrypt data that has

been previously declared.

Party Code in OWL. For this section, we focus on the code of

the Server in Figure 3. Lines 1-4 specify a datatype, which OWL

uses to build data structures. OWL natively supports enums and

structs. The datatype Result〈i〉 is itself indexed, as it either con-

tains the value of msg〈i〉 (if Ok) or nothing (if Err).

Lines 6-14 declare the code for the Server itself, through a

definition. The definition tr server is parameterized by i, as it

specifies the code to interact with Client〈i〉. Ignoring the type

annotations in Lines 7 and 11, the code for tr server is straight-

forward. In Line 8, we obtain the values of psk〈i〉 and kdata〈i〉,
encrypt the latter under the former, and output the ciphertext in

Line 9. In Line 10, we obtain the input inp, which we decrypt

using kdata〈i〉 in Line 12. Network outputs and inputs happen

through the adversary. Decryption returns an option type, so

we pattern match on the result, and either return Ok with the

plaintext if decryption succeeds, or Err otherwise.

Name-Based Corruption. A key insight of OWL is that the tra-

ditional paradigm of specifying adversarial corruptions by party

is too coarse for a formal tool. Instead, OWL specifies corrup-

tions by name. We express this corruption model through infor-
mation flow labels [67].

In OWL, labels are either atomic labels [n] where n is a name

(e.g., msg〈i〉), or the conjunction of two labels �1 ∧ �2. Labels

support a flows-to predicate �1 ≤ �2, which specifies that the

1133

names captured by �2 are a superset of those captured by �1.

The adversary is specified by a label adv, which for our exam-

ple, is some conjunction of the atomic labels [msg〈i〉], [kdata〈i〉],
or [psk〈i〉] for any i. A name n is considered corrupt when n

flows to the adversary label adv.

Corruption in OWL is hierarchical: if an encryption key k

associated to the name type enckey t is corrupt, then all infor-

mation present in t is corrupt. For example, psk〈i〉 being corrupt

implies kdata〈i〉 is corrupt, since the adversary can use psk〈i〉
to decrypt in-flight ciphertexts to obtain kdata〈i〉. Transitively,

corrupting psk〈i〉 also implies corrupting msg〈i〉.
Casing on the Adversary. Recall from §3.1 that integrity for

our protocol means that the Server obtains the correct value

msg〈i〉 unless the other party is corrupt. We refine this to say

that the Server gets the desired data unless the name kdata〈i〉
is corrupt. This security goal is reflected in the type annota-

tion for the Server given in Line 7. If kdata〈i〉 is secret, then

the Server obtains a value of type Result〈i〉, which is guaranteed

to hold msg〈i〉 if it does not return Err. On the other hand, if

kdata〈i〉 is corrupt, then all guarantees are lost for correctness;

this is reflected in the Data〈adv〉 type, which represents arbitrary

adversary-controlled data.

The type checker for OWL needs to consider both cases of

whether kdata〈i〉 is corrupt separately. To do so, we insert a

corr case command in Line 11, which splits the type checking

into the two corresponding cases (see §5 for details).

Secrecy through Label Checking. Secrecy for our protocol

means, among other things, that no data is leaked when cipher-

texts are output on the network. OWL guarantees secrecy by

using information flow types to ensure that all flows to/from the

adversary are valid and typed with label adv. Intuitively, data

with label adv depends on information deducible from the ad-

versary before protocol execution, using only the names that it

has already statically corrupted. Thus, by ensuring that all out-

puts have label adv, we guarantee that all outputs to the network

do not contain any more information than the adversary already

knows. In particular, if we assume the adversary begins with the

trivial label⊥ (meaning no corruptions), then we are guaranteed

by construction that the adversary learns no computational in-

formation about any protocol secrets.

All types in OWL carry secrecy information via labels. For

example, the type Name(n) has exactly the label [n], while the

type Result〈i〉 has the label adv∧[msg〈i〉], since the choice of

whether the value is Ok or Err must have label adv, while the

data present in the Ok case has label [msg〈i〉].
Temporal Properties. In addition to secrecy and integrity,

the running example carries an authentication property: if the

Server receives the message msg〈i〉, Client〈i〉 must have sent it.

Intuitively, this holds because only Client〈i〉 encrypts messages

using the key kdata〈i〉. In OWL, we may encode this authentica-

tion property by refining the type associated to the name type

for kdata〈i〉 from simply Name(msg〈i〉) to the refinement type
(x:Name(msg〈i〉){happened(tr client〈i〉())}).

To construct a value of this refinement type, the OWL type

checker needs to check the refinement that the tr client〈i〉 defini-

tion has been called. In turn, any code which inspects a value of

this refinement type (e.g., when the Server decrypts data under

Pre-Shared Key

psk server()

psk client()

Key Exchange

ke server()

ke client()

Diffie-Hellman

dhke server()

dhke client()

Secure Transport

tr server()

tr client()

Secure Transport

tr server()

tr client()

im
p
lem

en
ts

im
p
lem

en
tsuses

im
p
lem

en
ts

Figure 4: Modular Verification of Secure Transport. Yel-
low, solid-border boxes denote module implementations; blue, dotted-
border boxes denote module types. The inner boxes denote each lo-
cality’s routines in the corresponding module. All modules—and all
routines within each module—are type checked independently.

kdata〈i〉) learns that this definition has been called. Our encod-

ing of temporal properties using definition calls is similar in

spirit to event predicates in CryptoVerif [23], but is tied closer

to the protocol, since the user does not need to add extra events

to the protocol to encode temporal predicates.

Modular Specifications. A unique feature of OWL, not shared

by whole-protocol analysis tools [7, 23, 25, 59], is that the code

of individual parties may be typechecked and proved secure

separately. The security of tr server does not depend on the

security of the implementation of tr client〈i〉, but instead only
on tr client〈i〉 being well-typed. Modular type checking of pro-

tocols has a number of benefits, including reduced proof effort,

an interactive verification experience via type errors, and the

ability to reason abstractly about the code.

Crucially, OWL also supports modular specifications of pro-

tocols themselves. Figure 4 shows a decomposition of the Se-

cure Transport protocol into several components, each of which

can be verified separately in OWL. We provide an abstract spec-

ification for Secure Transport by giving a module type, which

specifies the high-level security properties expected of the pro-

tocol without any implementation details. The implementations

of these routines are provided by the implementation of the Se-

cure Transport module, which is typechecked against the mod-

ule type.

Secure Transport itself relies on a Key Exchange subproto-

col, consisting of routines ke server() and ke client() that securely

send the key kdata to the client. As shown in Figure 4, Key

Exchange can be implemented via a pre-shared key psk (as in

§3.1), or it can be implemented via a Diffie-Hellman exchange

that uses a public-key infrastructure and digital signatures for

integrity verification. Notably, verification of the Secure Trans-

port module does not depend on which Key Exchange scheme

is used, relying instead only on that scheme being well-typed

against the Key Exchange module type. In turn, OWL devel-

opers can assume a Secure Transport protocol using the Secure

Transport module type, and construct new protocols with it.

Figure 5 shows the details of the module type for Secure

Transport in OWL, consisting of the type signatures of the def-

1134

1 locality Server
2 locality Client〈i〉
3 name msg〈i〉 : nonce @ Client〈i〉
4

5 def tr server〈i〉() @ Server :

6 if sec(msg〈i〉) then Result〈i〉 else Data〈adv〉
7

8 def tr client〈i〉() @ Client〈i〉 : Unit

Figure 5: Module Type for Abstract Secure Transport.

initions tr server and tr client. The locality definitions are the

same, while the only name definition is the one for msg〈i〉; in-

deed, the keys kdata〈i〉 and psk〈i〉 only serve to implement secure

transport of msg〈i〉, and should not be part of the specification.

The specification of tr server on Line 5 is similar to the dec-

laration in Figure 3, but is instead typed with the supertype
if sec(msg〈i〉) then Result〈i〉else Data〈adv〉. Indeed, through hier-

archical name corruption, if msg〈i〉 is secret, then kdata〈i〉 must

also be secret. This specification matches our intuitive one in

§3.1 for secrecy and integrity: for secrecy, if nobody is cor-

rupted, then type soundness of the language guarantees that the

adversary does not learn any secrets; for integrity, we have that

the Server obtains the type Result〈i〉 whenever Client〈i〉 is uncor-

rupt (i.e., all names at that locality are secret).

In the secure transport example, the role of Client〈i〉 is to re-

spond to the Server, and encrypt its secret message under the

decrypted key. Thus, the type of tr client〈i〉 in Figure 5 simply

returns Unit. This type gives no nontrivial guarantees about the

output, but the internal code of tr client〈i〉 still guarantees secu-

rity and integrity throughout since it is well-typed.

3.3 Implementation-Oriented Design
Unlike pure protocol verification tools such as Squirrel [7],

OWL is designed to enable both verification of protocol designs

and extraction of protocol implementations. As such, we de-

signed OWL’s surface language to support fully automated ex-

traction of executable code, as described in §5.2. While our ex-

traction pipeline currently produces un-optimized code, we be-

lieve it should be possible to extend this pipeline to produce per-

formant, interoperable protocol implementations without sig-

nificant changes to OWL’s type system or core language.

Session and Party IDs. Unlike other tools [7], indices in OWL

serve a purpose beyond considering protocols with large num-

bers of names. Indices in OWL come in two varieties: session
IDs, used for multiple invocations of the same logical party,

and party IDs, used for naming many symmetric parties (e.g.,

Client〈i〉). The running example in §3.2 uses party IDs through-

out, but it can be augmented to use session IDs as well; our

case studies in §6 make pervasive use of both in protocols. The

distinction between session IDs and party IDs is crucial for ex-

traction, which we describe in §5.2.

Endpoints. While simple input i and output o commands suffice

for security analysis, extracted code needs to reason about con-

crete endpoints, or destination addresses for concrete network

I/O. To do so, we support endpoints in OWL; input i, e binds

an endpoint e coming from listening on a network port, while

output o to e submits an output to endpoint e. As discussed in

§5.2, endpoints are similarly crucial for realistic extractions.

