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Abstract—This paper introduces Flamingo, a system for secure
aggregation of data across a large set of clients. In secure
aggregation, a server sums up the private inputs of clients
and obtains the result without learning anything about the
individual inputs beyond what is implied by the final sum.
Flamingo focuses on the multi-round setting found in federated
learning in which many consecutive summations (averages) of
model weights are performed to derive a good model. Previous
protocols, such as Bell et al. (CCS ’20), have been designed for
a single round and are adapted to the federated learning setting
by repeating the protocol multiple times. Flamingo eliminates
the need for the per-round setup of previous protocols, and
has a new lightweight dropout resilience protocol to ensure
that if clients leave in the middle of a sum the server can still
obtain a meaningful result. Furthermore, Flamingo introduces
a new way to locally choose the so-called client neighborhood
introduced by Bell et al. These techniques help Flamingo
reduce the number of interactions between clients and the
server, resulting in a significant reduction in the end-to-end
runtime for a full training session over prior work.

We implement and evaluate Flamingo and show that it can
securely train a neural network on the (Extended) MNIST and
CIFAR-100 datasets, and the model converges without a loss in
accuracy, compared to a non-private federated learning system.

1. Introduction

In federated learning, a server wants to train a model
using data owned by many clients (e.g., millions of mo-
bile devices). In each round of the training, the server
randomly selects a subset of clients, and sends them the
current model’s weights. Each selected client updates the
model’s weights by running a prescribed training algorithm
on its data locally, and then sends the updated weights to
the server. The server updates the model by averaging the
collected weights. The training takes multiple such rounds
until the model converges.

This distributed training pattern is introduced with the
goal of providing a critical privacy guarantee in training—
the raw data never leaves the clients’ devices. However,
prior works [71] show that the individual weights still leak
information about the raw data, which highlights the need
for a mechanism that can securely aggregate the weights
computed by client devices [48,68]. This is precisely an
instance of secure aggregation.

Many protocols and systems for secure aggregation have
been proposed, e.g., in the scenarios of private error report-
ing and statistics collection [4,11,18,22,57,69]. However,
secure aggregation in federated learning, due to its spe-
cific model, faces unprecedented challenges: a large num-
ber of clients, high-dimensional input vectors (e.g., model
weights), multiple rounds of aggregation prior to model
convergence, and unstable devices (i.e., some devices might
go offline prior to completing the protocol). It is therefore
difficult to directly apply these protocols in a black-box way
and still get good guarantees and performance.

Recent works [8,10,60] propose secure aggregation tai-
lored to federated learning scenarios. In particular, a state-of-
the-art protocol [8] (which we call BBGLR) can handle one
aggregation with thousands of clients and high-dimensional
input vectors, while tolerating devices dropping out at any
point during their execution. The drawback of these proto-
cols is that they only examine one round of aggregation in
the full training process, i.e., a selection of a subset of the
clients and a sum over their inputs.

Utilizing the BBGLR protocol (or its variants) multiple
times to do summations in the full training of a model
incurs high costs. Specifically, these protocols follow the
pattern of having each client establish input-independent
secrets with several other clients in a setup phase, and then
computing a single sum in a collection phase using the
secrets. These secrets cannot be reused for privacy reasons.
Consequently, for each round of aggregation in the training
process, one needs to perform an expensive fresh setup.
Furthermore, in each step (client-server round trip) of the
setup and the collection phases, the server has to interact
with all of the clients. In the setting of federated learning,
such interactions are especially costly as clients may be
geographically distributed and may have limited compute
and battery power or varying network conditions.

In this paper we propose Flamingo, the first single-server
secure aggregation system that works well for multiple
rounds of aggregation and that can support full sessions of
training in the stringent setting of federated learning. At
a high level, Flamingo introduces a one time setup and a
collection procedure for computing multiple sums, such that
the secrets established in the setup can be reused throughout
the collection procedure. For each summation in the collec-
tion procedure, clients mask their input values (e.g., updated
weight vectors in federated learning) with a random mask
derived from those secrets, and then send the masked inputs

477

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Yiping Ma. Under license to IEEE.
DOI 10.1109/SP46215.2023.00181

20
23

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

43
4



to the server. The server sums up all the masked inputs and
obtains the final aggregate value (what the server wants)
masked with the sum of all masks. Flamingo then uses a
lightweight protocol whereby a small number of randomly
chosen clients (which we call decryptors) interact with the
server to remove the masks.

The design of Flamingo significantly reduces the overall
training time of a federated learning model compared to run-
ning BBGLR multiple times. First, Flamingo eliminates the
need for a setup phase for each summation, which reduces
the number of steps in the full training session. Second, for
each summation, Flamingo only has one step that requires
the server to contact all of the clients (asking for their
inputs); the rest of the interactions are performed between
the server and a few clients who serve as decryptors.

Besides training efficiency, the fact that a client needs
to only speak once in a round reduces the model’s bias
towards results that contain only data from powerful, stably
connected devices. In Flamingo, the server contacts the
clients once to collect inputs; in contrast, prior works have
multiple client-server interaction steps in the setup phase
(before input collection) and thus filter out weak devices
for summation, as staying available longer is challenging.
Seen from a different angle, if we fix the number of clients,
the failure probability of a client in a given step, and the
network conditions, Flamingo’s results are of higher quality,
as they are computed over more inputs than prior works.

In summary, Flamingo’s technical innovations are:
• Lightweight dropout resilience. A new mechanism to
achieve dropout resilience in which the server only con-
tacts a small number of clients to remove the masks. All
other clients are free to leave after the one step in which
they submit their inputs without harming the results.

• Reusable secrets. A new way to generate masks that
allows the reuse of secrets across rounds of aggregation.

• Per-round graphs. A new graph generation procedure
that allows clients in Flamingo to unilaterally determine
(without the help of the server as in prior work) which
pairwise masks they should use in any given round.
These advancements translate into significant perfor-

mance improvements (§8.3). For a 10-round pure summation
task, Flamingo is 3× faster than BBGLR (this includes
Flamingo’s one-time setup cost), and includes the contri-
bution of more clients in its result. When training a neural
network on the Extended MNIST dataset, Flamingo takes
about 40 minutes to converge while BBGLR needs roughly
3.5 hours to reach the same training accuracy.

2. Problem Statement

Secure aggregation is useful in a variety of domains:
collecting, in a privacy-preserving way, error reports [11,22],
usage statistics [18,57], and ad conversions [4,69]; it has
even been shown to be a key building block for computing
private auctions [70]. But one key application is secure fed-
erated learning, whereby a server wishes to train a model on
data that belongs to many clients, but the clients do not wish

to share their data (or other intermediate information such as
weights that might leak their data [71]). To accomplish this,
each client receives the original model from the server and
computes new private weights based on their own data. The
server and the clients then engage in a secure aggregation
protocol that helps the server obtain the sum of the clients’
private weights, without learning anything about individual
weights beyond what is implied by their sum. The server
then normalizes the sum to obtain the average weights which
represent the new state of the model. The server repeats this
process until the training converges.

This process is formalized as follows. Let [z] denote the
set of integers {1, 2, . . . , z}, and let x⃗ denote a vector; all
operations on vectors are component-wise. A total number
of N clients are fixed before the training starts. Each client is
indexed by a number in [N]. The training process consists of
T rounds. In each round t ∈ [T], a set of clients is randomly
sampled from the N clients, denoted as St. Each client i ∈
St has an input vector, x⃗i,t, for round t. (A client may be
selected in multiple rounds and may have different inputs
in each round.) In each round, the server wants to securely
compute the sum of the |St| input vectors,

∑
i∈St

x⃗i,t.
In practical deployments of federated learning, a com-

plete sum is hard to guarantee, as some clients may drop out
in the middle of the aggregation process and the server must
continue the protocol without waiting for them to come back
(otherwise the server might be blocked for an unacceptable
amount of time). So the real goal is to compute the sum of
the input vectors from the largest possible subset of St; we
elaborate on this in the next few sections.

2.1. Target deployment scenario

Based on a recent survey of federated learning deploy-
ments [39], common parameters are as follows. N is in the
range of 100K–10M clients, where |St| = 50–5,000 clients
are chosen to participate in a given round t. The total number
of rounds T for a full training session is 500–10,000. Input
weights (⃗xi,t) have typically on the order of 1K–500K entries
for the datasets we surveyed [15,16,42,43].

Clients in these systems are heterogeneous devices with
varying degrees of reliability (e.g., cellphones, servers) and
can stop responding due to device or network failure.

2.2. Communication model

Each client communicates with the server through a pri-
vate and authenticated channel. Messages sent from clients
to other clients are forwarded via the server, and are end-
to-end encrypted and authenticated.

2.3. Failure and threat model

We model failures of two kinds: (1) honest clients that
disconnect or are too slow to respond as a result of unstable
network conditions, power loss, etc; and (2) arbitrary actions
by an adversary that controls the server and a bounded
fraction of the clients. We describe each of these below.
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Dropouts. In each round of summation, the server interacts
with the clients (or a subset of them) several times (several
steps) to compute a sum. If a server contacts a set of clients
during a step and some of the clients are unable to respond
in a timely manner, the server has no choice but to keep
going; the stragglers are dropped and do not participate in
the rest of the steps for this summation round. In practice,
the fraction of dropouts in the set depends on the client
response time distribution and a server timeout (e.g., one
second); longer timeouts mean lower fraction of dropouts.

There are two types of clients in the system: regular
clients that provide their input, and decryptors, who are
special clients whose job is to help the server recover the
final result. We upper bound the fraction of regular clients
that drop out in any given aggregation round by δ, and upper
bound the fraction of decryptors that drop out in any given
aggregation round by δD.

Adversary. We assume a static, malicious adversary that
corrupts the server and up to an η fraction of the total
N clients. That is, the adversary compromises Nη clients
independent of the protocol execution and the corrupted
set stays the same throughout the entire execution (i.e., all
rounds). Note that malicious clients can obviously choose to
drop out during protocol execution, but to make our security
definition and analysis clear, we consider the dropout of
malicious clients separate from, and in addition to, the
dropout of honest clients.

Similarly to our dropout model, we distinguish between
the fraction of corrupted regular clients (ηSt ) and corrupted
decryptors (ηD). Both depend on η but also on how Flamingo
samples regular clients and decryptors from the set of all
N clients. We defer the details to Appendix A, but briefly,
ηSt ≈ η; and given a (statistical) security parameter κ, ηD is
upper bounded by κη with probability 2−Θ(κ).

Threshold requirement. The minimum requirement for
Flamingo to work is δD + ηD < 1/3. For a target security
parameter κ, we show in Appendix C how to select other
parameters for Flamingo to satisfy the above requirement
and result in minimal asymptotic costs.

