
FIDO2, CTAP 2.1, and WebAuthn 2:
Provable Security and Post-Quantum Instantiation

Nina Bindel
SandboxAQ

Palo Alto, USA
nina.bindel@sandboxaq.com

Cas Cremers
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

cremers@cispa.de

Mang Zhao
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
mang.zhao@cispa.de

Abstract—The FIDO2 protocol is a globally used standard
for passwordless authentication, building on an alliance between
major players in the online authentication space. While already
widely deployed, the standard is still under active development.
Since version 2.1 of its CTAP sub-protocol, FIDO2 can potentially
be instantiated with post-quantum secure primitives.

We provide the first formal security analysis of FIDO2 with the
CTAP 2.1 and WebAuthn 2 sub-protocols. Our security models
build on work by Barbosa et al. for their analysis of FIDO2 with
CTAP 2.0 and WebAuthn 1, which we extend in several ways.
First, we provide a more fine-grained security model that allows
us to prove more relevant protocol properties, such as guarantees
about token binding agreement, the None attestation mode, and
user verification. Second, we can prove post-quantum security for
FIDO2 under certain conditions and minor protocol extensions.
Finally, we show that for some threat models, the downgrade
resilience of FIDO2 can be improved, and show how to achieve
this with a simple modification.

I. INTRODUCTION

One of the largest projects globally to mitigate the problems
of weak passwords is the FIDO protocol by the Fast Identity
Online (FIDO) Alliance. The alliance has brought together
over forty key companies in the online authentication space,
including Amazon, Apple, Google, Intel, Microsoft, RSA,
VISA, and Yubico, and has brought security devices to the
wider public to improve the security of important logins.

The FIDO2 standard – the latest of the protocols – is built
around two sub-protocols that are critical for enabling security-
device supported logins. The first one is WebAuthn, which
is a protocol between web applications, web browsers, and
authenticator hardware tokens. At its core, WebAuthn allows a
website (a Relying Party) to perform a passwordless challenge-
response protocol with a token (an Authenticator) – where the
browser acts as an intermediary – and challenges are signed
by credential keys generated and stored in the token. The
protocol supports multiple optional modes and features, such
as attestation and user involvement.

The second relevant protocol is CTAP (Client To Authentica-
tor Protocol), which is a protocol between an authenticator (e.g.,
a hardware security token) and a client (e.g., a browser). The
goal of the protocol is to bind (and thus to restrict) which clients

This research was supported by the Microsoft Identity Project Research
Grant “Developing Post-Quantum Secure Identity Services” from Microsoft
Security Response Center (MSRC).

can use the authenticator’s API (Application Programming
Interface). To enable API access, the client asks the user to
enter the authenticator’s PIN; this PIN is checked by the token,
and a shared secret is established that represents the binding
and is used to authenticate all subsequent client accesses to
the authenticator.

The FIDO2 standard, while already widely deployed, is
subject to ongoing development. Previous versions of these
standards have been studied. However, as we will see later, the
main study has made strong assumptions that do no hold for the
majority of deployed systems, such as relying on the attestation1

mode to prove core properties. Moreover, the recently proposed
CTAP 2.1 [6] includes a completely new base protocol that
has not yet been analyzed in any framework.

Notably, the most recent version of the FIDO2 standard with
CTAP 2.1 and WebAuthn 2 [11] appears to be “post-quantum
ready”, because it enables a mode of operation that only
uses on symmetric cryptographic primitives, digital signatures,
and KEMs (Key Encapsulation Mechanisms). However, no
post-quantum instantiations have been proposed, nor has the
CTAP 2.1 protocol received any analysis. In this work we set
out to fill this gap: analyse the newest version and assess its
post-quantum security.

Contributions

1) We prove that FIDO2 with WebAuthn 2 and CTAP 2.1 is
provably secure against classical adversaries in a fine-grained
security and protocol model. Our security models are more
fine-grained or cover other aspects than previous versions
such as [2, 10]. For example, we add important aspects
such as algorithm negotiation, required user actions, and
token binding. For CTAP 2.1, our security proofs confirm
the stronger containment properties (reduced “blast radius”)
offered by the protocol compared to CTAP 2.0. Our analysis
of WebAuthn 2 also has new implications for WebAuthn 1:
we provide the first guarantees of the most widely used
None attestation mode, user verification, user presence, and
token binding. Notably, our analysis shows the registration

1In the context of WebAuthn, “attestation” means identification of device
type/manufacturer, and notably does not imply any check of the software that
is being executed.

11471

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Nina Bindel. Under license to IEEE.
DOI 10.1109/SP46215.2023.00039

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

45
4

phase must be trusted, as acknowledged by the standard, but
seemingly contradicting a result in [2].

2) We prove that if FIDO2 with WebAuthn 2 and CTAP 2.1
is instantiated with post-quantum (PQ) secure KEMs and
signatures, then it is secure against quantum adversaries in
the same model. We give concrete suggestions for PQ secure
algorithm and negotiation design choices, including classical-
PQ hybrids as suggested by standardization agencies, such as
NIST (National Institute for Standards and Technology) [8].

3) We propose a simple improvement to WebAuthn 2 that
improves its resilience to certain types of downgrade attack.
While these can only occur for strong threat models, these
improvements yield stronger classical security against broken
cryptographic primitives, and are even more relevant for their
PQ instantiations.

Overview

We provide a high-level background on FIDO2’s CTAP and
WebAuthn protocols, and previous analysis models, in Sec-
tion II. Next, we define notational preliminaries in Section III.
Afterwards, we first present the analysis of WebAuthn 2 in
Section IV, and then that of CTAP 2.1 in Section V. We prove
the security of their composition in FIDO2 in Section VI.
We then return to related work in Section VII, and describe
limitations and future work in Section VIII.

In the appendix, we give more detailed descriptions of
the algorithms modeled. We provide a long version with
supplementary material at [4] with the full proofs and further
details.

II. BACKGROUND

A. High-level overview of FIDO2

The FIDO2 protocol incorporates the two sub-protocols
WebAuthn and CTAP, and involves four main types of parties:
relying parties (e.g., a server, online service, or an operating
system feature), authenticators (e.g., token or security key),
clients (e.g., web browsers or other applications), and users.
WebAuthn typically leaves the users implicit in the description
of the authenticator.

Initially, the client and authenticator run the setup and
binding phase of the CTAP 2.1 protocol. Once this is completed,
relying parties can register and authenticate authenticators by
running WebAuthn 2 through CTAP 2.1, which we depict in
Figure 1. WebAuthn 2 is used in two phases: in the registration
phase, an authenticator produces a fresh credential key pair
whose public key is sent to the relying party and stored.
Afterwards, each time the relying party wants to authenticate
a user, it performs a challenge-response protocol with the
authenticator who signs the challenge using the credential
private key, which is then verified by the relying party. We
next expand the two protocols in more detail.

1) WebAuthn: The goal of WebAuthn is to enable relying
parties to authenticate users through authenticator tokens using
a challenge-response protocol. WebAuthn is specified as an
API rather than as a protocol; in practice, a common scenario
is that the relying party is an online service with server

Fig. 1. The main message flow of FIDO2 with WebAuthn 2 with attestation
type None is shown in black. The blue flows indicate interaction with the
third CTAP 2.1 phase (i.e. after CTAP 2.1’s setup and binding phases.) The
user is left implicit in the flow of the authenticator token. For registration, the
server generates a challenge. This is forwarded through the client to the token
(possibly authorized through CTAP 2.1), which returns a public credential
key and additional data, which is stored by the server. Afterwards, for each
authentication, a similar process occurs, but the token now signs challenge
and data with the with the signing key corresponding to the public credential
key that was registered previously.

backend code and Javascript running in the browser, and the
server’s Javascript then uses the WebAuthn API supported
by the browser to communicate with the token. The first
interaction, when the server communicates with the token,
is called registration phase. In this phase, the server S sends
a challenge message (mrch) to the token through the client C.
This challenge contains a random nonce, parameters such as
whether user verification (UV) is required, and optionally a
value tb that uniquely identifies the underlying channel (in
practice typically identifying a unique Transport Layer Security
(TLS) connection, which can provide channel binding to prevent
some types of man-in-the-middle attacks).

The client C parses the challenge message and turns it into
a command message (mrcom) and a client message (mrcl), and
forwards the command message to the token T . The token T
produces a credential public-private key pair, which is bound
to the server S and enables S to perform verification during
the following authentication phase, and outputs a response
message (mrrsp). The client then returns this together with
the client message to the server S. The response message
specifies the type of “attestation statement” selected by the
token, which enables the server S to perform verification
during the registration phase, and includes the credential public
key. WebAuthn 2 supports five attestation types; these include

21472

Basic and None 2. Tokens that support type Basic are
equipped with an attestation key pair, which is specific to the
token model, but not unique: by design, the attestation key pair
is shared by a batch of tokens3. The None mode provides no
token-specific information and is supported by all tokens.

The authentication phase is executed after the completion
of the registration in a slightly different way. When the client
parses the challenge message (mach) from the server S and
turns it into a command message (macom) and a client message
(macl), followed by sending the command message to the
token T . The token T produces a response message (marsp)
signed using the credential private key, and bound to the server
S. The server S finally accepts a response message and a
client message only when they pass verification using the
corresponding credential public key.

2) CTAP: (Client To Authenticator Protocol) The CTAP
protocol allows the client (e.g., a browser) to communicate with
the authenticator. Using only WebAuthn, any application might
try to access a token to request credential keys or responses
to challenges. In practice, we would like to limit the client
applications that are allowed to use the token’s API. One of
the goals of the CTAP protocol is to limit this access.

CTAP proceeds in three phases. In the setup phase, a client
C ′ initializes a PIN, which is collected from the user, into the
token T . In the binding phase, the client C (not necessarily
same as C ′) and the token T exchange a shared binding
state, if the client C is able to provide information about
the PIN stored on the token T . The binding state is expected
to uniquely bind the client C to the token T . If the client C
fails 3 times consecutively, the token T is rebooted and all
previously established binding states are reset. If the client C
fails 8 times in total, the token T is blocked. When the above
preparation is done, the client C authorizes any command
message by outputting a tag t, which is forward to the token
T along with the command message itself. The token T only
proceeds upon the positive decision d from the user, e.g., by
pressing a button, and then validates the command message
and the tag. In particular, a token only produces a response
message in WebAuthn when its validation process in CTAP
succeeds. Note that the binding state is repeatedly used during
a period, the length of which depends on the concrete CTAP
version and the type of token devices, and will be blocked
afterwards.

B. Previous analysis by Barbosa et al. [2]

Barbosa et al. [2] gave the first formal analysis of FIDO2,
and in particular the version with CTAP 2.0 and WebAuthn 1.
We recall some important conclusions.

1) WebAutnn: Barbosa et al. formalize WebAuthn 1 as a
passwordless authentication (PlA) protocol. Assuming the
uniqueness of each attestation key pair, they then prove that
WebAuthn 1 with attestation type Basic provides secure

2The remaining three modes are: Self, AttCA, and AnonCA, which are
less common and out of scope of this work.

3The number of tokens in each batch is at least 100,000, cf. [11,
Section 14.4.1].

passwordless authentication. However, since each attestation
key pair is in fact necessarily shared by a large batch of
tokens, their main theorem establishes uniqueness properties
of partnering that actually do not hold in practice, and has
no clear implications for the None mode.

2) CTAP: Barbosa et al. formalize CTAP 2.0 as a PIN-based
access control for authenticators (PACA) protocol. Then,
they prove the Unforgeability with trusted binding (UF-t)
of CTAP 2.0. In Section VII-A we show that the difference
between CTAP 2.0 and CTAP 2.1 is substantial, which means
the previous results cannot simply be translated.

Thus, Barbosa et al. [2] provided the first formal analysis of
FIDO2 with CTAP 2.0 and WebAuthn 1, which was ground-
breaking in many ways, but as a first attempt also left open
many questions and subtle proof issues. We provide a detailed
comparison between [2] and our work in Section VII-B.

III. PRELIMINARIES

Notation. In this paper, we write PQ in place of “post-
quantum”. We write λ for the security parameter of each
protocol. We assume that λ is the implicit input of each
algorithm if it is unambiguous. Let PPT and QPT respectively
denote the probabilistic and quantum turning machines (e.g.,
adversaries) that are executed in polynomial time. For a finite
set S, we use x $←− S to represent sampling x uniformly at
random from set S. For a value y, we write x← y for assigning
y to x. For a probabilistic algorithm Y (resp. a deterministic
algorithm Y ′), we use x $←− Y (z) (resp. x← Y ′(z)) to denote
assigning the output of the execution Y (resp. Y ′) on input
z. For an integer n, we denote by [n] := {1, ...n} the set
of integers from 1 to n. By {0, 1}⋆ we denote the set of all
strings with finite length. For each string x, let |x| denote the
bit-length of x. All undefined variables are initialized with a
specific symbol ⊥. In this paper, we use ϵsecΠ to denote the
advantage of any Compl adversary that breaks sec security
of Π protocol, if the complexity Compl ∈ {PPT,QPT} is
unambiguous from the context. We introduce two novel security
notions in Section A and the cryptographic building blocks
and all other security notions in [4]. We omit the analysis of
protocol correctness for page limitations.

IV. WEBAUTHN 2 AND EXTENDED PASSWORDLESS
AUTHENTICATION PROTOCOLS

For our analysis of WebAuthn 2 and its PQ instantiation,
we follow the high-level approach from [2], which proposed
the class of PlA protocols that generalizes WebAuthn 1, and
proposed a corresponding security notion. We provide a more
fine-grained model of WebAuthn 2, notably including the
default mode None in which no attestation is performed, as
well as the user presence and user verification checks, and a
stronger threat model. We compare the details in our work
and [2] in Section VII-B These aspects and their security
cannot be captured in the PlA class without modification. In
this section, we therefore first extend [2]’s formalisation and
propose the extended PlA (ePlA) protocol class, and instantiate
WebAuthn 2 as an ePlA protocol. We then introduce our new

31473

model to define secure passwordless authentication (auth) for
ePlA protocols and prove that WebAuthn 2 satisfies it. We
then show how to instantiate PQ-WebAuthn 2. Our proof of
auth implies PQ security against a PPT if the schemes used
in a session are PQ secure. We return to downgrade attacks
in Section IV-E.

A. Extended Passwordless Authentication Protocols (ePlA)

Similar to the PlA model from [2], we define our extended
passwordless authentication protocol ePlA by two phases,
Register and Authenticate:

Register: a two-pass challenge-response protocol run between
a token T , a client C, and a server S, which is run at most
once per tuple (T, S) (i.e., not for additional clients). At
the end, both T and S hold registration contexts, which
are relevant for subsequent authentications. Register can be
decomposed into the following algorithms:
rChall: inputs a server S, a token binding state tb, and a user

verification condition UV ∈ {true, false}, and outputs a
challenge message mrch, i.e., mrch

$←− rChall(S, tb,UV).
rCom: inputs the intended server identity idS , a challenge

message mrch, and a token binding state tb, and outputs a
client message mrcl and a command message mrcom, i.e.,
(mrcom,mrcl)← rCom(idS ,mrch, tb).

rRsp: inputs a token T and a command message mrcom

and outputs a response message mrrsp and an token-
associated registration context rcT , i.e., (mrrsp, rcT)

$←−
rRsp(T,mrcom).

rVrfy: inputs a server S, a client message mrcl, and a
response message mrrsp, and outputs a server-associated
registration context rcS and a decision bit d ∈ {0, 1} to in-
dicate whether the registration request was accepted (d = 1)
or not (d = 0), i.e., (rcS , d)← rVrfy(S,mrcl,mrrsp).