3.4 Limitations
While our work is the first to use a type system to deliver mod-

ular computational soundness for security protocols, we cur-

rently have a small number of limitations to address in future

work. First, OWL only supports static corruptions via the ad-

versary label; this is inherited from our use of simulation-based

security in Section 4. Indeed, commitments and encryptions

are known to interact with simulation-based security in subtle

ways [30]. However, OWL can encode forward secrecy proper-

ties through its hierarchical name model: if ki encrypts ki+1, and

n is the lowest index such that kn is corrupt, then we guarantee

secrecy for all k j for j < n. Essentially, we model forward se-

crecy by having the adversary commit to the point in time where

compromise happens.

Second, while OWL supports secrecy and integrity properties,

OWL currently does not support unlinkability properties [7] or

injective correspondences [23]. However, we believe that OWL

can, in principle, be extended to support both classes of prop-

erties: unlinkability can be encoded via a more refined model

of control flow, while injective correspondences likely can be

encoded via a linear typing discipline on subroutine calls.

Finally, our extraction mechanism in Section 5 is exploratory

in nature, and not yet verified for functional correctness or se-

curity, and is not meant to be competitive with hand-written op-

timized implementations.

4 OWL Core Theory
To give OWL formal security guarantees, we present OwlLang,

a core calculus for computationally sound reductions using in-

formation flow labels.

OwlLang guarantees that well-typed protocols satisfy simu-
latability and correctness. Simulatability states that, for any

adversary A corrupting a chosen set of names, running the pro-

tocol cannot leak any more information to A than it had before

the protocol’s execution. Dually, correctness states that all re-

finements on data in the protocol hold with high probability.

Comparison with Surface Language. OwlLang has a few dif-

ferences from the surface language in §3. Aside from modeling

atomic sum and product types rather than general enums and

structs, the major difference is our treatment of the adversary

label. In OwlLang, the adversary label is considered fixed in the

typing judgement, and the protocol is well-typed against this

label. Thus, types such as if sec(k) then t1 else t2 do not appear

in OwlLang, since the adversary is fixed. This does not harm

generality, however, since our type checker (§5.1) universally

quantifies over adversary labels using symbolic techniques.

Additionally, OwlLang does not model indices or the

happened predicate. We believe indices can be faithfully mod-

eled by metaprogramming techniques (e.g., as in Squirrel [7]),

while the happened predicate can be modeled by extending our

formal model with a notion of global trace.

4.1 OwlLang Syntax
The syntax of OwlLang is given in Figure 6. As in the sur-

face syntax, each party’s code is given by a monadic lan-

1135

Tables T
Atomic Exprs a ::= x | v ∈ {0,1}∗ | f(a1, . . . ,ak)

| inl(a) | inr(a)
| Z(a) | pairτ(a1,a2)
| fstτ(a) | sndτ(a)
| get(n) | . . .

Crypto Ops op ::= senc | sdec | dhpk | . . .
Expressions e ::= ret(a) | input | output(a)

| case a (x. e1) (y. e2)
| let x = e1 in e2 | T [a]
| T [a] := a′ | op(a1, . . . ,ak) | H(a)

Configurations K ::= [0 . . .m]→ e
Labels � ::= ⊥ | [n] | �∧ �′
Hash Labels L
Types τ ::= Name(n) | Data(�,�) | Unit

| τ+ τ | τ× τ | x : τ{φ} | . . .
Predicates φ ::= a = a | | ¬φ | φ∧φ

Table Contexts T ::= · | T ,T : τ
Type Contexts Γ ::= · | Γ,x : τ
Idealization I ::= ideal | real
Name Types nt ::= nonce | enckeyI(τ)

| sigkeyI(τ) | DHI | . . .
Name Kinds nk ::= nonce | enckey | . . .
Problems P ::= sec(n)
Hash Patterns pat ::= nhash | a | (pat,pat)
Name Contexts Σ ::= · | Σ,n : nt (Base Names)

| Σ,n : pat �→P nt (RO Names)

Figure 6: Syntax of OwlLang.

guage of expressions, with primitive effects for interacting

with the network, mutable state, and probabilistic sampling.

All effects take atomic expressions a as input, which specify

pure (non-probabilistic) computations, including constructors

for sum types, constructors and destructors for product types,

and arbitrary (pure) user-defined functions. The operators for

pairing and unpairing are parameterized by a type τ, which we

discuss below. For our security proof, we add the expression

Z(a) for computing the value 0|a|. Additionally, atomic expres-

sions include a get(n) command, which retrieves the value of

name n from the current execution context.

The commands input and output(a) are used for communi-

cating through the network, which as in prior work [7, 23, 25],

we assume is controlled by the adversary. Parties have access

to mutable maps through global tables: the command T [a] re-

trieves the value of a in table T (if one exists), while the com-

mand T [a] := a′ sets the value of a to a′ in T . All cryptographic

operations are performed through expressions, such as encryp-

tion, senc(a,a′), and decryption, sdec(a,a′). The command

H(a) is used to interact with an idealized random oracle, which

we use for key derivation operations.

Finally, configurations K map party identifiers id ∈ [0 . . .m]
(for some m) to closed expressions. Configurations form the

interface between the adversary and the protocol.

4.1.1 Type Syntax

Before presenting the semantics of OWL, we describe OWL’s

types, which we use to specify security policies.

Types in OWL are built on top of labels, which track

dataflows throughout the program. Intuitively, a label indicates

a set of dependencies on cryptographic names. Atomic depen-

dencies are of the form [n], where names n are either base names
or random oracle names. Base names are assumed to be sam-

pled ahead of time (e.g., Alice’s generated key k), while random

oracle names correspond to results of interacting with the ran-

dom oracle H(·). Crucially, our core calculus does not use a

symbolic adversary label; instead, the adversary label is a pa-

rameter of the type system.

Our core calculus has five main type formers: Name(n),
the singleton type corresponding to the value of name n;

Data(�,�′), arbitrary data whose value has label � and length

has label �′; and Unit, τ+σ, τ×σ, and x : τ{φ}, standing for

the unit type, sum and product types, and refinement types, re-

spectively. Refinements are boolean formulae constructed out

of base equalities a = a′ between atomic expressions. We ad-

ditionally support cryptosystem-specific singleton types; e.g.,

VK(n) for verification keys, described in Appendix B.

The rest of Figure 6 describes the various contexts used for

our typing judgements. Type contexts Γ and table contexts T
assign types to local variables and tables, respectively. Name

contexts assign name types to base names (n : nt) and random

oracle names (n : pat →P nt). Name types specify how the

name may be used in the protocol: the nonce name type is used

for opaque, random data, while the enckeyI τ name type is used

for symmetric (authenticated) encryption keys, encrypting val-

ues of type τ. Here, I ∈ {Ideal,Real} is an idealization, which

tracks whether or not this encryption key has been idealized.

User-facing protocols only use names annotated with Real.
Finally, random oracle names are assigned a hash pattern

pat, describing the value that should be hashed, and a compu-
tational problem P, which witnesses the unforgeability of the

hash’s preimage. We will discuss these more in Figure 4.5. To

define the semantics of OwlLang, we also define name kinds nk
to be name types with annotations removed, such as enckey.

4.2 Security Policies for OwlLang

We now outline the necessary definitions for OWL’s security

policies. Security policies in OWL are composed of secrecy and

integrity policies: secrecy policies are defined by labels, while

integrity policies are defined by induction on types.

Label System. Labels in OWL form a join-semilattice struc-

ture [5], in the style of information flow. The main difference

from prior uses of information flow [67] is the level of granu-

larity: we do not track principals (e.g., Alice/Bob); instead we

track name dependencies of the form [n]. Name dependencies

primarily guarantee that cryptographic keys are used properly

by the protocol. For example, symmetric encryption [65] gen-

erally only guarantees security if the key k is used as a key,

and not otherwise used in the protocol. In particular, key cycles

(e.g., k encrypts k′, which encrypts k) break standard security

notions, and thus they are excluded by our type system, greatly

simplifying verification.

1136

Σ � n : nt
(n : nt) ∈ Σ
Σ � n : nt

(n : pat �→P nt) ∈ Σ
Σ � n : nt

Σ � �≤ �′ Σ � �≤ �
REFL

Σ � �1 ≤ �2 Σ � �2 ≤ �3

Σ � �1 ≤ �3

TRANS
Σ � ⊥ ≤ �

ZERO

Σ � �1 ≤ �3 Σ � �2 ≤ �3

Σ � �1∧ �2 ≤ �3

ANDL
Σ � �≤ �1

Σ � �≤ �1∧ �2

ANDR1

Σ � �≤ �2

Σ � �≤ �1∧ �2

ANDR2
Σ � n : enckeyI(τ)

Σ � �τ� ≤ [n]
HIERARCHY

Figure 7: Label Checking Rules for OwlLang. Similar HIERAR-

CHY rules hold for other cryptographic operations, including MACs,
digital signatures, and public-key encryptions.

�τ�
�Name(n)� := [n]

�Data(�,�′)� := �∧ �′
�Unit� :=⊥
�τ+σ� := �τ�∧�σ�
�τ×σ� := �τ�∧�σ�

�x : τ{φ}� := �τ�

|τ|
|Name(n)| :=⊥
|Data(�,�′)| := �′

|Unit| :=⊥
|τ+σ| := |τ|∧ |σ|
|τ×σ| := |τ|∧ |σ|

|x : τ{φ}| := |τ|
Figure 8: Covering Label and Length Label for Types.