Comparison to prior works. BBGLR and other works [8,
10] also have a static, malicious adversary but only for
a single round of aggregation. In fact, in Section 3.3 we
show that their protocol cannot be naturally extended to
multiple aggregations that withstands a malicious adversary
throughout.

2.4. Properties

Flamingo is a secure aggregation system that achieves
the following properties under the above threat and failure
model. We give informal definitions here, and defer the
formal definitions to Section 5.3.

• Dropout resilience: when all parties follow the protocol,
the server, in each round t, will get a sum of inputs
from all the online clients in St. Note that this implicitly
assumes that the protocol both completes all the rounds
and outputs meaningful results.

• Security: for each round t summing over the inputs of
clients in St, a malicious adversary learns the sum of
inputs from at least (1− δ − η)|St| clients.

Besides the above, we introduce a new notion that
quantifies the quality of a single sum.

• Sum accuracy: A round of summation has sum accuracy
τ if the final sum result contains the contribution of a τ
fraction of the clients who are selected to contribute to
that round (i.e., τ |St|).

Input correctness. In the context of federated learning, if
malicious clients input bogus weights, then the server could
derive a bad model (it may even contain “backdoors” that
cause the model to misclassify certain inputs [6]). Ensuring
correctness against this type of attack is out of the scope
of this work; to our knowledge, providing strong guarantees
against malicious inputs remains an open problem. Some
works [5,9,21,54–56] use zero-knowledge proofs to bound
how much a client can bias the final result, but they are
unable to formally prove the absence of all possible attacks.

Comparison to prior work. Flamingo provides a stronger
security guarantee than BBGLR. In Flamingo, an adversary
who controls the server and some clients learns a sum that
contains inputs from at least a 1− δ− η fraction of clients.
In contrast, the malicious protocol in BBGLR leaks several
sums: consider a partition of the |St| clients, where each
partition set has size at least α · |St|; a malicious adversary
in BBGLR learns the sum of each of the partition sets.
Concretely, for 5K clients, when both δ and η are 0.2,
α < 0.5. This means that the adversary learns the sum of
two subsets. This follows from Definition 4.1 and Theorem
4.9 in BBGLR [8].

3. Background

In this section, we discuss BBGLR [8], which is the state
of the art protocol for a single round secure aggregation in
the federated learning setting. We borrow some ideas from
this protocol, but design Flamingo quite differently in order
to support a full training session.

3.1. Cryptographic building blocks

We start by reviewing some standard cryptographic
primitives used by BBGLR and Flamingo.

Pseudorandom generators. A PRG is a deterministic func-
tion that takes a random seed in {0, 1}λ and outputs a
longer string that is computationally indistinguishable from
a random string (λ is the computational security parameter).
For simplicity, whenever we use PRG with a seed that is not
in {0, 1}λ, we assume that there is a deterministic function
that maps the seed to {0, 1}λ and preserves security. Such
mapping is discussed in detail in Section 6.

Pseudorandom functions. A PRF : K×X → Y is a family
of deterministic functions indexed by a key in K that map
an input in X to an output in Y in such a way that the
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indexed function is computationally indistinguishable from
a truly random function from X to Y . We assume a similar
deterministic map for inputs as described in the PRG above.

Shamir’s secret sharing. An ℓ-out-of-L secret sharing
scheme consists of the following two algorithms, Share and
Recon. Share(s, ℓ, L) → (s1, . . . , sL) takes in a secret s, a
threshold ℓ, and the number of desired shares L, and outputs
L shares s1, . . . , sL. Recon takes in at least ℓ+1 of the shares,
and output the secret s; i.e., for a set U ⊆ [L] and |U| ≥ ℓ+1,
Recon({su}u∈U)→ s. Security requires that fewer than ℓ+1
shares reveal no information about s.

Diffie-Hellman key exchange. Let G be a group of order q
in which the Decisional Diffie-Hellman (DDH) problem is
hard, and g be a generator of G. Alice and Bob can safely
establish a shared secret (assuming a passive adversary) as
follows. Alice samples a secret a $←− Zq, and sets her public
value to ga ∈ G. Bob samples his secret b $←− Zq, and sets his
public value to gb ∈ G. Alice and Bob exchange the public
values and raise the other party’s value to their secret, i.e.,
gab = (ga)

b
= (gb)

a. If DDH is hard, the shared secret gab

is only known to Alice and Bob but no one else.

3.2. The BBGLR protocol

BBGLR is designed for computing a single sum on the
inputs of a set of clients. To apply it to the federated learning
setting, we can simply assume that in a given round of the
training process, there are n clients selected from a large
population of size N. We can then run BBGLR on these n
clients to compute a sum of their inputs.

The high level idea of BBGLR is for clients to derive
pairwise random masks and to add those masks to their input
vectors in such a way that when all the masked input vectors
across all clients are added, the masks cancel out. It consists
of a setup phase and a collection phase. We first describe a
semi-honest version below.

Setup phase. The setup phase consists of three steps: (1)
create a database containing public keys of all of the n
clients; (2) create an undirected graph where vertices are
clients, and each vertex has enough edges to satisfy certain
properties; (3) have each client send shares of two secrets
to its neighbors in the graph. We discuss these below.

In the first step, each client i ∈ [n] generates a secret
ai and sends gai to the server, where gai represents client
i’s public key. The server then stores these public keys in a
database. Note that the malicious-secure version of BBGLR
requires the server to be semi-honest for this particular step,
or the existence of a trusted public key infrastructure (PKI).

In the second step, the graph is established as follows.
Each client i ∈ [n] randomly chooses γ other clients in [n]
as its neighbors, and tells the server about their choices.
After the server collects all the clients’ choices, it notifies
each client of their neighbors indexes in [n] and public
keys. The neighbors of client i, denoted as A(i), are those
corresponding to vertices that have an edge with i (i.e., i
chose them or they chose i).

Finally, each client i uses Shamir’s secret sharing to
share ai and an additional random value mi to its neighbors
A(i) (let the threshold be ℓ < |A(i)|), where the shares are
end-to-end encrypted with a secure authenticated encryption
scheme and sent via the server (§2.2).

Collection phase. Client i sends the following masked
vector to the server:

Veci = x⃗i+
∑

j∈A(i),i<j

PRG(ri,j)−
∑

j∈A(i),i>j

PRG(ri,j)︸ ︷︷ ︸
pairwise mask

+ PRG(mi)︸ ︷︷ ︸
individual mask

,

where ri,j = gaiaj , which can be computed by client i
since it has the secret ai and j’s public key, gaj . (These are
essentially Diffie-Hellman key exchanges between a client
and its neighbors.) Here we view the output of the PRG as
a vector of integers instead of a binary string. Also, we will
write the pairwise mask term as

∑
j∈A(i)±PRG(ri,j) for ease

of notation.
As we mentioned earlier (§2), clients may drop out

due to unstable network conditions, power loss, etc. This
means that the server may not receive some of the masked
vectors within an acceptable time period. Once the server
times out, the server labels the clients whose vectors have
been received as “online”; the rest are labeled “offline”.
The server shares this information with all the n clients.
The server then sums up all of the received vectors, which
yields a vector that contains the masked sum. To recover the
correct sum, the server needs a way to remove the masks. It
does so by requesting for each offline client i, the shares of
ai from i’s neighbors; and for each online client j, the shares
of mj from j’s neighbors. These shares allow the server to
reconstruct either the pairwise mask or the individual mask
for each client. As long as there are more than ℓ neighbors
that send the requested shares, the server can successfully
remove the masks and obtain the sum. This gives the dropout
resilience property of BBGLR.

One might wonder the reason for having the individual
mask mi, since the pairwise mask already masks the input.
To see the necessity of having mi, assume that it is not added,
i.e., Veci = x⃗i +

∑
±PRG(rij). Suppose client i’s message is

sent but not received on time. Thus, the server reconstructs
i’s pairwise mask

∑
±PRG(rij). Then, i’s vector Veci arrives

at the server. The server can then subtract the pairwise mask
from Veci to learn x⃗i. The individual mask mi prevents this.

Preventing attacks in fault recovery. The above protocol
only works in the semi-honest setting. There are two major
attacks that a malicious adversary can perform. First, a
malicious server can give inconsistent dropout information
to honest clients and recover both the pairwise and indi-
vidual masks. For example, suppose client i has neighbors
j1, . . . , jγ , and a malicious server lies to the neighbors of
j1, . . . , jγ that j1, . . . , jγ have dropped out (when they actu-
ally have not). In response, their neighbors, including i, will
provide the server with the information it needs to recon-
struct aj1 , . . . , ajγ , thereby deriving all the pairwise secrets
ri,j1 , . . . , ri,jγ . At the same time, the server can tell j1, . . . , jγ
that i was online and request the shares of mi. This gives

480



the server both the pairwise mask and the individual mask
of client i, violating i’s privacy. To prevent this, BBGLR has
a consistency check step performed among all neighbors of
each client to reach an agreement on which nodes actually
dropped out. In this case, i would have learned that none of
its neighbors dropped out and would have refused to give
the shares of their pairwise mask.

Second, malicious clients can submit a share that is dif-
ferent than the share that they received from their neighbors.
This could lead to reconstruction failure at the server, or to
the server deriving a completely different secret. BBGLR
fixes the latter issue by having the clients hash their secrets
and send these hashes to the server when they send their in-
put vectors; however, reconstruction could still fail because
of an insufficient threshold in error correction1.

In sum, the full protocol of BBGLR that withstands a
malicious adversary (assuming a PKI or a trusted server
during setup) has six steps in total: three steps for the setup
and three steps for computing the sum.

3.3. Using BBGLR for federated learning

BBGLR works well for one round of training, but when
many rounds are required, several issues arise. First, in
federated learning the set of clients chosen to participate
in a round changes, so a new graph needs to be derived
and new secrets must be shared. Even if the graph stays
the same, the server cannot reuse the secrets from the setup
in previous rounds as the masks are in fact one-time pads
that cannot be applied again. This means that we must run
the setup phase for each round, which incurs a high latency
since the setup contains three steps involving all the clients.

Moreover, BBGLR’s threat model does not naturally
extend to multi-round aggregation. It either needs a semi-
honest server or a PKI during the first step of the protocol.
If we assume the former, then this means the adversary has
to be semi-honest during the exact time of setup in each
round, which is practically impossible to guarantee. If we
use a PKI, none of the keys can be reused (for the above
reasons); as a result, all of the keys in the PKI need to be
updated for each round, which is costly.

4. Efficient Multi-Round Secure Aggregation

Flamingo supports multi-round aggregation without re-
doing the setup for each round and withstands a malicious
adversary throughout. The assumptions required are: (1) in
the setup, all parties are provided with the same random
seed from a trusted source (e.g., a distributed randomness
beacon [23]); and (2) a PKI (e.g., a key transparency
log [19,37,45,49,62,64,65]). Below we describe the high-
level ideas underpinning Flamingo (§4.1) and then we give
the full protocol (§4.3 and §4.4).

