
Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance

Jack Doerner
Technion

j@ckdoerner.net

Yashvanth Kondi
Aarhus University
ykondi@cs.au.dk

Eysa Lee
Northeastern University

lee.ey@northeastern.edu

abhi shelat
Northeastern University

abhi@neu.edu

LaKyah Tyner
Northeastern University

tyner.l@northeastern.edu

Abstract—We propose a secure multiparty signing protocol for
the BBS+ signature scheme; in other words, an anonymous
credential scheme with threshold issuance. We prove that due
to the structure of the BBS+ signature, simply verifying the
signature produced by an otherwise semi-honest protocol is
sufficient to achieve composable security against a malicious
adversary. Consequently, our protocol is extremely simple and
efficient: it involves a single request from the client (who
requires a signature) to the signing parties, two exchanges of
messages among the signing parties, and finally a response
to the client; in some deployment scenarios the concrete
cost bottleneck may be the client’s local verification of the
signature that it receives. Furthermore, our protocol can be
extended to support the strongest form of blind signing and
to serve as a distributed evaluation protocol for the Dodis-
Yampolskiy Oblivious VRF. We validate our efficiency claims
by implementing and benchmarking our protocol.

1. Introduction

An anonymous credential allows an issuer to delegate
authority to some particular individual, such that the individ-
ual can use the issuer’s delegated authority without revealing
their own identity. The notion was originally introduced by
Chaum [1], and has been refined by a long line of follow-up
works [2], [3], [4], [5], [6], [7], [8]. Anonymous credentials
satisfy two basic security properties: the first is unlinkability,
which guarantees that no verifier can correlate multiple uses
of the same credential (even under arbitrary collusion), and
the second is unforgeability, which guarantees that no valid
credential can be generated without the consent of the issuer.
These properties are essential, but a number of additional
properties have been defined and realized, such as keyed-
verifiability [9], [10] and delegatability [11], [12], [13].

A common and conceptually simple way to construct
an anonymous credential scheme is to combine a signature
scheme with a zero-knowledge proof of knowledge of a
signature satisfying some predicate [5], [14]. The credential
itself is a signature under the issuer’s public key on a mes-
sage indicating what is authorized, and the individual user,
who receives the credential, uses the zero-knowledge proof
to authenticate to others without revealing any information
about the credential other than that it satisfies some pred-
icate. This basic configuration allows the credential-holder

to be anonymous with respect to the credential validator,
but gives no anonymity property with respect to credential
issuance. Anonymity during issuance can be achieved by
using blind signing protocols. Much effort has been put into
developing efficient signature schemes that accommodate
efficient zero-knowledge proofs of knowledge, and efficient
blind signing protocols.

Credential issuers as a single point of failure. The weak
point in a traditional anonymous credential system is the
issuer, who must hold a secret signing key for the un-
derlying signature scheme. If the issuer is corrupted and
the secret is leaked to an adversary, then that adversary
can produce valid credentials with any properties it desires.
Due to the anonymous nature of their use, such credentials
are inherently difficult to revoke, and due to the primary
use-case of anonymous credentials in governing access and
granting authority, the consequences of such a leak are
often extremely high. This risk can be mitigated by securely
distributing the issuance authority across multiple servers
(controlled by one entity, or many) in such a way that many
or all of the issuing servers must be corrupted in order for
the adversary to gain the power of forgery.

When an anonymous credential comprises a signature
scheme plus a zero-knowledge proof of knowledge of a
signature, distributing the issuing authority is as simple as
replacing the issuer and its signing function with an ideal
functionality that computes the same signing function when
queried by the servers among which issuing authority is to
be delegated. If this ideal functionality is then realized by
a threshold signing protocol (with a threshold t) that has
security against malicious adversaries under composition,
then we can be certain that the resulting scheme has exactly
the same security properties when up to t − 1 issuers are
corrupt as the original one did when the single issuer was
honest. Due to the composable nature of the signing proto-
col, no properties of the credential need to be re-proven; the
signing protocol can simply be dropped into any existing
anonymous credential scheme that uses the same kind of
signature. This, then, is the focus of the present paper: to
composably thresholdize the signature scheme underlying
an anonymous credential. Specifically, we choose the well-
known BBS+ signature scheme.

BBS+ Signatures. The BBS+ signature scheme was intro-
duced by Au, Susilo, and Mu [15] and derives its name

773

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Jack Doerner. Under license to IEEE.
DOI 10.1109/SP46215.2023.00120

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

47
0

from the group signature scheme of Boneh, Boyen, and
Shacham [16], which served as an inspiration. BBS+ allows
vectors of messages to be signed at once, and the size of
the resulting signature depends upon the security parameter,
but not the number of messages signed. The scheme also
supports efficient zero knowledge proofs of knowledge of a
signature that reveal elements of the message vector selec-
tively; this feature allows it to serve as a flexible anonymous
credential. Beyond this, BBS+ signatures have served as the
basis for many other privacy-preserving protocols, such as
Direct Anonymous Attestation (DAA) [17], [18], k-Times
Anonymous Authentication [15], and blacklistable anony-
mous credentials [19]. Of particular note is the Enhanced
Privacy ID (EPID) of Brickell and Li [17], which is deployed
in Intel’s SGX framework1. There is also an ongoing effort
by the Internet Research Task Force (IRTF) to standardize
BBS+ [20], which has broad industry support via a consor-
tium known as the Decentralized Identity Foundation.2

The main difficulty. The BBS+ scheme uses a bilinear
pairing to verify a simple relation in the exponent. The
signing operation requires computing the following group
element (stated using additive elliptic curve notation):

A ..=
G1 + s ·H1 +

∑
i∈[`]mi ·Hi+1

x+ e

where x is the secret signing key, and mi is part if the
input message, and e and s are signing nonces. In order to
thresholdize BBS+, this equation must be computed given
a secret sharing of x. The main difficulty is that the signing
operation involves computing 1/(x + e): the inverse of a
secret value, modulo the order of the bilinear group. This
must be done, and then the final signature computed, with
security against a malicious adversary.

1.1. Securely Distributing Anonymous Credentials

We can frame the task of distributed key management
for anonymous credentials as an instance of secure mul-
tiparty computation under carefully chosen constraints of
interaction and statefulness. Our system will involve a fixed
number of signing servers (i.e. the issuers), who secret-
share the key among themselves, and many clients (who
might alias the servers), to whom credentials must be issued.
It is important to note that the clients are transient. That
is, they are not fixed members of the protocol, and are
expected to interact only minimally (and never with one
another), expend few computational or network resources,
and keep no state between signing sessions (or, if possible,
even within signing sessions). In addition, unlike personal-
scale decentralization (as relevant for cryptocurrency cus-
tody) where one might want to hide the fact that signing
is distributed from outside observers, full transparency is
desirable in the setting of credential-issuance, and so we
assume that clients are able to connect to the issuing servers

1. See https://api.portal.trustedservices.intel.com/EPID-attestation.
2. See https://identity.foundation/

individually. A client initiates a signing request by sending a
vector of messages to the servers as its input, and the servers
run a multiparty computation among themselves and return
an output to the client. We wish to maximize the throughput
of the servers, since they may be issuing credentials to
many clients simultaneously. This goal tends to coincide
with minimizing the latency of the servers’ responses, from
the client’s point of view. In order to achieve it, we are
willing to incur client-side computational costs, so long as
the total issuance latency observed by the client remains
reasonable concretely.

Ideally, we would like to avoid an elaborate stateful
protocol, and instead limit the interaction of the servers to
two exchanges of messages. That is, each server sends a
message to every other server, and then each server replies to
the messages it receives. We refer to this pattern as a round-
trip of communication,3 and consider a single round-trip per
issued credential to be reasonable, as it is also the amount of
communication required in order to keep track of logistical
information that supports the secure computation; for exam-
ple it takes one round-trip interaction to coordinate session
IDs, which are important in the Universal Composability
framework [21], random oracle prefixes, logs of issued
credentials, and to establish consensus on whether the client
should be issued a credential at all. Our communication
model is illustrated in Figure 1.

We would also like to avoid the so-called preprocessing
model [22] in which a finite amount of correlated state is
produced offline and consumed online. The preprocessing
model creates a risk of state reuse, and requires a periodic
replenishment of the correlated state.

Which secure computation paradigm? The most com-
mon techniques for secure computation fall into a few
broad paradigms: constant-round protocols based on Gar-
bled Circuits [23], [24], [25], arithmetic MPC systems where
round complexity depends on the multiplicative depth of
the circuit [26], [27], [28], and, recently, Pseudorandom-
Correlation-based schemes [29], [30]. The BBS+ scheme
is defined over a large finite field. The garbled circuit
approach incurs substantial overhead for arithmetic circuits
over large fields and so we do not pursue it further. While the
Pseudorandom Correlation paradigm is promising, known
constructions are either in the preprocessing model [29] or
require non-standard assumptions or heavy machinery [30].
The arithmetic MPC approach is known to be efficient in
terms of computation and bandwidth for large fields [28],
and in our setting it does not induce too many rounds of
interaction, because the multiplicative depth of the BBS+
signature algorithm is 1. As with most protocols in the
arithmetic paradigm, ours is based on linear secret sharing.

When using a linear secret sharing scheme, non-linear
operations on secret data are typically expensive to securely
compute. In our case, we must invert a function of the secret
key for each signature. Bar-Ilan and Beaver [31] provided an
elegant template for solving this problem, which uses only

3. Note that a round-trip as we use it here is distinct from the notion of
a round, which typically refers to a single exchange of messages.

774

Request
Signature

Server Message
Exchange 1

Server Message
Exchange 2

Reconstruct
Signature

Figure 1: We consider a client (i.e. user) requesting a signa-
ture from a group of signing servers (i.e. credential issuers).
The servers execute a protocol requiring two exchanges of
messages before sending responses to the client. From these
responses the client is able to reconstruct a signature.

a single secure multiplication on secret inputs. However,
achieving security against a malicious adversary corrupting
the majority of parties is nontrivial.

