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Abstract—Deep neural networks (DNNs) have been widely
used in many fields due to their increasingly high accuracy.
However, they are also vulnerable to adversarial attacks, posing a
serious threat to security-critical applications such as autonomous
driving, remote diagnosis, etc. Existing solutions are limited
in detecting/preventing such attacks, and also impacting the
performance on the original tasks. In this paper, we present AI-
Guardian, a novel approach to defeating adversarial attacks that
leverages intentionally embedded backdoors to fail the adversarial
perturbations and maintain the performance of the original main
task. We extensively evaluate AI-Guardian using five popular
adversarial example generation approaches, and experimental
results demonstrate its efficacy in defeating adversarial attacks.
Specifically, AI-Guardian reduces the attack success rate from
97.3% to 3.2%, which outperforms the state-of-the-art works
by 30.9%, with only a 0.9% decline on the clean data accuracy.
Furthermore, AI-Guardian introduces only 0.36% overhead to
the model prediction time, almost negligible in most cases.

I. INTRODUCTION

Recently, deep neural network (DNN) has been widely
applied in many areas, including computer vision [66], [87],
speech recognition [6], [63], targeted advertisement [53], [71],
etc., mainly due to its accurate classification/prediction results.
It also manifests itself in vital applications like autonomous
driving [25] and medical diagnosis [7]. Despite these achieve-
ments, DNN is also known to face various security threats,
such as data poisoning attacks [99], [77], backdoor attacks [37],
[57], and adversarial attacks [50], [61], etc. Backdoor, also
known as Trojan horse, is to embed a hidden behavior into
the model, which keeps “hibernated” until a specific trigger
is applied to the input, causing the model to produce the
predefined classification/prediction result. The adversarial attack
is to modify the inputs in a subtle way, usually imperceptible
to human beings, to make the victim model produce incorrect
classification/prediction results. Recent studies demonstrate
the success of adversarial attacks against image recognition
systems [50], [61], object detection systems [98], [20], speech
recognition systems [93], [23], speaker verification systems [49],
[55], autonomous driving systems [98], [20], etc., in the
physical world, which poses severe security and safety threats
to victim users.

Researchers have made significant efforts to defeat ad-
versarial attacks, including both offline defense and online
defense solutions. The former is to improve the robustness
of the model during the training phase, without additional
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operations during the model prediction. The most common
offline defense approach is adversarial training, which adds
Adversarial Examples (AEs, i.e., the modified inputs to launch
the adversarial attack) with correct labels into the training
dataset and trains the model to correctly recognize them [35],
[81], [61], [89]. However, adversarial training can only constrain
the success rate of adversarial attacks to some extent, rather than
reducing it to a satisfactory level. In addition, if more changes
are made to the clean inputs to generate AEs, the performance
of adversarial training usually declines significantly [59], [70],
[91]. The latter mainly focuses on the phase of model prediction,
either to fail or to detect AEs, such as preprocessing the inputs
before feeding them into the model [28], [30], [39], [36], [68]
or designing a classifier to detect AEs from the inputs [91],
[62], [60], [70]. Generally, such approaches work well against
existing adversarial attacks, but most of them are vulnerable
to adaptive attacks. In addition, existing offline and online
defense solutions always introduce non-negligible performance
downgrade to the protected models on clean inputs during
prediction [81], [61], [89], [91], [39], [70].

AI-Guardian. We find that a backdoor embedded into a model
can suppress the functionality of an AE in most cases. For
instance, attaching the trigger onto an AE causes the backdoored
model to produce the output label desired by the backdoor,
rather than the AE, thus defeating adversarial attacks. Inspired
by such a finding, we propose AI-Guardian, a novel approach
to defeat adversarial attacks by leveraging the suppression of
backdoors over them in this paper. In particular, we design a
unique backdoor, called bijection backdoor, and embed it into
the to-be-protected DNN model. Bijection backdoor is based on
a backdoor correspondence between the source classes where
inputs come from, and the target labels that the inputs are
classified to by the model. The correspondence should be a
bijection, i.e., any source class corresponds to only one target
label and any target label also corresponds to only one source
class, so we call such a backdoor as a bijection backdoor. For
our bijection backdoor, inputs from one source class attached
by the trigger should be classified into a particular target label
according to the correspondence, different than the backdoors
used in previous studies that always cause inputs from any
class classified into the same classification result [22], [57].

AI-Guardian defeats adversarial attacks by attaching the
bijection backdoor trigger onto each input before feeding
them to the DNN model. The model, with the backdoor
embedded, should produce the output based on the backdoor
correspondence (i.e., depending on the ground truth label of the
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input only). Then AI-Guardian converts the output back to the
ground truth label of the input by reversing the correspondence,
thus providing the correct classification result. Note that even
if the input is an adversarial example, since its functionality
is suppressed by the backdoor, the output from the model still
depends on the backdoor correspondence, only determined by
the ground truth label of the input. To enable the defense, we
turn the embedding of the bijection backdoor into a multi-
objective optimization problem, and design a new loss function
to embed the backdoor through model training. We also propose
Backdoor Robustness Enhancement to improve the robustness
of the backdoor against adversarial attacks, thus further reducing
the success rate of adversarial attacks on the protected model.

We mainly focus on the image classification domain and
evaluate AI-Guardian using five different adversarial attack
methods, i.e., BIM [50], PGD [61], AutoPGD [24], CW [15]
and Adversarial Patch [13], on four datasets, i.e., MNIST [51],
GTSRB [73], YouTube-Face [87] and VGG-Face [66]. The
experimental results show the efficacy of AI-Guardian in
defeating AEs. Specifically, AI-Guardian reduces the attack
success rate of AEs from 97.3% to 3.2%, outperforming existing
works by 30.9%, with only a 0.9% loss of clean data accuracy.
In addition, AI-Guardian incurs very little overhead to the
model runtime, with only a 0.36% increase in the model
prediction time. We also extend AI-Guardian to natural language
processing and speech recognition domains and find it still
defeats adversarial attacks effectively.

Contributions. The contributions are summarized as follows:

• We propose AI-Guardian, a novel approach to defeat adver-
sarial attacks using backdoors. We design a bijection backdoor
to change the behavior of the protected model, mitigating the
impact of adversarial examples on the final outputs without
affecting the model’s performance on the original tasks.

• We evaluate AI-Guardian with popular adversarial attacks.
The results show that our approach can effectively defeat adver-
sarial attacks with little influence on the clean data accuracy and
model prediction efficiency, outperforming existing solutions.

II. BACKGROUND AND RELATED WORK

A. Backdoors in Neural Networks

Backdoor, also known as Trojan horse, is to embed a
hidden and unexpected behaviour into the model, which keeps
“hibernated” until a specific trigger is applied to the input,
causing the model to produce the predefined result desired by
the attacker. In the domain of image classification, most triggers
are specific patterns attached to the original input images.
Recent studies show that the trigger also exists in the feature
space, i.e., an image transformation, so the transformed image
contains some specific features to activate the backdoor [58],
[56]. Typically, there are two main approaches to embedding
a backdoor into a victim DNN model. One is to poison the
training dataset [37], [22], [96], [67], e.g., attaching the trigger
to images and modifying their labels. The other is to manipulate
a clean model into a backdoored one [57], [79]. In the image
classification domain, there are class-agnostic backdoors and
class-specific backdoors. The former causes images from any
class attached by the trigger to be classified into the same target
label. The latter only causes images from one or several specific

classes attached by the trigger to be classified into the target
label. With the emergency of backdoor attacks, many backdoor
defenses have been proposed, such as detecting backdoors in
the model [84] and removing backdoors from the model [97].

B. Adversarial Examples

Adversarial Examples (AEs) are carefully crafted inputs
that can make the model produce a different prediction result
than that of human perception. AEs exist in many fields of deep
learning, such as computer vision [98], speech recognition [93],
[23], and natural language processing [31], even for the real-
world deep learning models deployed in Android apps [29].
In the computer vision domain, AEs can be divided into two
categories: perturbation-based AEs and patch-based AEs.

Perturbation-based AEs. Given an input image x and a target
DNN model F , a perturbation-based AE is obtained by crafting
a special perturbation ε and synthesizing it with x. F will
misclassify the adversarial example x + ε as the target label
y = F (x+ ε), which is different from F (x). The perturbation
ε added to the image is very small, so the perturbation-based
AE usually does not attract people’s attention.

Patch-based AEs. Given an input image x and a target DNN
model F , a patch-based AE is obtained by attaching one or
several patches to x. The location of the patch(es) is controlled
by a mask m, a matrix with the same dimension as x and all
elements as 0 or 1. The AE is obtained by x∗(J−m)+Δ∗m,
where Δ is a matrix indicating the pattern of the patch, J is
an all-one matrix, and the operator ∗ represents the Hadamard
product. F will misclassify the AE as the target label y =
F (x∗(J−m)+Δ∗m), which is different from F (x). Generally,
patch-based AEs are more likely to catch people’s attention than
perturbation-based AEs, thus easier to be detected. However,
they make the physical adversarial attack feasible by printing
the patches and attaching them onto the inputs [32], which
poses a severe threat to safety-critical applications, such as
autonomous driving [98], [20].

In this paper, we adopt five state-of-the-art adversarial
attacks, as described below:

Basic Iteration Method (BIM). Basic Iteration Method,
proposed by Kurakin et.al [50], is an adversarial attack based
on multiple iterations. For each iteration, the attack modifies the
image with a smaller step-size and clips the updated result so
that it will not be too far from the original image. Such iteration
is then repeated several times, until an AE is successfully
generated or the maximum number of iterations is reached.