1. To apply a standard error correction algorithm such as Berlekamp-
Welch in this setting, the polynomial degree should be at most γ/3.
Definition 4.2 in BBGLR implies that the polynomial degree may be larger
than required for error correction.

4.1. High-level ideas

Flamingo has three key ideas:

(1) Lightweight dropout-resilience. Instead of asking
clients to secret share ai and mi for their masks with all
of their neighbors, we let each client encrypt—in a spe-
cial way—the PRG seeds of their pairwise and individual
masks, append the resulting ciphertexts to their masked input
vectors, and submit them to the server in a single step.
Then, with the help of a special set of L clients that we
call decryptors, the server can decrypt one of the two seeds
associated with each masked input vector, but not both. In
effect, this achieves a similar fault-tolerance property as
BBGLR (§3.2), but with a different mechanism.

The crucial building block enabling this new protocol is
threshold decryption [25,29,58], in which clients can encrypt
data with a system-wide known public key PK, in such a
way that the resulting ciphertexts can only be decrypted
with a secret key SK that is secret shared among decryptors
in Flamingo. Not only does this mechanism hide the full
secret key from every party in the system, but the decryptors
can decrypt a ciphertext without ever having to interact
with each other. Specifically, the server in Flamingo sends
the ciphertext (pealed from the submitted vector) to each
of the decryptors, obtains back some threshold ℓ out of
L responses, and locally combines the ℓ responses which
produce the corresponding plaintext. Our instantiation of
threshold decryption is based on the ElGamal cryptosystem
and Shamir’s secret sharing, and we describe it in Section 6.

One key technical challenge that we had to overcome
when designing this protocol is figuring out how to secret
share the key SK among the decryptors. To our knowledge,
all existing distributed key generation (DKG) protocols [51]
assume a broadcast channel [30] or reliable point-to-point
channels [40], whereas our communication model is that of a
star topology where all messages are proxied by a potential
adversary (controlling the server) that can drop them. To
address this, Section 4.3 relaxes the guarantees of a prior
DKG for discrete-log [30] (since we target ElGamal thresh-
old decryption) and extends it to work in this challenging
communication model.

In sum, the above approach gives a dropout-resilient
protocol for a single summation with two steps: first, each
client sends their masked vector and the ciphertexts of the
PRG seeds; second, the server uses distributed decryption
to recover the seeds (and the masks) for dropout clients (we
discuss how to ensure that decryptors agree on which of the
two seeds to decrypt in §4.4). This design improves the run
time over BBGLR by eliminating the need to involve all the
clients to remove the masks—the server only needs to wait
until it has collected enough shares from the decryptors,
instead of waiting for almost all the shares to arrive. Fur-
thermore, the communication overhead of appending several
small ciphertexts (64 bytes each) to a large input vector
(hundreds of KBs) is minimal.

(2) Reusable secrets. Flamingo’s objective is to get rid of
the setup phase for each round of aggregation. Before we
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discuss Flamingo’s approach, consider what would happen
if we were to naively run the setup phase in BBGLR once,
followed by running the collection procedure multiple times.
First, we are immediately limited to performing all of the
aggregation tasks on the same set of clients, since BBGLR
establishes the graph of neighbors during the setup phase.
This is problematic since federated learning often chooses
different sets of clients for each round of aggregation (§2).
Second, clients’ inputs are exposed. To see why, suppose
that client i drops out in round 1 but not in 2. In round 1,
the server reconstructs ri,j for j ∈ A(i) to unmask the sum.
In round 2, client i sends x⃗i +

∑
j∈A(i)±PRG(ri,j)+PRG(mi)

and the server reconstructs mi by asking i’s neighbors for
their shares. Since all the ri,j are reconstructed in round 1
and are reused in round 2, the server can derive both masks.

The above example shows that the seeds should be new
and independent in each round. We accomplish this with a
simple solution that adds a level of indirection. Flamingo
treats ri,j as a long-term secret and lets the clients apply
a PRF to generate a new seed for each pairwise mask.
Specifically, clients i computes the PRG seed for pairwise
mask in round t as hi,j,t := PRF(ri,j, t) for all j ∈ A(i). Note
that client j will compute the same hi,j,t as it agrees with i on
ri,j. In addition, each client also generates a fresh seed mi,t
for the individual mask in round t. Consequently, combined
with idea (1), each client uses PK to encrypt the per-round
seeds, {hi,j,t}j∈A(i) and mi,t. Then, the server recovers one of
the two for each client. We later describe an optimization
where clients do not encrypt mi,t with PK (§4.4).

A nice property of ri,j being a long-term secret is that
Flamingo can avoid performing all the Diffie-Hellman key
exchanges between graph neighbors (proxied through the
server). Flamingo relies instead on an external PKI or a
verifiable public key directory such as CONIKS [49] and
its successors (which are a common building block for
bootstrapping end-to-end encrypted systems).

We note that this simple technique cannot be applied
to BBGLR to obtain a secure multi-round protocol. It is
possible in Flamingo precisely because clients encrypt their
per-round seeds for pairwise masks directly so the server
never needs to compute these seeds from the long-term pair-
wise secrets. In contrast, in BBGLR, clients derive pairwise
secrets (gai,aj ) during the setup phase. When client i drops
out, the server collects enough shares to reconstruct ai and
compute the pairwise secrets, gai,aj , for all online neighbors
j of client i. Even if we use a PRF here, the server already
has the pairwise secret; so it can run the PRF for any round
and conduct the attacks described earlier.

(3) Per-round graphs. BBGLR uses a sparse graph instead
of a fully-connected graph for efficiency reasons (otherwise
each client would need to secret share its seeds with every
other client). In federated learning, however, establishing
sparse graphs requires per-round generation since the set
St changes in each round (some clients are chosen again,
some are new [44]). A naive way to address this is to let
all clients in [N] establish a big graph G with N nodes in
the setup phase: each client in [N] sends its choice of γ

1: Parameters: ϵ. // the probability that an edge is added
2: function CHOOSESET(v, t, nt, N)
3: Initialize an empty set St.
4: v∗t := PRF(v, t).
5: while |St| < nt do
6: Parse log N bits from PRG(v∗t ) as i, add i to St.
7: Output St.
8: function GENGRAPH(v, t, St)
9: Gt ← nt × nt empty matrix; ρ← log(1/ϵ).

10: for i ∈ St, j ∈ St do
11: Let v′ be the first ρ bits of PRF(v, (i, j)).
12: if v′ = 0ρ then set Gt(i, j) := 1
13: Output Gt.
14: function FINDNEIGHBORS(v, St, i)
15: At(i)← ∅; ρ← log(1/ϵ).
16: for j ∈ St do
17: Let v′ be the first ρ bits of PRF(v, (i, j)).
18: if v′ = 0ρ then add j to At(i).
19: for j ∈ St do
20: Let v′ be the first ρ bits of PRF(v, (j, i)).
21: if v′ = 0ρ then add j to At(i).
22: Output At(i).

Figure 1: Pseudocode for generating graph Gt in round t.

neighbors to the server, and the server sends to each client
the corresponding neighbors. Then, in each round t, the
corresponding subgraph Gt consists of clients in St and the
edges among clients in St.

However, this solution is unsatisfactory. If one uses a
small γ (e.g., log N), Gt might not be connected and might
even have isolated nodes (leaking a client’s input vector
since it has no pairwise masks); if one uses a large γ (e.g.,
the extreme case being N), Gt will not be sparse and the
communication cost for the server will be high (e.g., O(N2)).

Flamingo introduces a new approach for establishing the
graph with a communication cost independent of γ. The
graph for each round t is generated by a random string
v ∈ {0, 1}λ known to all participants (obtained from a
randomness beacon or a trusted setup). Figure 1 lists the
procedure. CHOOSESET(v, t, nt, N) determines the set of
clients involved in round t, namely St ⊆ [N] with size nt.
The server computes Gt ← GENGRAPH(v, t, St) as the graph
in round t among clients in St. A client i ∈ St can find its
neighbors in Gt without materializing the whole graph using
FINDNEIGHBORS(v, St, i). In this way, the neighbors of i
can be locally generated. We choose a proper ϵ such that
in each round, the graph is connected with high probability
(details in §5). This technique is of independent interest.

The above ideas taken together eliminate the need for
per-round setup, which improves the overall run time of
multi-round aggregation over BBGLR. Figure 2 depicts the
overall protocol, and the next sections describe each part.

4.2. Types of keys at PKI

Before giving our protocol, we need to specify what
types of keys the PKI needs to store. The keys depend on
the cryptographic primitives that we use (signature schemes,
symmetric encryption and ElGamal encryption); for ease of
reading, we formally give these primitives in Appendix B.1.
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Figure 2: Workflow of Flamingo. The server first does a setup for all clients in the system. In each round t of training, the server securely
aggregates the masked input vectors in the report step; in the cross-check and reconstruction steps, the server communicates with a small
set of randomly chosen clients who serve as decryptors. The decryptors are chosen independently from the set St that provides inputs in
a given round. Every R rounds, the decryptors switch and the old decryptors transfers shares of SK to new decryptors.

The PKI stores three types of keys for all clients in [N]:
• gai of client i for its secret ai; this is for client j to derive
the pairwise secret ri,j with client i by computing (gaj)ai .

• gbi of client i for deriving a symmetric encryption key
ki,j for an authenticated encryption scheme SymAuthEnc
(Definition 3); this scheme is used when a client sends
messages to another client via the server. Later when we
say client i sends a message to client j via the server
in the protocol, we implicitly assume the messages are
encrypted using ki,j.

• pki of client i for verifying i’s signature on messages
signed by ski.

4.3. Setup phase

The setup phase consists of two parts: (1) distributing a
random seed v ∈ {0, 1}λ to all participants, and (2) selecting
a random subset of clients as decryptors and distribute
the shares of the secret key of an asymmetric encryption
scheme AsymEnc. In our context, AsymEnc is the ElGamal
cryptosystem’s encryption function (Definition 2).

As we mentioned earlier, the first part can be done
through a trusted source of randomness, or by leveraging
a randomness beacon that is already deployed, such as
Cloudflare’s [1]. The second part can be done by selecting
a set of L clients as decryptors, D, using the random
seed v (CHOOSESET), and then running a DKG protocol
among them. We use a discrete-log based DKG protocol [30]
(which we call GJKR-DKG) since it is compatible with the
ElGamal cryptosystem. However, this DKG does not work
under our communication model and requires some changes
and relaxations, as we discuss next.

DKG with an untrusted proxy. The correctness and secu-
rity of the GJKR-DKG protocol relies on a secure broadcast
channel. Our communication model does not have such a
channel, since the server can tamper, replay or drop mes-
sages. Below we give the high-level ideas of how we modify
GJKR-DKG and Appendix B.2 gives the full protocol.