Lessons From Threshold ECDSA. The ECDSA signing
algorithm has a non-linear structure that is similar in spirit to
the BBS+ signing algorithm. In particular, both algorithms
work over similarly-sized elliptic curve groups, and can
trace their non-linearity to an inversion of a secret value.
Multiparty ECDSA signing protocols have recently seen a
surge in interest, motivated by key management concerns
similar to those previously outlined. We refer the reader to
Aumasson et al. [32] for a full survey of threshold ECDSA
schemes, and we highlight below the key lessons that can
be applied to our problem:
1. Computational resources are the bottleneck. The most

sophisticated machinery required by threshold ECDSA
is the secure multiplication for the inversion proto-
col [31], which is typically instantiated via either Addi-
tively Homomorphic Encryption (AHE) [33], [34], [35],
or Oblivious Transfer (OT) [36], [37], [38]. The trade-
off in concrete costs between these two approaches is
roughly that AHE requires less bandwidth, whereas OT
is computationally lightweight. In our setting, the secure
multiplication protocol is assumed to be run by relatively

well-connected servers (conservatively, with gigabit con-
nections), and so we opt for the OT-based approach. This
decision is supported by the work of Dalskov et al. [38]
who investigated maximizing throughput in the context
of DNSSEC.

2. Leverage the structure of the problem. Achieving
malicious security for threshold ECDSA requires a mul-
tiplication protocol with malicious security, and also a
consistency checking mechanism to ensure the various
inputs and outputs from the multiplier are not altered
as the signature is assembled. This mechanism typically
comprises some combination of zero-knowledge proofs,
SPDZ-style MACs [39], and equality checks in the
ECDSA curve group. The works of Dalskov et al. [38]
and Smart and Alaoui [40] show how to implement
consistency checking for any secure computation within
the ‘arithmetic black box’ framework [28] over an elliptic
curve. However, their approach involves considerable
computation and bandwidth overhead, and several rounds
of interaction in order to generate and validate SPDZ-
style MACs. On the other hand, Doerner et al. [36], [37]
were able to avoid the costs of the generic approach by
checking a few relations in the ECDSA curve group,
and showed that subverting the checks implied forging
signatures or breaking standard assumptions in the same
group. Like Doerner et al., we avoid the generic approach
in this work, and study how to exploit the structure of
the signature itself in order to verify consistency.
With the constraints of the problem and an understanding

of potential solutions in place, we are ready to describe our
approach.

1.2. Our Techniques

We make use of the single-round-trip OT-based multi-
plier developed by Doerner et al. [36], as it achieves our
desired interaction complexity, induces low computational
burden, and is instantiable from the same qSDH assumption
that BBS+ relies upon. We leave as an open question how
one could use the more recent OT multiplier of Haitner et
al. [41] in this context; their construction realizes a ‘weak’
multiplication functionality that could be sufficient, although
as written their protocol requires three rounds. Their realiza-
tion of the fully secure multiplication functionality induces
dozens of scalar operations in an elliptic curve per invoca-
tion, which could be a computation bottleneck, especially
when pairing-friendly curves (such as those required for
BBS+) are used.

The signing protocol that we construct from this mul-
tiplier requires no additional rounds and only minimal ad-
ditional interaction among the servers. We prove our pro-
tocol secure in the Universal Composability framework of
Canetti [21], with respect to a straightforward ideal func-
tionality that simply executes the BBS+ credential issuer’s
algorithm internally when the issuing servers agree that a
signature should be generated. Because the functionality
simply runs the signing scheme, it serves as an intuitive

775

drop-in replacement for centralized credential issuers. More-
over, the composable security guarantee enables credential
requests to come in any order and spawn independent
concurrent instances. We formalize our security notion as
Functionality 3.1.

Protocol Template. A BBS+ signature consists of a triple
(A, e, s), such that A ∈ G1 is a point on an elliptic curve that
supports pairings and e and s are values from the finite field
defined by the order of that curve. When a client sends a
signing request to a set of servers, they engage in a protocol
to generate e and s, and shares Ai of A. These values are
then communicated by the servers individually to the client,
who assembles A from the shares and verifies that (A, e, s)
is indeed a valid signature. Though A is a point on an elliptic
curve, each share Ai comprises both a curve point Ri and an
element from the curve-order field ui, and the reconstruction
operation for A is defined to be A ..=

∑
iRi/(

∑
i ui). In

order to sample such a sharing of A, the servers sample a
uniform r in the curve-order group, in the form of secret
shares ri. From this they compute secret shares ui of u =
r · (x + e). If B is a public value that both the servers
and clients can derive from the messages and s, then setting
Ri = ri ·B produces the share Ai = (Ri, ui) of the value A
defined as above. This is essentially a version of the Bar-Ilan
and Beaver secure inversion technique [31]. The novelty and
difficulty lie in ensuring that no malicious adversary cheats
in this framework.

Verifying Consistency. Assuming that the multiplier is ide-
ally secure (formally, in the FMul2P hybrid model), we show
that to achieve security against a malicious adversary, it
suffices for the client to check if the (A, e, s) value is indeed
a valid credential. While it is folklore that the consistency
of a multiparty computation protocol that computes a “self-
verifying” object like a digital signature could be validated
simply by checking the signature, proving that no informa-
tion is leaked in the event of a malformed signature is subtle.
In particular, these types of folklore arguments often miss
the potential for selective failure attacks in which a cheating
adversary can slowly learn about the other parties’ keys by
inducing failures that are correlated with the secrets of the
other parties. Defending against such attacks often requires
elaborate zero-knowledge proof techniques.

In contrast, at a high level, we observe that the shares
ri serve as linear MAC keys, and reconstruction involves
implicitly checking the MAC against A, which is fixed by
e, s, and the public key. We show that if a server cheats
and passes this correctness check, then it has effectively
forged a signature (but in this case, the output signature is
correct, the protocol does not abort, and the adversary learns
nothing forbidden). We contrast this implicit MAC with
the explicit MAC used by the generic MPC approach [40],
[38]—computing an explicit MAC induces a computation
and communication overhead factor of roughly two, and
validating and using it to check correctness requires several
extra rounds of interaction.

Conceptually, this allows us to place BBS+ signatures
in between Schnorr and ECDSA in terms of complexity

of decentralization. In particular, Schnorr signatures are
known to be straightforward to decentralize even with UC
security [42], requiring only commitments and proofs of
knowledge. ECDSA requires multiple invocations of secure
multiplication, along with as many accompanying consis-
tency checks via implicit MACs, some of which are com-
putational [37]. In particular, all of the modern threshold
protocols for ECDSA require extra work to ensure that
the inputs to the different multipliers are consistent. Our
protocol to decentralize BBS+ interpolates an intermediate
decentralization complexity between ECDSA and Schnorr,
as it requires only a single invocation of secure multiplica-
tion, and thus a corresponding information-theoretic implicit
MAC check with no need for additional consistency checks.
Extensions. Okamoto’s signature scheme [43] can be
viewed as a variant of BBS+, and is therefore thresholdiz-
able via our scheme. As we discuss in Section 5, our
techniques can also be used to distribute the computation of
the Dodis and Yampolskiy Verifiable Random Function [44].
In addition, since the state that our servers are required
to maintain comprises additive secret key shares and base
OTs for the OT extension [45] used by the multiplier, we
can use the proactivization scheme of Kondi et al. [46] to
refresh the state of the system and defend it against mobile
attackers [47].

1.3. Prior Works

Dodis and Yampolskiy [44] proposed a verifiable ran-
dom function (VRF) of the form Fx(e) 7→ e(G1, G2)/(x+e)
where the proof of correct evaluation is of the form π =
G1/(x+ e). This structure is very similar to the BBS+ sig-
nature scheme. Dodis and Yampolskiy themselves proposed
that their VRF could be evaluated via the inversion trick of
Bar-Ilan and Beaver [31]; our protocol can be viewed as the
minimal way to add malicious security to their distributed
VRF construction. Moreover, our scheme can be extended
to make such a threshold VRF oblivious. We discuss this
further in Section 5.

The problem of thresholdizing the BBS+ signature
scheme was previously taken up by Goldfeder, Gennaro,
and Ithurburn [48]. That solution, like ours (and the Dodis-
Yampolskiy scheme) begins with the inversion protocol of
Bar-Ilan and Beaver. Our scheme, however, is distinct in
several important regards. That work provides a monolithic
proof of standalone security, whereas we provide a full mod-
ular proof of composable security in the UC paradigm. In
particular, our scheme is based upon an ideal multiplication
functionality, which is realizable in two rounds from the
same assumption as the BBS+ signature scheme. Theirs,
on the other hand, hardcodes a multiplication strategy
based upon Paillier encryption. This potentially degrades
efficiency, because it is unclear whether their scheme can
be adapted to require only a single round-trip of commu-
nication as our does, and because securing Paillier-based
multipliers requires zero-knowledge range proofs that are
far more costly than any other component of the proto-
col. It also degrades security, because it means that their

776

protocol relies upon the Strong RSA assumption (which
is entirely unrelated to the underlying signature scheme).
Even more troublingly, the multiplication techniques used
in [48] have been shown explicitly to be insecure in the
context of threshold ECDSA signing [49], [50]; the impact
of this on the BBS+ protocol is at present unclear. Finally,
unlike the [48] scheme, our scheme does not require A
to be revealed to the simulator in order to simulate the
protocol when the client is honest. Achieving this requires
a somewhat subtle analysis, but it opens the door to a fully-
blind signing extension, and to applying our protocol to the
threshold oblivious VRF problem as previously mentioned.
Due to all of these reasons and the simplicity of our protocol,
we are also able to provide an implementation with concrete
benchmarks in Section 7.

An anonymous credential scheme supporting threshold
issuance was also given by Sonnino, Al-Bassam, Bano,
Meiklejohn, and Danezis [51]. This scheme, Coconut, is
primarily based upon the signature scheme of Pointcheval
and Sanders [52] (PS signatures), which base their security
on an interactive assumption similar but not equivalent
to LRSW [4]. In terms of credential-showing efficiency,
Coconut and our work are in similar in that they both re-
quire proving and verifying a 2-clause non-interactive zero-
knowledge proof of knowledge. A follow-up paper by Rial
and Piotrowska [53] (RP-Coconut), however, identifies se-
curity problems with the proof sketch of Sonnino et al. [51]
and provides a patch. In order to prove unforgeability, RP-
Coconut requires increasing the size of the public key, bring-
ing up the size to ` elements of G1 plus `+1 elements of G2.
This is nearly double the public key size of Coconut, which
required `+1 elements of G2. In comparison, the public key
for our scheme only requires 1 element of G1 and 1 element
of G2. Additionally, BBS+ signatures are compatible with
all group types, while PS signatures specifically require
type-3 pairings. As Pointcheval and Sanders [52] write,
the existence of an efficient isomorphism between G1 and
G2 would make their signature scheme “totally insecure”.
Finally, it is worth noting that Rial and Piotrowska provide a
sequentially-secure simulation-based proof for RP-Coconut.
Unlike proofs in the UC-model, sequential security makes
no guarantees for concurrent or parallel executions of the
protocol.