Projected Gradient Descent (PGD). Similar to BIM, Projected
Gradient Descent [61] is also an adversarial attack based
on multiple iterations. However, PGD adopts the projection
operation to replace the simple clip operation in BIM. Such
a projection operation can project the updated image onto the
LINF , L1, or L2 ball with a small radius. Therefore, PGD can
adopt different Lp norms to restrict the range of the modification
on AEs, i.e., LINF , L1, or L2.

Auto Projected Gradient Descent (AutoPGD). Auto Projected
Gradient Descent [24] is a variant of PGD with mainly two
differences when updating the input image. The first difference
is that the update process involves not only the result of the last
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iteration, but also the result of the penultimate iteration. The
second difference is that the step-size of the modification is
no longer a fixed value, but gets updated for each iteration. In
addition, AutoPGD also adopts a mechanism called “restarting
from the best point”, if no better point can be found anymore
after a certain number of iterations.

Carlini and Wagner (CW) Attack. Different from the previous
adversarial attacks based on iterations, Carlini and Wagner
design a specific loss function and generate AEs by optimizing
it [15]. The loss function consists of two terms. The first
term is the CrossEntropy loss between the prediction result
of the AE and its target label. The second term is the Lp

norm of the perturbation, which is used to restrict the distance
between the AE and the original image. They use gradient-
based optimization (assuming the white-box access to the target
model) to search the adversarial perturbation.

Adversarial Patch (AP). Similar to CW attack, Adversarial
Patch [13] is also based on optimization. However, Adver-
sarial Patch is a patch-based adversarial attack instead of a
perturbation-based adversarial attack. Therefore, Adversarial
Patch adopts the L0 norm, or a mask to control the position of
the generated patch. Adversarial Patch also uses gradient-based
optimization to search for the appropriate patch, since it also
assumes access to the white-box target model.

C. Defense against Adversarial Examples

Existing defense solutions against adversarial attacks can
be divided into offline defense and online defense, depending
on whether to run the defense during the model prediction.

Offline Defense. Offline defense is to improve the model
robustness against AEs during the training phase, without
additional operations during the model prediction. The most
common offline defense is adversarial training. For example,
Goodfellow et al. extend the training dataset to include
adversarial examples with ground truth labels to train the model
to correctly recognize them [35]. Similar ideas try to integrate
existing adversarial example generation methods into the model
training process so that the trained model can easily defeat
such attacks [81], [61], [89]. However, adversarial training
can only constrain the success rate of adversarial attacks to
some extent, rather than reducing it to a satisfactory level.
Moreover, if more changes are made to the clean inputs to
generate AEs, the performance of adversarial training usually
declines significantly [59], [70], [91]. Furthermore, adversarial
training needs to generate a large number of AEs to extend
the training dataset, thus making it quite time-consuming and
resource-consuming. In contrast, AI-Guardian is capable of
handling adversarial examples with more changes made to the
clean inputs, and is much more cost-effective.

Another offline defense is gradient masking. A model can be
trained with small gradients, thus robust to small changes in the
inputs, e.g., AEs. For instance, Papernot et al. propose Defensive
Distillation [65], which first trains a DNN model using a regular
training algorithm and then leverages its prediction results of the
training data to relabel the training data, based on which a new
model is trained with small gradients. Defensive Distillation
also replaces the last softmax function with a revised activation
function to hide gradient information from users. However, it is

reported that such a defense will fail against adversarial attacks
that do not rely on gradients, e.g., black-box attacks [9].

Online Defense. Online defense solutions mainly focus on the
phase of the model prediction. On the one hand, some defense
solutions try to remove the perturbations in the input images,
thus correcting the classification results caused by them. For
example, JPEG Compression [28], [30] and Total Variance
Minimization [39] compress the input images before feeding
them into the model, to eliminate the perturbations added by the
attackers. DISCO [42] adopts localized manifold projections
to remove the perturbations of adversarial attacks. Similarly,
a denoiser can also be used to remove the perturbations on
input images to defeat adversarial attacks [36], [62], [68].
On the other hand, other defense solutions utilize various
algorithms to detect AEs from inputs and then defeat AEs
by giving wrong prediction results deliberately or refusing
to provide prediction results directly. For instance, Feature
squeezing smooths input images fed into the model and tries
to detect adversarial examples by computing the distance
between the prediction vectors of the original inputs and the
squeezed inputs [91]. Latent Intrinsic Dimensionality measures
the internal dimensionality characteristics of the model [60],
which often vary between the normal and the adversarial
inputs. Argos [45] uses a set of regeneration mechanisms to
reproduce the input image according to the label predicted by
the model, and detects the adversarial example by checking
whether the reproduced image deviates significantly from
the original. Morphence [8] creates a pool of models and
uses different models to process different queries so as to
introduce randomness in prediction and defeat adversarial
attacks. Although these online defense solutions perform well
in defeating adversarial attacks, almost all of them will have a
non-negligible impact on the efficiency of the model prediction.

The most closely related work to our approach is Trap-
door [70], a state-of-the-art work that also leverages backdoors
to defeat AEs. Trapdoor embeds multiple backdoors into the to-
be-protected model. Each backdoor is class-agnostic, targeting
a specific label, i.e., images from all other classes will be
classified into the label when attached by this backdoor trigger.
The backdoors serve as a honeypot to trap AEs, since AEs
generated by most of the adversarial attack algorithms turn out
to converge to the backdoor trigger targeting the same label as
the AEs. Therefore, examining the similarity between an input
and the embedded triggers can determine whether the input is
an adversarial example.

However, embedding too many backdoors, one trigger per
label, into the model may hurt the performance of Trapdoor
defense, so Trapdoor was evaluated to protect up to 100 labels
from adversarial attacks, leaving other labels in the model
still vulnerable. Furthermore, Trapdoor is also demonstrated
vulnerable to adaptive attacks, e.g., Feature-indistinguishable
attack [41] that makes the generated AEs not similar to the
embedded triggers. On the contrary, our approach only needs
to embed one backdoor with a single trigger. Therefore, our
approach is scalable to protect the models with many labels,
which is demonstrated to perform well on a dataset (VGG-Face)
with 2,622 labels. In addition, our approach does not assume
that the generated AEs should always converge to the triggers
like Trapdoor. So adaptive attacks against Trapdoor do not
apply to our approach.
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Fig. 1: Overview of AI-Guardian

III. OVERVIEW

A. Threat Model

From the perspective of attackers, we assume they have the
strongest ability to access the victim model, i.e., they have the
white box access to the target model, e.g., the architecture, the
internal parameter values, etc., similar to prior studies [70], [28],
[30], [39], [91], [60]. From the perspective of defenders, our
goal is to reinforce the robustness of a pre-trained DNN model1,
i.e., reducing the attack success rate of AEs and preserving its
accuracy on clean inputs as much as possible. In order to ensure
the generalization of the defense against a variety of adversarial
attacks, we assume that the defenders have no knowledge of
the details of the adversarial attack, e.g., the algorithm used to
generate AEs nor the norms used to restrict the modification on
AEs. The defenders should not disclose the embedded backdoor
(i.e., the specific trigger and the target labels of the backdoor)
in any manner. This is reasonable since our defense can ensure
that users can access the model normally without knowing
the backdoor. In addition, the defenders can adopt different
backdoors to embed based on AI-Guardian, which are quite
difficult, if not impossible, for attackers to predict.

Application Scenario. A typical application scenario of our
defense is to deploy the protected neural network model on the
server side to provide machine learning services. The server side
is the defender, and users (legitimate ones or attackers) on the
client side could query the model through APIs remotely. Such
a scenario is also widely adopted by prior studies defeating
AEs [70], [28], [28], [39], [60], [91]. For each query received
by the server, a trigger will be automatically applied before
feeding it to the model as shown in the Model Deployment of
Figure 1. Then, the output of the manipulated input from the
DNN model will be converted back to the prediction result of
the original input based on pre-defined correspondence. Note
that the trigger and the correspondence are maintained and
controlled by the server, and never disclosed to or observed by
any user, including potential attackers.

B. Design Intuition

We introduce our design intuition with a simple DNN model
with three classes for ease of understanding. Figure 2 illustrates
the high dimensional space of the model, and the solid line

1We can train a DNN model from scratch using the standard training method
based on the given training dataset if there is no pre-trained one.

Fig. 2: Illustration of a three classes classification.

between the three classes is the decision boundary of the model.
Given a clean image (Point A) that belongs to Class 1, the
attacker wants to slightly modify it into an AE, thus making
it misclassified into Class 3. Generally, it is not difficult to
find a very close point (Point B) across the decision boundary
as the target when modifying Point A. Suppose a backdoor
has been embedded into the model, which will change the
prediction results once activated, i.e., any image of Class 1 will
be classified as Class 2 once attached by the trigger. Therefore,
in Figure 2, Point C, denoting the clean image A attached by
the trigger, will be classified into Class 2. Intuitively, when
applying the same perturbation that changes the clean image
(Point A) to an AE (Point B) onto Point C, it may fail to push
the final synthesized image across the decision boundary, i.e.,
only moving Point C to Point D that is still in the scope of
Class 2. Therefore, such adversarial attacks can be defeated.
Note that Point D may cross the decision boundary, but the
possibility is very low based on our evaluation. We discuss the
limitation of lacking theoretical guarantee in Section VII-D.

C. Overview of AI-Guardian

As illustrated in Figure 1, the approach of AI-Guardian can
be divided into two parts: (1) Robust Model Training and (2)
Model Deployment.