Our label checking rules are given in Figure 7. All

rules except the last one, HIERARCHY, are standard for join-

semilattices [5]. The new rule, HIERARCHY, reflects OWL’s

hierarchical label model: if k encrypts τ, then the label con-

sisting of all names in τ flows to the label [k]. We capture this

flow using the covering label �τ� for τ, given in Figure 8, which

joins together all labels present in the type. Similar HIERAR-

CHY rules hold for other cryptographic operations, including

MACs, digital signatures, and public-key encryption. We also

have the length label, |τ|, which bounds the amount of infor-

mation present in the lengths of values of type τ. Length labels

are important for guaranteeing that information does not leak

through lengths (e.g., lengths of ciphertexts).

Integrity Policies. Integrity in OWL (e.g., both parties return

the same key of type Name(n)) is defined via our integrity pol-

icy (Figure 9), which defines for each type τ the set of values

that satisfy τ. Our integrity policies are of the form �τ�Σ,N,W ,

where N is a name environment mapping in-scope base names

(n : nt) ∈ Σ to values, while W is a world, which contains the

mutable state that evolves throughout the protocol. Worlds map

table variables (or the random oracle) to partial maps on values.

The integrity policy for Name(n) has two cases, depending

on whether n is a base name of the form (n : nt) ∈ Σ, or a ran-

dom oracle name of the form (n : pat→P nt) ∈ Σ. In the for-

mer case, �Name(n)�Σ,N,W requires that the given value is equal

N : Name→{0,1}∗

W : TVar∪{RO}→ {0,1}∗ → {0,1}∗ ∪{⊥}

�a�Σ,N,W
hash := �a�N

I

�nhash�
Σ,N,W
hash :=W [RO,v′] if (n : pat→P nt) ∈ Σ ∧

�pat�Σ,N,W
hash = v′

�(pat,pat′)�Σ,N,W
hash := �pat�Σ,N,W

hash ++ �pat′�Σ,N,W
hash if both defined

�Name(n)�Σ,N,W (v) :=

{
v = N(n) if (n : nt) ∈ Σ
v = �nhash�

Σ,N,W
hash otherwise

�Data(�,�′)�Σ,N,W (v) := True

�Unit�Σ,N,W (v) := v = 0

�τ+σ�Σ,N,W (v) :=

{
�τ�Σ,N,W (v′) if v = 0v′, or

�σ�Σ,N,W (v′) if v = 1v′.

�τ×σ�Σ,N,W (v) := bdryτ(v) �=⊥ ∧
�τ�Σ,N,W (v[. . .bdryτ(v)]) ∧
�σ�Σ,N,W (v[bdryτ(v) . . .])

�x : τ{φ}�Σ,N,W (v) := �τ�Σ,N,W (v)∧ �φ�N(v)

Figure 9: Name Environments, Worlds, and Integrity Poli-
cies for Data. The interpretation I (§4.3) is implicit for atomic ex-
pressions.

to exactly the value of n in the name environment. In the lat-

ter case, we say that the given value is equal to the value of

�nhash�
Σ,N,W
hash , where �pat�Σ,N,W

hash evaluates the value of the hash

pattern, pat. The value of �pat�Σ,N,W
hash : maps nhash to the corre-

sponding value of the random oracle (if it exists); maps atomic

expressions a to the semantics �a�N
I , described in §4.3; and

maps pairs (pat,pat′) to their concatenations.

The integrity policy for Data(�,�′) is trivial, as this type con-

tains arbitrary bitstrings, while the integrity policy for Unit is

the singleton set {0}. The integrity policy for sum types τ+σ
reflects that semantically they are tagged unions, while the pol-

icy for τ×σ reflects that product types are semantically con-

catenations. For concatenations to be unambiguous, we say

that �τ×σ�Σ,N,W (v) only if v parses under τ, meaning that the

boundary between the τ-half and the σ-half of v is well-defined.

Parsing is discussed in more detail in Appendix A. Finally, the

integrity policy for x : τ{φ} is derived from that of τ, but requires

that the refinement φ holds as well.

4.3 OwlLang Semantics
To define concrete semantics for OwlLang, we first need a

global interpretation I , which defines the semantics for deter-

ministic functions, cryptographic operations, and name kinds.

Looking ahead, we additionally define PPT interpretations to

be families of interpretations Iλ with polynomial assignments

and lengths:

1137

Definition 1 (Interpretation). An interpretation I :
• assigns each function symbol f a mapping �f�I from lists

of values in {0,1}∗ to {0,1}∗;
• assigns each cryptographic operation op a mapping �D�I

from lists of values in {0,1}∗ to finitely supported proba-
bility distributions over {0,1}∗;

• assigns each name kind nkI a fixed length of bits Lnk, along
with a probability distribution �nk� over {0,1}Lnk ;

• a length Lhash for the random oracle.
The family Iλ of interpretations is PPT when all lengths Lnk,

Lhash are polynomial in λ, and all assigned functions and prob-
ability distributions have runtimes polynomial in λ.

We assume that all interpretations are standard, which fixes

the semantics of certain operations, and requires that the rele-

vant cryptosystems are secure. Standard interpretations are de-

fined in Appendix A.

Semantics for Expressions. We define the semantics of OWL

protocols by first defining the semantics of individual expres-

sions, then lifting these semantics to an interaction between

configurations of expressions and a computational adversary.

We define the semantics for atomic and non-atomic expres-

sions separately. Both are assumed to be closed throughout.

Semantics for atomic expressions have the form �a�N
I ∈ {0,1}∗,

where N is a name environment mapping in-scope base names

n to bitstrings. These semantics are largely standard: atomic

functions (e.g., inl/inr, pairing, and user-defined functions) are

assumed to come from the interpretation I , while �get(n)�N
I =

N(n). We will write �a�N when the interpretation is implicit.

Because non-atomic expressions e are meant to be run in par-

allel and interactively queried by the adversary, we allow the

adversary to guide the execution of e through small-step seman-

tics. On input i, e executes a single computational step, such as

reducing a computation f (ai), performing an output, or receiv-

ing the input i. Along the way, e will modify the current world,

or values of the current random oracle and in-scope tables. For-

mally, non-atomic expressions have semantics

�e�N
I : World→{0,1}∗ → Dist(Expr×World×{0,1}∗),

mapping worlds W ∈World and inputs i to distributions over

next expressions e, worlds W ′, and outputs o.

The semantics for OwlLang expressions are given in Fig-

ure 16. We use monadic syntax for probability distributions;

i.e., Ret(x) returns the unit mass probability distribution, while

x $←− D1;D2 samples from D1, obtains a value x, and continues

as D2. While the semantics return an output for every input,

we return the empty bitstring ε if there is no next output, and

discard the input if it is not used.

We now discuss selected semantic rules: the semantics for

let x = e1 in e2 first tests if e1 is of the form ret(a); if it is,

we proceed by reducing to e2[v/x], where v is the value of a.

Otherwise, we reduce e1, and propagate the results accordingly.

The semantics for T [a] return the bitstring 00 if the value of a
is not found in the map, and returns a bitstring of the form 1v
otherwise; this parallels our encoding of option types Unit+
τ. Finally, the semantics for H(a) return the value of a in the

random oracle, if it exists; otherwise, it samples a new value

and returns it, along with updating the random oracle.

4.3.1 Adversarial Semantics

We give semantics to protocols via a security game, which

allows an arbitrary computational adversary to interactively

query the protocol over a number of rounds. Queries may pro-

vide inputs to parties, access the random oracle, and obtain cer-

tain values of base names (e.g., public keys and values of cor-

rupted names). At the end of the interaction, we output a de-

cision bit b from the adversary, along with a value ok(N,K),
which specifies whether the integrity policy induced by our

types (described below) is satisfied.

Security games are defined relative to adversaries.

Definition 2 (Adversary). An adversary A is given by a positive
integer k and three probabilistic algorithms:

• Aquery(s), which takes as input a bitstring state s , and re-
turns a pair (s′,q) of a new state and a query q ∈ {0,1}∗;

• Aout(s,o), which takes as input a bitstring state s and an
output o from the protocol, and returns a new state s′.

• Adecide(s), which takes as input a bitstring state s and re-
turns a bit.

The family Aλ is PPT when kλ and the runtime of all three
algorithms is O(poly(λ)).

Given a name context Σ, configuration K0, types τi for each

i in the domain of K0, an adversary A with associated label

�A , and a name environment N, we define the security game

GΣ,{τi}
I (N,K0, �A ,A) as in Figure 10.

We initialize the interaction by setting the current configura-

tion K to the initial one (K0), and setting the adversary’s state s
to the empty bitstring, ε. Then, for k rounds we query the adver-

sary and react appropriately. We assume a canonical injective

embedding of bitstrings into queries. If the adversary outputs

Input(j, i), we run the jth party in W on input i according to the

semantics in §4.3, obtaining a new expression e′, world W ′, and

output o. We then update the interaction state appropriately, de-

livering output o to the adversary using Aout and updating K [j]
to be e′. Random oracle queries are answered using W [RO, ·],
as in the expression semantics.

Additionally, we allow the adversary to access oracle queries
of the form q∈Orcl(Σ, �A ,N), where Orcl(Σ, �A ,N) is the set of

available oracle queries, defined at the bottom of Figure 10. We

assume that Orcl(Σ, �A ,N) contains at least the query get(n),
which allows the adversary to obtain the value of corrupted

(non-hash-derived) names. We additionally use Orcl(Σ, �A ,N)
to allow the adversary to obtain public keys for asymmetric

cryptosystems (e.g., Diffie-Hellman and digital signatures).

At the end of the interaction, we query Adecide to turn the

adversary state into a bit b. We return b along with the value

okΣ,{τi}(N,W,K), which maps party indices j to a boolean or

⊥, indicating whether the party has terminated, and whether the

party’s return value (if it exists) satisfies the refinement for τ j.