2. Preliminaries

Notation. We use λ to denote the (computational) security
parameter and n to denote the number of parties. The sym-
bols ≈c and ≈s denote computational and statistical indis-
tinguishability, respectively, with respect to λ. G1,G2,GT

denote three groups of prime order p, such that |p| = κ,
and we represent operations over these groups additively.
By convention, variables representing group elements are
capitalized, and the generators of G1 and G2 are G1 and
G2 respectively. Single-letter variables are set in italic font,
multi-letter variables and function names are set in sans-
serif, and string literals are set in slab-serif. Bold

variables represent vectors of subscripted elements, so that
x = {x1, x2, x3} in a context where the latter three variables
are defined, and we use [n] to denote the vector of integers
{1, . . . , n} and ‖ to denote concatenation.

Bilinear Groups. A bilinear group (or pairing group) is
a trio of groups (G1,G2,GT) with an efficient map (or
pairing) operation e : G1 × G2 → GT, such that for
any x,∈ Zp and y ∈ Zp, e(x · G1, y · G2) = x · y ·
e(G1, G2). We define BilinGen to be an efficient algorithm
(G1,G2, G1, G2, p) = G ← BilinGen(λ), which samples a
description G of the group (with λ bits of security). There
are three types of pairings [54]: type-1, in which G1 = G2;
type-2, in which G1 6= G2 and there exists an efficient
isomorphism ψ : G2 → G1; and type-3, in which G1 6= G2

and there does not exist an efficient isomorphism ψ.

2.1. The BBS+ Signature Scheme

The BBS+ signature scheme uses bilinear groups to
produce a signature for a vector of ` messages. Its algorithms
are as follows.

Algorithm 2.1. BBS+Gen(G, `)

1. Let (G1,G2, G1, G2, p) ..= G.
2. Sample a vector of `+1 random group elements H←

G`+1
1 .

3. Uniformly choose secret key x← Z∗p.
4. Calculate X ..= x ·G2.
5. Set sk ..= (H, x) and pk ..= (H, X).
6. Output (sk, pk).

Algorithm 2.2. BBS+Sign(sk,m ∈ Z`p)

1. Parse sk as (H, x).
2. Uniformly sample nonces e← Zp and s← Zp.
3. Compute

A ..=
G1 + s ·H1 +

∑
k∈[`]mk ·Hk+1

x+ e

4. Output signature σ ..= (A, e, s).

Algorithm 2.3. BBS+Verify(pk,m, σ)

1. Parse pk as (H, X) and σ as (A, e, s).
2. Check the following:

e(A, X+e·G2) = e(G1+s·H1+
∑
k∈[`]

mk ·Hk+1, G2)

Output 1 if and only if the equality holds.

Au et al. [15] introduced BBS+ and proved it secure for
type-1 and type-2 pairings, using the original “conference
version” of the qSDH assumption [55].

Lemma 2.4 ([15]). The BBS+ signature scheme is existen-
tially unforgeable against adaptive chosen messages under

777

the conference version of the qSDH assumption for type-1
and type-2 pairings.

BBS+ was later proved secure without any assumptions
about the existence (or non-existence) of an isomorphism for
type-3 pairings by Camenisch et al. [18], under the updated
“journal version” of the qSDH assumption [56].

Lemma 2.5 ([18]). The BBS+ signature scheme is existen-
tially unforgeable against adaptive chosen messages under
the journal version of the qSDH assumption for type-3
pairings.

Note that while the BBS+ signature scheme requires
the qSDH assumption to achieve unforgeability, and while
oblivious transfer can also be securely instantiated under the
same assumption, our protocols are secure in the “OT-hybrid
model”, and thus do not specifically require qSDH or any
computational assumption.
Comparison to Okamoto Signatures Okamoto’s signature
scheme [43] was originally introduced in the context of
constructing blind signatures. As Au et al. [15] observed
previously, BBS+ can be viewed as an extension of Okamoto
signatures for signing blocks of messages. Apart from the
number of messages signed, the schemes mainly differ in
their proofs of security. The original conference version of
Okamoto’s paper introduced the 2-variable strong Diffie-
Hellman (2SDH) assumption, and proved security under a
variant of this assumption. A later version of the paper [57]
revised the proof to achieve security under the conference
version of qSDH. Both versions of this proof rely on an
isomorphism between the groups. Okamoto signatures are
known to be strongly existentially unforgeable, whereas
Au et al. [15] and Camenisch et al. [18] claim only stan-
dard unforgeability for BBS+. Our techniques can easily be
adapted to thresholdize the Okamoto scheme.

2.2. Blind Signatures

A blind signature protocol allows a signer (who holds
the secret key) to sign a message belonging to another party,
without learning the contents of the message. In weakly-
blind signing schemes, only the message is hidden, whereas
in strongly-blind schemes, the resulting signature is also
hidden from the signer, so that it cannot be used to identify
the client later. In this work, we achieve weak partially-
blind signing. This is a variant of weakly-blind signing in
which the message is hidden from the signer, but the signer
receives a proof that the message satisfies some predicate. In
this way, an arbitrary signing policy can be enforced, even
though the signer signs blindly. In the threshold context,
we will allow the client (who requests and receives the
signature) to prove a different predicate to each signer.
Note that weak partial-blindness implies weak blindness:
the client need only omit the predicate.

2.3. Universal Composability

We formalize our protocols and prove them secure in the
Universal Composability (UC) framework, using standard

UC notation. We refer the reader to Canetti [21] for a full
description of the model, and give a brief overview here.

In the UC framework, the real-world experiment in-
volves n parties P1, . . . ,Pn that execute a protocol π, an
adversary A that can corrupt a subset of the parties, and
an environment Z that is initialized with an advice string
z. All entities are initialized with the security parameter
λ and with a random tape. The environment activates the
parties involved in π, chooses their inputs and receives
their outputs, and communicates with the adversary A, who
may may instruct the corrupted parties to deviate from π
arbitrarily. In this work, we consider only static adver-
saries, who announce their corruptions at the beginning of
the experiment. The real-world experiment completes when
Z stops activating parties and outputs a decision bit. Let
REALπ,A,Z(λ, z) denote the random variable representing
the output of the experiment.

The ideal-world experiment involves n dummy parties
P1, . . . ,Pn, an ideal functionality F , an ideal-world adver-
sary S (the simulator), and an environment Z . The dummy
parties forward any message received from Z to F and
vice versa. The simulator can corrupt a subset of the dummy
parties and interact with F on their behalf; in addition, S can
communicate directly with F according to its specification.
The environment and the simulator can interact throughout
the experiment, and the goal of the simulator is to trick
the environment into believing it is running in the real
experiment. The ideal-world experiment completes when
Z stops activating parties and outputs a decision bit. Let
IDEALF ,S,Z(λ, z) denote the random variable representing
the output of the experiment.

A protocol π UC-realizes a functionality F if for every
probabilistic polynomial-time (PPT) adversary A there ex-
ists a PPT simulator S such that for every PPT environment
Z ,

{REALπ,A,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ)

≈c {IDEALF ,S,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ)

3. Functionalities

We give the ideal functionality that we intend our pro-
tocol to realize.

Functionality 3.1. FBBS+(n, t,G).

This functionality interacts with n fixed parties denoted
by P1, . . . ,Pn, an a-priori unspecified number of tran-
sient clients, all of them denoted by C, and with an
ideal adversary S. Clients may be aliases of any of the
parties. The set of corrupt parties is indexed by P∗. The
functionality is also parameterized by a threshold t ≤ n
and the description of a bilinear group, G.

778

Key Generation: On receiving (key-gen, sid, `) from
every party Pi for i ∈ [n], where ` ∈ N+ is agreed-
upon and sid is agreed-upon and fresh, if there exists no
record of the form (key, sid, ∗, ∗) in memory, then sample
(sk, pk) ← BBS+Gen(G, `), store (key, sid, sk, pk, `) in
memory, and send (pub-key, sid, pk) to every party Pi
for i ∈ [n] as adversarially-delayed private output.

Signing: Upon receiving (sign, sid, sigid,m,J) from
C, where m ∈ Z`p, J ⊆ [n], |J| = t, and sigid is fresh, if a
record of the form (key, sid, sk, pk, `) exists in memory,
then send (sig-req, sid, sigid,m,J) to every party Pj for
j ∈ J. On receiving (accept, sid, sigid) from every Pj
for j ∈ J, compute (A, e, s) ← BBS+Sign(sk,m),
send (leakage, sid, sigid, e, s) to S and send
(signature, sid, sigid, (A, e, s), pk,J) to C as
adversarially-delayed private output. If any Pj
instead sends (reject, sid, sigid), then send
(rejected, sid, sigid) to C as adversarially-delayed
private output.

Weak Partially-Blind Signing: Upon receiving
(wb-sign, sid, sigid,m,J,φ) from C, where m ∈ Z`p,
J ⊆ [n], φ is a vector of descriptions of predicates
on m, |J| = |φ| = t, and sigid is fresh, if a record
of the form (key, sid, sk, pk, `) exists in memory,
and if φj(m) = 1 for every j ∈ J \ P∗, then
send (sig-req, sid, sigid, φj ,J) to every party Pj for
j ∈ J. On receiving (accept, sid, sigid) from every Pj
for j ∈ J, compute (A, e, s) ← BBS+Sign(sk,m),
send (leakage, sid, sigid, e) to S, and send
(signature, sid, sigid, (A, e, s), pk,J) to C as
adversarially-delayed private output. If any Pj
instead sends (reject, sid, sigid), then send
(rejected, sid, sigid) to C as adversarially-delayed
private output.

Note that the weak partially-blind signing interface of
the foregoing interface can be converted into a strong
partially-blind signing interface simply by removing the
leakage to the adversary. We discuss how to realize such
a modified functionality in Section 5.