Robust Model Training. We first design the bijection backdoor
including the trigger and the one-to-one correspondence be-
tween source classes and target labels, and then inject it into the
to-be-protected model. We utilize only one trigger, a specific
pattern that can be attached onto the input images of all classes,
but makes inputs from different classes classified differently.
The correspondence defines the classification behavior of the
trigger, i.e., all images from one class attached by the trigger
should be classified as a particular label different than their
original class (see Section IV-A). Then, we design a backdoor
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embedding algorithm to implant the backdoor into a pre-trained
model by viewing it as a multi-objective optimization problem.
In order to make the bijection backdoor more robust against
adversarial attacks, we also propose Backdoor Robustness
Enhancement. By attaching the trigger onto some AEs and
labeling them as the corresponding target of the trigger to
expand the training dataset, the probability of classifying the
AEs attached by the trigger into the AE-desired label will be
further reduced.

Model Deployment. In order to ensure high efficiency in the
model prediction, we simplify the operation after the model is
deployed. Specifically, after receiving an input image from a
user (legitimate or malicious), the defender attaches the trigger
onto it and feeds the synthesized image into the model to
obtain the confidence of each label. Then, the ground truth
confidence of each label can be restored according to the one-
to-one correspondence between source classes and target labels,
so as to produce the correct prediction result. For instance,
as shown in Figure 1, an adversary crafts an AE from the
original image 0. Receiving it as an input, the defender applies
the trigger and sends the synthesized image to the model for
prediction. Since the trigger can mitigate the functionality
of the AE, it will be classified as Label n according to the
correspondence. By referring to the reversed correspondence
table, the correct Label 0 can still be returned. Note that all the
above operations are done by the defender, and are agnostic
to the users (including the adversary). In addition, because
the above steps are very simple and efficient, our defense has
little impact on the efficiency of the DNN prediction, and only
increases the additional running time by 0.36% on average
(Refer to Section V-E for details).

IV. METHODOLOGY

A. Bijection Backdoor

We first give a formal definition of the bijection backdoor
that should satisfy the following properties:

P (F (xi) = yi|(xi, yi) ∈ Dtest) ≥ acc

P (F (xt
i) = yti |(xi, yi) ∈ Dtest) ≥ bp

xt
i = xi ∗m+Δ ∗ (J −m)

yti = g(yi)

(1)

The first line denotes the performance of the DNN on clean
images. (xi, yi) are clean images and the corresponding ground
truth labels in the test dataset Dtest. F is the prediction function
of the DNN, and acc is the expected classification accuracy
on clean images. For any image xi in the test dataset Dtest,
the probability that it is classified into the ground truth label
should not be less than acc, which indicates that the bijection
backdoor should have little influence on the classification of
clean images.

The other lines indicate the performance of the model
on input images attached by the trigger. Δ, m and J are
the trigger pattern, the transparency mask of the trigger and
an all-one matrix respectively, all of which are 3D matrices
with the same dimension as xi. Therefore, xt

i denotes the
input image xi attached by the trigger Δ. g is the one-to-one
correspondence function between source classes and target
labels, so yti = g(yi) is the target label of the source class yi.
bp is the expected backdoor performance. For any input image

xi in the test dataset Dtest that is attached by the trigger, the
probability that it is classified into the target label yt based
on the correspondence function should not be less than bp.
This indicates that most input images attached by the trigger
should be classified into the target labels according to the
correspondence function converting from the source class to
the target label.

We choose to embed the bijection backdoor, because it
allows us to be able to restore the output label from the
model back to the ground truth label of the input based on the
reversed correspondence function, thus producing the correct
classification result. In contrast, the class-agnostic backdoor
cannot, since it makes input images from any class attached
by the trigger always be classified into the same target label,
from which it is impossible to reverse back to the ground truth
label of the input. From another perspective, our approach
can be viewed as embedding as many class-specific backdoors
as the number of labels in the model, and all the backdoors
share the same trigger. Using a dedicated trigger for each
class-specific backdoor requires embedding a large number
of triggers for complicated models with many labels, which
impacts the scalability of the approach and may downgrade
the performance of the model on clean inputs.

B. Bijection Backdoor Embedding

We design the following training loss function to embed
the bijection backdoor:

min
θ

Exi,yi∈D(L(yi, Fθ(xi)) + γ · L(yti , Fθ(x
t
i)))

xt
i = Δ ∗m+ xi ∗ (J −m)

yti = g(yi)

(2)

where Fθ is the prediction function of the DNN model, and
θ is the trainable parameters of the model (the connection
weights between neurons), which are the parameters that can
be optimized in the loss function. The loss function is a
mathematical expectation E over two terms weighted by a
hyperparameter γ. (xi, yi) represents a pair of a clean image
and its ground truth label in the training dataset D. Therefore,
L(yi, Fθ(xi)) is the loss on clean input images, regulating that
a clean image xi should be classified into its ground truth label
yi. Referring to the representation used in Formula 1, xt

i is the
input image xi attached by the trigger Δ. Hence, L(yti , Fθ(x

t
i))

is the loss on input images attached by the trigger, regulating xt
i

should be classified into the target label yti . Note that the loss
function is differentiable, and we adopt the Adam optimizer [47]
to optimize it. Specifically, in each iteration of training, we
extract a batch of training data from the whole training dataset,
use the Adam optimizer to optimize the parameters of the
model, and repeat the above process until the model converges.

The hyperparameter γ in the loss function is used to balance
the classification results of the model on clean inputs and
inputs attached by the trigger. We first tried to adjust the
hyperparameter manually, but cannot embed a backdoor well
balancing the clean data accuracy and the backdoor performance.
To overcome the trade-off problem, we propose a dynamic
hyperparameter adjustment algorithm. Specifically, every time
the model goes through a certain number of training iterations,
we calculate the current clean data accuracy and backdoor
performance. If the clean data accuracy is higher than the
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backdoor performance, we increase the value of γ, so that
the backdoor performance will take a higher proportion in
the loss function. Otherwise, we decrease the value of γ. The
change of γ is reduced gradually to ensure that the training
can converge. In this way, the γ specific to different datasets
can be adjusted automatically, and the bijection backdoor can
be embedded with high clean data accuracy and backdoor
performance simultaneously.

Our approach to embedding the bijection backdoor does
not depend on the pattern, size, shape, and connectivity of the
trigger, nor a specific mapping between the source class and
the target label in the one-to-one correspondence2. Evaluation
details of those factors are shown in Section V-C.

C. Backdoor Robustness Enhancement

We find that the embedded bijection backdoor can defeat
the majority of AEs, but some of them can still bypass our
defense. We speculate that the main reason is that the bijection
backdoor may still be vulnerable to AEs to some extent since
the combined features of the trigger and AEs are not learned
by the model, i.e., the AEs attached by the trigger are not in
the training dataset. To overcome this problem, we propose
Backdoor Robustness Enhancement (BRE) to improve the
robustness of the bijection backdoor against AEs. By attaching
the trigger to AEs and adding them to the training dataset with
the target labels of the backdoor, the probability of classifying
the AEs attached by the trigger into the corresponding classes
will be further improved.

For a training batch of clean images, we first generate AEs
using them, and then attach the trigger to both clean images
and AEs. Thus, we obtain four types of input images, i.e., clean
images, AEs, clean images attached by the trigger and AEs
attached by the trigger. Next we discuss how to assign labels
to each type of them. On the one hand, we desire the bijection
backdoor achieves high performance on both clean images and
AEs, i.e., when attached by the trigger, they should be classified
totally based on the backdoor. Therefore, both the clean images
attached by the trigger and the AEs attached by the trigger
are given the target label of the backdoor, according to their
ground truth labels and the one-to-one correspondence. On the
other hand, the embedded backdoor should not influence the
model behavior when the trigger is not used, so we should also
add clean images and AEs into the training dataset, with their
original prediction results of the model as the labels3.

Note that our Backdoor Robustness Enhancement does not
depend on the adversarial attack approach used to generate
AEs. In this paper, we only use PGD [61] to generate AEs.
The evaluation results (Refer to Section V-B) show that our
defense can defeat AEs generated by other adversarial attack
algorithms, e.g., BIM [50], AutoPGD [24], CW [15], etc4.

Algorithm 1 shows how we enhance the backdoor robust-
ness. For a normal training batch B in the training dataset D

2We only require that any source class not map to itself in the correspondence.
3In our implementation, we use the ground truth labels of clean images and

target labels of AEs to replace their prediction results of the model due to
efficiency concerns. Such a replacement does not impact our approach, since
they are very close.

4Based on our experience, using any algorithm to generate AEs for Backdoor
Robustness Enhancement can defeat AEs generated by other algorithms.

Algorithm 1: Backdoor Robustness Enhancement

Input: Trigger pattern Δ, trigger mask m, one-to-one
correspondence function g, training dataset D, an
all-ones matrix J , a pre-trained DNN

Output: a new DNN
1 while DNN is not converged do
2 B =

⋃k
j=1(xj , yj) = next training batch in D

3 for j = 1 to k do
4 (x̃j , ỹj) = ae generate(xj , yj)
5 xt

j = xj ∗ (J −m) + Δ ∗m; yt
j = g(yj)

6 x̃t
j = x̃j ∗ (J −m) + Δ ∗m; ỹt

j = g(yj)
7 B = B ∪ (x̃j , ỹj) ∪ (xt

j , y
t
j) ∪ (x̃t

j , ỹ
t
j)

8 end
9 adam optimizer(DNN, B)

10 end
The operator ∗ represents the Hadamard product of two matrices.
ae generate() is any adversarial attack method.
adam optimizer() is the model training process using Adam optimizer.

(Line 2), we generate three kinds of new data to augment it
(Line 3-8). Specifically, for each training datum (xj , yj) in B,
we first generate an adversarial example x̃j with a random
target label ỹj (Line 4). Then we attach the trigger Δ to xj and
x̃j respectively, and assign the target label ytj according to the
one-to-one correspondence function g between source classes
and target labels (Line 5-6). Finally, we include the new data
into B (Line 7), and train the DNN with B using an optimizer,
e.g., Adam [47]. The above process repeats until the DNN
model converges, i.e., the performance of the DNN is basically
unchanged. The adoption of Backdoor Robustness Enhancement
can improve the robustness of the bijection backdoor against
adversarial examples, thus reducing the attack success rate of
AEs from 25.6% to 3.2%, as shown in Section V-B.