Authenticate: a two-pass challenge-response protocol run
between a token T , a client C, and a server S after a
successful run of Register, in which both T and S generated
their registration contexts. At the end, S either accepts
or rejects the authentication attempt. Similarly to Register,
Authenticate can be decomposed into four algorithms:
aChall: inputs a server S, a token binding state tb, and a user

verification condition UV ∈ {true, false}, and outputs a
challenge message mach, i.e., mach

$←− aChall(S, tb,UV).
aCom: inputs the intended server identity idS , a challenge

message mach, and a token binding state tb, and outputs a
client message macl and a command message macom, i.e.,
(macl,macom)← aCom(idS ,mach, tb).

aRsp: inputs a token T along with its associated registration
context rcT , and a command message macom, and outputs
a response message marsp and the updated registration
context rcT , i.e., (marsp, rcT)

$←− aRsp(T, rcT ,macom).
aVrfy: inputs a server S along with its associated registration

context rcS , a client message macl, and a response message
marsp, and outputs the updated registration context rcS and
a decision bit d ∈ {0, 1} indicating whether the authenti-

cation request was accepted by the user (output 1) or not
(output 0), i.e., (rcS , d)← aVrfy(S, rcS ,macl,marsp).

To model concurrent or sequential sessions of a server S
(associated with ID idS) and sequential sessions of a token T ,
we use πi

S and πj
T to denote their i-th and j-th instances

respectively, i.e., S = {πi
S}i and T = {πj

T }j . Our new
abstraction retains the black message flow from Figure 1.

B. WebAuthn 2 is an ePlA Protocol

We use the following session variables for WebAuthn 2.
πi
S .ch : challenge nonce sampled in this session

πi
S .uid : user identifier sampled in this session

πi
S .tb : token binding state used in this session

πi
S .UV : user verification condition, indicating whether the
user should be verified, e.g., via PIN or Biometrics

πi
S .UP : user presence condition, indicating whether the
presence of the user is sufficient; constant true value

πi
S .pkCP : list of digital signature schemes accepted by S

πj
T .suppUV : indicates whether T supports user verification

πi
S .stexe, π

j
T .stexe ∈ {⊥, running, accepted} : execution state

of each session
πi
S .agCon, π

j
T .agCon : the content that is expected to be

agreed with other parties. These variables are protocol-
specific. In WebAuthn 2, both variables include the server
identifier, the hash of the client messages, the UP and UV
conditions, and other session-specific data.

πi
S .sid, π

j
T .sid : session identifiers. Two distinct sessions that

have communicated with each other are expected to own the
identical session identifiers. These variables are protocol-
specific. In WebAuthn 2, both variables include the hash of
the server identifier and other session-specific data.
Intuitively, the registration phase starts with the execution

of rChall algorithm, where the server S samples random
challenge nonce πi

S .ch and user identifier πi
S .uid, initializes the

user verification condition πi
S .UV , and outputs the challenge

message mrch, which includes the above data as well as the
server domain idS and accepted list πi

S .pkCP. Additionally,
the server also stores the token binding states πi

S .tb, which is
shared with a client. Receiving mrch, the client is supposed
to verify the server domain followed by computing the hash
value h of the client message mrcl := (ch, tb). Compared
with mrch, the output command message mrcom replaces ch
with h and add a constant user presence condition UP := true.
Receiving mrcom, the token T picks a suitable signature scheme
Σ in the list pkCP (if available) and checks whether the user
verification mechanism is supported (if required). After that, T
samples a public-private key pair (pk, sk) of Σ and a credential
identifier cid, followed by initializing the associated registration
context rcT [idS] and the agreed content πj

T .agCon. The session
identifier πj

T .sid is set to the hash of the server domain, the
credential identifier, and the initial counter n := 0. The output
response message mrrsp includes the session identifier πj

T .sid
as well as pk,Σ,UP and UV . The server S finally inputs
both mrcl and mrrsp and executes a number of checks. If
all checks pass, S also initializes its associated registration

41474

context rcS [cid] and the agreed content πi
S .agCon. The session

identifier πi
S .sid is identical to πj

T .sid.
The authentication phase is very similar. The crucial dif-

ference is that the token outputs a signature, which signs
the πi

S .agCon-relevant data using the private key sk of
Σ. Moreover, the session identifiers of token and servers
additionally include the hash of the client message macl.

We give the concrete definition of algorithms of WebAuthn 2
with the default attestation type None in Section C.

C. Security Experiment for ePlA

The desired security property is that a server accepts an
authentication response if and only if it was generated by a
unique honest partnered token session. We capture it by our
auth security experiment in Figure 2.

a) Threat Model: To closely capture the official security
statement4, we assume that all communication channels in
the registration phase are authenticated. In contrast, there
are no security assumptions on the communication channels
between token, client, and server in the authentication phase.
We assume that the users always provide the user presence or
user verification confirmation when it is required and leave the
users implicit in the security model. We assume the identifier
idS of each server S is unique. Unlike [2], we do not assume
tokens to be “tamper-proof”, i.e., the adversary is allowed to
corrupt locally stored registration contexts.

b) Oracles: During the game execution the adversary A
can create new servers and tokens through the oracles NEWS
and NEWTPLA. In particular, the adversary can customize
the concrete setting of the created parties, i.e., the supported
signature list of the server and whether the token supports user
verification. By invoking the REGISTER oracle, A is able to
eavesdrop on honest registrations between servers and tokens of
its choice. Moreover, via the oracles CHALLENGE, RESPONSE
and COMPLETE, A can actively interfere during authentication.
Note that sessions which have accepted or rejected can no
longer be queried. Furthermore, the adversary A can also query
the CORRUPT oracle to reveal a token’s registration context
related to a server.

c) Session Partnering: Partnering identifies token and
server sessions that are successfully communicating with each
other as expected, and is encoded through matching session
identifiers. More precisely, we say a server session πi

S partners
with a token session πj

T if and only if πi
S .sid = πj

T .sid ̸= ⊥.
We say a server session πi

S partners with a token T if it
partners with one of T ’s sessions. We say a token T is the
registration partner of a server S, if the registration context
of T at S has been set, i.e., rcT [idS] ̸= ⊥.

d) Winning Conditions: We call a server session a test
session if it accepts a response message. We say that the secure
passwordless authentication for an ePlA holds if there exists

4“Under the assumption that a registration ceremony is completed securely,
and that the authenticator maintains confidentiality of the credential private
key, subsequent authentication ceremonies using that public key credential are
resistant to man-in-the-middle attacks” [11, Section 13.4.4]

a test session πi
S such that none of the following winning

conditions holds:

1) the non-⊥ session identifiers of two token sessions collide.
2) the non-⊥ session identifiers of two server sessions collide.
3) πi

S does not partner with T and CORRUPT(S, T) was not
queried (i.e., the registration context of T at S has not been
revealed), where T is any registration partner of S.

4) the agreed contents of a pair of partnered server session πi′

S′

and token sessions πj′

T ′ are distinct and CORRUPT(S′, T ′)
has not been queried.

ExptauthePlA,Compl(A):

1 Lfrsh ← ∅
2 win-auth← 0
3 () $←− AO(

1λ
)

4 return win-auth

regPartner(S):
5 if ∃T such that rcT [idS] ̸= ⊥
6 return T
7 return ⊥

Win-auth(S, i):

8 if ∃(T1, j1), (T2, j2) such that (T1, j1) ̸= (T2, j2) and π
j1
T1

.sid =

π
j2
T2

.sid ̸= ⊥ : return 1

9 if ∃(S1, i1), (S2, i2) such that (S1, i1) ̸= (S2, i2) and π
i1
S1

.sid =

π
i2
S2

.sid ̸= ⊥ : return 1

10 T ← regPartner(S)

11 if (S, T) ∈ Lfrsh and ¬∃j such that πi
S .sid = πj

T .sid: return 1

12 if ∃(S′, i′), (T ′, j′) such that πi′
S′ .sid = πj′

T ′ .sid ̸= ⊥ and (S′, T ′) ∈ Lfrsh

and πi′
S′ .agCon ̸= πj′

T ′ .agCon: return 1
13 return 0

REGISTER((S, i), (T, j), tb, UV):

14 if pkCPS = ⊥ or suppUVT = ⊥ or πi
S ̸=

⊥ or πj
T ̸= ⊥ or rcT [S] ̸= ⊥

15 return ⊥
16 πi

S .pkCP← pkCPS

17 πj
T .suppUV← suppUVT

18 mrch
$←− rChall(πi

S , tb, UV)
19 (mrcom,mrcl)← rCom(idS ,mrch, tb)
20 (mrrsp, rcT) $←− rRsp(πj

T ,mrcom)

21 (rcS , d) $←− rVrfy(πi
S ,mrcl,mrrsp)

22 Lfrsh ← Lfrsh ∪ {(S, T)}
23 return (mrch,mrcl,mrcom,mrrsp, d)

NEWS(S, pkCP):
24 if pkCPS ̸= ⊥
25 return
26 pkCPS ← pkCP
27 return

NEWTPLA(T, suppUV):
28 if suppUVT ̸= ⊥
29 return
30 suppUVT ← suppUV
31 return

CHALLENGE((S, i), tb, UV):

32 if pkCPS = ⊥ or πi
S ̸= ⊥

33 return ⊥
34 πi

S .pkCP← pkCPS

35 mach ← aChall(πi
S , tb, UV)

36 return mach

RESPONSE((T, j),macom):

37 if suppUVT = ⊥ or πj
T ̸= ⊥

38 return ⊥
39 πj

T .suppUV← suppUVT

40 (marsp, rcT) $←− aRsp(πj
T , rcT ,macom)

41 return marsp
COMPLETE((S, i),macl,marsp):

42 if πi
S = ⊥ or πi

S .stexe ̸= running
43 return ⊥
44 (rcS , d) $←− aVrfy(πi

S , rcS ,macl,marsp)
45 if d = 1
46 win-auth← Win-auth(S, i)
47 return d

CORRUPT(S, T):
48 if rcT [S] = ⊥
49 return ⊥
50 Lfrsh ← Lfrsh \ {(S, T)}
51 return rcT [S]

Fig. 2. Security experiment for extended Passwordless Authentication
Protocols ePlA = (Register,Authenticate), where O = {NEWS,
NEWTPLA, CORRUPT, REGISTER, CHALLENGE, RESPONSE, COMPLETE}
and Compl ∈ {PPT,QPT}. We highlight the difference to PlA from [2] in
blue. The variables agCon and sid are instance-specific, see Section IV-B.

Definition 1 (Secure passwordless authentication (auth)
for ePlA). Let Compl ∈ {PPT,QPT}. Let ePlA =
(Register,Authenticate) be an extended passwordless authenti-
cation protocol. We say that ePlA provides secure passwordless
authentication, or auth for short, if for all Compl adversaries

51475

A the advantage

AdvauthePlA,Compl(A) := Pr
[
ExptauthePlA,Compl(A) = 1

]
in winning the game ExptauthePlA,Compl defined in Figure 2 is
negligible in the security parameter λ.

Conversely, we say a Compl adversary A breaks the secure
passwordless authentication of ePlA for some test session π ,
if A wins ExptauthePlA,Compl game via π .

In the following theorem, we show that WebAuthn 2 satisfies
the defined security property auth. We sketch the proof here
and give the full proof in [4].

Theorem 1 (PPT/QPT security of WebAuthn 2). Let Compl ∈
{PPT,QPT}. Let ePlA = (Register,Authenticate) denote the
WebAuthn 2 protocol depicted in Figure 11. Assume that the
underlying function H is ϵcoll-resH -collision resistant. If there
exists a Compl adversaryA that breaks the secure passwordless
authentication of ePlA for a test session π and the digital
signature scheme Σ used in π is ϵeuf-cma

Σ -euf-cma secure
against Compl adversaries, then it holds that

AdvauthePlA,Compl(A) ≤
(
qREGISTER

2

)
2−λ +

(
qCHALLENGE

2

)
2−λ

+ ϵcoll-resH + 2qREGISTERϵ
euf-cma
Σ

where qO denotes the number of A’s queries to O ∈
{REGISTER, CHALLENGE}.

Proof Sketch. Notice that the token session identifiers include
credential identifiers, which are sampled of length ≥ λ for
different tokens only in the REGISTER queries, and a counter
n, which is incremented in each sessions of the same token.
The adversary A cannot win via winning condition in Line 8
except probability

(
qREGISTER

2

)
2−λ. Note that the server session

identifiers include the hash of server id, which is assumed to
be unique for each server. Note also that the server session
identifiers in the authentication phases additionally includes
the hash of the token binding state tb and challenge nonces ch,
which are of length ≥ λ and sampled only in the CHALLENGE
queries. The adversary A cannot win via winning condition in
Line 9 except with probability

(
qCHALLENGE

2

)
2−λ+ ϵcoll-resH . Finally,

observe that the registration phases are authenticated and that
the identifier of each server session in the authentication phases
is set only when the corresponding server session accepts a
signature, which signs the hash of the unique server id, the
counter n, the hash of the client message macl, UP , and UV .
Moreover, there are at most qREGISTER private signing keys in
the experiment. The winning conditions in Line 11 and Line 12
indicate that the adversary A can forge any signature of Σ
without corrupting the private signing key of any token, which
happens with probability at most 2ϵeuf-cma

Σ for each token and
thus in total 2qREGISTERϵ

euf-cma
Σ .

Theorem 1 shows that no polynomial-time attackers against
WebAuthn 2 in the auth experiment can trigger any winning
condition, through which the following aspects are captured.
Conditions 1 and 2 capture the uniqueness of each session

identifiers. i.e., if two sessions are partnered with each other,
they are each other’s unique partners. Condition 3 encodes
the official security statement (see footnote 4). Condition 4
ensures that under the same assumption, the token and server
sessions in the subsequent authentication ceremonies using that
public key credential must agree on the server identifier idS ,
the hash value H(ch, tb), the local counter n, and the user
presence UP and verification UV conditions. As a corollary,
if the underlying hash function H is collision resistant, then the
token and server sessions also implicitly agree on the token
binding state tb.

D. Post-Quantum Instantiation of WebAuthn 2

To add the ability to authenticate using PQ or hybrid
signature schemes with minimal changes to the WebAuthn 2
protocol, we propose to only extend the supported digital
signature list pkCP (encoding an “or” choice) and explicitly
allowing hybrid schemes (to encode “and”, e.g., for classical
and PQ schemes).

Following the WebAuthn 2 specification, the server has the
option to include RSASSA–PKCS1–v1 5, RSASSA–PSS [12],
or/and ECDSA–P256 [13] in pkCP, see Section II for an
explanation of pkCP. Recall that the auth security of the
WebAuthn 2 is proven in the standard model in Theorem 1.
Therefore, the auth security for WebAuthn 2 also holds
against quantum adversaries, assuming that ϵcoll-resH and ϵeuf-cma

Σ

are sufficiently small against quantum adversaries, i.e., are
instantiated with PQ secure algorithms. Instead of accepting
only plain PQ signatures schemes, the server could also select
hybrid signature schemes for pkCP as below.