We begin with briefly describing the GJKR-DKG proto-
col. It has a threshold of 1/2, which means that at most
half of the participants can be dishonest; the remaining
must perform the following steps correctly: (1) Each party i
generates a random value si and acts as a dealer to distribute
the shares of si (party j gets si,j). (2) Each party j verifies
the received shares (we defer how the verification is done
to Appendix B.2). If the share from the party i fails the
verification, j broadcasts a complaint against party i. (3)

Party i broadcasts, for each complaint from party j, the si,j
for verification. (4) Each party disqualifies those parties that
fail the verification; the rest of the parties form a set QUAL.
Then each party sums up the shares from QUAL to derive
a share of the secret key.

Given our communication model, it appears hard to
guarantee the standard DKG correctness property, which
states that if there are enough honest parties, at the end of
the protocol the honest parties hold valid shares of a unique
secret key. Instead, we relax this correctness property by
allowing honest parties to instead abort if the server who is
proxying the messages acts maliciously.

We modify GJKR-DKG in the following ways. First,
we assume the threshold of dishonest participants is 1/3.
Second, all of the messages are signed; honest parties abort
if they do not receive the prescribed messages. Third, we
add another step before each client decides on the eventual
set QUAL: all parties sign their QUAL set and send it to
the server; the server sends the signed QUALs to all the
parties. Each party then checks whether it receives 2ℓ + 1
or more valid signed QUAL sets that are the same. If so,
then the QUAL set defines a secret key; otherwise the party
aborts. We give the detailed algorithms and the correspond-
ing proofs in Appendix B.2. Note that the relaxation from
GJKR-DKG is that we allow parties to abort (so no secret
key is shared at the end), and this is reasonable particularly
in the federated learning setting because the server will not
get the result if it misbehaves.

Decryptors run DKG. At the end of our DKG, a subset of
the selected decryptors will hold the shares of the secret key
SK. The generated PK is signed by the decryptors and sent
to all of the N clients by the server; the signing prevents the
server from distributing different public keys or distributing
a public key generated from a set of malicious clients. Each
client checks if it received 2ℓ + 1 valid signed PKs from
the set of decryptors determined by the random seed (from
beacon); if not, the client aborts. In Appendix B, we provide
the pseudocode for the entire setup protocol Πsetup (Fig. 11).

4.4. Collection phase

The collection phase consists of T rounds; each round
t has three steps: report, cross-check, and reconstruction.
Below we describe each step and we defer the full protocol
Πsum to Figure 13 in Appendix B. The cryptographic primi-
tives we use here (SymAuthEnc and AsymEnc) are formally
given in Appendix B.1.
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Report. In round t, the server uses the random value v
(obtained from the setup) to select the set of clients St ⊆ [N]
of size nt by running CHOOSESET(v, t, nt, N). It then estab-
lishes the graph Gt ← GENGRAPH(v, t, St) as specified in
Figure 1. We denote the neighbors of i as At(i) ⊆ St. The
server asks each client i ∈ St to send a message consisting
of the following three things:

1) Veci = x⃗i,t +
∑

j∈At(i)±PRG(hi,j,t) + PRG(mi,t), where
hi,j,t is computed as PRF(ri,j, t) and ri,j is derived from
the key directory by computing (gaj)ai ; mi,t is freshly
generated in round t by client i.

2) L symmetric ciphertexts: SymAuthEnc(ki,u, mi,u,t) for all
u ∈ D, where mi,u,t is the share of mi,t meant for u
(i.e., Share(mi,t, ℓ, L) → {mi,u,t}u∈D), and ki,u is the
symmetric encryption key shared between client i and
decryptor u (they can derive ki,u from the PKI);

3) |At(i)| ElGamal ciphertexts: AsymEnc(PK, hi,j,t) for all
j ∈ At(i).

The above way of using symmetric encryption for
individual masks and public-key encryption for pairwise
masks is for balancing computation and communication
in practice. Technically, one can also encrypt the shares
of hi,j,t with symmetric authenticated encryption as well
(eliminating public-key operations), but it increases client
communication—for each client, the number of ciphertexts
appended to the vector is |A(i)| · L. This is, for example,
1,600 when L and |A(i)| are both 40. On the other hand, if
one encrypts both the pairwise and individual masks using
only public-key encryption, then the number of expensive
public key operations for reconstructing secrets is propor-
tional to nt; whereas it is only proportional to the number of
dropouts in our proposed approach. In practice, the number
of dropouts is much smaller than nt, hence the savings.

Cross-check. The server needs to recover mi,t for online
clients, and hi,j,t for clients that drop out. To do so, the
server labels the clients as “offline” or “online” and asks the
decryptors to recover the corresponding masks. For BBGLR,
we described how this step involves most clients during
the fault recovery process and highlighted an issue where
a malicious server can send inconsistent labels to clients
and recover both the pairwise mask and individual mask for
some target client (§3.2). Flamingo also needs to handle this
type of attack (the server tells some of honest decryptors to
decrypt mi,t and other honest decryptors to decrypt hi,j,t, and
utilizes the malicious decryptors to reconstruct both), but it
only needs to involve decryptors. In detail, each decryptor
signs the online/offline labels of the nt clients (each client
can only be labeled either offline or online), and sends
them to the other decryptors (via the server). Each decryptor
checks it received 2L/3 or more valid signed labels (recall
from §2.3 that δD +ηD < 1/3). If so, each decryptor further
checks that:

1) The number of online clients is at least (1− δ)nt;
2) All the online clients in the graph are connected;
3) Each online client i has at least k online neighbors, such

that ηk < 2−κ (η and κ are defined as in §2.3).

If any of the above checks fail, the decryptor aborts. This
step ensures either all the honest decryptors agree on a valid
offline/online label assignment and consequently the server
gets the result, or the honest decryptors abort and the server
gets nothing.

Reconstruction. The server collects all the ciphertexts to be
decrypted: the ciphertexts of mi,u,t (symmetric encryption)
for the online clients, and the ciphertexts of hi,j,t (public-
key encryption) for the offline clients. Then the server sends
the ciphertexts to all the decryptors who perform either a
symmetric decryption or the threshold ElGamal decryption
according to their agreed-upon labels.

The choice of using decryptors to check the graph and
reconstruct all the secrets is based on an important observa-
tion in federated learning: the number of clients involved
in one round, nt, is much smaller than the input vector
length [39]. Therefore, the asymptotic costs at a decryptor
(which are proportional to nt) are actually smaller than the
size of an input weight vector.

4.5. Malicious labeling across rounds

The server, controlled by a malicious adversary, can ask
for the decryption of hi,j,t in round t, and then in some other
round t′, the server can ask for the decryption of mi,t (but
not mi,t′ , if the server does not care about obtaining a result
in round t′). This allows the server to recover x⃗i,t in the clear.
To prevent this attack, honest decryptors need to know the
round for which a ciphertext is sent. For symmetric cipher-
text, the client appends the round number t to the plaintext
(e.g., mi,u,t||t) and uses authenticated encryption; for public-
key ciphertexts, the client appends t to the ciphertext c and
signs the tuple (c, t) (the verification key is in the PKI).
Note that a malicious adversary can still fool enough honest
decryptors into thinking it is round t while it is in fact t′. To
prevent this, decryptors also include the round number in the
online/offline labels and sign them. The cross-check (§4.4)
guarantees that the decryptors agree on the round number.

4.6. Load balancing across decryptors

In each summation, a client who is not a decryptor only
sends a single vector. This is nearly optimal since even if
the aggregation is non-private the client has to send the
vector (but without the additional small ciphertexts). The
decryptors, however, have additional computation and com-
munication in order to help with the result reconstruction.
This causes a load imbalance in the system and could be
unfair since a client selected to be a decryptor has to do
more work than regular clients.

In Flamingo, the decryptor responsibility shifts across
time. Every R rounds, the current decryptors transfer their
shares of SK to a new set of randomly selected clients who
serve as the new decryptors. To ensure security, the shares
of SK have to be modified in a particular way during the
transition, as otherwise the adversary may control some ma-
licious decryptors before the transition and some malicious
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Functionality Fsetup

Parties: clients 1, . . . , N and a server.

• Fsetup samples v $←− {0, 1}λ.

• Fsetup samples a← Zq and computes PK = ga.

• Fsetup asks the adversary A whether it should continue or not. If

A replies with abort, Fsetup sends abort to all honest parties; if A
replies with continue, Fsetup sends v and PK to all the parties.

Figure 3: Ideal functionality for the setup phase.

decryptors after the transition, and thus may obtain enough
shares to reconstruct SK. We address this by relying on
prior proactive secret sharing techniques [29,36,41]; they
additionally enable Flamingo to change the number of de-
cryptors and the threshold as needed. In Appendix B.4, we
provide details of the transition protocol used in Flamingo.

A final clarification is that decryptors who dropped out
(e.g., due to power loss) at one round can come back
later and participate in another round (e.g., when power is
resumed). The decryption always succeeds since we require
that less than 1/3 deryptors are dropped out or malicious
at any step (§5). The secret key transition is purely for sys-
tem load balancing—neither dropout resilience nor security
relies on the parameter R.

5. Parameter Selection and Security Analysis

The parameters of Flamingo include:
• System parameters N, T and the number of clients nt

chosen in round t ∈ [T];
• Threat model parameters δD, δ, η which are given, and
ηSt , ηD which depend on η (their relation is summarized
in Section 2.3 and fully derived in Appendix A).

• Security parameter κ, and the parameters that relates to
security: graph generation parameter ϵ, and the number
of selected decryptors L.
We discuss these parameters in detail below and state

our formal lemmas with respect to them.

5.1. Security of setup phase

Let δD upper bound the fraction of decryptors that drop
out during the setup phase; note that in Section 2.3 we let
δD upper bound the dropouts in one aggregation round and
for simplicity here we use the same notation. Flamingo’s
DKG requires that δD + ηD < 1/3. Note that ηD in fact
depends on η, L and N, but we will give the theorems using
ηD and discuss how to choose L to guarantee a desired ηD
in Appendix C.

Theorem 1 (Security of setup phase). Assume that a PKI
and a trusted source of randomness exist, and that the
DDH assumption holds. Let the security parameter be κ,
and let the dropout rate of decryptors in the setup phase

Functionality Fmal

Parties: clients 1, . . . , N and a server.

Parameters: corrupted rate η, dropout rate δ.

• Fmal receives from the adversary A a set of corrupted parties,

denoted as C ⊂ [N], where |C|/N ≤ η.

• For each round t ∈ [T]:

1) Fmal receives a random subset St ⊂ [N], a dropout set Ot ⊂ St,

where |Ot|/|St| ≤ δ, and inputs x⃗i,t of client i ∈ St\(Ot ∪ C).
2) Fmal sends St to A and asks A for a set and whether it should

continue or not: if A replies with continue and a set Mt ⊆ St\Ot

such that |Mt|/|St| ≥ 1− δ, then Fmal outputs z′t =
∑

i∈Mt\C x⃗i,t;

otherwise sends abort to all honest clients in St.