4.4 Security Goals
Security for OwlLang is split into two statements: correctness
for integrity, and simulatability for secrecy. To define security,

1138

Security game GΣ,{τi}
I (N,K0, �A ,A)

s,W := ε,{}
K := K0

for A .k rounds do
(s′,q)← Aquery(s)
if q = Input(j, i) then

(e′,W ′,o) $←− �W [j]�N(W, i)
K := K [j := e′]
W :=W ′

s $←− Aout(s′,o)
else if q = Hash(i) then

if W [RO, i] =⊥ then
v $←− {0,1}�Lhash�

W :=W [RO, i := v]

s $←− Aout(s,W [RO, i])
else if q = q,q ∈ Orcl(Σ, �A ,N) : then

v← Orcl(Σ, �A ,N,q)

s $←− Aout(s,v)

b $←− Adecide(s)
return (b,okΣ,{τ j}(N,W,K))

okΣ,{τi}(N,W,K) :=

[
j �→

{
�τ j�

Σ,N,W (v) if K [j] = ret(v)
⊥ otherwise

]

Orcl(Σ, �A ,N) :=

⎡
⎢⎢⎣
get(n) �→ N(n) if Σ � [n]≤ �A , (n : nt) ∈ Σ
vk(n) �→ �vk�(N(n)) if (n : sigkeyI) ∈ Σ
dhpk(n) �→ �dhpk�(N(n)) if (n : DH) ∈ Σ

. . .

⎤
⎥⎥⎦

Figure 10: Interaction of OWL Protocols with Adversary.

The interpretation I is implicit.

we first define the probability distribution GenI (Σ) for generat-

ing name environments:

Definition 3 (Name Generator). Given an interpretation I ,
GenI (Σ) is the probability distribution over name environments
for Σ, where each name kind nk is sampled according to �nk�I .
Correctness. Integrity guarantees in OwlLang are encoded

through the correctness of parties’ return values, specified by

their types. Correctness in OwlLang states that, whenever party

i has final return type τi in configuration K , all final return val-

ues of party i must satisfy �τi� (Figure 9) with all but negli-

gible probability. For example, correctness for the return type

Unit+ (Name(n)×Name(n′)) states that we return a tagged

union, which contains either a unit value to indicate failure, or a

pair (k1,k2) of two keys corresponding to n and n′, respectively.

We formally encode correctness through the ok predicate

in Figure 10, which returns a partial map from party IDs to

booleans, stating whether party j satisfied the refinement for

their return value (if it exists).

Definition 4 (Correctness). Let Iλ be a family of interpreta-
tions, indexed by λ. We say that K is correct under Σ and {τi},

written Iλ;Σ;�A ;{τi} �integ K if, for all PPT adversaries A , we
have that

Pr[V (j) �=⊥ =⇒ V (j) = 1 |N $←− GenIλ(Σ),

(,V)
$←− GΣ,{τi}

Iλ
(N,K , �A ,Aλ)]

is overwhelming in λ.
Simulatability. Simulatability in OwlLang states that any com-

putational information returned by the adversary in Figure 10

can be efficiently extracted by a simulator, with oracle access

to Orcl(Σ, �A ,N). Intuitively, this means that all computational

information about names in the name environment N can be re-

constructed using only public information.

Definition 5 (Simulatability). We say that K is simulatable un-
der Σ and {τi}, written Iλ;Σ;�A ;{τi} �sim K , if for all PPT A ,
there exists PPT Sλ such that

Pr

N
$←−GenIλ (Σ)

[b = b′ |(b,) $←− GΣ,{τi}
Iλ

(N,K , �A ,Aλ),

b′ $←− S
OrclIλ (Σ,�A ,·,N)

λ]

is overwhelming in λ.
We then define security to be the conjunction of correctness

and simulatability:

Definition 6 (Security). We say that K is secure, writ-
ten Iλ;Σ;�A ;{τi} � K , whenever Iλ;Σ;�A ;{τi} �integ K and
Iλ;Σ;�A ;{τi} �sim K .

4.5 Type System
We now present the typing rules for OwlLang. The rules are

split into three parts: well-definedness of name contexts in Fig-

ure 11, the core, non-cryptographic typing rules in Figure 17,

and the typing rules for cryptographic operations in Figure 12.

4.5.1 Core Rules

The typing rules for atomic expressions, given in Figure 17,

are largely standard. We allow the pairing/unpairing operations

pair/fst/snd to fail, returning inl(0), whenever the left-hand

side of the pair fails to parse. We additionally require the left-

hand side to be parsable, so that the result of parsing is well-

defined; parsable types are defined in Figure 14. We assign

Z(a) the type Data(|τ|, |τ|) whenever a has type τ, since Z(a) is

semantically a function of only the length of a. The typing rule

for refinement types states that a has type x : τ{φ} whenever a
has type τ, and we can prove semantically that φ holds of a.

Our typing rules for expressions are of the form Σ;T ;Γ;�A �
e : τ. Here, �A is the label for the adversary, which remains con-

stant throughout the typing derivation. This reflects that OWL

guarantees static security.

The rule for input returns data labeled with �A , while output
requires data labeled with �A . The rule OP-TRIV allows us to

over-approximate cryptographic operations by treating them as

ordinary functions.

For control flow, we have two rules for the case expression:

CASE, which consumes sum types; and CASE-CORR, which

consumes arbitrary, possibly corrupted data labeled with �A .

1139

Σ � pat context P
pat= get(n)∨pat= nhash

Σ � pat context sec(n)

Σ � dhcombine(dhpk(get(n)),get(n′)) context DH(n,n′)

Σ � pati context P i ∈ {1,2}
Σ � (pat1,pat2) context P

∀(n′ : pat′ →P nt′) ∈ Σ,∀N W,

�pat′�Σ,N,W
hash defined =⇒ �pat�Σ,N,W

hash �= �pat′�Σ,N,W
hash

Σ � H(pat) undefined

� Σ � ·
� Σ Σ � nt n /∈ Σ

� Σ,n : nt

� Σ
Σ � H(pat) undefined Σ � pat Σ � pat context P

Σ � nt nt= enckeyReal τ∨nt= nonce

� Σ,n : pat �→P nt

Figure 11: Selected Rules for Well-Defined Contexts and
Hash Patterns.

Finally, we have rules for accessing global tables in T , which

reflect each table (T : τ) ∈ T being a partial map from �A -

labeled data to τ.

Configurations K are typed with a set of types {τi}whenever

each party i in K is typed with τi.

4.5.2 Cryptographic Typing Rules

The main typing rules for cryptography are given in Figure 12.

Symmetric Encryption. First, we have symmetric (authenti-

cated) encryption and decryption. Rule ENC-n states that if

a1 is a key of type Name(n), n is a non-idealized encryption

key for τ, and a2 is of the corresponding plaintext type, then

senc(a1,a2) is data labeled with �A . We have the side condition

Σ � |τ| ≤ �A , which enforces that we only encrypt plaintexts

with public lengths. Rule DEC-n operates in reverse, return-

ing an option type if decryption fails. Both rules require that

the label [n] does not flow to �A , which ensures that the adver-

sary only views the key through well-formed encryptions and

decryptions.

Hashing. Next, we have rules for hashing via the random or-

acle. Many constraints necessary for hashing to be secure in

OwlLang are encoded in Figure 11, the well-formedness con-

straints on name contexts. Intuitively, n : pat→P nt is valid in

Σ when: no other hash pattern pat′ collides with pat, specified

by the judgement Σ � H(pat) undefined; producing a value that

satisfies pat requires solving the hash problem P, specified by

the judgement Σ� pat context P; and the resulting name type nt
is either nonce or enckeyR τ, which guarantees that base names

of type nt can be generated by hash values.

Σ;Γ � a1 : Name(n) Σ � n : enckeyrealτ
Σ;Γ � a2 : τ Σ �� [n]≤ �A Σ � |τ| ≤ �A

Σ;T ;Γ;�A � senc(a1,a2) : Data(�A , �A)
ENC-n

Σ;Γ � a1 : Name(n) Σ � n : enckeyrealτ
Σ;Γ � a2 : Data(�A , �A) Σ �� [n]≤ �A

Σ;T ;Γ;�A � sdec(a1,a2) : Unit+ τ
DEC-n

(n : DHReal) ∈ Σ Σ;Γ � a : Name(n)

Σ;T ;Γ;�A � dhpk(a) : Data(�A , �A)
DHPK

(n : pat �→P nt) ∈ Σ Σ;Γ � a : τ
∀N W v. �τ�Σ,N,W (v) =⇒ �pat�Σ,N,W

hash = v
Σ;�A � unsolvable P

Σ;T ;Γ;�A � H(a) : Name(n)
HASH-pat

Σ;Γ � a : Data(�A , �A)

Σ;T ;Γ;�A � H(a) : Data(�A , �A)
HASH-CORR

Σ;�A � unsolvable P
Σ � n : nonce Σ �� [n]≤ �A

Σ;�A � unsolvable sec(n)

Σ � n : DH
Σ � n′ : DH Σ �� [n]≤ �A Σ �� [n′]≤ �A n �= n′

Σ;�A � unsolvable DH(n,n′)

Figure 12: Selected Rules for Cryptographic Operations in
OwlLang.

Now, we turn to the typing rules for computing hashes in

Figure 12. Rule HASH-pat states that a : τ hashes to the name n
whenever: the assignment (n : pat→P nt) is in the name con-

text; we have that τ semantically satisfies the hash pattern pat;
and P is unsolvable. The second condition is satisfied when-

ever, for all worlds W and name environments N, the integrity

predicate for τ under N and W is semantically the singleton set

consisting of the semantic value of pat under N and W . The

third condition, Σ;�A � unsolvable P, corresponds to the com-

putational infeasibility of the adversary solving the hash prob-
lem P. We support two hash problems: sec(n), for difficulty

of the adversary computing n; and DH(n,n′), for difficulty of

the adversary computing the Diffie-Hellman shared secret for n
and n′. Finally, we have the rule HASH-CORR, which states that

�A -labeled inputs hash to �A -labeled outputs.