Let Σ1 and Σ2 be signature schemes. We write C[Σ1,Σ2] =
(KGC ,SignC ,VfyC) for the hybrid signature schemes con-
structed from Σ1 and Σ2

5. KGC simply returns the concatena-
tion of the two ingredient public and secret keys. Similarly,
the signature returned by SignC is the concatenation of the
ingredient signatures over the same message. VfyC returns 1 if
and only if both ingredient signatures are valid. Otherwise it
returns 0. The ingredient schemes could either be instantiated
with different PQ (PQ-PQ hybrid), or with one classical and
one PQ signature scheme (classical-PQ hybrid). Note that many
other combiners exists, such as nested approaches that have
been formalized in [5], which are particularly well suited to
achieve backwards compatibility in, e.g., X.509 certificates.

In case of WebAuthn 2, backwards compatibility is important
as not all authenticators, e.g., USB tokens, can be updated to
support new algorithms via software updates. To offer back-
wards compatibility, the server includes classical algorithms in
pkCP as less preferred algorithms and PQ/hybrid schemes with
higher preference, e.g., pkCP = {Σ1 = C[Σ2,Σ3],Σ2,Σ3}
with Σ3 ∈ {RSASSA–PKCS1–v1 5, RSASSA–PSS, ECDSA–
P256}. Then, the (honest) token would always choose the more
preferred hybrid or PQ algorithms for the PQ security, unless
they are not supported.

5This description can easily be extended to more than two ingredient
schemes.

61476

E. Stronger Downgrade Protection

Our WebAuthn 2 results in the previous sections assume
that the registration phase is authenticated (as in the standard),
which means that the supported schemes list cannot be modified,
and thus basic scheme downgrade attacks are impossible. On
the other end of the spectrum, if an active attacker interferes
continuously with all phases, we cannot detect or prevent
downgrades.

However, there is an intermediate threat model, for which
WebAuthn 2 could, but does not, provide downgrade protection.
Note that the (ordered) list of the relying party’s accepted
signature algorithms πi

S .pkCP is sent in plain from the relying
party to the authenticator via the client (see Figure 11). The
credential keys are then generated using the first algorithm in
the received pkCP that is supported by the authenticator, see
[11, Section 6.3.2.7.1]. During rVrfy, the relying party checks
that the used signature scheme Σ is in πi

S .pkCP. Hence, if the
communication in the registration phase is not authenticated, an
adversary can easily change the list pkCP during transmission
to the authenticator. For example, during the PQ transition,
ideally security is based on classical and PQ algorithms in a
backwards compatible way. While we explain how to achieve
backwards compatibility with authenticators that only support
classical algorithms in Section IV-D, a quantum adversary is
able to break RSA or ECDSA might change pkCP such that the
authenticator only has the choice between classical algorithms.

Consider an adversary that can forge signatures of one of
the accepted and supported algorithms. Moreover, assume this
adversary is able to compromise the browser or control the
network used during registration but not the ones used for
authentication, e.g., in an internet cafe a compromised machine
is used for registration but others for authentication. Then
tricking the authenticator to choose the vulnerable algorithm
(and create a corresponding credential key pair) is beneficial
because it allows the adversary to forge authentications later
on even if they do not control the network anymore.

If the adversary has permanent control of the machine used
for registration and authentication, and can forge signatures
of an algorithm that is accepted and supported by the relying
party and the authenticator, respectively, this attack cannot
be prevented. Moreover, it is impossible to prevent the
authenticator being tricked into using a less preferred algorithm
without substantial changes to the WebAuthn 2 protocol and the
public-key infrastructure within. However, we suggest changes
that enable detecting such an event with high probability, calling
the resulting protocol WebAuthn 2+, if at least one message
without interference of the adversary is sent. We depict the
changes as boxed operations in Figure 11. Essentially, the idea
is to include the hash hCP of the received list of accepted
algorithms pkCP′ during registration, in the authentication
response. The relying party compares H(pkCP) with hCP to
detect whether authenticator and relying party agree on the list
of algorithms. To enable the above changes, both the relying
party and the authenticator must store respective lists; we
suggest to include them in the registration context.

ExptAlgAgree
WebAuthn 2+,Compl

(A):

1 (S, i, T, j, tb,UV) $←− AO(1λ)
2 m⋆

ach
$←− CHALLENGE((S, i), tb,UV)

3 (m⋆
acom,m

⋆
acl)← aCom(idS ,m⋆

ach, tb)
4 m⋆

arsp
$←− RESPONSE((T, j),m⋆

acom)
5 d⋆

a
$←− COMPLETE((S, i),m⋆

acl,m
⋆
arsp)

6 Supp← list of supported algorithms by T
7 d⋆

T,S ← J(pkCPS ∩ Supp)[1] ̸= rcT [S].ΣK
8 return [d⋆

(T,S) = 1 ∧ d⋆
a = 1]

RCHALLENGE((S, i), tb, UV):

9 if pkCPS = ⊥ or πi
S ̸= ⊥

10 return ⊥
11 πi

S .pkCP← pkCPS //ordered list of accepted algorithms

12 mrrsp ← rChall(πi
S , tb, UV)

13 return mrrsp

RRESPONSE((T, j),mrcom):

14 if suppUVT = ⊥ or πj
T ̸= ⊥

15 return ⊥
16 πj

T .suppUV← suppUVT

17 (mrrsp, rcT) $←− rRsp(πj
T ,mrcom)

18 return mrrsp

RCOMPLETE((S, i),mrcl,mrrsp):

19 if pkCPS = ⊥ or πi
S = ⊥

or πi
S .stexe ̸= running : return ⊥

20 (rcS , d) $←− rVrfy(πi
S ,mrcl,mrrsp)

21 return d

Fig. 3. Game ExptAlgAgree
WebAuthn 2+,Compl

and oracles RCHALLENGE, RRESPONSE,
RCOMPLETE; note that NEWS, NEWTPLA, CHALLENGE, RESPONSE, and
COMPLETE are given in Figure 2.

If an adversary changed the list pkCP during registration in
WebAuthn 2+, the adversary would need to change the value
hCP during every authentication response to avoid detection
of the attack. We stress that it would not be sufficient to only
reject authentications when such an attack is detected, since the
honest authenticator would then be unable to communicate with
the relying party due to the disagreement on the list pkCP.
Even worse, only those authentication responses in which
the adversary successfully switched the value hCP would be
accepted. Thus, the detection of this downgrade attack should
trigger deregistering the authenticator by the relying party and
notifying the user (ideally out-of-band).

More formally, we say that WebAuthn 2+ satisfies our
property Algorithm Agreement (AlgAgree) against Compl ∈
{PPT,QPT} adversaries if the advantage

AdvAlgAgree
WebAuthn 2+,Compl

(A) := Pr
[
ExptAlgAgree

WebAuthn 2+,Compl
(A) = 1

]
in winning the game ExptAlgAgree

WebAuthn 2+,Compl
(defined in Figure 3)

is negligible in the security parameter λ. We view WebAuthn 2+

as an instantiation of an ePlA and give the adversary access
to the following oracles: RCHALLENGE, RRESPONSE, and
RCOMPLETE given in Figure 3, and NEWS, NEWTPLA,
CHALLENGE, RESPONSE, and COMPLETE given in Figure 2.

The adversary wins the game ExptAlgAgree
WebAuthn 2+,Compl

if the
generated key pair is not of the most preferred server’s
algorithm that is supported by the token (i.e., it is not the first
element in the intersection of the supported and the preferred
algorithms, see line 7 in Figure 3), and honestly generated
authentications are always accepted by the server (see line 5 in

71477

Figure 3). It is important to emphasize that our threat model
here is different than the one for Section IV-C. Namely, we
assume that the communication channels in the registration and
authentication phase are unauthenticated with one exception.
We assume that there is at least one honest authentication, i.e.,
during this one authentication the adversary does not actively
interfere with the communication between the three parties.

We can show that WebAuthn 2+ satisfies the above property
if H is a collision resistant hash function. The proof sketch is
as follows. Assume the adversary A wins ExptAlgAgree

WebAuthn 2+,Compl
(i.e., d⋆(T,S) = 1 and d⋆a = 1). This implies that the adversary is
able to successfully register the token T at server S such that the
chosen signature algorithm is supported by the token, accepted
by the server, and not the most preferred algorithm in the
intersection of supported and accepted algorithms. Furthermore,
it means that line 57 in Figure 11 holds, i.e., that the hash
value hCP over the received list pkCP′ (computed and sent by
the token) is the same as the hash value rcS [cid].hCP over the
original pkCP. This contradicts the collision-resistance of H,
as pkCP ̸= pkCP′.

V. CTAP 2.1 AND EXTENDED PIN-BASED ACCESS
CONTROL FOR AUTHENTICATOR PROTOCOLS

In this section, we first define the extended PIN-based Access
Control for Authenticators (ePACA) protocol following [2] and
describe CTAP 2.1 as an ePACA instance. Next, we present a
variant of the strong unforgeability with trust-binding (SUF-t′)
experiment. Finally, we extend CTAP 2.1 for PQ compatibility
and formally prove the SUF-t′ security of the extension.

A. Extended Pin-based Access Control for Authenticator Pro-
tocols

An extended PIN-based Access Control for Authenticators
protocol ePACA = (Reboot,Setup,Bind,Auth,Validate) is
an interactive protocol between a client C, an authenticator
token T , and a user U , specified by the following algorithms:
Reboot(T): runs at each power-up of the token T and

initializes the inherent state with a mandatory user interaction.
This algorithm is expected to be invoked to power up T and
initialize the local state before the execution of any other
algorithms on T .

Setup(T,C, U): inputs a token T , a client C, and a user U
and outputs the transcript trans. During this interactive sub-
protocol, U securely transfers the PIN to T via C. Note that
this algorithm is invoked on each token T at most once. We
write trans $←− Setup(T,C, U).

Bind(T,C, U): During this interactive sub-protocol, the client
C is bound to the token T under the confirmation of the user
U . This sub-protocol is further divided into two algorithms:
Bind-C(C,U,m): inputs a client C, a user U , and an

incoming message m and outputs an outgoing message
m′. During this algorithm, C processes m under the
confirmation from U . We write m′ $←− Bind-C(C,U,m).

Bind-T(T,m): inputs a token T and an incoming message
m, and outputs an outgoing message m′. We write m′ $←−
Bind-T(T,m).

Fig. 4. CTAP 2.1 is an ePACA = (Reboot, Setup,Bind,Auth,Validate)
protocol. All algorithms are defined in Section D.

Auth(C,M): inputs a client C and a command M , and outputs
both the command M and its authorization tag t. We write
(M, t) $←− Auth(C,M).

Validate(T,M, t, d): inputs a token T , a command M ,
an authorization tag t, and a user decision d ∈
{accepted, rejected}, and outputs status ∈ {accepted,
rejected} indicating whether the authorization can be verified
or not. We write status $←− Validate(T,M, t, d).

B. CTAP 2.1 is an ePACA protocol

CTAP 2.1 [6] is a substantial change from CTAP 2.0 [7]
in terms of generalization and modularity. More concretely,
CTAP 2.1 makes use of a generic stateful so-called
Pin/Uv Auth Protocol puvProtocol = (initialize,
regenerate, resetpuvToken, getPublicKey, encapsulate,
decapsulate, encrypt, decrypt, authenticate, verify), which
can be instantiated using puvProtocol1 and puvProtocol2
from the standard that we depict in Section D. Additionally,
we here propose a third instantiation puvProtocol3 that allows
for PQ security in Section V-C. Each puvProtocol has its
internal state including a public-private key pair (pk, sk) and
a string pt .

81478

Similar to the treatment in Section IV, we use πi
T and πj

C to
denote token T ’s i-th and client C’s j-th instance respectively.
In addition, each T has a token-associated state stT that is
shared by all of T ’s instances. Namely, we have T = {stT } ∪
{πi

T }i and C = {πj
C}j . We use pinU to denote U ’s unique

PIN. In addition, we define the following variables for tokens
T or clients C:
stT .version ∈ {2.0, 2.1}: denotes the CTAP version.
stT .puvProtocol: denotes a stateful Pin/Uv Auth Protocol.
stT .puvProtocolList: denotes the list of Pin/Uv Auth Protocol

instantiations that T supports.
stT .pinHash ∈ {0, 1}⋆ ∪ {⊥}: denotes the hash of a user PIN.

This variable is expected to be set during Setup.
stT .pinRetries ∈ {0, ..., pinRetriesMax}: denotes the number

of remaining tries for clients to deliver a pinHash, where
pinRetriesMax denotes the maximal number of tries.

stT .m ∈ {0, ..., 3}: denotes the remaining consecutive tries for
clients to deliver pinHash.

πi
T .stexe, π

j
C .stexe ∈ {waiting, bindStart, bindDone,⊥}:

denotes the execution state of a token/client session.
πi
T .bs, π

j
C .bs ∈ {0, 1}⋆ ∪ {⊥}: denotes the binding state. This

variable is expected to be set during Bind.
πi
T .sid, π

j
C .sid ∈ {0, 1}⋆ ∪ {⊥}: denotes the session identi-

fiers; defined as the full transcript of the Bind execution.
πj
C .selectedpuvProtocol: denotes the puvProtocol instantia-
tion chosen by the client.

πj
C .K ∈ {0, 1}⋆ ∪ {⊥}: denotes the shared key with a token.
Next, we formalize CTAP 2.1 as an ePACA protocol.

Overall CTAP 2.1 includes 12 algorithms6. We depict the
communication flow of CTAP 2.1 in Figure 4. Intuitively, the
Reboot algorithm initializes the underlying puvProtocols and
resets the remaining consecutive tries stT .m to 3.

In the Setup interaction, the token T first outputs
its information info, which includes the supported list
stT .puvProtocolList. Next, the client selects and initializes
one πj

C .selectedpuvProtocol from the received list followed
by sending its choice back to T . Then, the token T returns
the public key pk of the chosen stT .puvProtocol. Afterwards,
the client runs the encapsulation of its πj

C .selectedpuvProtocol
upon pk for a key πj

C .K, which is then used to encrypt and
authenticate the PIN pinU collected from user U , and forwards
all derived ciphertexts and tags to T . The token T finally
decapsulates the key, followed by verifying the ciphertext,
and recovers pinU . The local stT .pinHash stores the hash
of pinU and the remaining retries stT .pinRetries is set to
pinRetriesMax.

The Bind interaction is identical to Setup until the client
derives the key πj

C .K. Then, the client uses πj
C .K to encrypt

the hash of the user pin pinU and sends the ciphertext to T .
If stT .pinRetries does not reach 0, the token decapsulates the
key and recovers a pinHash. If the pinHash does not match the

6Similar to the treatment in [2], we omit the algorithms for PIN reset and
leave it for future work. The suffix -T and -C in the names of algorithms
indicates the algorithm executor to be either a token or a client. The suffix
-start and -end indicates that this algorithm is the first or the final step in an
interactive execution.

hash of the local stT .pinHash, the underlying stT .puvProtocol
re-generates the public key pk. If the remaining consecutive
retries meanwhile arrive at 0, the token is forced to reboot. If
the pinHash matches the hash of the local stT .pinHash, the
remaining retries stT .m and stT .pinRetries are reset to their
maximal values. The pts of all underlying stT .puvProtocol are
re-sampled. The token finally sets the binding state πi

T .bs to
the pt of the current stT .puvProtocol, which is then encrypted
using the decapsulated key. The client eventually recovers the
pt and sets it to πj

C .bs.
After the negotiation for the binding states, the client

can invoke Auth algorithm to authorize command M using
its binding state πi

T .bs. Similarly, the token can invoke the
Validate algorithm to verify the authorized command using
πj
C .bs.
We delay the description of the 12 algorithms to Section D.