V. EVALUATION

A. Experimental Setup

Datasets and Models. We utilize four popular datasets, in-
cluding Hand-written Digit Recognition (MNIST) [51], Traffic
Sign Recognition (GTSRB) [73], YouTube-Face [87] and VGG-
Face [66] in our experiments, which are also widely used in
previous studies about adversarial examples [81], [61], [89],
[30], [39], [70] or backdoors [37], [57], [56], [84]. In particular,
MNIST and GTSRB are small datasets with fewer labels
and smaller input images, while Youtube-Face and VGG-Face
are large datasets with more labels and larger input images.
More details of the four datasets are shown in Table VIII in
Appendices. The model structures of each dataset are shown
in Tables IX, X, VII and VI in Appendices respectively.

Configuration for Adversarial Attacks. Generally speaking,
attackers do not have white-box access to the model deployed on
the server side. However, we still assume they can launch white-
box adversarial attacks in order to strengthen our evaluation.
Specifically, we adopt five representative white-box adversarial
attacks to evaluate our approach, including the Basic Iterative
Method (BIM) [50], Projected Gradient Descent (PGD) [61],
Auto Projected Gradient Descent (AutoPGD) [24], Carlini and
Wagner Attack (CW) [15] and Adversarial Patch (AP) [13].
The first four are representative adversarial attacks based on
perturbations, which use L∞, L1, or L2 norms to limit the range
of perturbations. The last one is a representative adversarial
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attack based on patches, which use L0 norm or a mask to
control the position of the patches. The implementation of
these adversarial attacks comes from the adversarial-robustness-
toolbox provided by the IBM Research Teams [64], and we
adopt all types of norms supported in the implementation for
evaluation. For each attack method, we adopt the norm that
achieves a near 100% attack success rate on unprotected models
in our evaluation.

Platform. All our experiments are conducted on a 64-bit Ubuntu
18.04 system with an Intel(R) Xeon(R) E5-2620 v4 processor
and 2 Nvidia Titan X GPUs, each with 12 GB memory.

B. Effectiveness

We use adversarial attack success rate (ASR) and clean data
accuracy (ACC) as the metrics to evaluate the effectiveness
of AI-Guardian against AEs. Specifically, ASR = nae/Nae ×
100%, where nae is the number of AEs that are classified
into their target labels and Nae is the total number of AEs
evaluated. ACC = nc/Nc × 100%, where nc is the number
of clean images that are classified correctly and Nc is the
total number of clean images. We also compare AI-Guardian
with three state-of-the-art adversarial training defenses [81],
[61], [89] and three state-of-the-art defenses during model
prediction [30], [39], [70].

Overall Performances. For each defense applied to each
dataset, we use each attack with each norm to generate 100
AEs to evaluate the performance. Therefore, each defense is
evaluated on 4,000 AEs. Overall, AI-Guardian performs well
in defeating AEs generated by different adversarial attacks on
all four datasets. As shown in Table I, the ASR of adversarial
attacks is reduced to 3.2% on average over all the datasets and
adversarial attack algorithms, compared with 97.3% ASR when
no defense is used and 28.5% ASR averaging other works.
Furthermore, the baseline ACC, i.e., without any defense, is
96.0% on average, compared with 95.1% with our defense,
with only 0.9% reduction in the clean data accuracy, which also
outperforms existing works, i.e, 4.1% reduction on average.

Comparison with Other Studies. We compare AI-Guardian
with state-of-the-art open-source defenses, including three
solutions based on adversarial training: Ensemble Adver-
sarial Training (EAT) [81], adversarial training following
Madry’s Protocol (Madry) [61] as well as Fast is better than
free (FIBTF) [89], and three solutions during model predic-
tion: JPEG Compression [30], Total Variance Minimization
(TVM) [39] as well as Trapdoor [70]. The implementations of
FIBTF and Trapdoor are released directly by the authors [88],
[69], and the implementations of other works come from the
adversarial-robustness-toolbox provided by the IBM Research
Teams [64]. We first adopt the parameters and settings provided
in those papers or the released code, and run the implementation
of all the works. The performance is consistent with that
reported in those papers. Then we run the implementation
on more models with the same parameters and settings, and
compare the results with those of AI-Guardian. The comparison
results in Table I show that AI-Guardian performs best in all
defenses, i.e., achieving the highest clean data accuracy and
the lowest attack success rate on average. Detailed comparison
is shown as below.

We first compare AI-Guardian with adversarial training
approaches. From Table I we can see that adversarial training
does not perform well in defending against adversarial attacks.
EAT [81], Madry [61] and FIBTF [89] reduce the ASR of AEs
to 38.4%, 37.4% and 78.8% on average, and achieve 89.5%,
90.5% and 94.5% clean data accuracy, respectively. Compared
with them, AI-Guardian performs much better, reducing the
ASR to 3.2% and achieving 95.1% classification accuracy on
clean images.

We find that the effectiveness of adversarial training is
related to specific adversarial attack methods. Specifically,
we find that all the three approaches do not perform well
on adversarial attacks which adopt L1 or L2 norms (BIM is
based on Linf ) and the adversarial patch. The performances of
EAT and Madry are better than FIBTF, probably because they
generate AEs through iterative methods, but FIBTF proposes
a one-step method to generate AEs. Therefore, the advantage
of FIBTF is efficiency, which is much faster than EAT and
Madry (Refer to Section V-E for more details). However, there
are likely to be more differences between AEs generated by
iteration and AEs generated by single-step, and most adversarial
attacks are based on iterations, which explains why FIBTF does
not perform as well as EAT and Madry. In addition, adversarial
training approaches also have an significant influence on the
classification accuracy of clean images, especially EAT and
Madry. It is probably because DNNs need to learn the features
of both clean images and AEs, so the accuracy on clean images
declines [74].

We also compare AI-Guardian with state-of-the-art defenses
during model predictions, which are JPEG Compression [30],
Total Variance Minimization (TVM) [39], and Trapdoor [70].
Specifically, both JPEG Compression and TVM are defenses
based on input pre-processing, while Trapdoor also uses
backdoors to defend against AEs. From Table I we can
see that AI-Guardian outperforms them. Specifically, JPEG
Compression, TVM, and Trapdoor reduce the attack success rate
of AEs to 20.2%, 11.6%, and 18.0% on average, respectively.
AI-Guardian can reduce the attack success rate to 3.2% on
average, which is much lower.

The experiments show that the effectiveness of these
defenses is different on different datasets. The performance
of JPEG Compression on the Youtube-Face dataset is much
better than other datasets. We find that the AEs generated
on this dataset are more sensitive to revisions, i.e., the AEs
generated on the YouTube-Face will fail even if minor changes
are made to them, which is different from other datasets.
Therefore, JPEG Compression has a better performance on
this dataset. TVM performs better on Youtube-Face and VGG-
Face, compared to MNIST and GTSRB, which means that TVM
may be more suitable for large datasets. Trapdoor has a good
performance on all datasets except for VGG-Face, on which
the performance has a significant decline. This is probably
because VGG-Face is the largest dataset in our evaluations,
which has the most labels (2,622 in total). Trapdoor needs to
implant a backdoor for every label in the DNN. However,
embedding too many backdoors (one backdoor per label)
into the model may hurt the performance of the defense, so
Trapdoor was evaluated to protect up to 100 labels in their
original paper. Therefore, the performance of Trapdoor on the
VGG-Face dataset has a significant decline. The clean data
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TABLE I: Comparison of AI-Guardian and other works on defeating AEs*

Defense Dataset
Clean

Accuracy

Attack Success Rate

BIM
PGD AutoPGD CW

AP Avg
L∞ L1 L2 L∞ L1 L2 L∞ L2

None

MNIST 99.3% 100% 100% 100% 99% 99% 100% 100% 93% 97% 97% 98.5%
GTSRB 95.4% 98% 98% 100% 100% 98% 98% 99% 94% 82% 97% 96.4%
Youtube 99.0% 100% 100% 100% 100% 100% 98% 99% 94% 82% 99% 97.2%

VGG 90.3% 98% 100% 100% 100% 99% 100% 100% 82% 95% 98% 97.2%
Average 96.0% 99.0% 99.5% 100% 99.8% 99.0% 99.0% 99.5% 90.8% 89.0% 97.8% 97.3%

EAT [81]

MNIST 98.5% 1% 1% 98% 48% 1% 100% 71% 69% 21% 78% 48.8%
GTSRB 87.0% 46% 50% 74% 75% 48% 70% 75% 34% 77% 26% 57.5%
Youtube 89.3% 5% 3% 66% 26% 6% 63% 29% 5% 10% 7% 22.0%

VGG 83.1% 1% 1% 33% 7% 0% 33% 10% 1% 90% 77% 25.3%
Average 89.5% 13.3% 13.8% 67.8% 39.0% 13.8% 66.5% 46.3% 27.3% 49.5% 47.0% 38.4%

Madry [61]

MNIST 98.9% 1% 2% 97% 55% 1% 100% 71% 67% 21% 75% 49.0%
GTSRB 91.2% 53% 52% 72% 72% 46% 65% 66% 23% 80% 31% 56.0%
Youtube 90.3% 5% 5% 61% 27% 4% 55% 17% 5% 9% 11% 19.9%