Diffie-Hellman Operations. We model Diffie-Hellman oper-

ations and their security not through extra typing rules, but

via the hash problem DH(n,n′). We assume function symbols

for the atomic expressions dhpk(·) and dhcombine(·, ·) for ob-

taining Diffie-Hellman public keys and computing shared se-

crets from public and secret keys. Rule DHPK in Figure 12

states that dhpk(a) has type Data(�A , �A) whenever a is a non-

idealized Diffie-Hellman private key; this models that we con-

sider public keys considered public. Figure 11 states that pat

1140

is a context for DH(n,n′) when pat contains the corresponding

shared secret for n and n′, dhcombine(dhpk(get(n)),get(n′)).
Signatures. Rules for digital signatures are given in Ap-

pendix B, along with other cryptographic operations such as

MACs and public-key encryption. We model digital signatures

via the verification operation vrfy(vk,x, t) returning the option

type Unit+ τ, similar to the return type of sdec. However, as

digital signatures do not guarantee message privacy, we require

that Σ � |τ| ≤ �A so that the message contents are safe to leak.

4.6 Soundness
To guarantee security, we need to ensure that the family of inter-

pretations Iλ is secure, meaning that the semantics of all cryp-

tosystems satisfy relevant notions of security:

Definition 7 (Secure Interpretation). The family of interpreta-
tions Iλ is secure when:

• The triple (�enckey�Iλ ,�senc�Iλ ,�sdec�Iλ) satisfies IND-
CPA, INT-CTXT, and key privacy [14, 16] (e.g., as pro-
vided by AES-GCM [58]);

• The Gap Diffie-Hellman assumption [27] holds for the
group induced by exponent generation �DH�Iλ , the public-
key operation �dhpk�Iλ , and the shared-secret computation
�dhcombine�Iλ ;

• The algorithms �sigkey�Iλ ,�vk�Iλ ,�sign�Iλ , and �vrfy�Iλ
induce an unforgeable signature scheme [65];

• . . . [similar conditions for other cryptographic primitives]
Now, we have that well-typed configurations are secure, as

defined in Definition 6:

Theorem 1. Suppose that Σ;T ;�A � K : {τi}. Then, we have
that, for any PPT secure interpretation Iλ, Iλ;Σ;�A ;{τi} � K .
Proof Overview. The intuition behind our proof is that if we

have a typing derivation Σ;T ;�A � K : {τi}, then a sequence

of suitable cryptographic reductions is guaranteed to exist for

K . Since each cryptographic reduction preserves security, we

are guaranteed that K is secure only if the final, idealized pro-

tocol is secure. Standard programming language techniques

(e.g., information-flow security [67]) then guarantee that this

final protocol is secure. Formal proof details may be found in

Appendix C of our technical report [45].

Indeed, our proof can be thought of as a “meta-programmed”

version of CryptoVerif’s [23] proof technique. For example,

to idealize an encryption key name k, we first prove that k is

only used as an encryption key (e.g., no other key encrypts k).

Then, we refactor the configuration K to a reduction of the form

R senc(get(k),·),sdec(get(k),·), where k is not accessed by R . At this

point, we apply the security of the encryption scheme to replace

the encryption and decryption oracles with idealized versions,

which encrypt fake messages under fresh keys, and use an ideal

decryption log to recover plaintexts from ciphertexts. As a re-

sult, the transformed protocol is well-typed under the simplified

name context Σ[n �→ (n : enckeyIdeal τ)]; thus, we may continue

the “main loop” of the proof and apply more cryptographic re-

ductions (or prove security directly if the protocol is fully ideal).

Aside from cryptographic reduction steps for encryptions and

signatures, we use a random-oracle idealization step to replace

random oracle calls H(a) with reads from fresh, unique names

via get(n) expressions. The soundness of this transformation

relies on the corresponding hash pattern being unsolvable (Fig-

ure 12), so that the adversary cannot compute H(a); addition-

ally, we ensure from well-formedness of the name context (Fig-

ure 11) that n is sampled from the same probability distribution

as hash values from the random oracle.

Our proof of security has a number of attractive features.

Foremost, it is highly extensible, as each cryptographic reduc-

tion step may be performed separately, using domain-specific

proof techniques. The only interface between differing reduc-

tion steps is the output typing judgement Σ′;T ′;�A � K : {τ′i}
after idealization, which guarantees that further cryptographic

primitives may be idealized.

5 Implementation
To evaluate OWL’s expressiveness, we have implemented a val-

idating compiler [44] in ∼7,300 lines of Haskell (plus ∼580

lines of shared Rust code used by extracted implementations)

and applied it to a large collection of case studies (§6). The

compiler includes both a type checker that ensures the security

of OWL protocols, and a (trusted) mechanism for automatically

producing executable code for a protocol’s parties.

5.1 Proof Checking via Typing
Unlike most computational verification tools (§2), OWL is fully-

automated and requires no manual proof effort, except for writ-

ing the protocol itself in OWL.

Refinement Type Checking. All types in OWL carry an in-

tegrity policy, corresponding to the predicate �τ� in Figure 9.

Integrity policies in the type checker correspond to refinement

type checking routines, and as in other systems [55, 68] are dis-

patched using the Z3 [36] SMT solver.

Symbolic Label Checking. In §4.6, we prove that if Σ;T ;�A �
K , then configuration K is secure against adversaries with label

�A . Crucially, typing judgements depend on �A ; for example,

the rule for decryption in §4.5.2 only guarantees high-integrity

results if the corresponding key name does not flow to �A .

However, we wish to prove security against all adversaries.

To do so, OWL reasons about a symbolic adversary, effectively

proving the family of judgements Σ;T ;�A � K for all �A . To

support symbolic adversaries, we additionally encode our label

checking rules into SMT, defining the adversary label to be an

uninterpreted, universally quantified constant.

In addition to the core typing rules, certain primitives in OWL

are used to reason about the adversary label. The command

corr case n in .. performs a case split on whether n is corrupt,

splitting the type checking procedure into two cases for [n]≤ �A
and [n] �≤ �A . Since the cases may yield different return types,

the OWL type if sec(n) then t1 else t2 is used to combine them.

Proof Performance. Formal tools built atop an SMT solver

often inherit the solver’s incompleteness or timeouts. However,

in our case studies, we have not faced any issues regarding SMT

performance. We attribute this to the following techniques.

• Limited theories: SMT solvers generally perform worse

when faced with more difficult theories, such as nonlin-

ear arithmetic, bitvector computations, or associative op-

erations. We have not needed such reasoning in our case

1141

studies, since the verification conditions our type system

exports are generally simple boolean refinement formulas

and label checking queries, which we axiomatize using un-

interpreted functions.

• Separate queries: SMT solvers such as Z3 often perform

worse when attempting to prove p∧q in one query, rather

than proving p and q separately. Our system is designed

to output one SMT query per verification condition, which

we have found yields predictable proof performance.

• Hybrid reasoning: unlike tools such as Dafny [55], we do

not export all nontrivial reasoning to SMT, instead pre-

ferring to solve subtyping queries inside our Haskell im-

plementation whenever possible. This is enabled by our

liberal use of special-purpose singleton types (e.g., VK(n)
and DHPK(n), for verification keys and Diffie-Hellman

public keys, respectively), which often encapsulates com-

plex reasoning that would otherwise be performed in SMT.

5.2 Producing Executable Protocol Code
To show that protocols modeled in OWL are realizable, we de-

veloped an extraction pipeline that automatically generates ex-

ecutable implementations from OWL protocols. We briefly dis-

cuss the pipeline’s design below.

Protocol verification tools run the risk of operating at too high

a level of abstraction, such that implementations of the verified

protocols must fill in unspecified, security-relevant details. In

the worst case, such protocols could be so abstract that they

are unrealizable in executable code. OWL’s extraction pipeline

ensures that OWL protocols are concrete enough to be directly

implementable, and that those concrete details are checked for

security by the type system. In §6, we discuss an example where

extraction allowed us to catch a low-level bug in a protocol that

was not detected by prior work.

The OWL extraction pipeline emits safe Rust [66] code. We

chose Rust since it lets us control the memory layout of the

emitted code while providing static safety guarantees. Notably,

the semantics of OWL specify a concrete representation of all

OWL data types as byte-strings; we mirror these semantics by

extracting all OWL data types to Vec<u8> in Rust. For structs

and enums, we also cache the offsets of the member fields. We

rely on the standard RustCrypto crates to implement crypto-

graphic primitives. Inputs are received and outputs are sent via

TCP using pre-configured socket addresses. The entire pipeline

is automatic—the OWL programmer need not write any Rust

code to produce an implementation of their protocol.

Developing the OWL extraction pipeline forced certain

choices in the design of the source language. For instance, end-

points are required to specify message routing. Extraction also

necessitated a more complex design for indices than Squirrel [7]

uses. We distinguish three kinds of indices: ghost indices (i.e.,

that exist only for verification purposes), indices representing

sessions of a particular protocol, and indices representing a fam-

ily of localities with the same functionality but different names.

We extract names parameterized by a session ID to a map from

indices to names, where names are generated ephemerally as

needed. Names parameterized by a locality ID are extracted

to a single executable implementation accompanied by multiple

statically generated configurations of names, each correspond-

ing to a different locality index. Additionally, extraction re-

quires that all struct fields are annotated with a static length, to

allow automatic generation of parsing code.

Limitations. Our current extraction pipeline serves to demon-

strate that OWL protocols can be compiled automatically into

working executable implementations. As such, it does not cur-

rently aim to provide state-of-the-art performance, nor does it

aim to generate code that can interoperate with existing imple-

mentations of protocols. In particular, OWL does not specify

packet formats, magic numbers, or other features of real-world

protocol communication. We believe that it should be possible

to extend the OWL source language and extraction pipeline to

allow automatic extraction of performant and compliant imple-

mentations without significant changes to the core type system,

and we hope to investigate this in future work.

6 Case Studies
We compare OWL against two state-of-the-art tools that,

like OWL, provide computational security guarantees. Cryp-

toVerif [23] focuses on automation, whereas Squirrel [7] fo-

cuses on expressivity; neither, however, supports modularity.