C. Post-Quantum Instantiation of CTAP 2.1
We propose a third instantiation of the Pin/Uv Auth Protocol

in Figure 5 that provides PQ compatibility in a hybrid manner.
Compared to puvProtocol2, the most important changes made
to achieve PQ security are as follows. First, in addition to
an ECDH (over curve NIST P-256) key pair, a key pair of a
PQ secure KEM is sampled during regenerate3. Second, the
algorithm encapsulate3 executes both the ECDH key exchange
and the encapsulation of the PQ KEM to derive a hybrid
ciphertext c and key K = (K1,K2). Finally, the algorithm
decapsulate3 correspondingly recovers the hybrid key K =
(K1,K2) from the ciphertext c.

Instantiation: We suggest to instantiate the underlying
KEM with any Round 3 Finalist nominated by NIST and the
SKE3 with AES-512-CBC with randomized initial vector. The
underlying functions Hi : {0, 1}⋆ → {0, 1}li for i ∈ {5, 6, 7}
can be instantiated with HMAC-SHA-512. Moreover, we
suggest µ′ ≥ 2 to against Grover’s attack and to achieve
256-bits security.

D. Security Model of ePACA Protocols
Moving forward, we model the security of ePACA protocols

as security experiment ExptSUF-t′
ePACA,Compl. The security goal is

to ensure that a token can only accept a command that has
been authorized by a trusted client under user permission.

a) Trust Model: Similarly to [2], we assume ”trust-
on-first-use”, which means that the interactive execution of
Setup is authenticated without any active interference of an
eavesdropping adversary. Moreover, we assume no active
attacks against clients during the interactive execution of
Bind, while active attacks against tokens are allowed. More
concretely, active attacks against clients are allowed only
when the execution state of the clients turns from waiting to
bindStart. However, active attacks against tokens are allowed
even if the execution state of tokens is still waiting. We
further assume that each user holds a unique PIN pinU that is
independently sampled from the domain PIN 7 following some

7In practice, each PIN must have a maximal length of 63 bytes and a
minimal length of four code points (on tokens) or four unicode characters (on
client).

91479

initialize3():
22 regenerate3()
23 resetpuvToken3()

regenerate3():
24 (pk1, sk1) $←− ECDH.KG()
25 (pk2, sk2) $←− KEM.KG()
26 pk ← (pk1, pk2)
27 sk ← (sk1, sk2)

encrypt3(K,m):
28 (K1, K2)← K

s.t. |K1| = µ′λ
29 c← SKE3.Enc(K2,m)
30 return c

decrypt3(K, c):
31 (K1, K2)← K

s.t. |K1| = µ′λ
32 m← SKE3.Dec(K2, c)
33 return m

authenticate3(K
′,m):

34 (K′
1, K

′
2)← K′

s.t. |K′
1| = µ′λ

35 t← H7(K
′
1,m)

36 return t

verify3(K
′,m, t):

37 (K′
1, K

′
2)← K′

s.t. |K′
1| = µ′λ

38 t′ ← H7(K
′,m)

39 return Jt = t′K

getPublicKey3():
40 return pk

resetpuvToken3():

41 pt $←− {0, 1}µ
′λ

encapsulate3(pk
′):

42 (pk′
1, pk

′
2)← pk′

43 (sk1, sk2)← sk
44 Z1 ← XCoordinateOf(sk1 · pk′

1)
45 (c2, Z2)← KEM.Encaps(pk′

2)
46 Z ← H5(Z1, Z2)
47 K1 ← H6(Z, “CTAP2 HMAC key”)
48 K2 ← H6(Z, “CTAP2 AES key”)
49 K ← (K1, K2)
50 c← (pk, c2)
51 return (c,K)

decapsulate3(c):
52 Parse (c1, c2)← c
53 Parse (sk1, sk2)← sk
54 Z1 ← XCoordinateOf(sk1 · c1)
55 Z2 ← KEM.Decaps(sk2, c2)
56 Z ← H5(Z1, Z2)
57 K1 ← H6(Z, “CTAP2 HMAC key”)
58 K2 ← H6(Z, “CTAP2 AES key”)
59 K ← (K1, K2)
60 return K

Fig. 5. The third instantiation of PIN/UV Auth Protocol puvProtocol3. The
operation · denotes the scalar-multiplication.

distribution D with min-entropy αD. All tokens are assumed to
share a common pinRetriesMax. We assume that each ECDH
point is bijective to its x-coordinate.

b) Experiment-specific Variables: Each session π is
associated with a variable isValid ∈ {true, false,⊥} that
denotes whether the session is still accessible (by users or
attackers) or not. Each token session πi

T is associated with
a variable pinCorr ∈ {true, false} that indicates whether the
setup user PIN of T has been corrupted.

c) Oracles: The oracles in our security experiment (see
Figure 6) are defined similarly to the ones in [2]. More con-
cretely, the oracles NEWT and NEWU create new tokens and
users, respectively. In particular, the adversary can customize
the token with specific initial data when querying NEWT. The
REBOOT(T) oracle invokes Reboot and marks all previously
established sessions of T as invalid. The oracle SETUP runs
the authenticated interaction of Setup. The oracle EXECUTE
captures that the Bind interaction is partially authenticated until
the client’s execution state is set to bindStart and the remaining
interaction of Bind is not authenticated, as the adversary can
deliver messages to token and client by SEND-BIND-T and
SEND-BIND-C oracles respectively. The AUTH and VALIDATE
oracles simulate the Auth and Validate execution of clients and
tokens, respectively. Furthermore, querying CORRUPTUSER
and COMPROMISE reveals a user’s PIN and a client’s binding
state, respectively. Notably, whenever Reboot or Bind are
completed on a token T , we mark all of T ’s previously
established sessions as invalid.

d) Session Partnering: Partnering identifies the sessions
of a token T and a client C that successfully completed
Bind(T,C, U) for some user U . We call a token session πi

T

partnered with a client session πj
C if and only if πi

T .sid =
πj
C .sid ̸= ⊥.

e) Winning Conditions: We call a token session test
session if it accepts an authorized command-tag pair under
some user decision. An adversary A wins ExptSUF-t′

ePACA,Compl

(with Compl ∈ {PPT,QPT}) if there exists a test session πi
T

that accepts an authorized command (M, t) with user decision
d and any of the following conditions holds:

1) the user decision d ̸= accepted.
2) two distinct client sessions that completed Bind have the

same session identifiers.
3) two distinct token sessions that completed Bind have the

same session identifiers.
4) (M, t) was not output by any of πi

T ’s uncompromised valid
partners πj

C before the corruption of the user PIN that was
setup on the token T .

Definition 2 (SUF-t′ security of ePACA). Let Compl ∈
{PPT,QPT}. Let ePACA = (Reboot,Setup,Bind,Auth,
Validate) be an extended PIN-based Access Control for Authen-
ticators protocol. We say that ePACA is strongly unforgeable
with trusted binding, or is SUF-t′-secure for short, if for all
Compl adversaries A

AdvSUF-t′
PACA,Compl(A) := Pr[ExptSUF-t′

ePACA,Compl(A) = 1]

in winning the game ExptSUF-t′
ePACA,Compl as described in Figure 6

is negligible in the security parameter λ.

E. Security Conclusions for CTAP 2.1

After having defined security for ePACA protocols above,
we now present the security statements for CTAP 2.1. We
give the full proofs of our two theorems (against PPT and
QPT adversaries) in [4]. Our first theorem shows the SUF-t′

security of CTAP 2.1 against PPT adversaries.

Theorem 2 (PPT security of CTAP 2.1). Let ePACA =
(Reboot,Setup,Bind,Auth,Validate) denote the CTAP 2.1
protocol described in Section V-B. Assume that ePACA supports
puvProtocoli for i ∈ {1, 2, 3}. If the hash function H is ϵcoll-resH

collision resistant, Hi : {0, 1}⋆ → {0, 1}li is modeled as inde-
pendent random oracle for i ∈ {1, ..., 7}, SKE1 is ϵind-1cpa-H2

SKE1
-

IND-1CPA-H2 and ϵind-1$pa-lpc
SKE1

-IND-1$PA-LPC secure, SKEi is
ϵind-1cpa
SKEi

-IND-1CPA and ϵind-1$pa-lpc
SKEi

-IND-1$PA-LPC secure for
i ∈ {2, 3}, and the sCDH problem over ECDH with prime order
q is ϵsCDH

ECDH hard, then the advantage of any PPT adversary A

101480

ExptSUF-t′
ePACA,Compl(A):

1 LAUTH ← ∅
2 win-SUF-t′ ← 0
3

(
) $←− AO(1λ)

4 return win-SUF-t′

bindPartner(T, i):

5 if ∃(C, j) s.th. πi
T .sid = πj

C .sid
6 return (C, j)
7 return (⊥,⊥)

Win-SUF-t′(T, i,M, t, d):
8 if d ̸= accepted: return 1
9 if ∃(C1, j1), (C2, j2) s.t. (C1, j1) ̸= (C2, j2) and π

j1
C1

.stexe = π
j2
C2

.stexe =

bindDone and π
j1
C1

.sid = π
j2
C2

.sid: return 1

10 if ∃(T1, i1), (T2, i2) s.t. (T1, i1) ̸= (T2, i2) and π
i1
T1

.stexe = π
i2
T2

.stexe =

bindDone and π
i1
T1

.sid = π
i2
T2

.sid: return 1
11 (C, j)← bindPartner(T, i)
12 if (C, j,M, t) /∈ LAUTH

13 if (C, j) = (⊥,⊥) or πj
C .compromised = false

14 if πi
T .pinCorr = false: return 1

15 return 0

NEWT(T, initialData):
16 if stT ̸= ⊥: return ⊥
17 (version, puvProtocolList)← initialData
18 stT .version← version
19 stT .puvProtocolList← puvProtocolList
20 Reboot(stT)
21 return

NEWU(U):
22 if pinU = ⊥
23 pinU

$←− PIN
24 return

CORRUPTUSER(U):
25 corrU ← true
26 return pinU

SEND-BIND-T(T, i,m):

27 if stT = ⊥ or πi
T = ⊥ or

πi
T .stexe ̸= waiting or πi

T .isValid = false
28 return ⊥
29 πi

T .pinCorr← corrstT .user

30 m′ $←− Bind-T(πi
T ,m)

31 cpt ∥ calledReboot← m′

32 if calledReboot = true
33 foreach i′ s.t. πi′

T ̸= ⊥
34 πi′

T .isValid← false
35 elseif πi

T .stexe = bindDone
36 foreach i′ ̸= i and πi

T ̸= ⊥
37 πi′

T .isValid← false
38 return m′

REBOOT(T):
39 if stT = ⊥: return
40 foreach i s.t. πi

T ̸= ⊥
41 πi

T .isValid← false
42 Reboot(stT)
43 return

SEND-BIND-C(C, j,m):

44 if πj
C = ⊥ or πj

C .stexe ̸=
bindStart or πj

C .isValid =
false

45 return ⊥
46 return Bind-C(πj

C ,m)

SETUP(T, i, C, j, U):

47 if stT = ⊥ or πi
T ̸= ⊥ or πj

C ̸= ⊥
or pinU = ⊥

48 return ⊥
49 πi

T ← stT
50 trans $←− Setup(πi

T , πj
C , pinU)

51 πi
T .isValid, πj

C .isValid← false
52 stT .user← U
53 return trans

EXECUTE(T, i, C, j, U):

54 if stT = ⊥ or πi
T ̸= ⊥ or πj

C ̸=
⊥ or pinU = ⊥

55 return ⊥
56 πi

T ← stT
57 trans,mC ← ⊥
58 while πj

C .stexe ̸= bindStart

59 mT
$←− Bind-T(πi

T ,mC)

60 mC
$←− Bind-C(πj

C , U,mT)
61 trans← trans ∥ mT ∥ mC

62 return transAUTH(C, j,M):

63 if πj
C = ⊥ or πj

C .stexe ̸= bindDone
64 return ⊥
65 (M, t) $←− auth-C(πj

C ,M)
66 LAUTH ← LAUTH ∪ {(C, j,M, t)}
67 return (M, t)

COMPROMISE(C, j):

68 if πj
C = ⊥ or πj

C .stexe ̸=
bindDone: return ⊥

69 πj
C .compromised← true

70 return πj
C .bs

VALIDATE(T, i,M, t, d):

71 if πi
T = ⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false

72 return ⊥
73 status← validate-T (πi

T ,M, t, d)
74 if status = accepted: win-SUF-t′ ← Win-SUF-t′(T, i,M, t, d)
75 return status

Fig. 6. Security Game for extended PIN-based Access Control Authentica-
tors Protocol for ePACA = (Reboot, Setup,Bind,Auth,Validate), where
O = {NEWT, NEWU, COMPROMISE, CORRUPTUSER, REBOOT, SETUP,
EXECUTE, SEND-BIND-T, SEND-BIND-C, AUTH, VALIDATE} and Compl ∈
{PPT,QPT}. We highlight differences to the SUF-t security game from [2]
in blue.

that breaks SUF-t′ security of ePACA is bounded by

AdvSUF-t′
PACA,A(1

λ)

≤(qSETUP + qEXECUTE)ϵ
sCDH
ECDH + ϵcoll-resH

+

(
qSETUP + qEXECUTE

2

)
(22−min{l1,l3,l5,l6} + 21−q)

+qNEWU2
−αD +

(
qSEND-BIND-T

2

)
2−min{µ,2,µ′}λ

+qSETUP max{ϵind-1cpa-H2

SKE1
, ϵind-1cpa

SKE2
, ϵind-1cpa

SKE3
}

+qEXECUTE max{ϵind-1$pa-lpc
SKE1

, ϵind-1$pa-lpc
SKE2

, ϵind-1$pa-lpc
SKE3

}
+qSETUPpinRetriesMax2−αD

+qVALIDATE2
−min{µλ,2λ,µ′λ,l2,l4,l7}

where qO denotes the number of queries to O = {SETUP,
EXECUTE, VALIDATE} and qi denotes the number of queries
to random oracle Hi for i ∈ {1, ..., 7}.

Proof Sketch. The proof is divided into the following steps:
(1) By the random oracle Hi for i ∈ {1, 3, 5, 6} and the
sCDH assumption on the underlying ECDH, all keys K derived
from the encapsulation of the underlying puvProtocol in the
obtainSharedSecret-C-end algorithm, which is only invoked in
the SETUP and EXECUTE oracles, are distinct except probabil-
ity (qSETUP +qEXECUTE)ϵ

sCDH
ECDH+

(
qSETUP+qEXECUTE

2

)
22−min{l1,l3,l5,l6}.

(2) By the entropy of the user PIN αD, none of the user PIN
sampled in NEWU oracle is predicable except with probability
qNEWU2

−αD . (3) By the collision-resistance of H and the
entropy of the Diffie-Hellman public keys 2q and of pt values
2max{µ,2,µ′}λ, we have the all H(pin), Diffie-Hellman public
keys, pt values, are respectively distinct except probability in
total ϵcoll-resH +

(
qSETUP+EXECUTE

2

)
21−q +

(
qSEND-BIND-T

2

)
2−min{µ,2,µ′}λ.