Figure 4: Ideal functionality for Flamingo.

be bounded by δD. If δD + ηD < 1/3, then under the
communication model defined in Section 2.2, protocol Πsetup
securely realizes functionality Fsetup (Fig. 3) in the presence
of a malicious adversary controlling the server and η fraction
of the N clients.

5.2. Security of collection phase

First, we need to guarantee that each graph Gt, even after
removing the vertices corresponding to the δ + η fraction
of dropout and malicious clients, is still connected. This
imposes a requirement on ϵ, which we state in Lemma 1. For
simplicity, we omit the exact formula for the lower bound
of ϵ and defer the details to Appendix C.

Lemma 1 (Graph connectivity). Given a security parameter
κ, and threat model parameters δ, η (§2.3). Let G be a
random graph G(n, ϵ). Let C,O be two random subsets
of nodes in G where |O| ≤ δn and |C| ≤ ηn (O stands
for dropout set and C stands for malicious set). Let G̃ be
the graph with nodes in C and O and the associated edges
removed from G. There exists ϵ∗ such that for all ϵ ≥ ϵ∗,
G̃ is connected except with probability 2−κ.

Secondly, we require 2δD + ηD < 1/3 to ensure that all
online honest decryptors reach an agreement in the cross-
check step and the reconstruction is successful. Note that the
decryptors in the setup phase who dropped out (δD fraction)
will not have the share of SK; while the clients who drop
out during a round (another δD fraction) in the collection
phase can come back at another round, hence we have the
above inequality.

5.3. Main theorems

The full protocol, denoted as ΦT , is the sequential exe-
cution of Πsetup followed by a T-round Πsum. We now give
formal statements for the properties of Flamingo; the proof
is given in Appendix D in the full version [46].
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Theorem 2 (Dropout resilience of ΦT ). Let the security
parameter be κ. Let δ, δD, η, ηD be threat model parameters
as defined (§5.1,§5.2). If 2δD + ηD < 1/3, then protocol
ΦT satisfies dropout resilience: when all parties follow the
protocol ΦT , for every round t ∈ [T], and given a set of
dropout clients Ot in the report step where |Ot|/|St| ≤ δ,
protocol ΦT terminates and outputs

∑
i∈St\O x⃗i,t.

Theorem 3 (Security of ΦT ). Let the security parameter
be κ. Let δ, δD, η, ηD be threat model parameters as de-
fined (§5.1,§5.2). Let ϵ be the graph generation parameter
(Fig. 1). Let n be the number of clients for summation in
each round. Assuming the existence of a PKI, a trusted
source of initial randomness, a PRG, a PRF, an asymmetric
encryption AsymEnc, a symmetric authenticated encryption
SymAuthEnc, and a signature scheme, if 2δD + ηD < 1/3
and ϵ ≥ ϵ∗ (Lemma 1) and , then under the communication
model defined in Section 2.2, protocol ΦT securely realizes
the ideal functionality Fmal given in Figure 4 in the presence
of a malicious adversary controlling the server and η fraction
of the N clients, except with probability at most Tn ·2−κ+1.

The final complication is how to choose L to ensure
2δD + ηD < 1/3 holds; note that ηD depends on η and L.
One can choose L to be N but it does not give an efficient
protocol; on the other hand, choosing a small L may result
in all the decryptors being malicious. In Appendix C, we
give a lower bound of L to ensure a desired ηD (w.h.p.),
given N, η, and δD.

6. Implementation

We implement Flamingo in 1.7K lines and BBGLR in
1.1K lines of Python. For PRG, we use AES in counter
mode, for authenticated encryption we use AES-GCM, and
signatures use ECDSA over curve P-256.

Distributed decryption. We build the distributed decryption
scheme discussed in Section 4.1 as follows. We use ElGamal
encryption to instantiate the asymmetric encryption. It con-
sists of three algorithms (AsymGen, AsymEnc, AsymDec).
AsymGen outputs a secret and public key pair SK ∈R Zq
and PK := gSK ∈ G. AsymEnc takes in PK and plaintext
h ∈ G, and outputs ciphertext (c0, c1) := (gw, h·PKw), where
w ∈R Zq is the encryption randomness. AsymDec takes in
SK and ciphertext (c0, c1) and outputs h = (cSK

0 )−1 · c1.
In threshold decryption [25,29,58], the secret key SK

is shared among L parties such that each party u ∈ [L]
holds a share su, but no single entity knows SK, i.e.,
(s1, . . . , sL) ← Share(SK, ℓ, L). Suppose Alice wants to
decrypt the ciphertext (c0, c1) using the secret-shared SK.
To do so, Alice sends c0 to each party in [L], and gets back
csu

0 for u ∈ U ⊆ [L]. If |U| > ℓ, Alice can compute from U
a set of combination coefficients {βu}u∈U , and

cSK
0 =

∏
u∈U

(csu
0 )

βu .

Given cSK
0 , Alice can get the plaintext h = (cSK

0 )−1 · c1.
Three crucial aspects of this protocol are that: (1) SK is

never reconstructed; (2) the decryption is dropout resilient
(Alice can obtain h as long as more than ℓ parties respond);
(3) it is non-interactive: Alice communicates with each party
exactly once.

We implement ElGamal over elliptic curve group G and
we use curve P-256. To map the output of PRF(ri,j, t), which
is a binary string, to G, we first hash it to an element in the
field of the curve using the hash-to-field algorithm from the
IETF draft [35, §5]. We then use the SSWU algorithm [12,
66] to map the field element to a curve point P ∈ G. A client
will encrypt P with ElGamal, and then hash P with SHA256
to obtain hi,j,t—the input to the pairwise mask’s PRG. When
the server decrypts the ElGamal ciphertexts and obtains P,
it uses SHA256 on P to obtain the same value of hi,j,t.

Optimizations. In Flamingo’s reconstruction step, we let
the server do reconstruction using partial shares. That is, if
the interpolation threshold is 15, and the server collected
shares from 20 decryptors, it will only use 15 of them and
ignore the remaining 5 shares. Furthermore, as we only have
a single set of decryptors, when the server collects shares
from U ⊆ D, it computes a single set of interpolation
coefficients from U and uses it to do linear combinations
on all the shares. This linear combination of all the shares
can be done in parallel. In contrast, BBGLR requires the
server to compute different sets of interpolation coefficients
to reconstruct the pairwise masks (one set for each client).

Simulation framework. We integrade all of Flamingo’s
code into ABIDES [13,14], which is an open-source high-
fidelity simulator designed for AI research in financial mar-
kets (e.g., stock exchanges). ABIDES is a great fit as it
supports tens of thousands of clients interacting with a server
to facilitate transactions (and in our case to compute sums).
It also supports configurable pairwise network latencies.

7. Asymptotic Costs

An advantage of Flamingo over BBGLR is that
Flamingo requires fewer round trips for one summation.
BBGLR requires six round trips for one summation; in
contrast, Flamingo requires three: the report step involves
all clients selected in a round, and for the remaining two
steps the server contacts the decryptors. Meanwhile, the
number of round trips has a significant impact on the overall
runtime of the aggregation, as we show experimentally in
Section 8.2. The reasons for this are two-fold: (1) the latency
of an RTT over the wide area network is on the order of tens
of milliseconds; and (2) the server has to wait for enough
clients in each step to send their messages, so tail latency
plays a big role. Depending on the setting, client message
arrival can vary widely, with some clients potentially being
mobile devices on slow networks.

In addition to fewer round trips, Flamingo is expected
to wait for less time during the reconstruction step. This
is because the server in BBGLR has to wait for the vast
majority of clients to respond in order to reconstruct secrets
for dropout clients, while the server in Flamingo only needs
responses from 1/3 of the decryptors.
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BBGLR Flamingo

Phase Steps Server Client Steps Server Client

Setup — — — 4 O(L3) O(L2)

T sums

Round setup 3T O(TAnt) O(TA) — — —

Collection 3T O(Tnt(d + A)) O(T(d + A)) 3T O(Tnt(d + L + A))
Regular client: O(T(d + A))

Decryptors: O(T(L + δAnt + (1− δ)nt))

Figure 5: Communication complexity and number of steps (client-server round-trips) of Flamingo and BBGLR for T rounds
of aggregation. N is the total number of clients and nt is the number of clients chosen to participate in round t. The number
of decryptors is L, and the dropout rate of clients in St is δ. Let A be the upper bound on the number of neighbors of a
client, and let d be the dimension of client’s input vector.

Client and server costs. Figure 5 compares Flamingo’s
communication costs with those of BBGLR. In short, the
total asymptotic cost for T aggregation rounds between
BBGLR and Flamingo does not vary much; but the number
of round-trips differ much. The computation cost is analyzed
as follows. For the setup phase, if a client is a decryptor,
it has O(L2) computation for both DKG, and secret key
transfer. In the collection phase at round t, each client
computes O(A+L) encryptions (assuming that for all clients
i, A(i) ≤ A). If a client is a decryptor, it additionally has a
O(δAnt + (1− δ)nt + ϵn2

t ) computation cost.

8. Experimental Evaluation

In this section we answer the following questions:
• What are Flamingo’s concrete server and client costs,
and how long does it take Flamingo to complete one and
multiple rounds of aggregation?

• Can Flamingo train a realistic neural network?
• How does Flamingo compare to the state of the art in
terms of the quality of the results and running time?

We implement the following baselines:

Non-private baseline. We implement a server that simply
sums up the inputs it receives from clients. During a partic-
ular round, each of the clients sends a vector to the server.
These vectors are in the clear, and may be any sort of value
(e.g. floating points), unlike Flamingo, which requires data
to be masked positive integers. The server tolerates dropouts,
as Flamingo does, and aggregates only the vectors from
clients who respond before the timeout.

BBGLR. For BGGLR, we implement Algorithm 3 in their
paper [8] with a slight variation that significantly improves
BBGLR’s running time, although that might introduce secu-
rity issues (i.e., we are making this baseline’s performance
better than it is in reality, even if it means it is no longer
secure). Our specific change is that we allow clients to drop
out during the graph establishment procedure and simply
construct a graph with the clients that respond in time.
BBGLR (originally) requires that no client drops out during
graph establishment to ensure that the graph is connected.
Without this modification, BBGLR’s server has to wait for
all the clients to respond and is severely impacted by the

long tail of the client response distribution—which makes
our experiments take an unreasonable amount of time.

8.1. Experimental environment

Prior works focus their evaluation on the server’s costs.
While this is an important aspect (and we also evaluate it),
a key contributor to the end-to-end completion time of the
aggregation (and of the federated learning training) is the
number of round-trips between clients and the server. This
is especially true for geodistributed clients.