VGG 81.5% 2% 1% 30% 8% 0% 23% 7% 2% 97% 76% 24.6%
Average 90.5% 15.3% 15.0% 65.0% 40.5% 12.8% 60.8% 40.3% 24.3% 51.8% 48.3% 37.4%

FIBTF [89]

MNIST 98.7% 1% 6% 96% 41% 4% 99% 77% 62% 95% 76% 55.7%
GTSRB 92.3% 84% 86% 89% 96% 82% 92% 93% 77% 82% 91% 87.2%
Youtube 98.6% 82% 75% 79% 83% 87% 78% 77% 74% 84% 73% 79.2%

VGG 88.5% 96% 94% 98% 99% 89% 94% 98% 81% 90% 90% 92.9%
Average 94.5% 65.8% 65.3% 90.5% 79.8% 65.5% 90.8% 86.3% 73.5% 87.8% 82.5% 78.8%
MNIST 98.1% 25% 15% 81% 58% 21% 61% 38% 22% 29% 31% 38.1%

JPEG GTSRB 94.1% 29% 30% 32% 30% 26% 26% 21% 11% 1% 4% 21.0%
Compression Youtube 98.1% 1% 1% 2% 2% 1% 1% 2% 0% 2% 1% 1.3%

[30] VGG 86.4% 16% 13% 36% 21% 6% 22% 14% 0% 22% 52% 20.2%
Average 94.2% 17.8% 14.8% 37.8% 27.8% 13.5% 27.5% 18.8% 8.3% 13.5% 22.0% 20.2%

TVM [39]

MNIST 93.7% 21% 13% 51% 38% 16% 39% 25% 19% 25% 10% 25.7%
GTSRB 93.0% 14% 13% 24% 26% 9% 13% 11% 10% 7% 3% 13.0%
Youtube 98.4% 1% 2% 3% 1% 2% 2% 1% 2% 0% 1% 1.5%

VGG 87.1% 7% 5% 15% 2% 3% 5% 3% 1% 12% 8% 6.1%
Average 93.1% 10.8% 8.3% 23.3% 16.8% 7.5% 14.8% 10.0% 8.0% 11.0% 5.5% 11.6%

Trapdoor [70]

MNIST 93.6% 3% 3% 3% 2% 3% 4% 2% 37% 31% 21% 10.9%
GTSRB 90.2% 4% 3% 2% 3% 8% 2% 4% 3% 3% 20% 5.2%
Youtube 93.1% 34% 33% 1% 15% 0% 0% 0% 2% 14% 0% 9.9%

VGG 82.7% 30% 20% 72% 77% 49% 74% 58% 37% 40% 2% 45.9%
Average 89.9% 17.8% 14.8% 19.5% 24.3% 15.0% 20.0% 16.0% 19.8% 22.0% 10.8% 18.0%
MNIST 98.6% 2% 1% 8% 5% 2% 7% 5% 4% 1% 7% 4.2%

AI- GTSRB 95.1% 5% 7% 6% 3% 2% 3% 5% 2% 2% 0% 3.5%
Guardian Youtube 98.2% 2% 2% 1% 2% 1% 1% 1% 0% 0% 1% 1.1%

(Ours) VGG 88.3% 7% 6% 7% 3% 1% 5% 5% 1% 4% 0% 3.9%
Average 95.1% 4.0% 4.0% 5.5% 3.3% 1.5% 4.0% 4.0% 1.8% 1.8% 2.0% 3.2%

*We adopt all the norms supported in the IBM adversarial-robustness-toolbox for evaluation.

classification accuracy of Trapdoor also has a relatively obvious
decline, which is caused by two reasons. The first reason is
implanting multiple backdoors into the DNN will influence
the clean images classification accuracy, and the second one is
Trapdoor misrecognizes some clean images as AEs and gives
wrong predictions deliberately. Compared with other work, AI-
Guardian achieves a much lower attack success rate (3.2%),
and the classification accuracy on clean images is also higher
than all of them, especially for Trapdoor. In addition, all three
defenses will reduce the efficiency of model prediction, but
AI-Guardian almost won’t, as shown in Section V-E.

C. Influences of Backdoor Properties

We evaluate how different properties of the bijection
backdoor may influence the defense of AI-Guardian, including
the position, pattern, shape, size, and connectivity of the trigger,
and the one-to-one correspondence between source classes and
target labels.

Fig. 3: Examples of Triggers

We first try different patterns (e.g., red, blue, green and
noise), sizes (covering 5% to 30% of the original image), shapes
(e.g., rectangle, triangle, circle and pentagram), and connectivity
(from 1 whole piece to 14 discontinuous pieces) of the trigger.
Some examples are shown in Figure 3. We find that these
properties have little influence on the backdoor performance or
the attack success rate of AEs, as long as the images attached
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Fig. 4: Attack success rates of AEs with increased perturbations on different datasets against AI-Guardian.

by the trigger can be visually distinguished from the original
images. As for the location of the trigger, we find that placing
the trigger at the corner of the input tends to achieve a higher
backdoor performance than placing the trigger at the center of
the input, i.e., 5.2% higher on average. This is because placing
the trigger at the center may cover the critical features of the
original input. Thus, the DNN model fails to recognize the
ground truth class of the input and cannot classify it into the
target label according to the correspondence.

As for the correspondence, we try two different mappings,
random mapping but ensuring any class does not correspond to
itself and sequential mapping, e.g., mapping each class to the
next after ranking all classes alphabetically. We find that both
of them can achieve high backdoor performance. Therefore,
we generate the correspondence randomly to make it difficult

for attackers to predict.

D. Defense against AEs with More Revisions

The above evaluation shows that AI-Guardian can effectively
defeat adversarial attacks in general situations. However,
attackers may also design more powerful adversarial attacks
by making more revisions to the original input images, i.e,
adding more perturbations or attaching larger patches. In this
way, attackers can alter more features of the original class and
the effectiveness of AI-Guardian may be affected. Below, we
evaluate the performance of AI-Guardian against such attacks.

Specifically, for adversarial attacks based on perturbations,
we start with the norms that achieve a near 100% ASR on
unprotected models (also used in Table I) and increase the
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TABLE II: The time used to predict 1,000 images by AI-Guardian and other works (ms: millisecond, s: second)
Defense MNIST GTSRB YouTube-Face VGG-Face

None 32.86ms (0.0%) 53.64ms (0.0%) 1.13s (0.0%) 5.32s (0.0%)
JPEG Compression 462.20ms (1306.57%) 597.33ms (1013.59%) 4.53s (300.88%) 9.56s (79.70%)

TVM 6580.12ms (19924.71%) 72909.98ms (135824.64%) 661.13s (58407.08%) 733.13s (13680.64%)
Trapdoor 48.26ms (46.87%) 69.04ms (28.71%) 1.16s (2.65%) 5.45s (2.44%)

AI-Guardian 32.94ms (0.24%) 53.71ms(0.13%) 1.14s (0.88%) 5.33s (0.19%)

TABLE III: The time used to implement the defense by AI-Guardian and other works (h: hour)*
Defense MNIST GTSRB YouTube-Face VGG-Face Average

EAT 1.70h 5.09h 94.23h 213.47h 78.62h
Madry 2.10h 5.01h 107.19h 224.53h 84.71h
FIBTF 0.14h 0.64h 9.6h 22.4h 8.20h

Trapdoor 0.23h 0.43h 164.7h 313.2h 119.64h
AI-Guardian 0.14h 0.34h 11.7h 21.6h 8.4h

*The defense implemented by all studies starts from a pre-trained model.

Fig. 5: Attack success rates of adversarial patches with different
area ratios on different datasets against AI-Guardian.

norms by 1 to 10 times to change the scale of perturbations. For
adversarial patches, we change the percentage that the patches
can cover the original input images from 10% and 90%. We
find AEs with 10 times perturbations corrupted and difficult to
recognize, as shown in the last row of Figure 6. Adversarial
patches with 90% coverage corrupt the original input images
more severely, since almost all the images are covered. We
also adopt Structural Similarity (SSIM), a perceptual metric
that quantifies image quality degradation [86], to evaluate the
similarity between AEs and the original images. The value of
SSIM ranges between 0 and 1. A larger SSIM value indicates
more similarities between AE and the original image. For AEs
with 1 times perturbations and adversarial patches with 10%
coverage, the value of SSIM is 0.72 on average, which means
they are still similar to the original images. However, for AEs
with 10 times perturbation and adversarial patches with 90%
coverage, the value of SSIM is only 0.31 on average, indicating
very low similarity.

The performances of AI-Guardian against these AEs are
shown in Figures 4 and 5. Overall, AI-Guardian has great
robustness against AEs with more revisions. For adversarial
attacks based on perturbations, AI-Guardian reduces the ASR
to 6.31% on average including AEs with up to 10 times
perturbations, which is even better than the performance of other
works when defeating AEs with only 1 times perturbations, as
shown in Table I. From Figure 4 we can see that the worst
performance appears on the MNIST dataset against the BIM
and PGD attacks with Linf norm. After examining the images,
we find the AEs are likely to experience more changes (as
shown in Figure 6), so the attack success rate is higher. For

Fig. 6: Original images (first row), AEs with 1 times perturba-
tion (second row), AEs with 5 times perturbation (third row),
and AEs with 10 times perturbation (last row)

adversarial attacks based on patches, AI-Guardian reduced the
ASR to 3.27% on average including the patches up to 90%
coverage of the original input images.

The possible reason why AI-Guardian can have great
robustness against AEs with more revisions is that whether the
bijection backdoor is activated or not has a great impact on
the prediction process of the model. The effectiveness of these
AEs is greatly reduced when the trigger is attached to them
and the backdoor is activated. Therefore, although the input
images are corrupted and difficult to recognize for humans,
the ASR of those AEs is still very low. Note that we did not
make any modification to AI-Guardian here, so its clean data
accuracy remains unchanged as shown in Table I.