(4) By the IND-1CPA-H2 security of SKE1 and the IND-1CPA
security of SKE2 and SKE3, the pins encrypted by the under-
lying puvProtocol in the setPIN-C algorithm, which is only
invoked in the SETUP oracle, are indistinguishable from random
except probability qSETUP max{ϵind-1cpa-H2

SKE1
, ϵind-1cpa

SKE2
, ϵind-1cpa

SKE3
}.

(5) By the IND-1$PA-LPC security of SKEi for i ∈
{1, 2, 3}, the pinHashs encrypted by the underlying
puvProtocol in the obtainPinUvAuthToken-C-start algo-
rithm, which is invoked only in the EXECUTE ora-
cle, are indistinguishable from random except probability
qEXECUTE max{ϵind-1$pa-lpc

SKE1
, ϵind-1$pa-lpc

SKE2
, ϵind-1$pa-lpc

SKE3
}.

Finally, the adversary A cannot trigger the flip of the
win-SUF-t′ predicate in Figure 6 via condition (i) in Line 8,
due to the design of CTAP 2.1, see validate-T algorithm in
CTAP 2.1. (ii) in Line 9, due to the distinction of Diffie-
Hellman public keys, (iii) in Line 10, due to the distinction
of Diffie-Hellman public keys and pts, (iv) in Line 11-14,
since A obtains no information about pins or pts and can
only win by randomly guessing the pin in the SETUP oracle
maximal pinRetriesMax times for each token session, or the
pt values or the tags t in the Validate algorithm in the
VALIDATE oracle, which happens with probability except
qSETUPpinRetriesMax2−αD + qVALIDATE2

−min{µλ,2λ,µ′λ,l2,l4,l7}

in total, modeling H7 as a random oracle.

111481

The above theorem proves that CTAP 2.1 only accepts
messages under the user’s approval, which is captured by
winning condition 1. Winning conditions 2 and 3 capture
the uniqueness of each session identifiers: if two sessions
are partnered with each other, then they are each other’s
unique partners. Condition 4 ensures the token only accepts
the authorization from a client that it binds to if (1) the binding
phase is trusted, (2) the binding state (on the client side) is
not compromised if available, and (3) the user PIN that sets
up the token is not corrupted.

As is to be expected, the above theorem only holds when
the token’s user PINs have large enough entropy. If a user
PIN is predictable, the attacker can perform active attacks and
authorize malicious commands towards the token.

Moving to the security guarantees against quantum adver-
saries, we note that the asymmetric cryptographic primitives
in puvProtocol1 and puvProtocol2 are simply ECDH, which
is quantum-vulnerable. Therefore, A can trivially win SUF-t′

experiment by selecting the Pin/Uv Auth Protocol in a test
session to be puvProtocol1 or puvProtocol2. The theorem
below suggests the security of the test session if puvProtocol3
is selected as instantiation.

Theorem 3 (QPT security of CTAP 2.1). Let ePACA =
(Reboot,Setup,Bind,Auth,Validate) denote the CTAP 2.1
protocol described in Section V-B. Assume that the underlying
H is ϵcoll-resH -collision resistant, H5 is ϵswapH5

-swap secure, Hi is
ϵprfHi

-prf secure for i ∈ {6, 7}, SKE3 is ϵind-1cpa
SKE3

-IND-1CPA
and ϵind-1$pa-lpc

SKE3
-IND-1$PA-LPC secure, and that the KEM

in puvProtocol3 with public-key entropy αpk and ciphertext
entropy αc is ϵind-cca

KEM -IND-CCA secure. If there exists a QPT
adversary A that breaks the SUF-t′ security of ePACA for a
test session π that uses puvProtocol3, then we have that

AdvSUF-t′
ePACA,QPT(A)

≤(qSETUP + qEXECUTE)(ϵ
ind-cca
KEM + ϵswapH5

+ ϵprfH6
)

+

(
qSETUP + qEXECUTE

2

)
21−l6 + ϵcoll-resH + qNEWU2

−αD

+

(
qSEND-BIND-T

2

)
2−µ

′λ +

(
qEXECUTE

2

)
(2−αpk + 2−αc)

+qSETUPϵ
ind-1cpa
SKE3

+ qEXECUTEϵ
ind-1$pa-lpc
SKE3

+qSETUPpinRetriesMax2−αD +

(
qEXECUTE

2

)
(2−αpk + 2−αc)

+qVALIDATE(2
−µ′λ + ϵprfH7

+ 2−l7)

where qO denotes the number of queries to O = {SETUP,
EXECUTE, VALIDATE}.

Proof Sketch. The proof is similar to the one for Theorem 2
and consists of following steps: (1) By the IND-CCA security
of KEM, the swap security of H5, and the prf security of H6,
all keys K derived in from the encapsulation of the underly-
ing puvProtocol in the obtainSharedSecret-C-end algorithm,
which is only invoked in the SETUP and EXECUTE oracles, are
distinct except probability (qSETUP +qEXECUTE)ϵ

sCDH
ECDH+(qSETUP +

qEXECUTE)(ϵ
ind-cca
KEM + ϵswapH5

+ ϵprfH6
) +

(
qSETUP+qEXECUTE

2

)
21−l6 . (2) By

the entropy of the user PIN αD, none of the user PIN sampled in
NEWU oracle is predicable except with probability qNEWU2

−αD .
(3) By the collision-resistance of H and the entropy 2−µ

′λ of
pt values sampled in the SEND-BIND-T oracle, we have all
H(pin) and pt values respectively distinct except probability in
total ϵcoll-resH +

(
qSEND-BIND-T

2

)
2−µ

′λ. (4) By the IND-1CPA security
of SKE3, the pins encrypted by the underlying puvProtocol3 in
the setPIN-C algorithm, which is only invoked in the SETUP
oracle, are indistinguishable from random except probability
qSETUPϵ

ind-1cpa
SKE3

. (5) By the IND-1$PA-LPC security of SKE3,
the pinHashs encrypted by the underlying puvProtocol3 in the
obtainPinUvAuthToken-C-start algorithm, which is invoked
only in the EXECUTE oracle, are indistinguishable from random
except probability qEXECUTEϵ

ind-1$pa-lpc
SKE3

.
Finally, the adversary A cannot trigger the flip of the

win-SUF-t′ predicate in Figure 6 via condition (i) in Line 8,
due to the design of CTAP 2.1, see validate-T algorithm in
CTAP 2.1, (ii) in Line 9, since the collision of KEM public
keys or ciphertexts with entropy αpk or αc happens at most(
qEXECUTE

2

)
(2−αpk + 2−αc), (iii) in Line 10, due to the pairwise

distinct KEM public keys and pts in the tokens’ session identi-
fiers, (iv) in Line 11-14, since A obtains no information about
pins or pts and can only win by randomly guessing the pin in
the SETUP oracle maximal pinRetriesMax times for each token
session, or the pt values or the tags t in the Validate algorithm
in the VALIDATE oracle, which happens with probability except
qSETUPpinRetriesMax2−αD + qVALIDATE2

−µ′λ + ϵprfH7
+ 2−l7 in

total, assuming the prf security of the underlying H7.

As such, we suggest to add our PQ instantiation
puvProtocol3 of CTAP 2.1 to the specifications. As mentioned
in Section V-C, we also suggest to increase the security
parameter from 256 to 512, in order to preserve the current
256-bits level security.

VI. FIDO2 COMPOSITION

In this section, we analyze the security of the composition
of WebAuthn 2 and CTAP 2.1. To provide a more generalized
result, we first define the user authentication (ua) security
model for the composition of any ePlA and ePACA protocols,
which we refer to as ePlA+ePACA. Then, we formally reduce
the ua security of ePlA+ePACA to the auth security of the
underlying ePlA (see Section IV-C) and the SUF-t′ security
of the underlying ePACA protocols (see Section V-D). In this
section, we respectively use π̄ and π to denote the ePlA and
ePACA session, respectively, to distinguish them clearly.

A. Security Model of ePlA+ePACA

As before, to define the ua security property, we start with
describing the trust model, oracles, and winning conditions.

a) Trust Model: The trust model for ua covers both the
ones for auth and for SUF-t′. Additionally, we assume a server-
to-client authenticated channel, which is in practice guaranteed
by a TLS connection. As before, we assume “trust-on-first-
use”, which means, the Setup phase and the initialization of

121482

the Bind phase in ePACA and the Register phase in ePlA are
authenticated.

b) Oracles: During the execution of the ua experiment,
the adversary A has access to all oracles defined in the SUF-t′

experiment except AUTH and VALIDATE. Furthermore, A is
allowed to query NEWS, NEWTPLA, and CORRUPT from the
auth experiment, in addition to the following oracles:

REGISTER((S, i), (T, j, j′), (C, k), tb,UV , d): This oracle
simulates the honest registration between server S
and token T via client C. This oracle is the same as
the one in the auth experiment except that after the
invocation of (mrcom,mrcl) ← rCom(idS ,mrch, tb),
additionally (mrcom, t) ← AUTH(C, k,mrcom) and
status ← VALIDATE(T, j′,mrcom, t, d) are queried.
Moreover, the game aborts if status ̸= accepted. Here,
AUTH and VALIDATE are defined in the SUF-t′ experiment.

CHALLENGE((S, i), (C, k), tb,UV): This oracle simulates
the process of the server S generating a challenge nonce
and sending it to the client C in an authenticated channel.
This oracle is the same as in the auth experiment except that
after the invocation of (mrcom,mrcl)← rCom(idS ,mrch, tb)
we additionally query (mrcom, t)← AUTH(C, k,mrcom) and
status← VALIDATE(T, j′,mrcom, t, d), and append tag t to
the output.

RESPONSE((T, j, j′),macom, t, d): This oracle simulates the
token receiving messages from a client and producing its
response. This oracle is the same as the one defined in
the auth experiment except that we additionally query
status← VALIDATE(T, j′,mrcom, t, d), and abort if status ̸=
accepted.

COMPLETE((S, i),macl,marsp): This oracle simulates the
server verifying the response message and the client message.
This oracle is the same as in the auth experiment except that
the winning predicate is Win-ua defined in Figure 8.

It is important to note that AUTH and VALIDATE (from
the SUF-t′ experiment) are embedded in the REGISTER,
CHALLENGE, and RESPONSE oracles in Figure 7.

c) Winning Conditions: We say user authentication (ua)
holds, if all of the following conditions hold when an ePlA
server session π̄i

S accepts a client message macl and a response
message marsp:

1) The non-⊥ session identifiers of the ePlA token (resp., server)
sessions do not collide with each other, see Line 37 - 40 in
Figure 8.

2) The partnered token and server sessions must have the
identical agreed content unless the registration context on the
token is corrupted, see Line 42 in Figure 8.

3) The non-⊥ session identifiers of the ePACA token (resp.,
client) sessions that completed Bind, do not collide with each
other, see Line 44 - 45 in Figure 8.

4) During registration, the ePlA token and server sessions
must partner with each other and the authorized command
message and tag must have been output by one of the non-
compromised partners of the ePACA token session without
corrupting its setup user, see Line 47 - 50 in Figure 8.

5) The token T that has been registered with S, must own an
ePlA session π̄i

T that is partnered with π̄i
S and produce a

response message unless T ’s registration context of S is
corrupted, see Line 52 - 56 in Figure 8.

6) The above response message must be produced after an
ePACA session πj′

T validates some authorized command
macom and tag t with the approval from the user, see Line 58
- 58 in Figure 8.

7) The above command macom and tag t must be authorized
by a client ePACA session πk

C that is partnered with πj′

T for
some challenge message mrch that has been produced by the
ePlA session π̄i

S , unless πk
C is compromised or the PIN that

sets up token T has been corrupted, see Line 61 - 66 in
Figure 8.

ExptuaePlA+ePACA,Compl(A):

1 Lfrsh,LAUTH ← ∅ //as in auth and SUF-t′ experiments

2 LREGISTER,LCHALLENGE,LRESPONSE ← ∅
3 win-ua← false
4 () $←− AO(

1λ
)

5 return win-ua

REGISTER((S, i), (T, j, j′), (C, k), tb, UV, d):

6 if pkCPS = ⊥ or suppUVT = ⊥ or π̄i
S ̸= ⊥ or π̄j

T ̸= ⊥ or rcT [S] ̸= ⊥:
return ⊥

7 π̄i
S .pkCP← pkCPS , π̄j

T .suppUV← suppUVT

8 mrch
$←− rChall(π̄i

S , tb, UV)
9 (mrcom,mrcl) $←− rCom(idS ,mrch, tb)
10 (mrcom, t)← AUTH(C, k,mrcom)
11 status← VALIDATE(T, j′,mrcom, t, d)
12 if status ̸= accepted: return (mrch,mrcl,mrcom, t,⊥,⊥)
13 (mrrsp, rcT) $←− rRsp(π̄j

T ,mrcom)

14 (rcS , d′)← rVrfy(π̄i
S ,mrcl,mrrsp)

15 Lfrsh ← Lfrsh ∪ (S, T)
16 LREGISTER ← LREGISTER ∪ {(S, i, T, j, j′, C, k,mrch,mrcl,mrcom, t,mrrsp)}
17 return (mrch,mrcl,mrcom, t,mrrsp, d

′)

CHALLENGE((S, i), (C, k), tb, UV):

18 if pkCPS = ⊥ or π̄i
S ̸= ⊥: return ⊥

19 π̄i
S .pkCP← pkCPS

20 mach
$←− aChall(π̄i

S , tb, UV)
21 (macom,macl)← aCom(idS ,mach, tb)
22 (macom, t)← AUTH(C, k,macom)
23 LCHALLENGE ← LCHALLENGE ∪ {(S, i, C, k,mach,macl,macom, t)}
24 return (mach,macl,macom, t)

RESPONSE((T, j, j′),macom, t, d):
25 status← VALIDATE(T, j′,macom, t, d)
26 if status ̸= accepted: return ⊥
27 if suppUVT = ⊥ or π̄j

T ̸= ⊥: return ⊥
28 π̄j

T .suppUV← suppUVT

29 (marsp, rcT) $←− aRsp(π̄j
T , rcT ,macom)

30 LRESPONSE ← LRESPONSE ∪ {(T, j, j′,macom, t, d,marsp)}
31 return marsp

COMPLETE((S, i),macl,marsp):

32 if π̄i
S = ⊥ or π̄i

S .stexe ̸= running: return ⊥
33 (rcS , d) $←− aVrfy(π̄i

S , rcS ,macl,marsp)
34 if d = 1: win-ua← Win-ua(S, i)
35 return d

Fig. 7. The ua security experiment for ePlA+ePACA. The winning condition
Win-ua is defined in Figure 8. The AUTH and VALIDATE oracles are defined
in ExptSUF-t′

ePACA,Compl experiment in Figure 6.