To faithfully evaluate real network conditions, we run
the ABIDES simulator [13] on a server with 40 Intel Xeon
E5-2660 v3 (2.60GHz) CPUs and 200 GB DDR4 memory.
Note that in practice, client devices are usually less powerful
than the experiment machine. ABIDES supports the cubic
network delay model [33]: the latency consists of a base
delay (a range), plus a jitter that controls the percentage
of messages that arrive within a given time (i.e., the shape
of the delay distribution tail). We set the base delay to the
“global” setting in ABIDES’s default parameters (the range
is 21 microseconds to 53 milliseconds), and use the default
parameters for the jitter.

Both Flamingo and BBGLR work in steps (as defined
in §2.3). We define a waiting period for each step of the
protocol. During the waiting period, the server receives
messages from clients and puts the received messages in
a message pool. When the waiting period is over, a timeout
is triggered and the server processes the messages in the
pool, and proceeds to the next step. The reason that we do
not let the server send and receive messages at the same
time is that, in some steps (in both BBGLR and Flamingo),
the results sent to the clients depend on all the received
messages and cannot be processed in a streaming fashion.
For example, the server must decide on the set of online
clients before sending the request to reconstruct the shares.

8.2. Secure aggregation costs and completion time

This section provides microbenchmarks for summation
tasks performed by BBGLR and Flamingo. Client inputs are
16K-dimensional vectors with 32-bit entries.

Communication costs. Figure 6 gives the communication
cost for a single summation. The total cost per aggregation
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Figure 6: Communication costs for different steps in a single
summation over 1K clients for Flamingo and BBGLR.

CPU costs keyad graph share report check recon

Server (sec)
BBGLR 0.11 0.27 0.09 0.09 0.08 0.76
Flamingo — — — 0.24 — 2.30

Client (sec)
BBGLR <0.01 <0.01 <0.01 0.02 0.01 <0.01
Flamingo

Regular clients — — — 0.22 — —
Decryptors — — — — 0.10 0.56

Figure 7: Single-threaded microbenchmarks averaged over
10 runs for server and client computation for a single
summation over 1K clients. “<” means less than.

round for BBGLR and Flamingo are similar. This is because
Flamingo’s extra cost over BBGLR at the report step is
roughly the message size that BBGLR has in their three-
step setup; this is also reflected in the asymptotic cost anal-
ysis of Figure 5. In short, compared to BBGLR, Flamingo
has fewer round trips with roughly the same total server
communication. For clients, the story is more nuanced: each
client has a slightly higher cost in Flamingo than in BBGLR
during the report step, as clients in Flamingo need to append
ciphertexts to the vector. However, in the reconstruction step,
clients who are not decryptors will not need to send or
receive any messages. Each decryptor incurs communication
that is slightly larger than sending one input vector. Note that
the vector size only affects the report step.

Computation costs. We first microbenchmark a single sum-
mation with 1K clients, and set δ to 1% (i.e., up to 1%
of clients can drop out in any given step). This value of
δ results in a server waiting time of 10 seconds. Figure 7
gives the results. The report step in Flamingo has slightly
larger server and client costs than BBGLR because clients
need to generate the graph “on-the-fly”. In BBGLR, the
graph is already established in the first three steps and
stored for the report and reconstruction step. For server
reconstruction time, Flamingo is slightly more costly than
BBGLR because of the additional elliptic curve operations.
The main takeaway is that while Flamingo’s computational
costs are slightly higher than BBGLR, these additional costs
have negligible impact on completion time owing to the
much larger effect of network delay, as we show next.

Aggregation completion time. To showcase how waiting
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Figure 8: End-to-end completion time and accuracy of 10
secure aggregation rounds with 1K clients. The elapsed time
is the finishing time of round t. For Flamingo, round 1
includes all of the costs of its one-time setup, and between
round 5 and 6 Flamingo performs a secret key transfer.
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Figure 9: Generating shares of the secret key among 60 decryp-
tors. The four steps are described in Section 4 and given as part (1)
in ΠDKG in Appendix B.2.

time w affects dropouts (which consequently affects the
sum accuracy), we use two waiting times, 5 seconds and
10 seconds. The runtime for an aggregation round depends
on the timeout for each step, the simulated network delay,
and the server and client computation time. Figure 8a and 8c
show the overall completion time across 10 rounds of ag-
gregations. A shorter waiting time makes the training faster,
but it also means that there are more dropouts, which in
turn leads to more computation during reconstruction. As
a result, the overall runtime for the two cases are similar.
On 1K clients, Flamingo achieves a 3× improvement over
BBGLR; for Flamingo’s cost we included its one-time setup
and one secret key transfer. If the key transfer is performed
less frequently, the improvement will be more significant.

The cost of the DKG procedure (part of the setup and
which we also added to the first round in Figure 8) is shown
in Figure 9. A complete DKG takes less than 10 seconds
as the number of decryptors is not large and we allow
decryptor dropouts. For 60 decryptors, the local computation
performed by each decryptor during the DKG is 2 seconds.

Summation accuracy. Figure 8b and 8d show that Flamingo
achieves better sum accuracy τ (defined in §2.4) than
BBGLR when they start a summation with the same number
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Figure 10: Evaluation for full training sessions on EMNIST
and CIFAR100 datasets. The number of clients per round is
128, the batch and epoch sizes for FedAvg are 10 and 20,
respectively. Flamingo’s setup cost is included during the
first round, and it performs a secret key transfer every 20
rounds, which adds to the total run time. The accuracy score
is TensorFlow’s sparse categorical accuracy score [2].

of clients. When the waiting time is shorter, as in Figure 8d,
in each step there are more clients excluded from the sum-
mation and therefore the discrepancy between Flamingo and
BBGLR grows larger.

8.3. Feasibility of a full private training session

We implement the federated learning algorithm
FedAvg [48] on the non-private baseline. We also use
this algorithm for Flamingo and BBGLR but replace
its aggregation step with either Flamingo or BBGLR to
produce a secure version. Inside of FedAvg, we use a
multilayer perceptron for image classification. Computation
of the weights is done separately by each client on local
data, and then aggregated by the server to update a global
model. The server then sends the global model back to
the clients. The number of training iterations that clients
perform on their local data is referred to as an epoch. We
evaluated Flamingo on epochs of size 5, 10, and 20. We
found that often, a larger epoch was correlated with faster
convergence of FedAvg to some “maximum” accuracy
score. Additionally, because our neural network model
calculations run very fast—there was, on average, less than
a second difference between clients’ model fitting times for
different epochs—and because Flamingo and the baselines
were willing to wait for clients’ inputs for up to 10 seconds,
the epoch size did not affect their overall runtime.

We use two of TensorFlow’s federated datasets [2]: (1)
EMNIST, the Extended MNIST letter dataset from the Leaf
repository [15,16]; and (2) CIFAR100, from the CIFAR-

100 tiny images dataset [42,43]. The EMNIST dataset has
∼340K training/∼40K test samples, each with a square of
28×28 pixels and 10 classes (digits). Each client has ∼226
samples. During training, we use weight vectors with 8K
32-bit entries. The CIFAR100 dataset has 50K training/10K
test samples, each with a square of 32× 32 pixels and 100
classes. Each pixel additionally has red/blue/green values.
Each client has 100 samples. To achieve good accuracy for
the CIFAR100 dataset, we use a more complex convolutional
neural network than we do for the EMNIST dataset, with extra
layers to build the model, normalize inputs between layers,
and handle activation functions and overfitting. This results
in longer weight vectors, with 500K 32-bit entries.

We randomly divide the datasets equally among 128
clients to create local data. Local models are trained with
small batch sizes. In Flamingo and BBGLR, all weights (of-
ten floating point numbers) are encoded as positive integers.
We do this by adding a large positive constant, multiplying
by 212, and truncating the weight to an unsigned 32-bit
integer. Figure 10 shows the result with δ = 1%.

Running time. From Figures 10b and 10d, we see that
the EMNIST and CIFAR100 datasets do not converge until
about round 150 and 200, respectively, though their accuracy
continues to improve slightly after that. Figures 10a and 10c
show Flamingo’s running time is about 5.5× lower (i.e.,
better) than BBGLR for EMNIST and 4.8× for CIFAR100
and about 1.4× higher (i.e., worse) than the non-private
baseline for EMNIST and 1.7× for CIFAR100. We believe
these results provide evidence that Flamingo is an effective
secure aggregation protocol for multi-round settings such as
those required in federated learning.

Training accuracy. We measure training accuracy with
TensorFlow’s sparse categorical accuracy score, which is
derived based on the resulting model’s performance on test
data. Due to the way in which we encode floating points as
integers, a small amount of precision from the weights is
lost each round. We compare the accuracy of Flamingo and
BBGLR’s final global model to a model trained on the same
datasets with the baseline version of FedAvg (which works
over floating points) in Figures 10b and 10d. We find that
the encoding itself does not measurably affect accuracy.

9. Extension with robustness

Recall that our threat model (§2.3) assumes that the
server is controlled by the adversary. However, in some
cases, the server is actually honest and wants to obtain a
meaningful result—this motivates the need of having the
protocol be robust against malicious clients in addition to
the other security properties. In Section 3.2, we discussed
that in BBGLR, when the server is honest, a malicious client
who deviates from the protocol may cause the output to be
wrong or the protocol to abort (without being detected). The
attack is simple: a malicious client changes the received
share of a secret, and if the server cannot reconstruct the
secret then the protocol aborts; or the server may reconstruct
to another secret. The protocol we give in Section 4 does
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not have robustness for the same reason as in BBGLR, but
we provide an extension such that the malicious behavior
of the clients can be detected. The full description of the
extension is given in Appendix E in the full version [46].

As a result, the extended protocol always terminates with
the correct output (i.e., the sum of the inputs from clients
who participated) when the server is honest; if the server is
malicious, then the protocol either aborts or outputs a sum
from at least (1 − δ − η)|St| clients. That said, we want to
emphasize that this difference in security is not practically
meaningful at the moment since malicious clients are free
to provide any input they want (see the paragraph on input
correctness in §2.4). However, it could become important
in the future: if there is ever some mechanism that could
confirm the validity of clients’ inputs, then this additional
guarantee would ensure that an honest server always gets
valid outputs even if malicious clients exist in the system.

10. Related Work

In this section we discuss alternative approaches to
compute private sums and the reasons why they do not fit
well in the setting of federated learning. Readers may also
be interested in a recent survey of this area [47].

Pairwise masking. Bonawitz et al. [10] and follow up
works [8,59], of which BBGLR [8] is the state-of-the-art,
adopt the idea of DC networks [20] in which pairwise masks
are used to hide individuals’ inputs. Such a construction
is critical for both client-side and server-side efficiency:
first, since the vectors are long, one-time pad is the most
efficient way to encrypt a vector; second, the server just
needs to add up the vectors, which achieves optimal server
computation (even without privacy, the server at least has to
do a similar sum). Furthermore, pairwise masking protocols
support flexible input vectors, i.e., one can choose any b
(the number of bits for each component in the vector) as
desired. Flamingo improves on this line of work by reducing
the overall round trip complexity for multiple sums.