3.1. Building Blocks

Now we will define the building blocks of our protocol.
We begin with our communication model: every pair of par-
ties can communicate via an authenticated channel, and we
also assume the existence of a broadcast channel. Formally,
the protocols are defined in the (FAuth, FBC)-hybrid model
(see [21], [58]). We leave this implicit in their descriptions.
Since we desire only to achieve security with abort, our
broadcast channel can be realized via the echo-broadcast
technique [59]. Specifically, the parties send broadcast mes-
sages optimistically over point-to-point channels, and at the
end, every party hashes the entire transcript of broadcast
messages and sends the digest to all other parties. If the
digests do not agree, the parties abort.

Standard functionalities. The parties make use of stan-
dard commitment, zero-knowledge, and committed-zero-
knowledge functionalities; FCom, FZK, FCom-ZK respec-
tively. We specify the commitment and zero knowledge
functionalities to work in a broadcast fashion, but they are
otherwise similar to the standard versions [58]. The parties
also use a functionality FZero that produces secret sharings
of zero in a particular group. These functionalities are given
in Appendix A.
FCom and FZero can both be realized via simple folkloric

methods. FCom is realized in the Random Oracle model
simply by feeding the value to be committed into the random
oracle, along with a random salt of security parameter
length, and then transmitting the oracle’s output as the
commitment, and the salt along with the original value as the
opening. FZero can be realized in the following way: each
pair of parties commits and decommits a pair of λ-bit seeds
to one another, then sums the pair to form a single shared
seed. When FZero is invoked, each pair of parties evaluates
the random oracle on their shared seed concatenated with the
next index in sequence. Each party then computes a single
output share for itself by accumulating the random oracle
outputs: it subtracts oracle outputs for pairings in which it is
lower-indexed, and adds oracle outputs for pairings in which
it is higher-indexed.

The zero-knowledge and committed-zero-knowledge
functionalities will be used with the standard discrete loga-
rithm relation

RDL = {((X,B), x) : X = x ·B}

and in addition, in the context of partially-blind signing, they
will be used with the conjunction of an arbitrary predicate
and accumulated-discrete-logarithm

RDL∧φ =
{
((X,B1, . . . , B`), (x1, . . . , x`)) :

X =
∑
i∈`

xi ·Bi ∧ φ(x1, . . . , x`) = 1
}

FRDL
ZK can be realized via the Fischlin transform [60] applied

to the Schnorr protocol [61]. The realization of FRDL∧φ
ZK

depends upon the predicate φ, but in simple cases, such as
selectively checking equality with known values, the cost
is no more than that of proving knowledge of ` discrete
logarithms. FCom-ZK can be realized similarly to FZK, but
with the addition of a commitment and decommitment via
FCom.

Multiplication functionality. The main building block of
our protocol is two-party multiplication. Specifically, we
require a functionality that enables Alice and Bob, who have
a and b respectively, to learn c and d respectively, such that
c+ d = a · b. This functionality is given in Appendix A.

There are many techniques in the literature of multiparty
computation for realizing multiplication functionalities, but
for the sake of achieving our desired efficiency targets, we
choose to realize FMul2P(p) via the two-round protocol of
Doerner et al. [36]. Their protocol is based upon Oblivious

779

Transfer (OT) [62], and can be seen as a malicious ex-
tension of the classic semi-honest distributed multiplication
technique of Gilboa [63]. Because their protocol is OT
based, it can be based upon many assumptions, including the
assumption that the computational Diffie-Hellman problem
is hard in G1, which is implied by the qSDH assumption
under which BBS+ itself is proven secure.

4. Threshold BBS+ Protocol

Before we give the formal description of our signing pro-
tocol, we give an overview of the subprotocols. An informal
description of techniques is also given in Section 1.2.

Key Generation. Before servers can sign messages, they
must first run a one-time setup phase to jointly generate
keys. These parties begin by using standard techniques for
sampling a Shamir secret sharing of a random value: each
party samples a random polynomial and sends to each other
a point on their polynomial. Each party Pi adds a point
from their own polynomial with the sum of the points
received and takes this as their share of the secret key xi.
To generate the public key corresponding to this secret key,
parties perform a commit-and-release of Xi

..= xi ·G2 along
with a proof of knowledge of discrete logarithm. Parties can
compute X ..= x · G2 by interpolating a size t subset of
Xi in the exponent. Malicious parties may however send
malformed Xi, so parties check that all received Xi lie on
the same degree-(t− 1) polynomial.4

Parties must also generate H, which can be done using a
standard commit-and-release of random G1 elements, which
are then summed. This commit-and-release can be done in
parallel with that of Xi so as to not increase round-count.
Communication efficiency efficiency can be improved (and
the public key can be compressed) by using a programmable
random oracle to generate H2, . . . ,H`+1 from H1. Oracle
programming can be avoided if H2, . . . ,H`+1 are generated
in the same way as H1.

Signing. The client initiates the signing protocol with t
servers by sending the messages m to be signed, and
J ⊆ [n], the identities of the signing parties.

Suppose the set of t signing parties know a secret sharing
r of a random value r, and that they know (uniformly sam-
pled) values s and e. Suppose furthermore that the signing
parties know a secret sharing u of the product u = r·(x+e).
It is easy to see that signing party Pi can compute

Ri ..= ri ·
(
G1 + s ·H1 +

∑
k∈[`]

mk ·Hk+1

)
and that if each party Pi sends s, e, Ri, and ui to the client,
then the client can compute

A ..=

∑
i∈JRi∑
i∈J ui

=
r ·
(
G1 + s ·H1 +

∑
k∈[`]mk ·Hk+1

)
r · (x+ e)

4. There are many ways of implementing this check which do not require
interpolating with all

(n
t

)
possible subsets of size t. For instance, it is

sufficient check that subsets that cover [n] interpolate to the same value.

which is a BBS+ signature on m. Notice that the sum∑
i∈J ui information-theoretically hides x, and that the sum∑
i∈JRi reveals exactly what A reveals, given knowledge

of u. The task of the signing parties is thus to generate r,
u, s, and e in only two message-exchanges.

s and e can both be sampled quite simply via commit-
and-release coin tossing. The shares r are sampled locally,
and then a two round multiplier is used to compute shares
of the pairwise products ri ·λJj (0) ·xj for all (i, j) ∈ J×J.5
Each party Pi then computes ui as the sum of its shares
of these pairwise products and ri · e + αi, where α is a
secret sharing of 0.6 It is possible for the parties to sample
α noninteractively using well-known techniques.

Weak Partially-Blind Signing. To achieve weak partial-
blindness, the client does not send m to the signing parties,
but instead samples a masking nonce s0 ← Zp and computes
B′ ..= s0 · H1 +

∑
k∈[`]mk · Hk+1. The client sends B′

to the signing parties instead of m, along with a zero-
knowledge proof of knowledge of s0 with respect to B′.
This proof is necessary in order to permit the simulator to
extract the client’s mask share s0, but it can also be extended
to allow the client to prove properties of its messages to the
signing parties. The signing parties determine s as usual
and construct B ..= G1 + s · H1 + B′, and when the
client receives the signature, it computes s′ ..= s0 + s, and
takes the signature to be (A, e, s′) instead of (A, e, s). This
modification information-theoretically hides the messages
from the signing parties (in the FZK-hybrid model), even
if all of the signing parties are corrupt.

4.1. t-of-n Threshold Signing

Our protocol contains three subprotocols, corresponding
to the three phases of FBBS+. The first generates a public
key and Shamir shares of the corresponding secret key.
This subprotocol is a derivative of the protocol Doerner et
al. [36], [37]. Thereafter we give protocols for plain signing
and for weak partially-blind signing.

Protocol 4.1. πBBS+(n, t,G).

This protocol runs among n fixed parties denoted by
P1, . . . ,Pn, an a-priori unspecified number of transient
clients, all of them denoted by C. Clients may be aliases
of any of the parties. The parties (and clients) also have
access to the ideal functionalities FCom, FRDL

ZK , FRDL
Com-ZK,

FZero(p) and FMul2P(p). The protocol is parameterized
by the threshold t and the description of a bilinear group,
(G1,G2, G1, G2, p) = G. If at any point during this
protocol, a functionality aborts, any party that observes

5. Recall that x is a Shamir secret sharing of x. The set of publicly-
calculable Lagrange coefficients λJj (0) for j ∈ J converts it into a t-party
additive sharing. Also note that when i = j, local multiplication suffices.

6. The secret sharing of 0 rerandomizes the summed shares. This ensures
that if the corrupt parties use incorrect inputs for some or all of the
multiplication protocol instances, then the offset induced into uh for some
honest party Ph are independent of that that party’s secret xh.

780

the abort also aborts to the environment.

Key Generation: On receiving (key-gen, sid) from Z ,
where sid is fresh, each party Pi for i ∈ [n] performs the
following sequence of steps:
1. Pi samples a random degree t−1 polynomial x̂i(·) and

sends x̂i(j) to every other party Pj for j ∈ [n] \ {i}.
2. Upon receiving x̂j(i) from every other Pj , party Pi

computes its share of the secret key as point xi ..=∑
j∈[n]

x̂j(i) mod p.

3. Pi computes Xi
..= xi ·G2 and sends (commit, sid‖Pi,

{P1, . . . ,Pn}, Xi, xi) to FRDL
Com-ZK.

4. Pi samples Di ← G`+1
1 and sends (commit, sid‖Pi,

{P1, . . . ,Pn},Di) to FCom.
5. Upon being notified of all other parties’ commitments

to both FCom and FRDL
Com-ZK, Pi sends (prove, sid‖Pi)

to FRDL
Com-ZK and (decommit, sid‖Pi) to FCom.

6. On receiving (reject, sid‖Pj) from FRDL
Com-ZK for any

j, Pi aborts.
7. On receiving (accept, sid‖Pj , Xj) from FRDL

Com-ZK for
every j ∈ [n] \ {i}, Pi aborts if the exponents of each
Xj do not lie on the same degree t − 1 polynomial.
That is, Pi aborts if there exists any sets J,J′ ⊂ [n]
such that ∑

j∈J

λJj (0) ·Xj 6=
∑
j∈J′

λJ
′

j (0) ·Xj

where J 6= J′, |J| = |J′| = t, and λJj (0) and λJ
′

j (0)
are the Lagrange coefficients for interpolating with the
set of parties indexed by J and J′, respectively.