Definition 3 (ua security for ePlA+ePACA). Let Compl ∈
{PPT,QPT}, ePACA be an extended PIN-based access control
for authenticators protocol, and ePlA be an extended pass-
wordless authentication protocol. We say that the composition

131483

Win-ua(S, i):
36 //The non-⊥ session identifiers of ePlA token (resp. server) sessions do not collide with each other

37 if ∃(T1, j1), (T2, j2) s.t. (T1, j1) ̸= (T2, j2) and π
j1
T1

.sid = π
j2
T2

.sid ̸= ⊥
38 return 1
39 if ∃(S1, i1), (S2, i2) s.t. (S1, i1) ̸= (S2, i2) and π

i1
S1

.sid = π
i2
S2

.sid ̸= ⊥
40 return 1
41 //In ePlA, the partnered session have the identical agreed content unless the registration context on the token is corrupted

42 if ∃(S′, i′), (T ′, j′) s.t. π̄i′
S′ .sid = π̄j′

T ′ .sid ̸= ⊥ and (S′, T ′) ∈ Lfrsh

and π̄i′
S′ .agCon ̸= π̄j′

T ′ .agCon: return 1
43 //The non-⊥ session identifiers of ePACA token (resp. client) sessions that completed Bind algorithm don’t collide with

each other

44 if ∃(C1, k1), (C2, k2) s.t. (C1, k1) ̸= (C2, k2) and π
k1
C1

.stexe =

= π
k2
C2

.stexe = bindDone and π
j1
C1

.sid = π
j2
C2

.sid: return 1

45 if ∃(T1, j
′
1), (T2, j

′
2) s.t. (T1, j

′
1) ̸= (T2, j

′
2) and π

j′1
T1

.stexe =

= π
j′2
T2

.stexe = bindDone and π
j′1
T1

.sid = π
j′2
T2

.sid: return 1
46 //The ePlA or ePACA sessions used in the registration phase must partner with each other.

47 foreach (S′, x, T ′, y, y′, C′, z,mrch,mrcl,mrcom, trcom,mrrsp) ∈ LREGISTER

48 if π̄y

T ′ .sid ̸= π̄x
S′ .sid: return 1

49 (C′′, z′)← bindPartner(T ′, y′)

50 if (C′′, z′,mrcom, trcom) /∈ LAUTH and
(
(C′′, z′) = (⊥,⊥)

or πz′
C′′ .compromised = false

)
and πy′

T ′ .pinCorr = false: return 1

51 //A response message marsp must be output by T that registered with S, unless T ’s registration context of S is corrupted

52 T ← regPartner(S, i)
53 if ̸ ∃j s.t. π̄i

S .sid = π̄j
T .sid

54 if (S, T) ∈ Lfrsh: return 1
55 elseif ̸ ∃(j′,macom, t, d,marsp) s.t. (T, j, j′,macom, t, d,marsp) ∈ LRESPONSE

56 return 1
57 //Above marsp must be output under user approval

58 elseif d ̸= accepted: return 1
59 else
60 //Above marsp must be output after above T validates above message-tag pair (macom, t), which encodes mach output

by session π̄i
S

61 (C, k)← bindPartner(T, j′)
62 if (C, k,macom, t) /∈ LAUTH

63 if (C, k) = (⊥,⊥) or πk
C .compromised = false

64 if πj′
T .pinCorr = false: return 1

65 elseif ̸ ∃(mach,macl) s.t. (S, i, C, k,mach,macl,macom, t) ∈ LCHALLENGE

66 return 1
67 return 0

Fig. 8. The Win-ua in ua security experiment for ePlA+ePACA. The
regPartner and bindPartner predicates are defined in Figure 2 and Figure 6,
respectively.

ePlA+ePACA has user authentication, or is ua-secure for short,
if for all Compl adversaries A the advantage

AdvuaePlA+ePACA,Compl(A) := Pr[ExptuaePlA+ePACA,Compl(A) = 1]

in winning the game ExptuaePlA+ePACA,Compl as described in
Figure 7 is negligible in the security parameter λ.

We can reduce the security of the ePlA+ePACA protocol to
the security of the ePlA and the ePACA protocol as stated in
the next theorem. We give the full proof in [4].

Theorem 4 (PPT/QPT security of the composition). Let
Compl ∈ {PPT,QPT}. Let Σ denote an ePlA protocol and Π
denote an ePACA protocol. If there exists a Compl adversary
A that breaks the ua security of the composition Σ+Π, then
there must exist Compl adversaries A1 and A2 that respectively
break the auth security of Σ and the SUF-t′ security of Π such
that

AdvuaΣ+Π,Compl(A) ≤ AdvauthΣ,Compl(A1) + AdvSUF-t′
Π,Compl(A2).

In particular, the winning condition 1 and 3 capture the
uniqueness of each WebAuthn 2 and CTAP 2.1 session
identifiers. If two sessions are partnered with each other, then
they are each other’s unique partners. The winning condition 2

ensures that if the credential private key between the partnered
token and server sessions is not corrupted, then both sessions
must agree on the server identifier idS , the H(ch, tb) hash
of the challenge nonce and the token binding states, the
local counter n, and the user presence UP and verification
UV conditions. Furthermore, if the underlying hash function
H is collision resistant, the token and server sessions also
implicitly agree on the token binding state tb. Our theorem
proves partnership of WebAuthn 2 sessions in the authenticated
registration phase and the resilience of man-in-the-middle
attacks against WebAuthn 2 in the authentication phase unless
the corruption of the registration context on the token, which are
captured by winning conditions 4 and 5. The messages between
every partnered token and server session in WebAuthn 2 must
be authorized by the client, which is connected to the server
over an authenticated channel in WebAuthn 2 and bound to
the token in CTAP 2.1 unless the adversary make certain
corruptions, which is captured by wining conditions 4,6,7.

VII. RELATED WORK

The only published in-depth formal analysis of FIDO2 is
Barbosa et al. [2], which we address in-depth. We note that
a recently released manuscript [10] also analyzes aspects of
FIDO2, but their work focuses on WebAuthn’s privacy aspects,
and introducing the possibility of revocation, notably in the
context of cryptocurrency wallets. Our work is essentially
orthogonal to [10] in terms of focus, and we consider the
newer versions of both sub-protocols.

To provide context for our comparison to [2], we first revisit
the largest changes in CTAP 2.1 compared to CTAP 2.0.

A. Comparison between CTAP 2.0 and CTAP 2.1

Compared to the expired proposed standard of CTAP 2.0
[7], the latest draft review of CTAP 2.1 [6] has a number of
differences, mainly from the following four aspects:

1) The definition of CTAP 2.0 is directly based on the concrete
primitives such as the Diffie-Hellman key exchange and hash
functions, while CTAP 2.1 is based on a so-called ”PIN/UV
Auth Protocol” abstract scheme, denoted by puvProtocol for
short, which leads CTAP 2.1 to be PQ ready. Up to date,
two instantiations of puvProtocol are officially announced,
where CTAP 2.1 instantiated by the puvProtocol1 is close
to CTAP 2.0. In particular, CTAP 2.1 instantiated with our
hybrid construction puvProtocol3 proposed in Section V-C
is provably PQ secure, as proven in Theorem 3.

2) In CTAP 2.0, the binding state that is used for the client’s
authorization and the token’s validation is defined as so-called
pinToken, which has the length of multiple of 128 bits and
can be of unlimited length. In CTAP 2.1, the binding state
is defined as so-called pinUvAuthToken, the length of which
is however fixed: either 128 or 256 bits.

3) In CTAP 2.0, the pinToken is sampled during the reboot
phase and then repeatedly re-used until the next invocation
of the reboot algorithm. In contrast, the pinUvAuthToken in
CTAP 2.1 is one-time – it is re-sampled after every usage.
This difference exerts a great influence on the security: While

141484

CTAP 2.0 only satisfies UF-t security as proven by Barbosa
et al. [2], CTAP 2.1 provably satisfies SUF-t′ security, see
Theorem 2.

4) CTAP 2.0 allows tokens and clients to share a pinUvAuth-
Token only when the users provide their correct pin, which
is called clientPIN method. Instead, CTAP 2.1 additionally
enables users to input their biometric information such
as fingerprint if the built-in on-device user verification is
physically supported by the token, which is called built-in
user verification method. Notably, the built-in user verification
method is always the preferred option when it is supported by
the token. The biometric information is assumed to be unique
and unpredictable for each user and is input to the token
without any intermediary (therefore, the transmission can be
considered to be authenticated). In our model, built-in user
verification can be viewed as the simplified CTAP 2.1 using
clientPIN method without the transmission of the encryption
of pinHash.

B. Comparison with Barbosa et al. [2]

As mentioned before, our work builds on the first formal
FIDO2 analysis in [2], and we compare several aspects.

WebAuthn comparison:
1) Different analysis target: The analysis of [2] assumes

attestation type Basic such that “the server is assumed
to know the attestation public key that uniquely identifies
the authenticator” [2]. However, the token’s attestation key
pair is generated in the factory and at least 100,000 tokens
should share same attestation key pair to ensure privacy
([1, Section 14.4], [11, Section 14.4.1]). Thus, Barbosa et
al.’s assumption does not hold in practice. In contrast, we
investigate WebAuthn with the default attestation type None,
and our Theorem 1 also applies to WebAuthn with attestation
type Basic.

2) Fine-grained abstraction: Our WebAuthn abstraction is more
detailed than [2]. For example, we include the supported
signature list pkCP of the server, the optional UV -support of
the token, and the token binding state tb. Our theorem implies
that the server and token ultimately agree on these values,
which is crucial for the desired security. Furthermore, the
supported schemes list enables us to to exhibit a downgrade
attack against WebAuthn and specify a security notion
“Algorithm Agreement” for the corresponding protection.

3) Active interference: The security model of WebAuthn in
[2] seems to allow active interference during the registration.
This is true in [2]’s model because it assumes that each token
has a unique attestation key pair and the server knows in
advance which public key to use for signature verification;
yet this is not true in practice by design, as mentioned previ-
ously. The official specification [11, Section 13.4.4] clearly
acknowledges the MitM attack on registration, contradicting
the implication of [2].

4) Stronger adversary capability: Barbosa et al. assume the
tokens to be tamper-proof, i.e., the adversary is prevented
from corrupting the internal state of any token. Our model,
instead, includes a corruption oracle that enables an adversary

to reveal the private signing key, capturing the real world
scenario in which some tokens might be stolen and the private
keys compromised.
CTAP comparison:

1) Different analysis target: Barbosa et al. analyzed CTAP 2.0
[7], while we investigate CTAP 2.1 [6]. As explained in
Section VII-A, these two versions have numerous differences.
Our paper carefully explores the abstraction gaps between
CTAP 2.0 and CTAP 2.1.

2) Improved security model: We refine the Barbosa et al. PACA
security model. For example, the token binding states may
be reset in REBOOT or SEND oracle. However, Barbosa et al.
only mark the token sessions invalid in the REBOOT oracle
but forgot the ones in the SEND oracle8. Furthermore, the
PACA definition of invalidity is not suitable for CTAP 2.1,
as the previous binding states of a token are reset after not
only reboot but also the establishment of a new session. In
this work, we define a code-based SUF-t′ security, which
refines and generalizes SUF-t security in [2].

3) Proof gaps: Although Barbosa et al. proved the security of
CTAP 2.0, their proof has several technical gaps. To address
this, we base the SUF-t′ security of CTAP 2.1 on novel
assumptions and provide a detailed proof. We summarize the
gaps and shortcomings of the proofs from [2] in [4], and
show how we solve each for our work.
The Composition of WebAuthn and CTAP:

1) Different security model: The security of the composition of
WebAuthn 2 and CTAP 2.1 relies on the respective security
guarantees. The differences between the syntax and the
security models of both WebAuthn and CTAP compared to [2]
propagate into a different security model for the composition,
and we provide a fully detailed proof.

VIII. LIMITATIONS AND FUTURE WORK

While our work covers many core aspects of CTAP and
WebAuthn beyond the state-of-the-art, it remains an abstraction.
Some of our main current limitations include that we do not
yet model some of the new CTAP 2.1 features for enterprise
customers, and do not make formal statements about the
unlinkability of credentials or other detailed privacy statements.
We leave the proof methodology for tighter upper bounds in
all theorems in our paper as an open question.

ACKNOWLEDGMENTS

We are very grateful to Jacqueline Brendel for initiating the
project, initial analysis of the standards, and valuable support
throughout.

8Recall that [2] defines the invalidity of a session such that ”if a token is
rebooted, its binding states got reset and hence become invalid” [2]

151485

REFERENCES

[1] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones, Michael B. Jones,
Akshay Kumar, Angelo Liao, Rolf Lindemann, Emil Lundberg, Vijay
Bharadwaj, Arnar Birgisson, Hubert Le Van Gong, Christiaan Brand,
Langley Adam, Giridhar Mandyam, Mike West, and Jeffrey Yasskin.
Web authentication: An API for accessing public key credentials level 1
– W3C recommendation. https://www.w3.org/TR/2019/REC-webauthn-
1-20190304/. March 2019.

[2] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan
Warinschi. “Provable Security Analysis of FIDO2”. In: CRYPTO 2021,
Part III. Vol. 12827. LNCS. Virtual Event: Springer, Heidelberg, Aug.
2021.

[3] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. “A
Concrete Security Treatment of Symmetric Encryption”. In: 38th FOCS.
IEEE Computer Society Press, Oct. 1997.

[4] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1,
and WebAuthn 2: Provable Security and Post-Quantum Instantiation.
Cryptology ePrint Archive, Paper 2022/1029. https://eprint.iacr.org/
2022/1029. 2022.

[5] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila.
“Transitioning to a Quantum-Resistant Public Key Infrastructure”. In:
Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017. Springer, Heidelberg, 2017.

[6] John Bradley, Jeff Hodges, Michael B. Jones, Akshay Kumar, Rolf
Lindemann, Johan Verrept, Chad Armstrong, Konstantinos Georgantas,
Fabian Kaczmarczyck, Nina Satragno, and Nuno Sung. Client to
Authenticator Protocol (CTAP) – Proposed Standard, June 15, 2021.
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client- to-
authenticator-protocol-v2.1-ps-20210615.html. 2021.

[7] Christiaan Brand, Alexei Czeskis, Ehrensvärd Jakob, Michael B. Jones,
Akshay Kumar, Rolf Lindemann, Adam Powers, and Johan Verrept.
Client to Authenticator Protocol (CTAP) – Proposed Standard, January
30, 2019. https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-
client-to-authenticator-protocol-v2.0-ps-20190130.html. 2019.

[8] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta,
Ray Perlner, and Daniel Smith-Tone. NISTIR 8105 Report on Post-
Quantum Cryptography. Tech. rep. National Institute for Standards and
Technology (NIST), 2016.

[9] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L
Tuchman. Message verification and transmission error detection by
block chaining. US Patent 4,074,066. 1978.

[10] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets Wallet:
Formalizing Privacy and Revocation for FIDO2. Cryptology ePrint
Archive, Report 2022/084. https://ia.cr/2022/084. 2022.

[11] Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay Kumar, Emil
Lundberg, John Bradley, Christiaan Brand, Langley Adam, Giridhar
Mandyam, Nina Satragno, Nick Steele, Jiewen Tan, Shane Weeden,
Mike West, and Jeffrey Yasskin. Web authentication: An API for
accessing public key credentials level 2 – W3C recommendation. https:
//www.w3.org/TR/2021/REC-webauthn-2-20210408/. April 2021.

[12] B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography
Specifications Version 2.2. RFC 8017 (Informational). Internet Engi-
neering Task Force, Nov. 2016.

[13] Jim Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152.
July 2017.