MPC. Works like FastSecAgg [38] use a secret-sharing
based MPC to compute sums, which tolerates dropouts, but
it has high communication as the inputs in federated learning
are large. Other results use non-interactive MPC protocols
for addition [59,60] where all the clients establish shares of
zero during the setup. And then when the vectors of clients
are requested, each client uses the share to mask the vector
and sends it to the server. However, to mask long vectors,
the clients need to establish many shares of zeros, which
is communication-expensive. Such shares cannot be reused
over multiple summation rounds (which is precisely what
we address with Flamingo). Furthermore, the non-interactive
protocols are not resilient against even one dropout client.

Additively homomorphic encryption. One can construct a
single-server aggregation protocol using threshold additive
homomorphic encryption [24,26,50,52,53,63]. Each client
encrypts its vector as a ciphertext under the public key
of the threshold scheme, and sends it to the committee.

The committee adds the ciphertexts from all the clients and
gives the result to the server. However, this does not work
well for large inputs (like the large weight vectors found
in federated learning) because encrypting the vector (say,
using Paillier or a lattice-based scheme) and performing the
threshold decryption will be very expensive.

A recent work [61] uses LWE-based homomorphic
PRGs. This is an elegant approach but it has higher computa-
tion and communication costs than works based on pairwise
masking, including Flamingo. The higher cost stems from
one having to choose parameters (e.g., vector length and the
size of each component) that satisfy the LWE assumption,
and particularly the large LWE modulus that is required.

Multi-round setting. Recent work [32] designs a new multi-
round secure aggregation protocol with reusable secrets
that is very different from Flamingo’s design. The protocol
works well for small input domains (e.g., vectors with small
values) but cannot efficiently handle large domains as it
requires brute forcing a discrete log during decryption. In
contrast, Flamingo does not have any restriction on the input
domain. A variant of the above work can also accommodate
arbitrary input domains by relying on DDH-based class
groups [17] (a more involved assumption than DDH).

11. Discussion

We have focused our discussion on computing sums, but
Flamingo can also compute other functions such as max/min
using affine aggregatable encodings [3,7,22,34].

Limitations. Flamingo assumes that the set of all clients (N)
involved in a training session is fixed before the training
starts and that in each round t some subset St from N is
chosen. We have not yet explored the case of handling
clients that dynamically join the training session.

Another aspect that we have not investigated in this work
is that of handling an adaptive adversary that can dynam-
ically change the set of parties that it compromises as the
protocol executes. In BBGLR, the adversary can be adaptive
across rounds but not within a round; in Flamingo the
adversary is static across all the rounds. To our knowledge,
an adversary that can be adaptive within a single round has
not been considered before in the federating learning setting.
It is not clear that existing approaches from other fields [31]
can be used due to different communication models.

Finally, secure aggregation reduces the leakage of in-
dividuals’ inputs in federated learning but does not fully
eliminate it. It is important to understand what information
continues to leak. Two recent works in this direction are as
follows. Elkordy et al. [27] utilize tools from information
theory to bound the leakage with secure aggregation: they
found that the amount of leakage reduces linearly with
the number of clients. Wang et al. [67] then show a new
inference attack against federated learning systems that use
secure aggregation in which they are able to obtain the
proportion of different labels in the overall training data.
While the scope of this attack is very limited, it may inspire
more advanced attacks.
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McMahan, V. Smith, and A. Talwalkar. Leaf: A benchmark for
federated settings. https://github.com/TalwalkarLab/leaf.

[16] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B.
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Protocol Πsetup.

Parties. Clients 1, . . . , N and a server.

Parameters. Number of pre-selected decryptors L. Let L = 3ℓ+ 1.

Protocol outputs. A set of t clients (2ℓ+ 1 ≤ t ≤ 3ℓ+ 1) hold secret

sharing of a secret key SK. All the clients in [N] and the server hold

the associated public key PK.

• The server and all the clients in [N] invoke Frand and receive a

binary string v $←− {0, 1}λ.

• The server and all the clients in [N] computes

D0 ← CHOOSESET(v, 0, L, N).

• All the clients u ∈ D0 and the server run ΠDKG (Fig. 12).

• The server broadcasts the signed PKs received from the clients in

D0 to all the clients in [N].

• A client in [N] aborts if it received less than 2ℓ+1 valid signatures

on PKs signed by the parties defined by CHOOSESET(v, 0, L, N).

Figure 11: Setup phase with total number of clients N. Frand
is modeled as a random beacon service.
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Appendix A.
Failure and threat model details

In this section, we give the full details of the dropout
rate and the corruption rate (§2.3).

Dropout rate. Recall that we upper bound the dropout
rate of the sum contributors (St) in one round as δ. For
decryptors, we consider the dropout rate in one summation
round and assume it is at most δD. Note that δ and δD are
individually determined by the server timeout at those steps
(recall that in each round, clients in St only participate in the
first step; the following two steps only involve decryptors).

Corruption rate. For corruption, we denote the corrupted
rate in St as ηSt and the corrupted rate in decryptors as ηD.
In the Flamingo system, η is given; ηSt and ηD depends on
η. Note that the fraction of malicious clients in a chosen
subset of [N] (e.g., St, D) may not be exactly η, but rather a
random variable η∗ from a distribution that is parameterized
by η, N and the size of the chosen set. Since the expectation

of η∗ is equal to η, and when the size of the chosen set is
large (e.g., St), the deviation of η∗ from η is negligible (i.e.,
η∗ is almost equal to η). Therefore, ηSt can be considered
as equal to η. On the other hand, since D is a small set, we
cannot assume ηD is equal to η. Later in Appendix C we
show how to choose L to ensure ηD satisfies the inequality
required in Theorem 3 with overwhelming probability.

Security parameters. In the following definitions and
proofs, we use κ for the information-theoretic security pa-
rameter and λ for the computational security parameter.

Appendix B.
Full Protocol Description

B.1. Definition of cryptographic primitives

In this section, we formally define the cryptographic
primitives used in Flamingo protocol that are not given in
Section 3.1.

Definition 1 (DDH assumption). Given a cyclic group G
with order q, and let the generator of G be g. Let a, b, c be
uniformly sampled elements from Zq. We say that DDH is
hard if the two distributions (ga, gb, gab) and (ga, gb, gc) are
computationally indistinguishable.

Definition 2 (ElGamal encryption). Let G be a group of
order q in which DDH is hard. ElGamal encryption scheme
consists of the following three algorithms.

• AsymGen(1λ) → (SK, PK): sample a random element
s from Zq, and output SK = s and PK = gs.

• AsymEnc(PK, h) → (c0, c1): sample a random element
y from Zq and compute c0 = gy and c1 = h · PKy.

• AsymDec(SK, (c0, c1))→ h: compute h = (cSK
0 )−1 · c1.

We say that ElGamal encryption is secure if it has CPA
security. Note that if DDH assumption (Def.1) holds, then
ElGamal encryption is secure.

Definition 3 (Authenticated encryption). An authenticated
encryption scheme consists of the following algorithms:

• SymAuthGen(1λ) → k: sample a key k uniformly ran-
dom from {0, 1}λ.

• SymAuthEnc(k, m)→ c: take in a key k and a message
m, output a ciphertext c.

• SymAuthDec(k, c): take in a key k and a ciphertext c,
output a plaintext m or ⊥ (decryption fails).

We say that the scheme is secure if it has CPA security and
ciphertext integrity.

For simplicity, we use AsymEnc and SymAuthEnc to
refer to the encryption schemes.

Definition 4 (Signature scheme). A signature scheme con-
sists of the following algorithms:

• SGen(1λ) → (sk, pk): generate a pair of siging key sk
and verfication key pk.

• Sign(sk, m)→ σ: take in a signing key sk and message
m, outputs a signature σ.
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• VerSig(pk, m,σ) → b: take in a verification key pk, a
messagee m and a signature σ, output valid or not as
b = 1, 0.

We say that the signature scheme is secure if the prob-
ability that, given m1, . . . , mz, an attacker who can query
the signing challenger and finds a valid (m′,σ′) where
m′ ̸∈ {m1, . . . , mz} is negligible.

B.2. Setup phase and distributed key generation

The setup protocol is conceptually simple, as shown in
Figure 11. A crucial part of the setup phase is the distributed
key generation (DKG). We first describe the algorithms used
in DKG.

Algorithms. Let G be a group with order q in which
discrete log is hard. The discrete-log based DKG protocol
builds on Feldman verifiable secret sharing [28], which we
provide below. The sharing algorithm takes in the threshold
parameters L, ℓ, and a secret s ∈ Zq, chooses a polynomial
with random coefficients (except the constant term)

p(X) = a0 + a1X + . . .+ aℓXℓ, a0 = s,

and outputs the commitments

Ak = gak ∈ G

for k = 0, 1, . . . , ℓ. The j-th share sj is p(j) for j = 1, . . . , L.
To verify the j-th share against the commitments, the

verification algorithm takes in sj and a set of commitments
{Ak}ℓk=0, and checks if

gsj =

ℓ∏
k=0

(Ak)
jk .

We define the above algorithms as

• FShare(s, ℓ, L)→ {sj}L
j=1, {Ak}ℓk=0,

• FVerify(j, sj, {Ak}ℓk=0)→ b where b ∈ {0, 1}.

We now give a variant PShare and PVerify based on
Pedersen commitment. The PShare algorithm chooses two
random polynomials

p(X) = a0 + a1X + . . .+ aℓXℓ, a0 = s

p′(X) = b0 + b1X + . . .+ bℓXℓ

and outputs

{p(j)}L
j=1, {p′(j)}L

j=1, Ck := gak hbk for k = 0, . . . , ℓ,

where g, h ∈ G.
To verify against the share sj = p(j), PVerify takes in

s′j = p′(j) and {Ck}ℓk=0, and checks if

gsj hs′j =

ℓ∏
k=0

(Ck)
jk .

The algorithms PShare and PVerify can be defined anal-
ogously to Fshare and FVerify:

• PShare(s, ℓ, L)→ {sj}L
j=1, {s′j}L

j=1, {Ck}ℓk=0,
• PVerify(j, sj, s′j , {Ck}ℓk=0)→ b where b ∈ {0, 1}.

Protocol. We give the modified DKG protocol ΠDKG from
GJKR-DKG in Figure 12. The participating parties can drop
out, as long as ηD + δD < 1/3.

Correctness and security. For ΠDKG, if the server is
honest, then our communication model (§2.3) is equivalent
to having a fully synchronous channel, hence in this case the
correctness and security properties in the prior work hold.
When the server is malicious, we show that ΠDKG satisfies
the following correctness (C1, C2, C3, C4) and security (S).
The proof of Lemma 2 is given in the full version [46].