8. On receiving (decommitment, sid‖Pj ,Dj) from FCom
for every j ∈ [n] \ {i}, Pi computes

H ..=

∑
j∈[n]

Dj,k


k∈[`+1]

X ..=
∑
j∈J

λJj (0) ·Xj

using any subset J ⊆ [n] where |J| = t. Finally, Pi
outputs (pub-key, sid, (H, X)) to Z .a

Signing: This phase of the protocol is initiated by the
client C when it receives (sign, sid, sigid,m,J) from Z .
Clients may be transient or alias with the fixed parties.
Note J ⊆ [n] and |J| = t.
9. C sends (sig-req, sid, sigid,m,J) to each party Pj

for j ∈ J.
10. On receiving (sig-req, sid, sigid,m,J) from some

client C, Pi samples (ei, si, ri) ← Z3
p uniformly

and sends (sample, sid,J) to FZero(p). Upon receiv-
ing (zero-share, sid, αi) from FZero(p), Pi com-
putes the Lagrange coefficient λJi (0) for interpolat-
ing the polynomial with the parties indexed by J
and sends (commit, sid‖Pi‖sigid, {Pj}j∈J, (ei, si)) to

FCom and (input, sid‖Pi‖Pj‖sigid,Pj , λJi (0)·xi+αi)
to FMul2P(p) for every j ∈ J \ {i}.

11. Upon receiving (committed, sid‖Pj‖sigid,Pj) from
FCom and (bob-ready, sid‖Pj‖Pi‖sigid,Pj , ci,j)
from FMul2P(p) from every j ∈ J \ {i},
sends (decommit, sid‖Pj‖sigid) to FCom and
(multiply, sid‖Pj‖Pi‖sigid, ri) to FMul2P(p) for
every j ∈ J \ {i}.

12. Upon receiving both (decommitment, sid‖Pj‖sigid,
(ej , sj)) from FCom and (product, sid‖Pi‖Pj‖sigid,
di,j) from FMul2P(p) for every j ∈ J \ {i}, Pi com-
putes

e ..=
∑
j∈[n]

ej mod p

s ..=
∑
j∈[n]

sj mod p

B ..= G1 + s ·H1 +
∑
k∈[`]

mk ·Hk+1

Ri ..= ri ·B

ui ..=

ri ·
(
e+ λJi (0) · xi

)
+ αi

+
∑
j∈J\{i}

(ci,j + di,j)

 mod p

and sends (output-share, sid, sigid, pk, e, s, Ri,
ui,J) to C, and halts.

13. Upon receiving (output-share, sid, sigid, pk, e, s, Ri,
ui,J) from every Pi for i ∈ J, the client C aborts if
any two parties disagree on the values of s, e, or pk.
Otherwise, C parses pk as (H, X), computes B via
the same equation as in Step 12, computes

A ..=

∑
i∈J

Ri∑
i∈J

ui

and verifies that BBS+Verify(pk,m, (A, e, s)) = 1. If
so, then C outputs (output, sid, sigid, (A, e, s), pk) to
Z , and halts, but if the equality does not hold, then C
aborts.

Weak Partially-Blind Signing: This phase of the
protocol is initiated by the client C when it receives
(wblind-sign, sid, sigid,m,J) from Z . Clients may be
transient or alias with the fixed parties. Note J ⊆ [n] and
|J| = t.

14. C samples s0 ← Zp, computes

B′ ..= s0 ·H1 +
∑
k∈[`]

mk ·Hk+1

and sends (prove, sid, {Pi}i∈J, B′, {s0,m1, . . . ,m`})
to FRDL∧φ

ZK . C sends (wb-sig-req, sid, sigid, B′,J) to
each party Pj for j ∈ J.

15. On receiving (wb-sig-req, sid, sigid, B′,J) from some
client C and (proof, sid, B′) from FRDL∧φ

ZK , each party

781

Pi runs Steps 10 to 12 from the Signing phase, except
now B is computed as

B ..= G1 + s ·H1 +B′

As before, each party Pi sends
(output-share, sid, sigid, pk, e, s, Ri, ui,J) to C
before halting. If any party receives (abort, sid, B′)
from FRDL∧φ

ZK , then they output (failure, sid) and
halt.

16. Upon receiving (output-share, sid, sigid, pk, e, s, Ri,
ui,J) from every Pi for i ∈ J, the client C aborts if
any two parties disagree on the values of s, e, or pk.
Otherwise, C parses pk as (H, X), computes B via
the same equation as in Step 15, computes

A ..=

∑
i∈J

Ri∑
i∈J

ui

s′ ..= s0 + s

and verifies that BBS+Verify(pk,m, (A, e, s′)) = 1. If
so, then C outputs (output, sid, sigid, (A, e, s′), pk) to
Z , and halts, but if the equality does not hold, then C
aborts.

a. In the programmable random oracle model, an optimization is
available to reduce the public key size: the parties sample and store
only H1 during steps 4 through 8. When they require Hi for i 6= 1, in
order to provide them as output to the environment, and in the Signing
and Weak Partially-Blind Signing phases, they (locally) calculate
Hi

..= RO(i‖H1), where RO is a random oracle. A more thorough
disscussion follows this protocol description.

Theorem 4.2. πBBS+(n, t,G) UC-realizes FBBS+(n, t,G) in
the (FCom,FRDL∧φ

ZK ,FRDL
Com-ZK,FZero(n, p),FMul2P(p))-hybrid

model with selective abort against a malicious adversary
that statically corrupts up to t − 1 fixed parties and any
number of transient clients, where p is the order of the
bilinear group described by G.

Proof is given in the full version.

Optimizing public key length. As previously mentioned in
footnote a of Protocol 4.1, a programmable random oracle
can be used to make the public key size independent of `:
in particular, under the optimization described, the public
key comprises only two group elements: one each from
G1 and G2. Note that the functionality FBBS+ determines
the values Hi for i 6= 1, and it must do so in order
for the signature scheme to remain secure; it follows that
the random oracle used to calculate these values in the
protocol must be programmed in the ideal world by the
simulator, with the values the functionality supplies. This
optimization weakens the security theorem, which does not
otherwise incorporate a random oracle. Nevertheless, for the
performance analyses in Sections 6 and 7 we assume this
optimization is applied.

Proving selective attributes. Credentials produced by this
system can be used in a selective fashion. Camenisch et
al. [18] construct a concretely efficient proof of the follow-

ing relation:

RBBS+ =


((µ,I, pk), (m, σ)) :∧

i∈[|I|]

µi = mIi

∧ BBS+Verify(pk,m, σ) = 1


which selectively reveals some subset µ (indexed by I) of
the messages in a BBS+ signature to a verifier. Using this
proof, a credential holder can authenticate to a service that
only requires the authority of some subset of the issuers,
without revealing their relationship with the other issuers.
Yet because it is a a proof over only a single signature, it
is far more efficient (computationally, and in terms of com-
munication and storage) than the naive solution of proving
knowledge of many independently-signed credentials.

4.2. A Simple Application: Credential Coalescing

As we discussed in Section 1, our scheme can be used to
thresholdize any single-issuer anonymous credential scheme
based upon BBS+. Here we discuss a related application:
coalescing of credential from multiple authorities. Suppose a
user is known to multiple credential authorities, and wishes
to authenticate to a service by proving a joint statement
about who these authorities believe the user to be, and what
each of them (individually) authorizes the user to do. On
the other hand, the user may not wish to reveal to one
authority their relationship with another authority. Our weak
partially-blind signing protocol allows the user to prove a
different predicate privately to each signing server. The user
can request a vector of messages to be signed in a weak-
blind fashion, each message representing one of the issuing
authorities’ credentials, and convince each issuing authority
independently that its corresponding message is acceptable
simply by proving equality with some string the issuing
authority has fixed. The result is a single compact credential
that coalesces the relationship between the user and all of
the issuing authorities.

It should be noted for properties only subsets of au-
thorities are authorized to issue, care must be taken to
ensure the credentials with these properties are not issued
without consent and involvement of the relevant servers. In
practice, this can be implemented by having parties check
this requirement before participating in signing (in the clear
for regular signing or appending to the predicate in weak
partially-blind signing) or by requiring t = n.

5. Extensions

5.1. Strong Blind Signatures

Our weak partially-blind signing protocol can be modi-
fied to achieve strong blindness, without increasing its round
count and with only a modest increase in other cost metrics.
Under this modification is realizes a version of the FBBS+

functionality that has no leakage to S in the blind-signing
phase.

782

Strong blindness requires that the e must also be masked
in addition to s and A. To achieve this, the client samples
an additional masking nonce e0 ← Zp and initiates an
instance of FMul2P(p) with every signing party, using e0
as its input. Each signing party Pi receives ci,0 as output
from this multiplier, which is added to ui. When Pi sends
ui to the client, it also completes the multiplier instance,
supplying ri as its input. Thus the client receives d0,i from
FMul2P(p) such that ci,0 + d0,i = e0 · ri for every i ∈ [n]
along with Ri and ui, computes

A′ ..=

∑
i∈[n]

Ri∑
i∈[n]

(ui + c0,i)
and e′ ..= e0 + e

and takes the signature to be (A′, e′, s′) instead of (A, e, s′).
This modification information-theoretically hides the mes-
sages and the signature from the signing parties (in the
hybrid model), even if all of the signing parties are corrupt,
and the proof of security we have given in Section ??
extends naturally.

Note that because the multiplication protocol of Doerner
et al. [36] (with which we propose to realize FMul2P(p))
requires only two messages, the client can arrange to play
the role of Bob, and send the first message along with the
client’s signature request, and then the signing parties can
send the second message along with their outputs. For the
sake of computational efficiency, Doerner et al. base their
protocol on OT-extension, which requires a one-time setup
protocol to be run before the multiplication protocol begins.
In our context, this would imply additional rounds for any
client who has not previously interacted with the signing par-
ties. Fortunately, it is possible to achieve two-round chosen-
input oblivious transfer without advance setup via endemic
OT [64], though at noticeably increased computational cost.
Replacing OT extension with endemic OT in the protocol
of Doerner et al. allows us to achieve fully-blind signing
without increasing the round complexity of our protocol.