OWL, however, aims to offer all three.

To evaluate OWL’s success, we implement, verify, and extract

14 case studies covering all those presented by CryptoVerif [23]

and Squirrel [7]. Figure 13 has high-level quantitative compar-

isons (note that all case studies verify in seconds), while we

provide more details, along with qualitative differences, below.

LoC Time
Name OWL Other Rust (s) Source
Basic-Hash [28] 46 58 541 0.71 SQ

Hash-Lock [49] 61 123 682 0.96 SQ

LAK [46] 73 92 998 1.09 SQ

MW [60] 76 359 947 1.12 SQ

Feldhofer [41] 35 215 421 0.32 SQ

Private Auth [9] 59 74 794 0.47 SQ

Needham-Schroeder (sym) [61] 108 126 1207 2.48 CV

Needham-Schroeder (pub) [61] 80 107 1019 7.74 CV

Otway-Rees [62] 197 108 2589 5.77 CV

Yahalom (sym) [29] 164 83 2007 3.27 CV

Denning-Sacco (pub) [38] 91 119 1368 1.19 CV

Kerberos [52] 270 271 3292 8.21 CV

Diffie-Hellman Key Ex [39] 80 152 719 2.38 SQ

SSH Forwarding Agent [69] 183 304 1445 9.77 SQ

Figure 13: Case Studies. Groupings indicate RFID, Authentication,
and DH Protocols. CV indicates CryptoVerif; SQ indicates Squirrel.

RFID Protocols. RFID systems typically contain several low-

power tags that communicate with a reader. From Squirrel, we

adopt a variety of tag-to-reader protocols.

We verify the RFID protocols, proving standard secrecy and

authentication guarantees. As an example, in the Basic Hash

protocol [28], a tag proves possession of its key to the reader

by transmitting a MAC of a public nonce. OWL’s type system

allows for an expressive specification that states that a valid tag

indeed sent the MAC and has authenticated itself successfully

to the reader if the MAC verifies, as shown below.

1142

1 enum reader response {
2 | Ok (∃ i. (x:Data〈adv〉{sec(K〈@i〉) =⇒
3 ((x = get(NT〈@i〉)) ∧ happened(tag main〈@i〉()))}))

4 | No
5 }
6 def reader main () @ reader : reader response = . . .

Above, each tag corresponds to a different party index i and

executes the tag main〈@i〉() function. The reader returns an Ok

with data x only if it has successfully authenticated the tag (i.e.,

if the MAC verification is successful). The refinement on x’s

type means that, if the MAC key was not corrupted, then tagi

ran (encoded using OWL’s happened predicate) and was the one

trying to authenticate itself. Note that the MAC verification

may still succeed even if the key has been corrupted. How-

ever, in this case, an adversary-controlled tag may have sent the

MAC, and hence the refinement does not (and cannot!) guaran-

tee happened(tag〈i〉()).
Notably, all of the OWL protocols verify automatically,

whereas in Squirrel, considerable manual effort is required from

the developer (as hinted at by the differences in line counts be-

tween the two tools). However, unlike Squirrel, we do not yet

prove unlinkability [4] between sessions.

Authentication Protocols. We also verify a variety of tra-

ditional authentication protocols, primarily based on Cryp-

toVerif’s case studies. These protocols are typically hierarchi-

cally designed, using pre-shared keys to guarantee the integrity

of fresh session keys, which are then used for secure communi-

cation between authenticated parties.

A particularly complex example is Kerberos [52]. A client

first authenticates to the Authentication Service (AS) to obtain

a Ticket Granting Ticket (TGT). This authentication process re-

quires a secure channel between the client and AS, which can

be established via a pre-shared symmetric key (generated from

client passwords), or via a PKI (using Kerberos’ PKINIT ex-

tension). The client then uses the TGT to interact with a Ticket

Granting Server (TGS) and obtain a Service Ticket. Finally, it

uses the Service Ticket to securely interact with a Service.

Compared with CryptoVerif and Squirrel, OWL verifies Ker-

beros in a modular fashion. Specifically, we first write a module

interface for the client’s interaction with the AS. We then verify

that both an implementation based on a pre-shared symmetric

key and one based on a PKI verify successfully against this in-

terface. Finally, we verify the rest of Kerberos using the inter-

face; i.e., the rest of the protocol is agnostic as to whether the

AS exchange used symmetric or public keys. OWL proves end-

to-end authentication by guaranteeing that the client and Service

obtain the same session key at the end of the protocol. This is

succinctly represented via the return type of each party’s pro-

cedure. Unlike CryptoVerif, however, OWL does not yet guar-

antee the freshness of the shared key. This requires proving a

bijection from the session index of the authentication server to

the session indices of the authenticating parties.

Squirrel provides another interesting case study, the Private

Authentication protocol [9], which illustrates how OWL’s sup-

port for extraction catches protocol descriptions that elide im-

portant implementation details. We first verified this protocol

as specified by Squirrel: the parties each start by encrypting a

message using public-key encryption. However, OWL’s extrac-

tion complained because the messages being encrypted were

inherently too long for the public-key cipher we use (2048-

bit RSA with OAEP). We then extended our version with the

usual hybrid encryption technique; i.e., each party encrypts an

ephemeral symmetric key with the other party’s public key and

then encrypts the message with the symmetric key. OWL suc-

cessfully extracted and ran this new version. As discussed in

§5.2, this illustrates the risks of verifying protocols that are so

abstract they elide important details (e.g., length restrictions on

public-key cipher messages), and it underscores the usefulness

of extraction as a prototyping tool for protocol design.

When comparing the protocols in CryptoVerif vs. OWL, we

find both tools achieve comparable automation. Some OWL im-

plementations are larger, due in part to implementation details

(like struct definitions) to facilitate extraction. However, we

have found automation in OWL to be particularly robust com-

pared to CryptoVerif, as typing errors in one party’s code will

not cause the other party to fail to typecheck. This modularity

of verification effort is not available in CryptoVerif. An ad-

ditional qualitative difference from CryptoVerif is that secrecy

properties in OWL are guaranteed for free via its information

flow type system, while the secrecy of each piece of data must

be queried for individually in CryptoVerif.

DH Protocols. The Diffie-Hellman protocol [39] allows two

parties to securely establish a shared key over an adversary-

controlled channel. Using OWL’s support for DH primitives

(e.g., modular exponentiation/elliptic-curve multiplication) and

random oracles, we specify this key-exchange protocol as well

the SSH [69] key exchange protocol with a forwarding agent.

The latter is essentially two rounds of the DH key-exchange

performed in sequence. The first key-exchange sets up a secure

channel between the client and the forwarding agent, and the

second sets up a secure channel between the forwarding agent

and server using the key generated from the first exchange.

Unlike Squirrel, OWL’s support for modularity allows us to

verify these key-exchanges independently of each other. For

each exchange, we prove that both parties successfully receive

the same key and that the keys are secure, subject to whether

any signing keys (used by the parties to authenticate their DH

public key during the exchange) are corrupt.

7 Conclusions
We present OWL, the first formal tool for analyzing security

protocols that simultaneously achieves automation, modularity,

and computational security. Rather than whole-protocol tech-

niques, OWL relies on information flow types. We evaluate

OWL on a number of case studies and show that it is competitive

with related tools [7, 23]. Finally, OWL’s prototype extraction

pipeline to Rust produces executable implementations.

1143

Acknowledgements
This work was funded in part by National Science Foundation

(NSF) Grants No. 1801369 and 2224279, a fellowship from the

Alfred P. Sloan Foundation, and grants from the Intel Corpora-

tion and Rolls-Royce. Sydney Gibson was also funded by the

NSF Graduate Research Fellowship Program under Grant No.

DGE1745016.

References
[1] M. Abadi and P. Rogaway. Reconciling two views of cryp-

tography (the computational soundness of formal encryp-

tion). Journal of Cryptology, 15(2), 2002.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,

M. Green, J. A. Halderman, N. Heninger, D. Springall,

E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,

S. Zanella-Béguelin, and P. Zimmermann. Imperfect for-

ward secrecy: How Diffie-Hellman fails in practice. In

ACM CCS, 2015.

[3] M. Albrecht, K. Paterson, and G. Watson. Plaintext recov-

ery attacks against SSH. In Proc. IEEE S&P, May 2009.

[4] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan.

Analysing unlinkability and anonymity using the applied

pi calculus. In 2010 23rd IEEE CSF, 2010.

[5] O. Arden, J. Liu, and A. C. Myers. Flow-limited autho-

rization. In 2015 IEEE 28th CSF, 2015.

[6] A. Askarov, D. Hedin, and A. Sabelfeld.

Cryptographically-masked flows. Theoretical Com-
puter Science, 402(2), 2008.

[7] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and

S. Moreau. An interactive prover for protocol verification

in the computational model. In Proceedings of the IEEE
S&P, May 2021.

[8] G. Bana and H. Comon-Lundh. Towards unconditional

soundness: Computationally complete symbolic attacker.

In Proceedings of the Conference on Principles of Security
and Trust (POST), 2012.

[9] G. Bana and H. Comon-Lundh. A computationally com-

plete symbolic attacker for equivalence properties. In Pro-
ceedings of the ACM CCS, 2014.

[10] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet,

C. Cremers, K. Liao, and B. Parno. SoK: Computer-aided

cryptography. In Proc. IEEE S&P, May 2021.

[11] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz,

B. Schmidt, and P.-Y. Strub. Easycrypt: A tutorial. Foun-
dations of Security Analysis and Design VII: FOSAD
2012/2013 Tutorial Lectures, pages 146–166, 2014.

[12] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certifi-

cation of code-based cryptographic proofs. In Proceedings
of the ACM POPL. ACM, 2009.

[13] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-

Béguelin. Computer-aided security proofs for the working

cryptographer. In Proceedings of IACR CRYPTO, 2011.

[14] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval.