C1. Each honest party either has no secret at the end or
agrees on the same QUAL with other honest parties.

C2. The agreed QUAL sets defines a unique secret key.
C3. The secret key defined by QUAL is uniformly ran-

dom.
C4. Each honest party, either has no public key, or out-

puts the same public key with other honest parties.
S. Malicious parties learns no information about the

secret key except for what is implied by the public
key.

Lemma 2. Let the participants in DKG be L parties and
a server. If δD + ηD < 1/3, then under the communication
model defined in Section 2.2, protocol ΠDKG (Fig. 12) has
properties C1, C2, C3, C4 and S in the presence of a
malicious adversary controlling the server and up to ηD
fraction of the parties.

B.3. Collection phase

The detailed protocol for each round in the collection
phase is described in Figure 13. At the beginning of round
t, the server notifies the clients who should be involved,
namely St. A client who gets a notification can download
public keys of its neighbors At(i) from PKI server (the server
should tell clients how to map client IDs to the names in
PKI). To reduce the overall run time, clients can pre-fetch
public keys used in the coming rounds.

B.4. Transfer shares

Every R rounds, the current set of decryptors D transfer
shares of SK to a new set of decryptors, Dnew. To do so,
each u ∈ D computes a destination decryptors set Dnew
for round t, by CHOOSESET(v, ⌈t/R⌉, L, N). Assume now
each decryptor u ∈ D holds share su of SK (i.e., there is
a polynomial p such that p(u) = su and p(0) = SK). To
transfer its share, each u ∈ D acts as a VSS dealer exactly
the same as the first part in ΠDKG (Fig.9) to share su to new
decryptor j ∈ Dnew. In detail, u chooses a polynomial p∗

u of
degree ℓ and sets p∗

u(0) = su and all other coefficients of p∗
u

to be random. Then, u sends p∗
u(j) to each new decryptor

j ∈ Dnew.

494



Protocol ΠDKG based on discrete log

Parameters. A set of L parties (denoted as D0), threshold ℓ where 3ℓ+ 1 = L. δD + ηD < 1/3.

Protocol outputs. A subset of the L parties hold secret sharing of a secret key s ∈ Zq; the server holds the public key gs signed by all the clients.

Notes. The parties have access to PKI (Section 4.2). All messages sent from one party to another via the server are signed and end-to-end encrypted.

1. Each party i performs verifiable secret sharing (VSS) as a dealer:

a) Share:

Party i ∈ D0 randomly chooses si ∈ Zq, computes {si,j}L
j=1, {s′i,j}L

j=1, {Ci,k}ℓk=0 ← PShare(si, ℓ, L).

It also computes {Ak}ℓk=0 from FShare(s, ℓ, L) and stores it locally.

Send si,j and s′i,j to each party j, and {Ci,k}ℓi=0 to all parties j ∈ D0 via the server.

// Denote the set of parties who received all the prescribed messages after this step as D1.

b) Verify and complain:

Each party j ∈ D1 checks whether it received at least (1− δD)L valid signed shares. If not, abort; otherwise continue.

Each party j ∈ D1, for each received share si,j, runs b← PVerify(j, si,j, s′i,j, {Ci,k}ℓk=0).

If b is 1, then party i does nothing; otherwise party i sends (complaints, j) to all the parties in D0 via the server.

// Denote the set of parties who received all the prescribed messages after this step as D2.

c) Against complaint:

Each party i ∈ D2, who as a dealer, if received a valid signed (complaint, i) from j, sends si,j, s′i,j to all parties in D0 via the server.

// Denote the set of parties who received all the prescribed messages after this step as D3.

d) Disqualify:

Each party i ∈ D3 marks any party j as disqualified if it received more than 2ℓ + 1 valid signed (complaints, j), or party j answers with

sj,i, s′j,i such that Verify(sj,i, s′j,i, {Cj,k}ℓk=1) outputs 0. The non-disqualified parties form a set QUAL.

Each party i ∈ D3 signs the QUAL set and sends to all parties in D0 to the server. The server, on receiving a valid signed QUAL, signs and

sends it to all parties in D3.

e) Cross-check QUAL:

Each party i ∈ D3 checks whether it receives at least 2ℓ+ 1 valid signed QUAL, if so, they sum up the shares in QUAL and derive a share

of secret key. If not, abort.

2. Compute public key:

a) Each party i ∈ QUAL sends {Ai,k}ℓk=1 to all parties via the server.

b) Each party i runs b′ ← FVerify(sj,i, {Aj,k}ℓk=1) for j ∈ QUAL. If b′ is 0, then party i sends to all the parties in D3 via the server a message

(complaint, j, sj,i, s′j,i) for those sj,i, s′j,i such that b′ is 0 and b is 1.

c) Each party i who received valid message (complaint, j, sj,i, s′j,i) in the last step, runs with other parties to reconstruct si. For all parties in

QUAL, set yi = gsi , and compute PK =
∏

i∈QUAL yi. Sign PK using its own signing key, and send the signed the PK to the server.

Figure 12: Protocol ΠDKG.

Each new decryptor j ∈ Dnew receives the evaluation of
the polynomials at point j (i.e., p∗

u(j) for all u ∈ D). The
new share of SK held by j, s′j , is defined to be a linear
combination of the received shares: s′j :=

∑
u∈D βu · p∗

u(j),
where the combination coefficients {βu}u∈D are constants
(given the set D, we can compute {βu}u∈D). Note that the
same issue about communication model for DKG also exists
here, but the same relaxation applies.

Here we require that ηD + δD < 1/3 for both D and
Dnew. As a result, each client j in a subset D ⊆ Dnew holds
a share su,j. For each receiving decryptor j ∈ D, it computes
s′j =

∑
u∈Dold

βu · su,j, where each βu is some fixed constant.

Appendix C.
Requirements on Parameters

The number of decryptors. The full version [46] gives
detailed analysis; but briefly, for η and δD both being 1%,
the choice of L = 60 (Section 6) gives 10−6 probability
(that more than 1/3 selected decryptors are malicious) and
L = 120 gives 10−12 probability.

The number of neighbors. The full version [46] gives
detailed analysis; but briefly, for 1K clients, ϵ = 0.02
guarantees 10−6 probability (that the graph is disconnected)
and ϵ = 0.03 guarantees 10−12 probability. For example,
in the former case, when η and δ are both 1%, each client
needs ⌈nt(ϵ+ δ + η)⌉ = 41 neighbors.
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Collection phase: Πsum for round t out of T total rounds

Initial state from setup phase: each client i ∈ [N] holds a value v and public key PK = gs where SK = s; each decryptor u ∈ D additionally holds a

Shamir share of SK (threshold ℓ with 3ℓ+ 1 = L). We require δD + ηD < 1/3.

Steps for round t:

1. Report step.
Server performs the following:

Compute a set Qgraph ← CHOOSESET(v, t, nt, N) and a graph Gt ← GENGRAPH(v, t,Qgraph); store {At(i)}i∈Qgraph computed from Gt.

Notify each client i ∈ Qgraph that collection round t begins.

Each client i ∈ Qgraph performs the following:
Compute Qlocal

graph ← CHOOSESET(v, t, nt, N), and if i ̸∈ Qlocal
graph, ignore this round.

Read from PKI gaj for j ∈ At(i), and compute ri,j by computing (gaj )ai and mapping it to {0, 1}λ.

Sample mi,t
$←− {0, 1}λ and compute {hi,j,t}j∈A(i) ← PRF(rij, t) for j ∈ At(i).

Send to server a message msgi,t consisting of

Veci,t = x⃗i,t + PRG(mi,t) +
∑

j∈At(i)±PRG(hi,j,t), SymAuthEnc(ki,u, mi,u,t∥t), for u ∈ D, AsymEnc(PK, hi,j,t) for j ∈ At(i)

where mi,u,t ← Share(mi,t, ℓ, L), At(i)← FINDNEIGHBORS(v, St, i),

and AsymEnc (ElGamal) and SymAuthEnc (authenticated encryption) are defined in Appendix B.1.

along with the signatures σi,j,t ← Sign(ski, ci,j,t∥t) for all ciphertext ci,j,t = AsymEnc(PK, hi,j,t) ∀j ∈ At(i).

2. Cross check step.
Server performs the following:

Denote the set of clients that respond within timeout as Qvec.

Compute partial sum z̃t =
∑

i∈Qvec
Veci,t.

Build decryption request req (req consists of clients in St to be labeled):

Initialize an empty set Ei for each i ∈ Qgraph, and

if i ∈ Qvec, label i with “online”,

and add SymAuthEnc(ki,u, mi,u,t∥t) to Ei, where ki,j is derived from PKI (Appendix B.1);

else label i with “offline”,

and add {(AsymEnc(PK, hi,j,t),σi,j,t}j∈At(i)∩Qvec) to Ei.

Send to each u ∈ D the request req and Ei of all clients i ∈ Qgraph.

Each decryptor u ∈ D performs the following:
Upon receiving a request req, compute σ∗

u ← Sign(sku, req∥t), and send (req,σ∗
u ) to all other decryptors via the server.

3. Reconstruction step.
Each decryptor u ∈ D performs the following:

Ignore messages with signatures (σi,j,t or σ∗
u ) with round number other than t.

Upon receiving a message (req,σ∗
u′ ), run b← VerSig(pki, req,σ∗

u′ ). Ignore the message if b = 0.

Continue only if u received 2ℓ+ 1 or more same req messages that were not ignored. Denote such message as req∗.

For req∗, continue only if

each client i ∈ St is either labeled as “online” or “offline”;

the number of “online” clients is at least (1− δ)nt;

all the “online” clients are connected in the graph;

each online client i has at least k online neighbors such that ηk < 2−κ.

For each i ∈ Qgraph,

For each SymAuthEnc(ki,u, mi,u,t∥t) in Ei, use ki,u (derived from PKI) to decrypt; send mi,u,t to the server if the decryption succeeds;

For each (AsymEnc(PK, hi,j,t),σi,j,t) ∈ Ei, parse as ((c0, c1),σ) and send csu
0 to the server if VerSig((c0, c1),σ) outputs 1;

Server completes the sum:
Denote the set of decryptors whose messages have been received as U. Compute a set of interpolation coefficients {βu}u∈U from U.

For each i ∈ Qgraph, reconstruct the mask mi,t or {hi,j,t}j∈At(i)∩Qvec
:

For each parsed (c0, c1) meant for hi,j,t in Ei, compute hi,j,t as c1 · (
∏

u∈U(c
su
0 )

βu )−1;

For each set of received shares {mi,u,t}u∈U , compute mi,t as Recon({mi,u,t}u∈U).

Output zt = z̃t − PRG(mi,t) +
∑

j∈At(i)∩Qvec
±PRG(hi,j,t).

Figure 13: Collection protocol Πsum.
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