5.2. Oblivious Threshold VRF Evaluation

Dodis and Yampolskiy [44] proposed a verifiable ran-
dom function (VRF) of the form Fx(e) 7→ e(G1, G2)/(x+e)
where the proof of correct evaluation is of the form π =
G1/(x + e). In its strongly-blind form as described in
Section 5.1, our protocol can be used as a threshold oblivious
evaluation protocol for the DY VRF, which maintains obliv-
iousness even if all key-holders are corrupt, and achieves a
composable security guarantee with a clean functionality.

5.3. Proactive Security

Ostrovsky and Yung [47] conceived of the mobile ad-
versary model, in which an attacker might corrupt every
device throughout the lifetime of the system, while never
corrupting more than a threshold number at any given time.
Herzberg et al. [65] devised a method to defend against such
an adversary, by attempting to rerandomize the state of the

system before the adversary corrupts a new party. In our
constructions, the state of the system is characterized by
additive shares of the secret x, and the OT correlations that
are extended for use by the multiplier. This is exactly the
same state maintained by the (2, n) ECDSA construction
of Kondi et al. [46] and we are able to directly apply their
technique to proactivize a (2, n) instantiation of our system.
Note that a more general (t, n) proactivization in the UC
context requires either relaxing the security definition, or
using a more abstract functionality as discussed extensively
by Canetti et al. [33].

6. Cost Analysis

In this section we present a closed-form cost analysis
of the bandwidth and computational costs associated with
our protocol given in Protocol 4.1, where the functionalities
are realized as suggested in Section 3.1. We count the
total number bits transmitted per signing server, but with
respect to computational costs, we focus only on the most
computationally-expensive elements of our protocol, which
are the operations over the bilinear group. In Section 7,
we implement and benchmark our protocol to demonstrate
the concrete impact of these costs. Since the blind signing
protocol requires an application-dependent predicate to be
defined, and this predicate heavily influences the cost of the
protocol, we consider only the costs of the non-blind signing
protocol.

Building Blocks. We instantiate our multiplication function-
ality via the multiplication protocol of Doerner et al. [36],
but to realize the underlying OT-extension, we use the new
SoftSpokenOT protocol [66] in place of the KOS proto-
col they suggested, along with the Endemic OT protocol
of Masny and Rindal [64] for the base OTs. We modify
SoftspokenOT via the Fiat-Shamir transform to run in two
rounds. The average bandwidth cost (that is the number of
bits transmitted by any single party, on average) for this
modified form of SoftSpokenOT is

ROTeCost(λ, `) 7→
(
3

2
+

1

2kSSOT

)
· (λ2 + λ) +

λ · `
2kSSOT

where ` is the number of OT extensions in the batch [67].
This cost function includes a parameter kSSOT which con-
trols the trade-off between bandwidth and computation
cost. For calculating concrete bandwidth numbers, we set
kSSOT = 2, since Roy suggested [67] this yields a strict
improvement over KOS.

We can write the average bandwidth cost of the Doerner
et al. multiplier as follows:

COTeCost(λ, `, n) 7→ ` · n/2 + ROTeCost(λ, `)

MulCost(λ, κ, s) 7→ COTeCost(λ, 2κ+ 2s, 2κ)

+ κ · (2κ+ 2s+ 1)/2

where s is the statistical security parameter. For calculating
concrete bandwidth numbers, we let s = 80. This function
gives the number of bits transmitted per party on average.

783

In Table 6.2 we report concrete values for several specific
parameterizations.

The foregoing multiplication strategy requires a one-
time setup protocol comprising λ instances of base OT.
The Endemic OT scheme [64] that we choose for base OTs
requires a key agreement protocol; using DHKE over an
elliptic curve with elements of size |G1|, the average number
of bits transmitted per party is

MulSetupCost(λ, |G1|) 7→ (2λ · |G1|)

and furthermore it requires 4λ elliptic curve scalar opera-
tions per party. This setup protocol can be run simultane-
ously with key generation.

Because we use optimistic echo-broadcast to instantiate
our broadcast channel, we consider the cost of a broadcast
to be equivalent to sending to all parties via point-to-
point channels. Thus we consider the cost of a (broadcast)
commitment to be 2λ bits per destination party, and the cost
of a decommitment to be equal to the size of the committed
value times the number of destination parties. We consider
the cost of an instance of FRDL

ZK , where RDL is over G2, to
be (2 · |G2| + κ) · λ/ log2 λ bits; the overhead relative to
the normal cost of a sigma protocol is due to the Fischlin
transform. The cost of FRDL

Com-ZK is the cost of committing
and decommitting this same number of bits.

Our Protocol. We divided our BBS+ protocol into its
components for key generation and signing, and constructed
the cost functions for each component from the above sub-
protocol costs. Our SetupCost function combines the cost
of key generation, multiplier setup, and fixing shared PRF
keys for instantiating FZero (as discussed in Section 3.1).
We assume the random-oracle-based optimization described
in footnote a of Protocol 4.1 is applied.

SetupCost(n, `, λ, κ, |G1|, |G2|) 7→

(n− 1) ·
(
4λ+ κ+ (2 · |G2|+ κ) · λ/ log2 λ
+ |G1|+MulSetupCost(λ, |G1|)

)
SignCost(n, t, `, λ, s, κ,G1, G2) 7→

(n− 1) · (3λ+ κ+ 2 ·MulCost(λ, κ, s))

+ |G1| · (`+ 2) + |G2|+ 3κ+ t log n

Finally, the client’s signing request involves transmitting
n · ` · κ bits in total. In terms of computation, each signing
server must perform ` + 2 scalar multiplications in G1 in
order to create a signature, and the client must perform `+1
scalar multiplications in G1 plus one scalar in G2 and two
pairing operations in order to verify the signature.

The current recommendations [68] of The Internet En-
gineering Task Force (IETF) for “pairing-friendly” elliptic
curves are the BLS12 381 and BN462 [69] curves, corre-
sponding to a 128-bit security level, and the BLS48 581
[70] curve, corresponding to a 256-bit security level. Spec-
ifications for these curves are listed in Table 6.1, and for
each curve and its associated security parameter, we give
concrete bandwidth costs, in bits transmitted per party, in
Table 6.2.

κ p |G1| |G2| λ

BLS12 381 255 ∼ 2255 384 768 126
BN462 462 ∼ 2462 232 232 128

BLS48 581 517 ∼ 2517 584 1168 256

TABLE 6.1: IETF-Recommended Pairing Curve Specifi-
cations: Group order bit-length (κ), group order (p), and
group element sizes for curves BLS12 381, BN462, and
BLS48 581 and their corresponding security levels (λ).

7. Implementation and Benchmarks

We implemented and benchmarked our protocol in Rust,
using the BLS12 381 curve for both for the signature
scheme and for the base OT protocol underlying the mul-
tiplication protocol. Our implementation took roughly 6400
lines of code including comments and extensive test suites,
and it was compiled using rustc 1.62.0-nightly
(3f052d8ee). In this section we present the results of our
benchmarks, and in Appendix B we compare these results
against related works.

Our experiment consists of n server processes and a
client; when started, the n server instances establish con-
nections between themselves and then listen on a network
port for requests from a client. The client sends a signing
request to all servers, then waits for the responses, and
assembles the signature. We measure wall-clock time in-
dependently for servers and the client, because they have
different workloads. Each configuration of the experiment
was run at least 150 times to compute aggregate statistics. As
all of our experiments involve timings from multiple parties,
we always report the statistics from the party that recorded
the maximum average time in each protocol execution.

We performed experiments on three network environ-
ments: local, LAN, and WAN. In the local environment,
all n server processes and the client were executed on
the same physical machine. This machine had a 16-Core
AMD Ryzen 9 7950X processor (model 97, stepping 2)
and 64GB of RAM. Our LAN and WAN benchmarks
used Google Cloud C2D-STANDARD-4 instances, which at
the time had 4 vCPUs partitioned from an AMD EPYC
7B13 processor (model 1, stepping 0) and 16GB of RAM.
These instance were running linux kernel 5.10.0. For LAN
benchmarks, all instances were colocated in the US-EAST1-
C zone. For WAN benchmarks, the first 12 server instances
were spread among zones US-EAST1-*, US-EAST4-*, US-
CENTRAL1-*, and US-WEST1-* the next 13 servers were
spread across EUROPE-WEST1-*, EUROPE-WEST2-*, and
EUROPE-WEST4-*, and the remaining 7 were again spread
across the US zones. In all cases, the client was located in
US-EAST1-C.

We evaluated Local, LAN and WAN setup and signing
operations for the n-of-n case for n ∈ [2, 32]. These timings
closely reflect the performance for any t-of-n regime where
t ∈ [2, 32]. The primary difference between n-of-n and t-
of-n is that the identities of the t parties involved in the
session must be shared, and each party must locally multiply

784

BLS12 381 BN462 BLS48 581
κ = 255 κ = 462 κ = 517

Multiplication Cost 306739 815027 1117758
Setup Cost 132205 · (n− 1) 77531 · (n− 1) 392429 · (n− 1)

Signing Cost (n− 1) · (873697 + t logn) (n− 1) · (1884470 + t logn) (n− 1) · (2937983 + t logn)

TABLE 6.2: Bandwidth Costs in total bits transmitted per party, for n parties who wish to sign a vector of ` messages.

their secret share with a Lagrange coefficient. These steps
contribute negligibly to wall-clock time and bandwidth.
We believe that in practice the typical number of issuers
will be less than 10, but we provide extra datapoints to
experimentally confirm scaling behavior.

Signing results. Our results for signing are reported in
Figure 2. In the LAN setting, when n = 6, the servers
incur a wall-clock time from request to response of 5.1ms,
whereas the client experiences 11.3ms of latency from input
to output and signature verification (regardless of n) requires
5.0ms; this means that the dominant concrete cost for n ≤ 5
in the LAN setting is actually verification of the signature
by the client! No alternative approach can hope to do much
better in this regime, unless it avoids verifying the signature
that the protocol produces.

Our local experiments exhibited slightly slower times
than our LAN experiments, especially when n > 16 and
there was more than one server process per core. WAN costs
seem to be dominated by network latency. The large gap
between n = 12 and 13 occurs because the 13th server is
located in Europe and incurs trans-Atlantic latencies; the
one between n = 5 and 6 is due to adding a west-coast
zone to the experiment. The graph shows that these latencies
overwhelm the compute time. We note the cost of running
this protocol is comparable to the cost of serving a modern
web application, with response times that are measured in
the 100s of milliseconds.