Key-privacy in public-key encryption. In Proceedings of
AsiaCrypt. Springer, 2001.

[15] M. Bellare, T. Kohno, and C. Namprempre. Breaking

and provably repairing the SSH authenticated encryption

scheme: A case study of the encode-then-encrypt-and-

MAC paradigm. ACM Transactions on Information and
System Security, 1, 2004.

[16] M. Bellare and C. Namprempre. Authenticated encryp-

tion: Relations among notions and analysis of the generic

composition paradigm. Proceedings of AsiaCrypt, 2000.

[17] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,

C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K.

Zinzindohoue. A messy state of the union: Taming the

composite state machines of TLS. In IEEE S&P, 2015.

[18] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni,

R. Küsters, G. Schmitz, and T. Würtele. DY* : A mod-

ular symbolic verification framework for executable cryp-

tographic protocol code. In IEEE EuroS&P, Sept. 2021.

[19] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified

models and reference implementations for the TLS 1.3

standard candidate. In IEEE S&P, May 2017.

[20] K. Bhargavan, A. Delignat-Lavaud, C. Fournet,

M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi,

N. Swamy, S. Zanella-Béguelin, and J. K. Zinzindo-

houé. Implementing and proving the TLS 1.3 record

layer. In Proceedings of the IEEE S&P, 2017.

[21] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and

P. Strub. Implementing TLS with verified cryptographic

security. In Proceedings of the IEEE S&P, 2013.

[22] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y.

Strub, and S. Zanella-Béguelin. Proving the TLS hand-

shake secure (as it is). In Annual Cryptology Conference,

pages 235–255. Springer, 2014.

[23] B. Blanchet. A computationally sound mechanized prover

for security protocols. IEEE Transactions on Dependable
and Secure Computing, 5(4):193–207, 2008.

[24] B. Blanchet. Security protocol verification: Symbolic and

computational models. In Proceedings of the Conference
on Principles of Security and Trust (POST), 2012.

[25] B. Blanchet. Modeling and verifying security protocols

with the applied pi calculus and ProVerif. Foundations
and Trends in Privacy and Security, 1, Oct. 2016.

[26] B. Blanchet. Composition theorems for CryptoVerif and

application to TLS 1.3. In IEEE Computer Security Foun-
dations Symposium (CSF’18), 2018.

[27] J. Brendel, M. Fischlin, F. Günther, and C. Janson.

Prf-odh: Relations, instantiations, and impossibility re-

sults. Cryptology ePrint Archive, Paper 2017/517, 2017.

https://eprint.iacr.org/2017/517.

[28] M. Bruso, K. Chatzikokolakis, and J. Den Hartog. Formal

verification of privacy for RFID systems. In 2010 23rd
IEEE CSF. IEEE, 2010.

[29] M. Burrows, M. Abadi, and R. Needham. A logic of au-

thentication. Technical Report 39, DEC Systems Research

Center, Feb. 1989.

[30] R. Canetti and M. Fischlin. Universally composable com-

mitments. In Proceedings of IACR CRYPTO, 2001.

[31] R. Canetti, A. Stoughton, and M. Varia. EasyUC: Using

EasyCrypt to mechanize proofs of universally composable

security. In Proceedings of the IEEE CSF, 2019.

1144

[32] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and

D. Stebila. A formal security analysis of the Signal mes-

saging protocol. In Proc. IEEE EuroS&P, 2017.

[33] V. Cortier, S. Kremer, and B. Warinschi. A survey of sym-

bolic methods in computational analysis of cryptographic

systems. J. Autom. Reasoning, 46(3-4), 2011.

[34] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and

T. van der Merwe. A comprehensive symbolic analysis

of TLS 1.3. In Proceedings of the ACM CCS, 2017.

[35] C. Cremers, M. Horvat, S. Scott, and T. v. d. Merwe. Au-

tomated analysis and verification of TLS 1.3: 0-RTT, re-

sumption and delayed authentication. In Proceedings of
the IEEE S&P, May 2016.

[36] L. De Moura and N. Bjørner. Z3: An efficient smt solver.

In Proceedings of TACAS. Springer, 2008.

[37] A. Delignat-Lavaud, C. Fournet, B. Parno, J. Protzenko,

T. Ramananandro, J. Bosamiya, J. Lallemand, I. Rako-

tonirina, and Y. Zhou. A security model and fully veri-

fied implementation for the IETF QUIC record layer. In

Proceedings of the IEEE S&P, May 2021.

[38] D. E. Denning and G. M. Sacco. Timestamps in key distri-

bution protocols. Commun. ACM, 24(8):533–536, 1981.

[39] W. Diffie and M. E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22,

Nov. 1976.

[40] D. Dolev and A. Yao. On the security of public-key proto-

cols. IEEE Transactions on Information Theory, 29, 1983.

[41] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong

authentication for RFID systems using the AES algorithm.

In International workshop on cryptographic hardware and
embedded systems. Springer, 2004.

[42] C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-

based cryptographic verification. In Proc. ACM CCS,

2011.

[43] C. Fournet, J. Planul, and T. Rezk. Information-flow types

for homomorphic encryptions. In Proc. ACM CCS, 2011.

[44] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and

B. Parno. Owl code repository. https://github.com/

secure-foundations/owl.

[45] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and

B. Parno. Owl: Compositional verification of security

protocols via an information-flow type system. Cryp-

tology ePrint Archive, Paper 2023/473, 2023. https:

//eprint.iacr.org/2023/473.

[46] L. Hirschi, D. Baelde, and S. Delaune. A method for un-

bounded verification of privacy-type properties. Journal
of Computer Security, 27(3), 2019.

[47] S. Ho, J. Protzenko, A. Bichhawat, and K. Bhargavan.

Noise*: A library of verified high-performance secure

channel protocol implementations. In Proceedings of the
IEEE S&P, May 2022.

[48] R. Jhala, N. Vazou, et al. Refinement types: A tutorial.

Foundations and Trends® in Programming Languages,

6(3–4):159–317, 2021.

[49] A. Juels and S. A. Weis. Defining strong privacy for RFID.

ACM Transactions on Information and System Security
(TISSEC), 13(1):1–23, 2009.

[50] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated

verification for secure messaging protocols and their im-

plementations: A symbolic and computational approach.

In Proceedings of the IEEE EuroS&P, 2017.

[51] N. Koblitz and A. J. Menezes. Another look at “provable

security”. Journal of Cryptology, 20(1), 2007.

[52] J. Kohl and B. C. Neuman. The Kerberos Network Au-

thentication Service (V5). RFC 1510, Sept. 1993.

[53] H. Krawczyk. The order of encryption and authentication

for protecting communications (or: How secure is SSL?).

In Proceedings of IACR CRYPTO, 2001.

[54] P. Laud. On the computational soundness of cryptograph-

ically masked flows. In Proc. of the ACM POPL, 2008.

[55] K. R. M. Leino. Dafny: An automatic program verifier

for functional correctness. In Proceedings of the Con-
ference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), 2010.

[56] B. Lipp, B. Blanchet, and K. Bhargavan. A mechanised

cryptographic proof of the WireGuard virtual private net-

work protocol. In Proc. IEEE EuroS&P, 2019.

[57] A. Lochbihler and S. R. Sefidgar. A tutorial introduction to

CryptHOL. Cryptology ePrint Archive, Report 2018/941.

[58] D. A. McGrew and J. Viega. The security and performance

of the Galois/counter mode of operation. In Proc. (IN-
DOCRYPT), 2004.

[59] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The

TAMARIN prover for the symbolic analysis of security

protocols. In Proc. (CAV), 2013.

[60] D. Molnar and D. Wagner. Privacy and security in library

RFID: Issues, practices, and architectures. In Proceedings
of the 11th ACM CCS, 2004.

[61] R. Needham and M. Schroeder. Using encryption for au-

thentication in large networks of computers. Communica-
tions of the ACM, 21(12), 1978.

[62] D. Otway and O. Rees. Efficient and timely mutual au-

thentication. ACM SIGOPS Operating Systems Review,

21(1):8–10, 1987.

[63] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size

does matter: Attacks and proofs for the TLS record proto-

col. In Proc. IACR ASIACRYPT, 2011.

[64] A. Petcher and G. Morrisett. The foundational cryptog-

raphy framework. In Proceedings of the Conference on
Principles of Security and Trust (POST), 2015.

[65] M. Rosulek. The joy of cryptography. https://

joyofcryptography.com.

[66] Rust Development Team. The Rust programming lan-
guage, 2022.

[67] A. Sabelfeld and A. C. Myers. Language-based

information-flow security. IEEE J. Sel. Areas Commun.,
21, 2003.

[68] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-

Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y.

Strub, M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-

Béguelin. Dependent types and multi-monadic effects in

F*. In Proceedings of the ACM POPL, 2016.

[69] T. Ylonen. The secure shell (SSH) transport layer proto-

col. RFC 4253, 2006.

1145

Σ � Name(n) parsable Σ � Unit parsable

Σ � τ parsable Σ � σ parsable

Σ � τ×σ parsable

Σ � τ parsable

Σ � x : τ{φ} parsable
Σ � τ parsable Σ � σ parsable

Σ � τ+σ parsable

bdryName(n)(x) = |n| bdryUnit(x) = 1

bdrya:τ{φ}(x) = bdryτ(x)

bdryτ×σ(x) = bdryσ(x[bdryτ(x) . . .])+bdryτ(x)

bdryτ+σ(x) =

{
1+bdryτ(y) if x = 0y
1+bdryτ(y) if x = 1y

fstτ(x) =

{
1 x[. . .bdryτ(x)] if bdryτ(x) defined

00 otherwise

sndτ(x) =

{
1 x[bdryτ(x) . . .] if bdryτ(x) defined

00 otherwise

pairτ(x,y) =

{
1 x++ y if bdryτ(x) = |x|
00 otherwise

Figure 14: Parsability of types, and specification of
fstτ/sndτ/pairτ for parsable types.