E. Efficiency

In this subsection, we evaluate the efficiency of AI-Guardian
both on model prediction (after model deployment) and defense
implementation (before model deployment).

Efficiency of Model Prediction. The time used to predict
1,000 images by AI-Guardian and other studies is shown in
Table II. The percentage indicates the overhead incurred by
the approach compared to no defense. From the table, we
can see that AI-Guardian is super fast in model prediction,
with only a 0.36% increase in the model prediction time
on average due to its simple defense procedures. Trapdoor
is also relatively fast, with a 20.17% increase in the model
prediction time on average. However, JPEG Compression and

710



TABLE IV: Clean data accuracy of clean models and back-
doored models on different datasets.

Dataset MNIST GTSRB YouTube VGG Average
Clean 99.3% 95.4% 99.0% 90.3% 96.0%

Backdoor 98.8% 95.7% 98.5% 88.9% 95.5%

TVM introduce 6.75 times and 569.60 times overhead to the
model prediction time on average, because they need to perform
complex processing on each input image before feeding it into
the DNN model. Moreover, the processing of TVM is based
on multiple iterations, making it even slower.

Efficiency of Defense Implementation. The efficiency of
AI-Guardian and other studies on defense implementation is
shown in Table III. Overall, AI-Guardian is fast on all datasets
compared to other works, about 8.4 hours on average. EAT and
Madry are two state-of-the-art adversarial training approaches,
which take longer to finish since they need to generate AEs by
iterations for model training.

FIBTF, another state-of-the-art adversarial training approach,
is much faster, even a bit faster than our approach, since the AEs
used in model training are generated by one step only. However,
FIBTF performs poorly when defeating AEs generated by
iterations, compared to EAT and Madry, as shown in Table I.
Trapdoor is relatively fast on small datasets such as MNIST and
GTSRB, but much slower on larger datasets such as Youtube-
Face and VGG-Face. The reason could be that there are much
more labels in Youtube-Face and VGG-Face, which means
more backdoors need to be embedded into the DNN model by
Trapdoor, thus more model training time.

F. Consistency of Clean and Backdoored Models

In practice, the DNN model protected by AI-Guardian will
always process inputs attached by our trigger, rather than clean
inputs without the trigger. However, since we assumed attackers
could have white-box access to the backdoored model in our
evaluation, they can simply analyze the model performance on
clean inputs. If the performance of our backdoored model on
clean inputs diverts significantly from the clean model, attackers
could be alerted and suspect the existence of our defense
in the model. Therefore, we also evaluate the consistency
of clean models and backdoored models. Specifically, we
compare the clean data accuracy (ACC) of the clean models
and backdoored models, which can be an indicator of their
consistency. As shown in Table IV, the ACC of the clean models
and backdoored models are quite close. The backdoored models
achieve 95.5% ACC on average, only 0.5% lower than the clean
models, which indicates the consistency of clean models and
backdoored models.

G. Alternatives to Backdoor Robustness Enhancement

In Section IV-C, we propose Backdoor Robustness En-
hancement (BRE) to increase the suppression of the bijection
backdoor over AEs by including AEs into the training process.
Besides BRE, we consider other approaches, such as compres-
sion and denoising to pre-process inputs before attaching the
trigger on them. Specifically, we try the standard denoising
algorithms provided in the scikit-image [83] and OpenCV [2]
libraries, and three compression and denoising approaches
designed to defeat AEs like Feature Squeezing [91], JPEG

TABLE V: Performance of AI-Guardian in NLP

Dataset
Attack Success Rate

BIM PGD AutoPGD CW HotFlip Avg
USCFC 5.3% 6.8% 7.2% 8.6% 6.7% 6.9%
SFCC 1.1% 1.3% 1.5% 5.2% 7.2% 3.3%

THUCNews 4.5% 6.3% 6.5% 5.1% 8.2% 6.1%

Compression [30] and Total Variance Minimization [39]. Such
alternative approaches are evaluated on the four datasets against
the five adversarial attacks, the same as in Section V-B. On the
default setting, they achieve 93.9%, 94.3%, 94.9%, 93.7% and
92.8% clean data accuracy, and 10.2%, 10.8%, 18.0%, 15.1%
and 5.9% attack success rates respectively, not as good as the
performance of using BRE (95.1% clean data accuracy and
3.2% attack success rate).

We also try to adjust the level of compression or denoising
for the five approaches to achieve a similar clean data accuracy
or attack success rate as BRE so as to compare the one. When
the five approaches achieve a similar clean data accuracy as
BRE, they achieve 12.9%, 13.2%, 18.3%, 17.4% and 10.3%
attack success rates respectively, worse than that of BRE (3.2%).
Even if we set the compression level to the maximum, Feature
Squeezing and JPEG Compression fail to achieve a similar
attack success rate as BRE. When achieving a similar attack
success rate as BRE, the denoising algorithms provided in
the scikit-image and OpenCV libraries, and Total Variance
Minimization achieve 58.3%, 56.7% and 72.6% clean data
accuracy, much worse than that of BRE (95.1%). Therefore,
we adopt BRE in AI-Guardian.

VI. EXTENSION OF AI-GUARDIAN

Since backdoor also exists beyond the vision domain, we
extended AI-Guardian to other domains, i.e., Natural Language
Processing (NLP) and speech recognition in this section.

A. Extension to NLP

In the field of NLP, we test AI-Guardian using three datasets,
the CFPB Consumer Complaint Database [1], San Francisco
Crime Classification [4] and THUCNews datasets [76], which
are also widely used in previous studies [11], [44], [80], [26],
[52], [27]. Similar to most NLP models, the input text is first
converted into word embedding (i.e., each word in the text is
converted into a vector), which is used to train a TextCNN [46],
a popular model structure widely used in previous works [94],
[90], [38], [43]. We embed the trigger into the word embedding
by placing particular values at several specific positions of the
embedding, and keep other steps of AI-Guardian unchanged.
After applying AI-Guardian to the models, the accuracy on clean
data reaches 85.9%, 99.5% and 94.4% on the three datasets
respectively, with only 0.7%, 0.2% and 0.4% decline compared
with the clean models. We then run the Basic Iterative Method
(BIM), Projected Gradient Descent (PGD), Auto Projected
Gradient Descent (AutoPGD), Carlini and Wagner attack (CW)
and an adversarial attack specific to NLP models, i.e., HotFlip
attack [31]. Their attack success rates are higher than 90%
in most cases without the protection of AI-Guardian. The
performance of AI-Guardian against these attacks is shown
in Table V. Overall, AI-Guardian reduces the attack success
rate to 5.1% on average, which indicates the potential of using
AI-Guardian to defeat adversarial attacks in NLP.
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B. Extension to Speech Recognition

We apply AI-Guardian to the speech recognition model
provided in [5], which is trained on the Pannous Speech
Recognition dataset [3] to recognize numbers read in English.
Similar to most speech recognition models, this model is
trained on the spectrum (a matrix extracted by MFCC), so
we also apply the trigger on it, i.e., modify specific positions
of the spectrum to specific values. Other steps of AI-Guardian
remain unchanged basically. We adopt two adversarial attacks
to evaluate the effectiveness of AI-Guardian, which are the
Basic Iterative Method (BIM) and the Carlini and Wagner attack
(CW). The DNN achieves 93.2% accuracy on clean inputs with
AI-Guardian, with only a 1.5% decline. BIM and CW achieve
98.2% and 95.1% attack success rates without the defense,
but only achieve 10.4% and 8.7% attack success rates against
the defense of AI-Guardian, which shows the feasibility of
defending against adversarial attacks in the speech recognition
domain with AI-Guardian.

VII. DISCUSSION

In this section, we will first discuss potential adaptive
attacks against AI-Guardian and the corresponding defenses,
followed by defeating adversarial attacks in the black-box
setting. Finally, we discuss the alternative implementation of
BRE and limitations of AI-Guardian.

A. Defending Against Adaptive Attacks

Since AI-Guardian is based on the bijection backdoor, it
is possible to bypass our defense if the attackers can obtain
the trigger to activate the embedded backdoor. For instance,
they can place the trigger onto the original input, craft the
synthesized input into an AE, and remove the trigger from the
crafted AE to finally obtain a malicious input. Since the trigger
will be added onto the input by the defender, the attackers’ AE
is restored, which can induce our protected model into making
the wrong decision. Assuming the trigger will not be disclosed
by the defender as in Section III-A, attackers can only try to
reconstruct it from the DNN model to launch the above attack.

Utilizing Existing Backdoor Detection. Recently, a number of
backdoor detection studies have been proposed [82], [16], [72],
[34], [17], [84], [56], [48], [92], [97], but most of them cannot
reconstruct the trigger, which means that they cannot be used
to bypass our defense. Other studies, like SCan [78], detecting
inputs attached by the trigger during model prediction, cannot
be leveraged by the adversary against our defense as well. Such
solutions need to examine the backdoored inputs generated by
AI-Guardian, which conflicts with our threat model that the
adversary cannot intervene in the defense deployed on the
server side.

To the best of our knowledge, DeepInspect [17], TA-
BOR [40], Neural Cleanse [84] and ABS [56] are the four
state-of-the-art studies that can reconstruct the triggers in
DNN models without requiring access to the training dataset
containing triggers. However, DeepInspect, TABOR and ABS
can only reconstruct the trigger used in the class-agnostic
backdoor, while the bijection backdoor can be viewed as
multiple class-specific backdoors that share the same trigger
as discussed in Section IV-A. Finally, only Neural Cleanse

(a) (b) (c) (d)

Fig. 7: (a) Original trigger; (b) Restored trigger by Neural
Cleanse; (c) Restored trigger by TABOR; (d) Restored trigger
by Location.

could be used to reconstruct the trigger used by the class-
specific backdoor, e.g., AI-Guardian. Therefore, we adopt the
open-source implementation released by Neural Cleanse to
test if it can reconstruct the trigger used in AI-Guardian. In
addition, since TABOR is very similar to Neural Cleanse, with
a different trigger reconstruction approach, we also extend
TABOR to detect class-specific backdoors referring to Neural
Cleanse.