APPENDIX A
PRELIMINARIES

Definition 4. We say F : K ×M→ O is ϵ-prf secure, if for
any efficient adversaries A, any k $←− K, and any truly random
function R :M→O, it holds that,

AdvprfF,A :=
∣∣Pr[AF(k,·) = 1]− Pr[AR(·) = 1]

∣∣ ≤ ϵ

We say F is ϵ-swap secure, if the function F̄ defined below is
ϵ-prf secure.

F̄ :M×K → O, F̄(m, k) := F(k,m)

Definition 5. Let SKE = (KG,Enc,Dec) be a symmetric key
encryption scheme with symmetric key space K. We say SKE is

ϵ-one time IND-CPA secure with respect to function H (denoted
by IND-1CPA-H) secure, if the blow defined advantage of
every (potential quantum) adversary A against ExptIND-1CPA-H

SKE

experiment in Figure 9 is bounded by,

AdvIND-1CPA-H
SKE (A) :=

∣∣∣Pr[ExptIND-1CPA-H
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ.

Definition 6. Let SKE = (KG,Enc,Dec) be a symmetric key
encryption scheme with symmetric key space K. We say SKE is
ϵ-IND-1$PA-LPC secure, if the blow defined advantage of every
(potential quantum) adversary A against ExptIND-1$PA-LPC

SKE

experiment in Figure 9 is bounded by,

AdvIND-1$PA-LPC
SKE (A) :=

∣∣∣Pr[ExptIND-1$PA-LPC
SKE (A) = 1]−1

2

∣∣∣ ≤ ϵ.

ExptIND-1CPA-H
SKE (A):

1 b $←− {0, 1}
2 K $←− KG()
3 (m⋆

0 ,m
⋆
1)

$←− A()
4 if |m⋆

0 | ̸= |m
⋆
1 |

5 return 0
6 c⋆ $←− Enc(K,m⋆

b)
7 t⋆ ← H(K, c⋆)
8 b′ $←− A(c⋆, t⋆)
9 return Jb = b′K

ExptIND-1$PA-LPC
SKE (A):

1 b $←− {0, 1}
2 K $←− KG()
3 (m⋆

0 ,m
⋆
1)

$←− A()
4 if |m⋆

0 | ̸= |m
⋆
1 |

5 return 0
6 c⋆ $←− Enc(K,m⋆

b)
7 b′ $←− ARAND,LPC(c⋆)
8 return Jb = b′K

RAND(l):

9 m′
0

$←− {0, 1}l
10 m′

1
$←− {0, 1}l

11 c′ $←− Enc(K,m′
b)

12 return (m′
0,m

′
1, c

′)

LPC(c):
13 if c = c⋆

14 return 0
15 return Jm⋆

0 =
Dec(K, c)K

Fig. 9. IND-1CPA-H and IND-1$PA-LPC experiments for SKE =
(KG,Enc,Dec).

APPENDIX B
CBC MODE AND IND-1$PA-LPC SECURITY

The Cipher Block Chaining (CBC) mode is a block cipher
mode of operation invented by Ehrsam et al. in 1976 [9].
The CBC can be divided into two categories: CBC0, whose
initial vector is a string of zero bits, and CBCR, whose initial
vector is a random bit string. We first recall CBC as an
instance of symmetric key encryption. Let K := {0, 1}f1(λ),
M := {0, 1}f2(λ), and O := {0, 1}f2(λ) respectively denote
the symmetric key space, message space, and output space
of an invertible function F : K ×M → O, where f1 and f2
denote arbitrary polynomial functions. Then, both CBC0 and
CBCR are defined in Figure 10. Here, we simply assume that
the input message m of the encryption algorithm always has
the length of a multiple of f2(λ). It is straightforward that
CBC0 is a deterministic encryption scheme.

The IND-1$PA security of the deterministic CBC0 was
proven by Barbosa et al. [2]. Moreover, the IND-CPA security
of the randomized CBCR was proven by Bellare et al. [3].
Below, we prove the IND-1$PA-LPC security of both CBC0

and CBCR based on above two security conclusions.

Theorem 5 (IND-CPA =⇒ IND-1$PA). Let SKE =
(KG,Enc,Dec) denote a symmetric encryption scheme. If SKE
is ϵind-cpa

SKE -IND-CPA secure, then SKE is ϵind-1$pa
SKE -IND-1$PA

secure such that ϵind-1$pa
SKE ≤ ϵind-cpa

SKE .

Theorem 6 (IND-1$PA =⇒ IND-1$PA-LPC). Let SKE =
(KG,Enc,Dec) denote CBC0 or CBCR. If SKE is ϵind-1$pa

SKE -
IND-1$PA secure and the underlying function F : {0, 1}f1(λ)×

161486

KG(1λ):
1 K $←− K
2 return K

Enc(K,m):
1 x1 ∥ ... ∥ xn ← m s.t. |xi| =

f2(λ) ∀i ∈ {1, · · · , n}
2 y0

$←− SetIV()
3 for i = 1, ..., n
4 yi ← F(K, yi−1 ⊕ xi)
5 y ← y0 ∥ · · · ∥ yn

6 return y

Dec(K, c):
1 y0 ∥ ... ∥ yn ← c s.t. |yi| =

f2(λ) ∀i ∈ {0, · · · , n}
2 for i = 1, ..., n
3 xi ← yi−1 ⊕ F−1(K, yi)
4 m← x1 ∥ · · · ∥ xn

5 return m

Fig. 10. CBC mode SKE = (KG,Enc,Dec) with symmetric key space
K := {0, 1}f1(λ) for arbitrary polynomial function f1. If SKE = CBC0,
then SetIV() outputs a string of zero bits of length f2(λ). If SKE = CBCR,
then SetIV() outputs a random string of length f2(λ).

{0, 1}f2(λ) → {0, 1}f2(λ) is ϵprpF -prp secure, then SKE is
ϵind-1$pa-lpc
SKE -IND-1$PA-LPC secure such that

ϵind-1$pa-lpc
SKE

≤2ϵprpF + qLPC2
−f2(λ) + qRAND⌈

lmax

f2(λ)
⌉2−f2(λ) + ϵind-1$pa

SKE

where qO denotes the maximal number of queries to O ∈
{RAND, LPC} oracles and lmax denotes the maximal input to
the RAND oracle.

APPENDIX C
DETAILED DESCRIPTION OF WEBAUTHN 2

In Figure 11, the security parameter λ = 128. For each server
S, the associated identifier idS is its effective domain. The
official supported signature algorithms are RSASSA–PKCS1–
v1 5 and RSASSA–PSS. As discussed in Section IV-D, the
list of signature schemes can be extended by PQ compatible
hybrid signature scheme. The underlying hash function H is
SHA-256. We assume that each token has a unique user and
can be registered at most once per server. The Register =
(rChall, rCom, rRsp, rVrfy) sub-protocol is executed as follows.
• rChall(πi

S , tb,UV): The server S samples a random chal-
lenge nonce πi

S .ch and a user identifier πi
S .uid and initializes

the token biding state πi
S .tb and user verification condition

πi
S .UV . Finally, S sets πi

S .stexe to running and outputs a
challenge message, see Line 3.

• rCom(idS ,mrch, tb): The client parses mrch into a server
identifier id, a challenge nonce ch, a user identifier uid, a
supported signature list pkCP and a user verification condition
UV . Next, the client aborts if id ̸= idS . Otherwise, the client
sets the user presence condition UP to true and computes
the hash h of client message mrcl, which is defined in Line 8.
Finally, the client outputs the client and command messages
mrcl and mrcom, respectively, see Line 10.

• rRsp(πj
T ,mrcom): The token T first parses mrcom into a

server identifier id, a user identifier uid, a hash value h,
a signature list pkCP, and the user presence and user
verification conditions UP and UV , respectively. Next, T
picks one supported signature scheme Σ in pkCP with the
highest preference, i.e., with the smallest index possible.
Afterwards, T checks whether it can support the required

user verification condition UV . If either step fails, the token
aborts. Otherwise, T generates a public-private key pair using
the key generation algorithm of Σ, initializes the counter
n to 0, samples a random credential identifier cid, and
sets its execution state to accepted. Finally, T extends the
registration context as in Line 20, and outputs it together with
a response message mrrsp, as defined in Line 18. The agreed
content includes the server identifier id, the hash value h,
the credential identifier cid, the counter n, the list pkCP, the
public key pk, the signature scheme Σ, and the user presence
UP and verification UV conditions. The session identifier
is the tuple of the hash of server identifier id, the credential
identifier cid, and the counter n.

• rVrfy(πi
S ,mrcl,mrrsp): The server S parses the client message

mrcl and the response message mrrsp and executes a few
checks as in Line 26. It outputs abort and decision d = 0
if any check fails. Otherwise, S sets the execution state to
accepted. Finally, S extends the registration context as in
Line 28 and outputs it together with decision d = 1. The
agreed content and the session identifier are defined as the
ones in the rRsp algorithm.

Authenticate = (aChall, aCom, aRsp, aVrfy) is defined next.

• aChall(πi
S , tb,UV): The server S samples a random chal-

lenge nonce πi
S .ch and initializes its token binding state πi

S .tb
and user condition πi

S .UV . Finally, S sets πi
S to running

and outputs a challenge message, see Line 34.
• aCom(idS ,mach, tb): The client parses mach into an identifier
id, a challenge nonce ch, and user verification condition UV .
Next, the client aborts if id ̸= idS . Otherwise, the client
sets the user presence condition UP to true and compute
the hash h of the client message macl, which is defined in
Line 39. Finally, the client outputs the client message macl

and command message macom, see Line 41.
• aRsp(πj

T , rcT ,macom): The token T first parses the command
message macom into a server identifier id, a hash value h,
and user presence and user verification conditions UP and
UV . Next, T checks whether the corresponding registration
context exists and whether it can satisfy the user verification
requirement. T aborts if either of the above steps fails. Then,
T increments the counter rcT [id].n by 1 and defines the
associated data ad that includes the hash of id, the counter
rcT [id].n, and the conditions UP and UV , followed by
computing a signature σ on ad and h using the signing
key rcT [id].sk. Finally, T sets its execution state to accepted
and outputs the response message marsp defined in Line 49
along with rcT . The agreed context is defined as the tuple
of the server identifier id, the value h, the counter rcT [id].n,
and the user conditions UV and UP . The session identifier
is defined as the tuple of the hash of the server identifier id,
the credential identifier rcT [id].cid, the hash value h, and the
counter n.

• aVrfy(πi
S , rcS ,macl,marsp): The server S parses the client

message macl and the response message marsp and executes
checks as in Line 58 if the corresponding registration context
exists. It aborts and produces decision d = 0 if any check

171487

Register

rChall(πi
S , tb, UV): // 1. Server

1 πi
S .ch $←− {0, 1}≥λ, πi

S .tb← tb, πi
S .UV ← UV

2 πi
S .uid $←− {0, 1}≤4λ

3 mrch ← (idS , πi
S .ch, πi

S .uid, πi
S .pkCP, πi

S .UV)
4 πi

S .stexe ← running
5 return mrch

rCom(idS ,mrch, tb): // 2. Client
6 (id, ch, uid, pkCP,UV)← mrch

7 if id ̸= idS : return ⊥
8 mrcl ← (ch, tb)
9 UP ← true, h← H(mrcl)
10 mrcom ← (id, uid, h, pkCP,UP,UV)
11 return (mrcom,mrcl)

rRsp(πj
T ,mrcom): // 3. Token

12 (id, uid, h, pkCP,UP,UV)← mrcom

13 if at least one algorithm in pkCP is supported
14 Σ← pkCP[i] with smallest i possible
15 else return (⊥,⊥)
16 if πj

T .suppUV = false and UV = true: return (⊥,⊥)
17 (pk, sk) $←− Σ.KG(1λ), cid $←− {0, 1}≥λ, n← 0
18 mrrsp ← (H(id), n, cid, pk,Σ,UP,UV)

19 hCP ← H(pkCP)

20 rcT [id]← (uid, cid, sk, n,Σ, hCP)

21 πj
T .agCon← (id, h, cid, n, pkCP, pk,Σ,UV ,UP)

22 πj
T .sid← (H(id), cid, n)

23 πj
T .stexe ← accepted

24 return (mrrsp, rcT)

rVrfy(πi
S ,mrcl,mrrsp): // 4. Server

25 (ch, tb)← mrcl, (h, n, cid, pk,Σ,UP,UV)← mrrsp

26 if h ̸= H(idS) or n ̸= 0 or ch ̸= πi
S .ch or tb ̸= πi

S .tb or Σ ̸∈ πi
S .pkCP

or UP ̸= true or UV ̸= πi
S .UV : return (⊥, 0)

27 hCP ← H(πi
S .pkCP)

28 rcS [cid]← (πi
S .uid, pk, n,Σ, hCP)

29 πi
S .agCon← (idS ,H(mrcl), cid, n, π

i
S .pkCP, pk,Σ,UV ,UP)

30 πi
S .sid← (H(id), cid, n)

31 πi
S .stexe ← accepted

32 return (rcS , 1)

Authenticate

aChall(πi
S , tb, UV): // 1. Server

33 πi
S .ch $←− {0, 1}≥λ, πi

S .tb← tb, πi
S .UV ← UV

34 mach ← (idS , πi
S .ch, πi

S .UP, πi
S .UV)

35 πi
S .stexe ← running

36 return mach

aCom(idS ,mach, tb): // 2. Client
37 (id, ch,UV)← mach

38 if id ̸= idS : return ⊥
39 macl ← (ch, tb)
40 UP ← true, h← H(macl)
41 macom ← (id, h,UP,UV)
42 return (macom,macl)

aRsp(πj
T , rcT ,macom): // 3. Token

43 (id, h,UP,UV)← macom

44 if rcT [id] = ⊥: return (⊥, rcT)

45 if πj
T .suppUV = false and UV = true: return (⊥, rcT)

46 rcT [id].n← rcT [id].n + 1
47 ad← (H(id), rcT [id].n,UP,UV)
48 σ $←− rcT [id].Σ.Sign(rcT [id].sk, (ad, h))

49 marsp ← (rcT [id].cid, ad, rcT [id].hCP, σ, rcT [id].uid)

50 πj
T .agCon← (id, h, rcT [id].n, rcT [id].hCP, UV ,UP)

51 πj
T .sid← (H(id), rcT [id].cid, h, n)

52 πj
T .stexe ← accepted

53 return (marsp, rcT)

aVrfy(πi
S , rcS ,macl,marsp): // 4. Server

54 (ch, tb)← macl, (cid, ad, hCP, σ, uid)← marsp

55 (h, n,UP,UV)← ad
56 if rcS [cid] = ⊥: return (rcS , 0)

57 if hCP ̸= rcS [cid].hCP: rcS [cid]← ⊥ and return (rcS , 0)

58 if πi
S .ch ̸= ch or πi

S .tb ̸= tb or h ̸= H(idS) or UP ̸= true or UV ̸= πi
S .UV

or rcS [cid].Σ.Vfy(rcS [cid].pk, (ad,H(macl)), σ) = 0 or n ≤ rcS [cid].n:
return (rcS , 0)

59 rcS [cid].n← n

60 πi
S .agCon← (idS ,H(macl), n, hCP, UV ,UP)

61 πi
S .sid← (h, cid,H(macl), n)

62 πi
S .stexe ← accepted

63 return (rcS , 1)

Fig. 11. Instantiation of ePlA = (Register,Authenticate) with WebAuthn 2 (and WebAuthn 2+ that includes boxed operations) with attestation type None,
where Register = (rChall, rCom, rRsp, rVrfy) and Authenticate = (aChall, aCom, aRsp, aVrfy).

fails. Otherwise, S updates the counter in the registration
context and sets the execution state to accepted and outputs
rcS together with decision d = 1. The agreed context and
the session identifier are the same as in aRsp.