Setup results. Our setup protocol is more costly than our
signing protocol, because it performs the oblivious transfer
and extension operations required to initialize the multiplier
protocols. As predicted by the analysis in Section 6, these
operations require more network bandwidth. Measurements
are shown in Figure 3.

Overhead of MPC. To measure the “overhead of our MPC”,
we also measured signing and verification operations for the
standard BBS+ signature scheme using the same Rust ellip-
tic curve libraries. These times were collected using Rust’s
built-in test framework, and they are reported in Table 7.1.
To help gauge these results on different machines, we also
provide micro-benchmarks for scalar curve operations of our
implementation.

In moving from the single party implementation to the
2-of-2 threshold case, we see that the overhead of MPC
for the signing operation is 3x in the local and LAN en-
vironment, and roughly 70x for the WAN environment due
mostly to network latencies. In comparison to generic MPC
techniques which have overheads in the range of 104 or

2 5 10 15 20 25 32

3
40

100

200

300

400

n parties

m
ill

is
ec

on
ds

Local Srv Local Cli
LAN Srv LAN Cli
WAN Srv WAN Cli

Figure 2: Protocol signing timings for n-out-of-n over
Local, LAN and WAN setups, as expected in a practical
deployment for credentials. Error bars depict standard de-
viation over 150+ runs. The server time reflects the back-
end computation, measured as the max average over the
servers from the time a request is received by a server until
a response is sent. The client time reflects the time from
when a request is sent to all servers until a signature on
the message has been reconstructed and verified from the
responses.

more, these results show that our tailored MPC approach has
merit, resulting in overhead that can be tolerated in some
applications.

Operation Time
Key Generation 1.994ms ± 5.2µs
Sign 1.185ms ± 4.3µs
Verify 5.008ms ± 31.6µs
G1 scalar multiplication 0.391ms ± 3.6µs
G2 scalar multiplication 1.204ms ± 10.4µs

TABLE 7.1: BBS+ operations using BLS12 381, as mea-
sured by the Rust benchmark. The error terms represent
standard deviation. Measurements were taken on the GCP
instance used for LAN tests.

785

2 5 10 15 20 25 32

0

10

20

30

n parties

se
co

nd
s

Local LAN WAN

Figure 3: Protocol setup timing for n-out-of-n over Local,
LAN and WAN setups. Error bars depict standard deviation
over 150+ runs.

References

[1] D. Chaum, “Security without identification: Transaction systems
to make big brother obsolete,” Communications of the ACM,
vol. 28, no. 10, p. 1030–1044, oct 1985. [Online]. Available:
https://doi.org/10.1145/4372.4373

[2] D. Chaum and J.-H. Evertse, “A secure and privacy-protecting pro-
tocol for transmitting personal information between organizations,”
in Proceedings on Advances in Cryptology—CRYPTO ’86. Berlin,
Heidelberg: Springer-Verlag, 1987, p. 118–167.

[3] L. Chen, “Access with pseudonyms,” in Cryptography: Policy and
Algorithms, E. Dawson and J. Golić, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 232–243.

[4] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, “Pseudonym
systems,” in Selected Areas in Cryptography, 1999.

[5] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion,” in Advances in Cryptology – EUROCRYPT 2001. Springer
Berlin Heidelberg, 2001.

[6] ——, “Signature schemes and anonymous credentials from bilinear
maps,” in Advances in Cryptology – CRYPTO 2004, M. Franklin, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 56–72.

[7] J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and
M. Ø. Pedersen, “Formal treatment of privacy-enhancing credential
systems,” in Selected Areas in Cryptography – SAC 2015, O. Dunkel-
man and L. Keliher, Eds. Cham: Springer International Publishing,
2016, pp. 3–24.

[8] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss,
“Composable and modular anonymous credentials: Definitions and
practical constructions,” in Advances in Cryptology – ASIACRYPT
2015, T. Iwata and J. H. Cheon, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 262–288.

[9] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic macs and
keyed-verification anonymous credentials,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 1205–1216. [Online]. Available:
https://doi.org/10.1145/2660267.2660328

[10] M. Chase, T. Perrin, and G. Zaverucha, The Signal Private
Group System and Anonymous Credentials Supporting Efficient
Verifiable Encryption. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1445–1459. [Online]. Available:
https://doi.org/10.1145/3372297.3417887

[11] M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in
Advances in Cryptology - CRYPTO 2006, C. Dwork, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 78–96.

[12] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyan-
skaya, and H. Shacham, “Randomizable proofs and delegatable
anonymous credentials,” in Advances in Cryptology - CRYPTO 2009,
S. Halevi, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 108–125.

[13] E. C. Crites and A. Lysyanskaya, “Delegatable anonymous credentials
from mercurial signatures,” in Topics in Cryptology – CT-RSA 2019,
M. Matsui, Ed. Cham: Springer International Publishing, 2019, pp.
535–555.

[14] M. Chase, E. Ghosh, S. Setty, and D. Buchner, “Zero-knowledge
credentials with deferred revocation checks,” https://github.com/
decentralized-identity/snark-credentials/blob/master/whitepaper.pdf.

[15] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-taa,” in
Proceedings of the 5th Conference on Security and Cryptography for
Networks (SCN), R. De Prisco and M. Yung, Eds., 2006, pp. 111–125.

[16] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Advances in Cryptology – CRYPTO 2004, 2004, pp. 41–55.

[17] E. Brickell and J. Li, “Enhanced privacy id from bilinear pairing,”
IACR Cryptol. ePrint Arch., vol. 2009, p. 95, 2009.

[18] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous attestation
using the strong diffie hellman assumption revisited,” in Trust and
Trustworthy Computing - 9th International Conference, TRUST 2016.
Springer, 2016, pp. 1–20.

[19] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith, “Blacklistable
anonymous credentials: Blocking misbehaving users without ttps,”
in Proceedings of the 14th ACM Conference on Computer and
Communications Security, ser. CCS ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 72–81. [Online].
Available: https://doi.org/10.1145/1315245.1315256

[20] T. Looker, V. Kalos, A. Whitehead, and M. Lodder, “The
BBS Signature Scheme,” Internet Engineering Task Force,
Internet-Draft draft-irtf-cfrg-bbs-signatures-01, Oct. 2022, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-irtf-cfrg-bbs-signatures/01/

[21] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings of the 42nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), 2001, pp. 136–
145.

[22] D. Beaver, “Precomputing oblivious transfer,” 1995, pp. 97–109.

[23] A. C.-C. Yao, “How to generate and exchange secrets (extended
abstract),” 1986.

[24] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of
secure protocols (extended abstract),” 1990, pp. 503–513.

[25] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” 2017, pp. 21–
37.

[26] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
1987.

[27] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” 2012, pp.
643–662.

[28] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer,” 2016, pp. 830–
842.

[29] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient pseudorandom correlation generators: Silent OT extension
and more,” 2019, pp. 489–518.

786

[30] ——, “Correlated pseudorandom functions from variable-density
LPN,” in 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
S. Irani, Ed. IEEE, 2020, pp. 1069–1080. [Online]. Available:
https://doi.org/10.1109/FOCS46700.2020.00103

[31] J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-tolerant comput-
ing in constant number of rounds of interaction,” in Proceedings of the
8th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1989.

[32] J. Aumasson, A. Hamelink, and O. Shlomovits, “A survey of
ECDSA threshold signing,” IACR Cryptol. ePrint Arch., p. 1390,
2020. [Online]. Available: https://eprint.iacr.org/2020/1390

[33] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled,
“UC non-interactive, proactive, threshold ECDSA with identifiable
aborts,” in CCS ’20. ACM, 2020.

[34] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
“Bandwidth-efficient threshold EC-DSA,” in Public-Key Cryptogra-
phy - PKC 2020, 2020.

[35] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA with prac-
tical distributed key generation and applications to cryptocurrency
custody,” 2018, pp. 1837–1854.

[36] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party thresh-
old ECDSA from ECDSA assumptions,” in Proceedings of the 39th
IEEE Symposium on Security and Privacy, (S&P), 2018, pp. 980–997.

[37] ——, “Threshold ECDSA from ECDSA assumptions: The multiparty
case,” in Proceedings of the 40th IEEE Symposium on Security and
Privacy, (S&P), 2019.

[38] A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman,
“Securing DNSSEC keys via threshold ECDSA from generic MPC,”
in ESORICS 2020, 2020.

[39] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology — CRYPTO 2012 - Volume 7417. Berlin,
Heidelberg: Springer-Verlag, 2012, p. 643–662. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5 38

[40] N. P. Smart and Y. T. Alaoui, “Distributing any elliptic curve based
protocol,” in IMACC 2019, M. Albrecht, Ed., 2019.

[41] I. Haitner, N. Makriyannis, S. Ranellucci, and E. Tsfadia, “Highly
efficient ot-based multiplication protocols,” EUROCRYPT ’22, 2022.

[42] Y. Lindell, “Simple three-round multiparty schnorr signing with full
simulatability,” IACR Cryptol. ePrint Arch., p. 374, 2022. [Online].
Available: https://eprint.iacr.org/2022/374

[43] T. Okamoto, “Efficient blind and partially blind signatures without
random oracles,” in Proceedings of the Third Theory of Cryptography
Conference, TCC 2006, S. Halevi and T. Rabin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 80–99.

[44] Y. Dodis and A. Yampolskiy, “A verifiable random function with
short proofs and keys,” in Public Key Cryptography - PKC 2005,
S. Vaudenay, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 416–431.

[45] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” 2003.

[46] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits, “Refresh when
you wake up: Proactive threshold wallets with offline devices,” in
42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 608–625.
[Online]. Available: https://doi.org/10.1109/SP40001.2021.00067

[47] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” 1991, pp. 51–59.

[48] R. Gennaro, S. Goldfeder, and B. Ithurburn, “Fully distributed group
signatures,” 2019.

[49] N. Makriyannis and U. Peled, “A note on the security of gg18,” https:
//info.fireblocks.com/hubfs/A Note on the Security of GG.pdf.

[50] D. Tymokhanov and O. Shlomovits, “Alpha-rays: Key extraction
attacks on threshold ecdsa implementations,” Cryptology ePrint
Archive, Paper 2021/1621, 2021.

[51] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis,
“Coconut: Threshold issuance selective disclosure credentials with
applications to distributed ledgers,” in 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society, 2019.