To reconstruct the class-specific trigger without the knowl-
edge of its source class and target label, Neural Cleanse utilizes
the brute-force approach, i.e., traversing each possible pair of
source class and target label. For each possible pair, Neural
Cleanse samples the images from the source class as the
background images, and attempts to reconstruct a potential
trigger that makes the images attached by the trigger classified
into the corresponding target label. We apply Neural Cleanse
to all the four datasets used in our evaluation, but find that
it is impractical for Neural Cleanse to work on Youtube-
Face and VGG-Face due to the efficiency issue. For Youtube-
Face and VGG-Face with 1,595 and 2,622 labels, Neural
Cleanse needs to traverse 1595 × 1594 = 2, 542, 430 and
2622 × 2621 = 6, 872, 262 pairs respectively. On average, it
takes Neural Cleanse 5.3 minutes and 13.7 minutes to process
one pair for Youtube-Face and VGG-Face respectively. Thus,
Neural Cleanse needs about 26 years and 179 years for all
possible pairs on Youtube-Face and VGG-Face, respectively.
Even on MNIST and GTSRB with much fewer labels, it takes
Neural Cleanse 3.1 hours and 26.3 hours to finish respectively.

TABOR is designed to detect the class-agnostic backdoor.
For each label in the model, TABOR samples some images
from all classes as the background images, and attempts to
reconstruct a small pattern that makes the images attached
by the pattern classified into this label. Referring to Neural
Cleanse, we extend TABOR to detect class-specific backdoors,
i.e., traversing each possible pair of source class and target
label. For each possible pair, we make TABOR only sample
the images from the source class as the background images to
reconstruct the pattern for the target label. It takes the revised
TABOR about twice the time of Neural Cleanse to explore all
the possible pairs, so it also cannot be applied to Youtube-Face
and VGG-Face like Neural Cleanse.

We apply Neural Cleanse and TABOR to examine the
backdoored DNN models trained using MNIST and GTSRB
datasets. It turns out that both Neural Cleanse and TABOR
fail to detect our bijection backdoor, and falsely determine
some clean pairs of source class and target label are used by
our backdoor. We then manually compare the reconstructed
trigger against the original trigger, and find they are totally
different. Figure 7 shows such an example. Figure 7 (a) is the
original trigger; Figure 7 (b) is the pattern reconstructed by
Neural Cleanse and Figure 7 (c) is the pattern reconstructed
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by TABOR. It can be seen that the reconstructed triggers are
quite different from the original trigger in terms of pattern,
shape, location, etc. We also try to generate AEs on the images
attached by the triggers reconstructed by Neural Cleanse and
TABOR, and remove the reconstructed triggers before sending
them to the models. It turns out that the ASRs of such AEs
are only 4.54% and 3.92% respectively with AI-Guardian, very
close to the ASR evaluated above without trigger reconstruction
(3.2%). Therefore, we believe both Neural Cleanse and TABOR
fail to reconstruct the trigger of the bijection backdoor.

There are two reasons why Neural Cleanse fails to recon-
struct the trigger of the bijection backdoor. On the one hand,
Neural Cleanse needs to minimize the size of the patterns when
reconstructing them, so it can only detect smaller triggers as
admitted by the authors. The experiments of Neural Cleanse
only show that it can detect triggers of class-specific backdoors
smaller than 2% of the original image, but our triggers cover
5% to 30% of the original image. Note that our backdoor is
not used to attack the DNN model, so we do not need to
consider whether the trigger is too obvious when attached onto
the input images. On the other hand, the performance of Neural
Cleanse also depends on the number of labels infected by the
backdoor. This is because Neural Cleanse detects real triggers
by comparing the size of the patterns reconstructed from all
labels, i.e., a pattern is identified as the real trigger if it is much
smaller than other patterns. If more labels have backdoors, the
patterns reconstructed from these infected labels may have a
similar size. In this situation, Neural Cleanse cannot identify
real triggers by comparing the size, so the backdoors cannot be
detected, which is also admitted by the authors. The evaluation
in Neural Cleanse shows that it fails to detect the backdoor if
more than 30% and 18.6% of labels are infected on MNIST and
GTSRB, respectively. In AI-Guardian however, all the labels in
the DNN model are infected, which further fails Neural Cleanse
detection. The reasons why TABOR fails to reconstruct the
trigger are similar to Neural Cleanse, because TABOR also
needs to minimize the size of the patterns when reconstructing
them, and also identifies real triggers by comparing the patterns
reconstructed from all labels.

Utilizing Existing Model Inversion Attacks. In order to
embed a backdoor into a DNN model, we need to attach the
trigger to the input images in the training dataset. Therefore,
attackers may try to infer the trigger from the training dataset.
Such attacks can be divided into membership inference attacks
and model inversion attacks. The former is to infer whether a
given data belongs to the training dataset of the DNN model,
which cannot be utilized by attackers to bypass AI-Guardian
since the trigger is not available to them. In contrast, the latter
is to reverse the training data from the model, which might be
utilized by attackers to recover the trigger.

We tried four state-of-the-art model inversion attacks [33],
[95], [10], [85], but none of them succeed in inversing images
attached by the trigger. The attack proposed in [10] assumes
the attackers obtain the whole training dataset except one data
point, and the target of the attack is to reconstruct the data
point. It is obvious that this attack is impractical in our situation
since the training dataset with the trigger will not be disclosed.
The attack proposed in [85] requires the attackers to obtain
a set of models trained on datasets with similar distributions.
This attack is also impractical in our situation since there is

Fig. 8: Images reversed by [95].

Fig. 9: Images reversed by [33].

only one model to attack.

The attack proposed in [95] reverses the training images
by training a generative adversarial network (GAN). The GAN
needs to be trained with a substitute dataset that has a similar
data distribution to the dataset that wants to reverse. We find
that this attack may reverse some images that look similar to the
clean images in the training dataset, but cannot reverse images
attached by the trigger, as shown in Figure 8. It is reasonable
since the images that GAN can generate highly depend on
the substitute training dataset. However, attackers can only
establish a substitute dataset containing clean images since the
trigger and the correspondence between the source classes and
the target classes are not available to them. Therefore, the GAN
can only learn the features of clean images, and cannot generate
images attached by the trigger. The attack proposed in [33]
reverses the training images by maximizing the activation of the
class. However, we find that it can only reverse some images
without semantics, as shown in Figure 9. No pattern similar
to the trigger can be found in these images. This is because
the attack is designed against shallow neural networks such
as multilayer perceptron networks and autoencoder networks.
Deep neuron networks have much more complicated structures,
which makes it more difficult to reverse training images.

Aware of the Location of the Trigger. Although the attackers
do not know the concrete trigger, they may be aware of the
rough location of the trigger, i.e., at the corner of the input
image instead of the center. This is reasonable since most of
the triggers will not cover the critical part of the original input,
as described in Section V-C. Below, we discuss two potential
adaptive attacks based on the rough location of the trigger,
which can be leveraged by attackers.

The first adaptive attack is to reconstruct the trigger based
on the rough location, i.e., restricting the trigger at the corner
of the input during reconstruction. We resort to Neural Cleanse,
i.e., traversing each possible pair of source class and target
label, but limiting the trigger reconstruction at the corner of
the input image. We find that the reconstructed trigger and the
original trigger are still different. Figure 7 shows an example,
where Figure 7 (a) is the original trigger and Figure 7 (d) is
the reconstructed pattern. We also try to generate AEs based
on the images attached by the reconstructed triggers, remove
the reconstructed trigger before sending it to AI-Guardian, and
find that the ASR of such AEs given AI-Guardian exists is
only 3.84% on average, very close to the ASR evaluated above
not aware of the rough location (3.2%). Therefore, this kind
of adaptive attack fails to bypass the defense of AI-Guardian.

The second adaptive attack is to generate AEs by only
manipulating the regions where the trigger does not occupy.
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The perturbations or patches generated in this way may not
be covered by the trigger, so they may have higher ASR. We
implement such kind of adaptive attack on all the four datasets.
The ASR of the generated AEs is only 4.33% on average,
compared to the ASR evaluated above not limiting the regions
of AEs (3.2%). The reason why AI-Guardian can defeat such
kind of adaptive attack is that its defense does not rely on
covering any part of AEs.

Attacks Against the Correspondence. In AI-Guardian, the
prediction result of the model is the target class of the bijection
backdoor, and the real prediction result is obtained according
to the reversed correspondence. Therefore, attackers may try
to attack the correspondence. Taking MNIST as an example,
suppose attackers want to perform an adversarial attack targeting
class 5, and our defense will first classify images of class 5
into class 6 and then map them back to class 5 according to
the reversed correspondence. In this situation, performing an
adversarial attack targeting class 6 may help to improve the
attack success rate. However, they may need to try all possible
source-target pairs and adopt the pair that can achieve the
highest attack success rate to perform the attack (assuming
attackers can query the model deployed on the server side to
measure the attack success rate), since the correspondence is
unknown to attackers. We implement this attack using all the
five adversarial attacks on all the four datasets in our evaluation,
but only achieve a 9.8% attack success rate even using the
source-target pair with the highest attack success rate. One
possible reason is that the backdoor is activated after the trigger
is attached to the AEs, making the AEs no longer effective.
We also find that the source-target pair that can achieve the
highest attack success rate has some randomness and may not
belong to the correspondence, which means attackers cannot
use this method to speculate the correspondence.