APPENDIX D
DETAILED DESCRIPTION OF CTAP 2.1

A. Description of CTAP 2.1 Algorithms

authPowerUp-T : inputs a token state stT and resets each
underlying Pin/Uv Auth Protocol puvProtocol. The counter
m for the consecutive tries for binding phase is set to its
maximum of 3.

getInfo-T : inputs a token session πi
T and outputs its version

and the list of the supported Pin/Uv Auth Protocol. We write
info← getInfo-T (πi

T).
obtainSharedSecret-C-start: inputs a client session πj

C and
token information info = (version, puvProtocolList) and
aborts if version = 2.0. Otherwise, the client session πj

C

selects a Pin/Uv Auth Protocol puvProtocol from the list
puvProtocolList and initializes it locally. The execution state

of πj
C is set to waiting. Finally, this algorithm outputs

the selected Pin/Uv Auth Protocol puvProtocol. We write
puvProtocol $←− obtainSharedSecret-C-start(πj

C , info).
obtainSharedSecret-T : inputs a token session πi

T and a
Pin/Uv Auth Protocol puvProtocol aborts if puvProtocol
is not supported by the token T . Otherwise, this al-
gorithm simply outputs the public key of the local in-
stance of puvProtocol. During the execution, the status
of the token session is set to waiting. We write pk ←
obtainSharedSecret-T (πi

T , puvProtocol).
obtainSharedSecret-C-end: inputs a client session πj

C and
a public key pk. During the execution, the client ses-
sion produces a shared secret K and a ciphertext c, fol-
lowed by storing the secret K locally in πj

C .K. This
algorithm outputs the ciphertext c. We write c $←−
obtainSharedSecret-C-end(πj

C , pk).
setPIN-C: inputs a client session πj

C and a PIN pin and
aborts if pin is not in the PIN domain PIN . Otherwise, πj

C

encrypts this pin and authenticates the encryption using the
selected Pin/Uv Auth Protocol and the locally stored shared

181488

authPowerUp-T (stT):
64 foreach puvProtocol ∈ stT .puvProtocolList
65 stT .puvProtocol.initialize()
66 stT .m← 3

obtainSharedSecret-C-start(πj
C , info):

67 Parse (version, puvProtocolList)← info
68 if version = 2.0: return ⊥
69 select puvProtocol ← puvProtocolList

70 πj
C .selectedpuvProtocol← puvProtocol

71 πj
C .selectedpuvProtocol.initialize()

72 πj
C .stexe ← waiting

73 πj
C .sid← πj

C .sid ∥ info ∥ puvProtocol
74 return puvProtocol

obtainSharedSecret-T (πi
T , puvProtocol) :

75 if puvProtocol /∈ stT .puvProtocolList: return ⊥
76 pkT ← stT .puvProtocol.getPublicKey()
77 πi

T .stexe ← waiting
78 πi

T .sid← πi
T .sid ∥ puvProtocol ∥ pkT

79 return pkT

obtainSharedSecret-C-end(πj
C , pk) :

80 (c,K) $←− πj
C .selectedpuvProtocol.encapsulate(pk)

81 πj
C .K← K

82 πj
C .sid← πj

C .sid ∥ pk ∥ c
83 return c

setPIN-C(πj
C , pin) :

84 if pin /∈ PIN : return ⊥
85 cp $←− πj

C .selectedpuvProtocol.encrypt(πj
C .K, pin)

86 tp $←− πj
C .selectedpuvProtocol.authenticate(πj

C .K, cp)
87 return (cp, tp)

setPIN-T (πi
T , puvProtocol, c, cp, tp):

88 if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinHash ̸= ⊥: return ⊥
89 K ← stT .puvProtocol.decapsulate(c)
90 if K = ⊥ ∨ stT .puvProtocol.verify(K, cp, tp) = false: return ⊥
91 pin ← stT .puvProtocol.decrypt(K, cp)
92 if pin /∈ PIN : return ⊥
93 stT .pinHash← H(pin)
94 stT .pinRetries← pinRetriesMax
95 return accepted

getInfo-T (πi
T):

96 info← (stT .version, stT .puvProtocolList)
97 πi

T .sid← πi
T .sid ∥ info

98 return info

obtainPinUvAuthToken-C-start(πj
C , pin):

99 pinHash← H(pin)

100 cph $←− πj
C .selectedpuvProtocol.encrypt(πj

C .K, pinHash)

101 πj
C .stexe ← bindStart

102 πj
C .sid← πj

C .sid ∥ cph
103 return cph

obtainPinUvAuthToken-T (πi
T , puvProtocol, c, cph):

104 if puvProtocol /∈ stT .puvProtocolList ∨ stT .pinRetries = 0
105 return (⊥, false)
106 K ← stT .puvProtocol.decapsulate(c)
107 if K = ⊥: return (⊥, false)
108 stT .pinRetries← stT .pinRetries− 1
109 pinHash← stT .puvProtocol.decrypt(K, cph)
110 if pinHash ̸= stT .pinHash
111 stT .puvProtocol.regenerate()
112 if stT .m = 0: authPowerUp-T (stT): return (⊥, true)
113 stT .m← 3, stT .pinRetries← pinRetriesMax
114 foreach puvProtocol′ ∈ stT .puvProtocolList
115 stT .puvProtocol′.resetpuvToken()
116 πi

T .bs ← πi
T .puvProtocol.pt

117 cpt $←− stT .puvProtocol.encrypt(K,πi
T .bs)

118 πi
T .stexe ← bindDone

119 πi
T .sid← πi

T .sid ∥ puvProtocol ∥ c ∥ cph ∥ cpt ∥ false
120 return (cpt , false)

obtainPinUvAuthToken-C-end(πj
C , cpt):

121 πj
C .bs ← πj

C .selectedpuvProtocol.decrypt(πj
C .K, cpt)

122 πj
C .stexe ← bindDone

123 πj
C .sid← πj

C .sid ∥ c
124 return

auth-C(πj
C ,M):

125 t $←− πj
C .selectedpuvProtocol.authenticate(πj

C .bs,M)
126 return (M, t)

validate-T (πi
T ,M, t, d):

127 if stT .puvProtocol.verify(πi
T .bs,M, t) = true: return d

128 return rejected

Fig. 12. CTAP 2.1 is an ePACA = (Reboot, Setup,Bind,Auth,Validate) protocol. The flow of ePACA protocol is given in Figure 4.

secret πj
C .K. This algorithm outputs the ciphertext c and the

authentication tag t. We write (c, t) $←− setPIN-C(πj
C , pin).

setPIN-T : inputs a token session πi
T , a Pin/Uv Auth Protocol

puvProtocol, two ciphertexts c and cp, and an authentication
tag tp. It aborts if puvProtocol is not supported or the
local pinHash has been set. Then, the token decapsulates
c for a shared secret K and verifies the ciphertext cp and
tag t using K. If K cannot be correctly decapsulated or
the verification falls, then this algorithm aborts. If a PIN
pin can be correctly decrypted, then the local pinHash
πi
T .pinHash is set to hash of pin and the local counter

pinRetries is set to the maximum. Otherwise, this algo-
rithm aborts. In the end, this algorithm outputs a status
status ∈ {accepted, rejected} indicating success or failure.
9 We write status← setPIN-T (πi

T , puvProtocol, c, cp, tp).
obtainPinUvAuthToken-C-start: inputs a client session πj

C

and a PIN pin. The client session πj
C computes the hash

of pin and encrypts it using the selected Pin/Uv Auth
Protocol and the locally stored share secret πj

C .K. This
algorithm outputs the encryption c. During the execution,

9In practice, the user confirmation is required in this step. Here, we simply
assume the user confirmation and omit it in the algorithm.

the status of the client session is set to bindStart. We write
c $←− obtainPinUvAuthToken-C-start(πj

C , pin).
obtainPinUvAuthToken-T : inputs a token session πi

T , a
Pin/Uv Auth Protocol puvProtocol, and two ciphertexts c
and cph. It aborts if puvProtocol is not supported by T
or if the local counter pinRetries is 0. Otherwise, session
πi
T decapsulates c for a key K and aborts if a failure

happens during the decapsulation. Then, πi
T decrements the

counter pinRetries by 1 and decrypts cph using K for a
hash value pinHash. If pinHash matches the locally stored
stT .pinHash, then the counter m and pinRetries is set to
their maximum. Otherwise, the local instance puvProtocol
regenerates its key pair. If the counter for the consecutive
retries reaches 0, then the token is rebooted. In all cases, the
token resets the pts in all Pin/Uv Auth Protocol instances.
Then, the session πi

T sets the pt underlying puvProtocol
as the binding state πi

T .bs and encrypts it using K for a
ciphertext cpt. This algorithm outputs cpt and a boolean value
calledReboot indicating whether authPowerUp-T is invoked
or not. After the successful completion, the status of the token
session is set to bindDone. We write (cpt, calledReboot)

$←−
obtainPinUvAuthToken-T (πi

T , puvProtocol, c, cph).

191489

obtainPinUvAuthToken-C-end: inputs a client session πj
C and

a ciphertext cpt. During the execution, the client decrypts
the binding state πj

C .bs from cpt and the status of the client
session is set to bindDone.

auth-C: inputs a client session πj
C and a command M . The

client session authenticates M using the selected Pin/Uv
Auth Protocol and the local binding state for a tag t. This
algorithm then outputs M and an authorized tag t10. We
write (M, t) $←− auth-C(πj

C ,M).
validate-T : inputs a token session πi

T , a command M , an au-
thorized tag t, and a user decision d ∈ {accepted, rejected},
and outputs status status = accepted if d = accepted and
M and t can be verified using the binding state πi

T .bs and
the Pin/Uv Auth Protocol, which is specified by the tag t
(Cf. footnote 10); and rejected otherwise.

B. Official Instances of Pin/Uv Auth Protocol

CTAP 2.1 officially introduces two instantiations of Pin/Uv
Auth Protocol puvProtocol, as in Fig. 13 and 14. The first,
puvProtocol1, runs initialize1 by simply invoking regenerate1
and resetpuvToken1, which further samples a public-private
key pair from ECDH over curve NIST P-256 and samples a
random pt with length µλ for µ ∈ {1, 2} and λ = 128 bits.
getPublicKey1 outputs the internal public key pk. encapsulate1
computes the key exchange using as input ECDH public key
and its internal private key and applies H1 = SHA-256 to
the x-coordinate of the key exchange result for a shared
K, followed by outputting its internal public key and K.
decapsulate1 recovers the shared secret K from ciphertext c
using its internal private key sk. encrypt1 encrypts a message
m using SKE1 and a symmetric key K, where SKE1 denotes
AES-256-CBC encryption using an all-zero initial vector IV.
decrypt1 recovers the message from ciphertext c by using SKE1

and key K. authenticate1 authenticates a message m using
K ′ by applying H2 to both, where H2 runs HMAC-SHA-256
and truncates the result to the first 128 bits. verify1 outputs
true if t = H2(K

′,m), and false otherwise11.
The second instantiation puvProtocol2 runs initialize2,

regenerate2, and getPublicKey2 identical to the ones in
puvProtocol1. The resetpuvToken2 algorithm outputs a pt
with fixed 256 bits length. The algorithm encapsulate2 first
computes the x coordinate of the ECDH exchange of input
public key and internal private key, denoted by Z, followed
by applying H3 to Z and “CTAP2 HMAC key” for a HMAC
key K1 and to Z and “CTAP2 AES key” for a AES key
K2. Finally, encapsulate2 outputs its internal public key as
ciphertext as well as K1 and K2. decapsulate2 recovers HMAC
key K1 and AES key K2 from the input ciphertext c using
its internal private key. encrypt2 splits the input K into two
sub-keys K1 and K2 where K1 has length of 256 bits. Then,
it encrypts a message m using SKE2 on key K2, where SKE2

10In practice, this authorized tag t also includes information that specifies
the index of Pin/Uv Auth Protocol. Here, we omit this.

11In practice, if K′ = pt , then verify1 also outputs fails if pt is not in-use.
Note that the usage time of the pt is out of the scope of this paper. We omit
this here and in the following verify2 in puvProtocol2.

initialize1():
129 regenerate1()
130 resetpuvToken1()

regenerate1():
131 (pk, sk) $←− ECDH.KG()

resetpuvToken1():

132 pt $←− {0, 1}µλ

encapsulate1(pk
′):

133 Z ← XCoordinateOf(sk · pk′)
134 K ← H1(Z) , c← pk
135 return (c,K)

decapsulate1(c):
136 Z ← XCoordinateOf(sk · c)
137 K ← H1(Z)
138 return K

getPublicKey1():
139 return pk

encrypt1(K,m):
140 c← SKE1.Enc(K,m)
141 return c

decrypt1(K, c):
142 m← SKE1.Dec(K, c)
143 return m

authenticate1(K
′,m):

144 t← H2(K
′,m)

145 return t

verify1(K
′,m, t):

146 t′ ← H2(K
′,m)

147 return Jt = t′K

Fig. 13. The first instantiation of PIN/UV Auth Protocol puvProtocol1. The
operation · denotes scalar multiplication.

initialize2():
148 regenerate2()
149 resetpuvToken2()

regenerate2():
150 (pk, sk) $←− ECDH.KG()

resetpuvToken2():

151 pt $←− {0, 1}2λ

encapsulate2(pk
′):

152 Z ← XCoordinateOf(sk · pk′)
153 K1 ← H3(Z, “CTAP2 HMAC key”)
154 K2 ← H3(Z, “CTAP2 AES key”)
155 K ← (K1, K2)
156 c← pk
157 return (c,K)

decapsulate2(c):
158 Z ← XCoordinateOf(sk · c)
159 K1 ← H3(Z, “CTAP2 HMAC key”)
160 K2 ← H3(Z, “CTAP2 AES key”)
161 K ← (K1, K2)
162 return K

getPublicKey2():
163 return pk

encrypt2(K,m):
164 Parse (K1, K2)← K

s.t. |K1| = 2λ
165 c← SKE2.Enc(K2,m)
166 return c

decrypt2(K, c):
167 Parse (K1, K2)← K

s.t. |K1| = 2λ
168 m← SKE2.Dec(K2, c)
169 return m

authenticate2(K
′,m):

170 Parse (K′
1, K

′
2)← K′

s.t. |K′
1| = 2λ

171 t← H4(K
′
1,m)

172 return t

verify2(K
′,m, t):

173 Parse (K′
1, K

′
2)← K′

s.t. |K′
1| = 2λ

174 t′ ← H4(K
′
1,m)

175 return Jt = t′K

Fig. 14. The 2nd instantiation of PIN/UV Auth Protocol puvProtocol2.

denotes AES-256-CBC encryption using a randomized initial
vector IV. decrypt2 recovers the message m from ciphertext
c using the key K2, where K2 discards the first 256 bits of
K. authenticate2 applies H4 to key K ′1 and a message m to
produce a tag t, where H4 denotes HMAC-SHA-256 and K ′1
is the first 256 bits of the input K ′. verify2 on a key K ′, a
message m, and a tag t, verifies whether the tag t matches
H4(K

′
1,m), where K ′1 is the first 256 bits of K ′.

201490