A Standard Interpretations
Here, we state the axioms which all interpretations for OwlLang
must satisfy to guarantee security.

Parsing of Products. First, we require that fstτ, sndτ, and pairτ
satisfy the equations of Figure 14. To extract out both compo-

nents v1, v2 of a pair v1 ++ v2 of type τ×σ, we need to compute

the boundary for where v1 resides in the pair. This is com-

puted by bdryτ(v), which returns the index of the boundary in

v : τ×σ, if it is well-defined. The calculation bdryτ is undefined

if τ = Data(�,�′), as this type carries no guarantee about its

length. In the type system, we use the judgement Σ � τ parsable
to guarantee that bdryτ(v) is defined. In turn, we define all

pairing/unpairing operations in terms of bdryτ. For pairing, we

check that the first argument x satisfies bdryτ(x) = |x|, so that

it can be unpaired later; for unpairing, we check that bdryτ is

defined on the input, so that we can divide the pair accordingly.
Additional Axioms. We assume the following for constructing
sum types, the zeroes operation Z, and name types:

�inl�(x) = 0x �inr�(x) = 1x �Z�(x) = 0|x|

�nonce� = �enckey� = uniform over Lhash

The last constraint above guarantees that the output of the ran-

dom oracle can be used as a valid nonce or encryption key.

B OwlLang Semantics and Typing Rules
The typing rules for MACs, digital signatures, and public-key

encryption are given in Figure 15. To model signatures, we

make use of an additional singleton type, VK(n), for the verifi-

cation key corresponding to n, with label �VK(n)�= |VK(n)|=

Σ;Γ � k : Name(n)

Σ � n : sigkeyReal τ Σ;Γ � x : τ Σ � �τ� ≤ �A
Σ;T ;Γ;�A � sign(k,x) : Data(�A , �A)

SIGN

Σ;Γ � k : VK(n)

Σ � n : sigkeyReal τ Σ;Γ � x : Data(�A , �A)
Σ;Γ � t : Data(�A , �A) Σ �� [n]≤ �A

Σ;T ;Γ;�A � vrfy(k,x, t) : Unit+ τ
VRFY

Σ;Γ � k : Name(n)

Σ � n : mackeyrealτ Σ;Γ � x : τ Σ � �τ� ≤ �A
Σ;T ;Γ;�A �mac(k,x) : Data(�A , �A)

MAC

Σ;Γ � k : Name(n)

Σ � n : mackeyrealτ Σ;Γ � x : Data(�A , �A)
Σ;Γ � t : Data(�A , �A) Σ �� [n]≤ �A

Σ;T ;Γ;�A �mvrfy(k,x, t) : Unit+ τ
VRFY

Σ;Γ � k : PK(n)

Σ � n : pkekeyrealτ Σ;Γ � x : τ Σ � |τ| ≤ �A
Σ;T ;Γ;�A � pkenc(k,x) : Data(�A , �A)

PKENC

Σ;Γ � k : Name(n)

Σ � n : pkekeyrealτ Σ;Γ � c : Data(�A , �A)
Σ �� [n]≤ �A Σ;T ;Γ,x : Unit+ τ;�A � e : σ

Σ;T ;Γ,x : Unit+Data(�A , �A);�A � e : σ
Σ;T ;Γ;pc;�A � let x = pkdec(k,c) in e : σ

PKDEC

Figure 15: Typing for MACs, Signatures, and PKE.

⊥. Values of type VK(n) are only created by the computation

vk(a), when a : Name(n) and Σ � n : sigkeyI τ. The rules for

MACs are similar to those for digital signatures, and guarantee

security if the underlying MAC is unforgeable [65].

The typing rule for public-key encryption is more interesting,

as the cryptosystem is not authenticated. The rule for encryp-

tion is similar to the one for symmetric encryption, but using a

singleton type PK(n) for the public encryption key. The rule for

decryption is written in continuation passing style, as the con-

tinuation needs to be checked under two different return types

for pkdec(k,c): either the result has type Unit+ τ or has type

Unit+Data(�A , �A). The two cases correspond to the two pos-

sible results of decryption: the plaintext either came from the

protocol itself, or it came from the adversary. Our typing rules

for public-key encryption imply security when the cryptosystem

is CCA secure [65], and require the set of oracles Orcl(Σ, �A ,N)
to allow the simulator to obtain public encryption keys.

We give the semantics of OwlLang in Figure 16, and the core,

non-cryptographic typing rules in Figure 17.

1146

�a�N �v�N := v �f(a1, . . . ,ak)�
N := �f�(�a1�

n, . . . ,�ak�
N) �get(n)n� := N(n)

�e�N : World→{0,1}∗ →Dist(Expr×World×{0,1}∗) �ret(a)�N(W, i) := Ret(ret(�a�N),W,ε) �input�N(W, i) := Ret(ret(i),W,ε)

�output(a)�N(W, i) := Ret(ret(0),W,�a�N) �case a (x. e1) (y. e2)�
N(W, i) :=

⎧⎪⎨
⎪⎩
Ret(e1[ε/x],W,ε) if �a�N = ε
Ret(e1[v/x],W,ε) if �a�N = 0v
Ret(e2[v/x],W,ε) if �a�N = 1v

�let x = e1 in e2�
N(W, i) :=

{
Ret(e2[�a�N/x],W,ε) if e1 = ret(a)

(e′1,W
′,o) $←− �e1�

N(W, i); Ret(let x = e′1 in e2,W ′,o) otherwise

�T [a]�N(W, i) :=

{
Ret(ret(1W [T,�a�N]),W,ε) if W [T,�a�N] �=⊥
Ret(ret(00),W,ε) otherwise

�T [a] := a′�N(W, i) := Ret(ret(0),W [T,�a�N := �a′�N],ε)

�op(a1, . . . ,ak)�
N(W, i) := v $←− �op�(�a1�

N , . . . ,�ak�
N); Ret(ret(v),W,ε)

�H(a)�N(W, i) :=

{
Ret(ret(W [RO,�a�N]),W,ε) if W [RO,�a�N] �=⊥
v $←− {0,1}�Lhash�; Ret(ret(v),W [RO,�a�N := v],ε) otherwise

Figure 16: Semantics for OwlLang. The interpretation I is implicit.

Σ � n : nt

(n : nt) ∈ Σ
Σ � n : nt

(n : pat �→P nt) ∈ Σ
Σ � n : nt Σ;Γ � a : τ

(x : τ) ∈ Γ
Σ;Γ � x : τ Σ;Γ � v : Data(⊥,⊥)

(n : nt) ∈ Σ
Σ;Γ � get(n) : Name(n)

∀i,Σ;Γ � ai : Data(�,�)

Σ;Γ � f(a1, . . . ,ak) : Data(�,�)
APP

Σ;Γ � a : τ Σ � τ≤ σ
Σ;Γ � a : σ

Σ;Γ � a : τ Σ � � Σ � σ
Σ;Γ � inl(a) : τ+σ

Σ;Γ � a : σ Σ � � Σ � τ
Σ;Γ � inr(a) : τ+σ

Σ;Γ � a : τ Σ � τ parsable Σ;Γ � b : σ
Σ;Γ � pairτ(a,b) : Unit+(τ×σ)

Σ;Γ � a : τ×σ Σ � τ parsable

Σ;Γ � fstτ(a) : Unit+ τ

Σ;Γ � a : τ×σ Σ � τ parsable

Σ;Γ � sndτ(a) : Unit+σ
Σ;Γ � a : τ

Σ;Γ � Z(a) : Data(|τ|, |τ|)
Σ;Γ � a : τ ∀N W γ. Γ,N,W � γ ∧ �τ�Σ,N,W (�γ(a)�N) =⇒ �φ�N(�γ(a)�N)

Σ;Γ � a : (x : τ{φ})

Σ � τ≤ σ
Σ � τ≤ σ Σ � σ≤ ρ

Σ � τ≤ ρ Σ � τ≤Data(�τ�, |τ|)
Σ � �1 ≤ �′1 Σ � �2 ≤ �′2

Σ �Data(�1, �2)≤Data(�′1, �
′
2) Σ � (x : τ{φ})≤ τ

Σ;T ;�A ;Γ � e : τ
Σ;Γ � a : τ

Σ;T ;�A ;Γ;� ret(a) : τ Σ;T ;�A ;Γ � input : Data(�A , �A)

Σ;Γ � a : Data(�A , �A)

Σ;T ;�A ;Γ � output(a) : Unit

Σ;T ;�A ;Γ � e1 : σ Σ;T ;x : σ, �A ;Γ � e2 : τ
Σ;T ;�A ;Γ � let x = e1 in e2 : τ

∀i,Σ;Γ � ai : Data(�,�)

Σ;Γ � op(a1, . . . ,ak) : Data(�,�)
OP-TRIV

Σ;Γ � a : σ+ τ Σ;T ;x : σ;�A ;Γ � e1 : ρ Σ;T ;y : τ;�A ;Γ � e2 : ρ
Σ;T ;�A ;Γ � case a (x. e1) (y. e2) : ρ

CASE

Σ;Γ � a : Data(�A , �A) Σ;T ;x : Data(�A , �A);�A ;Γ � e1 : ρ Σ;T ;y : Data(�A , �A);�A ;Γ � e2 : ρ
Σ;T ;�A ;Γ � case a (x. e1) (y. e2) : ρ

CASE-CORR

(T : τ) ∈ T Σ;Γ � a : Data(�A , �A)

Σ;T ;�A ;Γ � T [a] : Unit+ τ
(T : τ) ∈ T Σ;Γ � a : Data(�A , �A) Σ;Γ � a′ : τ

Σ;T ;�A ;Γ � T [a] := a′ : Unit

Σ;T ;�A �K : {τi}
∀i,Σ;T ;�A ; · � K [i] : τi

Σ;T ;�A �K : {τi}

Figure 17: Selected Core Typing Rules for OwlLang. Rules for cryptographic operations are given in Figure 12.

1147