B. Defending against Black-Box Attacks

In this paper, AI-Guardian is designed to defeat white-box
adversarial attacks, i.e., attackers having direct access to the
DNN model, its architecture, and its internal parameter values.
Aware of AI-Guardian protection, attackers can also launch
black-box adversarial attacks against the entire prediction
system deployed on the server side (including the process
of attaching the trigger to the input, feeding the synthesized
input to the DNN, and converting the DNN output to the
prediction result of original input). For instance, attackers can
continuously make minor revisions to the original input based
on its prediction result from the server, until the server returns
the prediction result desired by the attackers. We adopt three
state-of-the-art black-box adversarial attacks, i.e., Boundary
Attack [12], Pixel Attack [75], and HopSkipJumpAttack [19]
to evaluate AI-Guardian. The implementations of Boundary
Attack and Pixel Attack come from the adversarial-robustness-
toolbox provided by the IBM Research Teams [64], and the
implementation of HopSkipJumpAttack is provided by the
original authors [18].

Compared to white-box adversarial attacks, We find that
these black-box attacks are much more difficult to generate AEs.
White-box adversarial attacks (e.g., BIM [50] and PGD [61])
only need about 100 iterations to generate an AE, but these
black-box attacks usually need more than 10,000 iterations.
This leads to the cost of black-box attacks being significantly

high, since they need to query the server every iteration. We
also find that the attack success rates of black-box attacks are
relatively low. For example, the three black-box adversarial
attacks achieve about 40.7% attack success rates on MNIST
and GTSRB datasets. On Youtube-Face and VGG-Face datasets,
they only achieve 2.1% attack success rates, probably because
the two datasets are much more complicated. This means the
algorithms of black-box adversarial attacks have to explore
larger input space and more labels on complicated datasets,
which increases the difficulty of generating AEs. In addition,
the adoption of Backdoor Robustness Enhancement can also
improve the robustness of our defense against black-box
adversarial attacks, which contributes to the low attack success
rates of black-box attacks.

Although black-box attacks are difficult to succeed in
practice, they can produce a small number of AEs, especially
on the small MNIST and GTSRB datasets. We guess the
reason may be that the trigger is always attached to the
inputs, which keeps the same bijection backdoor always
activated. In this case, the prediction process of the model
also remains unchanged basically, which makes the adversarial
attacks possible to succeed. Previous work has shown that
by introducing some randomness to the prediction process of
the model, the algorithms of black-box adversarial attacks are
likely to fail [8], [14]. To introduce randomness, our solution
is to implant two different bijection backdoors into a DNN,
which have different triggers and one-to-one correspondences
between source classes and target classes. When a user (no
matter a legitimate user or an attacker) queries the server, we
select a backdoor randomly for the prediction. The queries from
legitimate users will not be affected, but the generation of AEs
will be much more difficult. We implant two bijection backdoors
into the DNN on MNIST and GTSRB datasets and find that an
additional backdoor has no effect on the classification accuracy
when the trigger is not attached, but will reduce the backdoor
performance of each backdoor by about 0.5%. We think such
a little reduction is acceptable. Boundary Attack, Pixel Attack,
and HopSkipJumpAttack all fail to generate AEs in most cases,
whose attack success rates are reduced from 40.7% to 5.4%.

In fact, defending against adversarial attacks in the black-
box setting is much easier than in the while-box setting, since
the gradients are not available to the attackers. AI-Guardian
can be integrated with existing defenses against black-box
adversarial attacks. A simple and straightforward approach is to
deploy different backdoored DNNs in the server and randomly
select a DNN to predict a given input. In addition, some studies
defeat black-box adversarial attacks by measuring whether there
is a relationship between a series of queries, since these attacks
usually need to query with similar inputs [21], [54]. Other
work introduces small noise to the input images to enhance the
randomness of the prediction results [14]. By integrating AI-
Guardian with existing defenses, black-box adversarial attacks
can also be defeated.

C. Alternative Implementation of BRE

After embedding the bijection backdoor into the DNN
model, we propose Backdoor Robustness Enhancement (BRE)
to further improve the robustness of the bijection backdoor
against AEs. The current implementation is to extend the
training dataset by including AEs generated by existing
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adversarial attacks. We are aware that it is possible to anchor
the generation of AEs in the training loss function, like state-
of-the-art adversarial training approaches [81], [61], [89]. For
example, we can optimize the training data and the weights
of the DNN at the same time during the training process.
For the training data, the goal of optimization is to make
the DNN fail to recognize it correctly, so as to imitate
the process of adversarial attacks. For the weights of the
DNN, the goal of optimization is to classify the training data
attached by the trigger to the corresponding target class of the
bijection backdoor, so as to improve the performance against
adversarial attacks. We initially implemented such a design on
the MNIST dataset and find that its performance is very similar
to the current implementation. Therefore, we adopt the current
implementation due to simplicity.

D. Limitations of AI-Guardian

Leakage of the Backdoor Trigger. AI-Guardian can be
bypassed if the backdoor trigger is leaked. For example,
attackers can attach the trigger to the inputs, and use such
inputs as the starting point to generate AEs, while making
sure no perturbation overlaps with the trigger. Obviously, AEs
generated in this way can bypass the defense of AI-Guardian.
However, the trigger is only stored and applied at the server
side, which means attackers need to hack the server to obtain
it. Therefore, it is not easy to launch such an attack in practice.

Lack of Theoretical Guarantee. In this paper, we propose
AI-Guardian and examine its performance on four popular
datasets against five representative adversarial attack methods.
We also discuss and evaluate potential adaptive attacks against
AI-Guardian. However, there is no theoretical guarantee on the
performance of AI-Guardian. We will explore the feasibility
of providing the theoretical guarantee for AI-Guardian in the
future work.

VIII. CONCLUSIONS

In this paper, we propose AI-Guardian, a novel approach
to defend against adversarial attacks by exploiting neural
backdoors. The backdoor can change the behaviors of the model,
completely predictable by the defender. In order to further
improve the performance of our defense, we propose Backdoor
Robustness Enhancement to improve the robustness of the
bijection backdoor against AEs. Evaluation results demonstrate
that AI-Guardian can reduce the attack success rate of AEs
from 97.3% to 3.2%, with only a 0.9% decline in clean data
accuracy. In addition, AI-Guardian incurs almost negligible
overhead to the model runtime performance, with only a 0.36%
increase in the model prediction time.
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X. APPENDICES

Details of the MNIST, GTSRB, Youtube-Face and VGG-
Face datasets are shown in Table VIII. The detailed model
structures of MNIST, GTSRB, Youtube-Face, and VGG-Face
datasets are shown in Table IX X VII VI respectively.

TABLE VI: Model Architecture of VGG-Face
Layer type Filter size Channels Stride Activations

Conv 3× 3 64 1 ReLU
Conv 3× 3 64 1 ReLU

MaxPool 2× 2 64 2 -
Conv 3× 3 128 1 ReLU
Conv 3× 3 128 1 ReLU

MaxPool 2× 2 128 2 -
Conv 3× 3 256 1 ReLU
Conv 3× 3 256 1 ReLU
Conv 3× 3 256 1 ReLU

MaxPool 2× 2 256 2 -
Conv 3× 3 512 1 ReLU
Conv 3× 3 512 1 ReLU
Conv 3× 3 512 1 ReLU

MaxPool 2× 2 512 2 -
Conv 3× 3 512 1 ReLU
Conv 3× 3 512 1 ReLU
Conv 3× 3 512 1 ReLU

MaxPool 2× 2 512 2 -
FC - 4096 - ReLU
FC - 4096 - ReLU
FC - 2622 - Softmax

TABLE VIII: Datasets in our evaluation
Dataset Labels Image Size Image Number
MNIST 10 28× 28× 1 60000
GTSRB 43 32× 32× 3 35288

YouTube-Face 1595 224× 224× 3 621126
VGG-Face 2622 224× 224× 3 2622000

TABLE IX: Model Architecture of MNIST
Layer type Filter size Channels Stride Activations

Conv 3× 3 32 1 ReLU
Conv 3× 3 32 1 ReLU

MaxPool 2× 2 32 2 -
Conv 3× 3 64 1 ReLU
Conv 3× 3 64 1 ReLU

MaxPool 2× 2 64 2 -
FC - 512 - ReLU
FC - 10 - Softmax

TABLE X: Model Architecture of GTSRB
Layer type Filter size Channels Stride Activations

Conv 3× 3 32 1 ReLU
Conv 3× 3 32 1 ReLU

MaxPool 2× 2 32 2 -
Conv 3× 3 64 1 ReLU
Conv 3× 3 64 1 ReLU

MaxPool 2× 2 64 2 -
Conv 3× 3 128 1 ReLU
Conv 3× 3 128 1 ReLU

MaxPool 2× 2 128 2 -
FC - 512 - ReLU
FC - 43 - Softmax

TABLE VII: Model Architecture of YouTube-Face
Layer name Layer type Filter size Channels Stride Activations Link to

conv1 Conv 4× 4 20 2 ReLU INPUT
pool1 MaxPool 2× 2 20 2 - conv1
conv2 Conv 3× 3 40 2 ReLU pool1
pool2 MaxPool 2× 2 40 2 - conv2
conv3 Conv 3× 3 60 2 ReLU pool2
pool3 MaxPool 2× 2 60 2 - conv3
conv4 Conv 2× 2 80 1 ReLU pool3

fc1 FC - 160 - - pool3
fc2 FC - 160 - - conv4

add1 ADD - - - ReLU fc1,fc2
fc3 FC - 1595 - Softmax add1
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