[52] D. Pointcheval and O. Sanders, “Short randomizable signatures,”
in Proceedings of the RSA Conference on Topics in Cryptology
- CT-RSA 2016 - Volume 9610. Berlin, Heidelberg: Springer-
Verlag, 2016, p. 111–126. [Online]. Available: https://doi.org/10.
1007/978-3-319-29485-8 7

[53] A. Rial and A. M. Piotrowska, “Security analysis of coconut,
an attribute-based credential scheme with threshold issuance,”
Cryptology ePrint Archive, Paper 2022/011, 2022, https://eprint.iacr.
org/2022/011. [Online]. Available: https://eprint.iacr.org/2022/011

[54] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for
cryptographers,” Discrete Applied Mathematics, vol. 156, no. 16, pp.
3113–3121, 2008.

[55] D. Boneh and X. Boyen, “Short signatures without random oracles,”
in Advances in Cryptology – EUROCRYPT 2004, C. Cachin and J. L.
Camenisch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 56–73.

[56] ——, “Short signatures without random oracles and the sdh assump-
tion in bilinear groups,” Journal of Cryptology, vol. 21, no. 2, pp.
149–177, 2008.

[57] T. Okamoto, “Efficient blind and partially blind signatures without
random oracles,” Cryptology ePrint Archive, Report 2006/102, 2006,
https://ia.cr/2006/102.

[58] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally com-
posable two-party and multi-party secure computation,” in Proceed-
ings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), 2002, pp. 494–503.

[59] S. Goldwasser and Y. Lindell, “Secure multi-party computation with-
out agreement,” Journal of Cryptology, vol. 18, no. 3, pp. 247–287,
2005.

[60] M. Fischlin, “Communication-efficient non-interactive proofs of
knowledge with online extractors,” in Advances in Cryptology –
CRYPTO 2005, 2005, pp. 152–168.

[61] C. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology – CRYPTO 1989, 1989, pp. 239–252.

[62] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Commun. ACM, vol. 28, no. 6, p. 637–647, jun
1985. [Online]. Available: https://doi.org/10.1145/3812.3818

[63] N. Gilboa, “Two party RSA key generation,” in Advances in Cryp-
tology – CRYPTO 1999, 1999, pp. 116–129.

[64] D. Masny and P. Rindal, “Endemic oblivious transfer,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November
11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
Eds. ACM, 2019, pp. 309–326. [Online]. Available: https:
//doi.org/10.1145/3319535.3354210

[65] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” 1995, pp. 339–352.

[66] L. Roy, “Softspokenot:communication-computation tradeoffs in ot
extension,” in Advances in Cryptology – CRYPTO 2022, 2022.

[67] ——, personal communication, 2022.

[68] Y. Sakemi, T. Kobayashi, T. Saito, and R. Wahby, “Pairing-friendly
curves,” 2020.

787

[69] S. Bowe, “Bls12-381: New zk-snark elliptic curve construction,”
2017.

[70] Y. Kiyomura, A. Inoue, Y. Kawahara, M. Yasuda, T. Takagi, and
T. Kobayashi, “Secure and efficient pairing at 256-bit security
level,” in Applied Cryptography and Network Security, D. Gollmann,
A. Miyaji, and H. Kikuchi, Eds. Springer International Publishing,
2017, pp. 59–79.

[71] Nymtech, 2022, https://github.com/nymtech/nym/tree/develop/
common/nymcoconut.

Appendix A.
Functionalities

Functionality A.1. FCom [58].

This functionality interacts with parties
P = {P1,P2, . . .}.

Commitment: On receiving (commit, sid,P , x)
from some party P , where sid is fresh, store
(commitment, sid,P,P , x) in memory and send
(committed, sid,P) to all of the parties identified by P .

Decommitment: On receiving (decommit, sid) from P ,
if (commitment, sid,P,P , x) exists in memory, then send
(decommitment, sid, x) to all of the parties identified by
P .

Functionality A.2. FRZK [58].

This functionality interacts with an a-priori-unspecified
number of parties, designated by P and V =
{V1,V2, . . .}. It also has black-box access to the decider
for NP-relation R.

Proof: On receiving (prove, sid,V , x, w) from P ,
where sid is fresh and V is a set of party identifiers,
check whether R(x,w) = 1, and send (proof, sid, x) to
all of the parties identified by V if so. If R(x,w) 6= 1,
then send (abort, sid, x) to the same set of parties.

Functionality A.3. FRCom-ZK [58].

This functionality interacts with a prover P and a set of
verifiers V = {V1,V2, . . .}. It also has black-box access
to the decider for NP-relation R.

Commitment: On receiving (commit, sid,V , x, w)
from some party P , where sid is fresh, store
(commitment, sid,P,V , x, w) in memory and send
(committed, sid,P) to all of the parties identified by V .

Proof: On receiving (prove, sid) from P , if
(commitment, sid,P,V , x, w) exists in memory, then
check whether R(x,w) = 1, and send (accept, sid, x)
to all of the parties identified by V if so. If R(x,w) 6= 1,
then send (reject, sid, x) to the same set of parties.

Functionality A.4. FZero(p)

Sample: Upon receiving (sample, sid,J) from all par-
ties Pi for i ∈ J, where sid is a fresh, agreed-upon value,
uniformly sample α ← Z|J|p conditioned on

∑
i∈J

αi ≡ 0

(mod p) and send (zero-share, sid, αi) to each party Pi
as adversarially delayed private output.

Functionality A.5. FMul2P(p) [36].

This functionality interacts with two parties, who we refer
to as Alice and Bob. It is parameterized by a prime p that
determines the order of the field over which multiplica-
tions are performed.

Bob-input: On receiving (input, sid,PB, b) from
Bob, if b ∈ Zp and no record of the form
(bob-input, sid, ∗, ∗) exists in memory, then sample c←
Zp uniformly, store (bob-input, sid, b, c) in memory, and
send (bob-ready, sid,PB, c) to PA (a.k.a. Alice).

Multiplication: On receiving (multiply, sid, a) from
Alice, if a ∈ Zp and there exists a message of the form
(bob-input, sid, b, c) in memory, and if (complete, sid)
does not exist in memory, then compute d ..= a ·
b − c mod p, send (product, sid, d) to Bob, and store
(complete, sid) in memory.

Appendix B.
Benchmark Comparisons.

Comparison with Threshold ECDSA [37]. As noted in
Section 1, our threshold protocol for BBS+ requires fewer
operations than the threshold ECDSA signing protocol of
Doerner et al., and yet our benchmarks appear to be slower
than theirs. To explain, we note that their implementa-
tion of ECDSA uses a highly optimized elliptic curve and
modular arithmetic library. For example, by employing a
scalar multiplication optimization that exploits precompu-
tation, their elliptic-scalar operation requires only 34.2µs
versus the 390µs we require for BLS12 381 when measured
on the same platform (i.e., their elliptic curve operations
are roughly 11x faster). Our multipliers use the slower
BLS12 381 curve, although in principle, we could use the
faster secp256k1 curve at the cost of introducing an extra
security assumption in our protocol. Finally, their ECDSA
implementation uses hardware SHA256 accelerations for
computing 8 hashes at once.

Comparison with Goldfeder, Gennaro, and Ithur-
burn [48]. Because no implementation of the Goldfeder,
Gennaro, and Ithurburn protocol is available, we attempt
to approximate its signing times. Phase 3 of their protocol
requires invoking a multiplier between every pair of parties;
the most expensive steps in their multiplier requires Alice
to encrypt a share, and provide a zero-knowledge range

788

proof on the ciphertext, Bob to perform a scalar multipli-
cation and addition on the ciphertext while also providing
a zero-knowlege proof of correctness, and then Alice to
decrypt the ciphertext (ignoring commitments, and expo-
nentiations in elliptic curve group). We were implemented
the basic encryption operations described above using the
libpaillier rust library. One such multiplier requires
27.6ms ± 44µs of compute time. This step alone costs
9x more than full 2-of-2 server latency in our protocol,
and since each server in their protocol needs to perform
2 of these multipications with every other server, we expect
the computational burden of their protocol to grow quickly
into hundreds of milliseconds as n increases. Moreover, the
Paillier operations just described are not the most expensive
component of their protocol: that distinction belongs to the
zero-knowledge proofs, and we expect that if they were
implemented, the total protocol time is likely to be on the
order of several seconds.

Comparison with RP-Coconut [53]. We used Nym’s im-
plementation [71] of the RP-Coconut protocol to compare
performance. By using an interactive security assumption,
the RP-Coconut scheme is simpler and does not require an
expensive multiplier operation. However, the protocol does
require each server to perform a pairing operation and the
client to perform several in order to aggregate results, and
thus the performance relationships are not immediately clear.

The RP-Coconut protocol involves three stages that cor-
respond roughly to our protocol: (a) first, the client must
prepare a request for message signing and send this to the
servers, (b) the servers must run the sign operation, and (c)
the client must aggregate each of the received messages into
a final signature. Step (a) corresponds almost exactly to the
steps we require in our protocol: a commitment and a proof
of knowledge of the committed values to be signed; thus
we do not benchmark it. The RP-Coconut implementation
was incapable of running a full experiment with n servers
communicating via a network. Instead, we benchmarked
a single server running (with each parameterization) in
isolation, and then benchmarked the time required for the
client to aggregate. This means that while the client latency
for our protocol includes the server time, the client time for
their protocol excludes it. These facts combine to favor their
protocol over ours.

As expected, Figure 4 shows that RP-Coconut’s server
performance remains roughly the same as n increases be-
cause each server only performs linear operations on its
secret. While our protocol’s server performance grows faster
than that of RP-Coconut, our protocol’s client performance
grows much slower than theirs. This implies that when the
application context requires the signature to be reconstructed
to make progress (e.g., many blockchain settings), our pro-
tocol’s overall time to create a signature (client + server) is
lower than that of RP-Coconut.

2 5 10 15 20 25 32

3
10

40

100

150

n parties

m
ill

is
ec

on
ds

Local Srv
Local Cli
RP-Coconut Srv
RP-Coconut Cli

Figure 4: Protocol running times for n-out-of-n signing 3
messages over Local network environment for our protocol
versus RP-Coconut. Timings for RP-Coconut were taken by
the criterion package, with 100 samples.

789

