
BlindHub: Bitcoin-Compatible Privacy-Preserving
Payment Channel Hubs Supporting Variable

Amounts
Xianrui Qin

The University of Hong Kong
xrqin@cs.hku.hk

Shimin Pan
The University of Hong Kong

smpan@cs.hku.hk

Arash Mirzaei
Monash University

arash.mirzaei@monash.edu

Zhimei Sui
Monash University

zhimei.sui1@monash.edu

Oğuzhan Ersoy
Radboud University

Delft University of Technology
oguzhan.ersoy@ru.nl

Amin Sakzad
Monash University

amin.sakzad@monash.edu

Muhammed F. Esgin
Monash University and CSIRO’s Data61

Muhammed.Esgin@monash.edu

Joseph K. Liu
Monash University

joseph.liu@monash.edu

Jiangshan Yu
Monash University

jiangshan.yu@monash.edu

Tsz Hon Yuen
The University of Hong Kong

thyuen@cs.hku.hk

Abstract—Payment Channel Hub (PCH) is a promising so-
lution to the scalability issue of first-generation blockchains or
cryptocurrencies such as Bitcoin. It supports off-chain payments
between a sender and a receiver through an intermediary (called
the tumbler). Relationship anonymity and value privacy are
desirable features of privacy-preserving PCHs, which prevent
the tumbler from identifying the sender and receiver pairs as
well as the payment amounts. To our knowledge, all existing
Bitcoin-compatible PCH constructions that guarantee relation-
ship anonymity allow only a (predefined) fixed payment amount.
Thus, to achieve payments with different amounts, they would
require either multiple PCH systems or running one PCH system
multiple times. Neither of these solutions would be deemed
practical.
In this paper, we propose the first Bitcoin-compatible PCH that
achieves relationship anonymity and supports variable amounts
for payment. To achieve this, we have several layers of technical
constructions, each of which could be of independent interest
to the community. First, we propose BlindChannel, a novel
bi-directional payment channel protocol for privacy-preserving
payments, where one of the channel parties is unable to see the
channel balances. Then, we further propose BlindHub, a three-
party (sender, tumbler, receiver) protocol for private conditional
payments, where the tumbler pays to the receiver only if the
sender pays to the tumbler. The appealing additional feature
of BlindHub is that the tumbler cannot link the sender and
the receiver while supporting a variable payment amount. To
construct BlindHub, we also introduce two new cryptographic
primitives as building blocks, namely Blind Adaptor Signature
(BAS), and Flexible Blind Conditional Signature (FBCS). BAS
is an adaptor signature protocol built on top of a blind sig-
nature scheme. FBCS is a new cryptographic notion enabling
us to provide an atomic and privacy-preserving PCH. Lastly,
we instantiate both BlindChannel and BlindHub protocols and
present implementation results to show their practicality.

I. INTRODUCTION

Payment Channels (e.g. [2], [14], [42]) are regarded as
one of the most widely deployed solutions to the scalability
of Bitcoin. A payment channel allows users to deposit a
certain amount of coins in a shared address (the channel)
controlled by both. The corresponding transaction will be
stored on-chain. Both parties can then exchange authenticated
off-chain transactions to re-distribute the channel funds. Users
finally close the channel by publishing the last authenticated
transaction on-chain. This splits the channel coins among
parties according to the last agreed distribution.

The payment channel model allows payments between only
two users. If there are more than two users, each pair of users
needs to establish their own payment channel to facilitate the
payment, which is a non-scalable approach. To solve this issue,
Payment Channel Networks (PCN) (e.g. [19], [42]) enable two
users with no direct payment channel to pay each other through
the channels of some intermediaries. Nevertheless, PCN pay-
ments may require multi-channel paths and intermediaries to
actively participate in relaying the payments, which can lead
to their failure.

As an alternative, a Payment Channel Hub (PCH) [18],
[23], [25], [27], [48] deploys a star topology where users
can pay each other via a single intermediary (called the
tumbler). However, having a single intermediary raises two
issues: (i) The tumbler might steal coins from the sender by not
forwarding the payment to the receiver, and (ii) The tumbler
might link the sender to the receiver. These security and
privacy issues can be linked to atomicity, value privacy and
relationship anonymity properties [1], [20], [23], [27], [33],

2462

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Xianrui Qin. Under license to IEEE.
DOI 10.1109/SP46215.2023.00116

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

42
7

[48]1. Atomicity ensures balance security of honest parties
(i.e. sender, receiver, and tumbler), and value privacy and
relationship anonymity guarantee that the tumbler cannot know
the payment amount and cannot associate the sender and
receiver of a payment, respectively.

Another important property for a PCH is interoperability
which determines the variety of cryptocurrencies supported
by the PCH construction. A highly interoperable PCH allows
the tumbler to relay payments between users who possess
wallets in a wide variety of cryptocurrencies. Among the
existing PCHs, [23], [48] provide the highest interoperability
by requiring the most basic functionalities from the underlying
cryptocurrencies, i.e., digital signature and timelocks, and
hence supporting the most varied cryptocurrencies.

A. Problem Statement

To the best of our knowledge, all the existing Bitcoin-
compatible PCH constructions that guarantee relationship
anonymity would require the transaction amount to be fixed.
Fixing the amount requires either multiple PCH systems or
running one PCH system multiple times. For example, assume
Alice wants to pay Bob n coins, then it requires either (i)
⌊log2 n⌋ PCH systems, whose denominations are fixed to 1,
2, 4, . . . , 2⌊log2 n⌋ coins, respectively, or (ii) one PCH system
to be run for O(n) times. However, for the first approach,
it is unknown how to preserve the relationship anonymity
and atomicity across multiple PCH systems simultaneously
(existing fixed amount PCH systems only guarantee the secu-
rity of a single PCH system). Running only one PCH system
multiple times for one payment will also be very inefficient.
This state of affairs in the state-of-the-art leads us to consider
the following question:

Is it possible to construct a Bitcoin-compatible PCH sys-
tem with value privacy and relationship anonymity that also
supports variable payment amounts?

B. Our Contributions

In this paper, we construct a new PCH as an affirmative
answer to the above question. Specifically,

• We introduce BlindChannel, a new bi-directional payment
channel for privacy-preserving payments. In BlindChan-
nel, although both users reach an agreement on each
channel update, only one of the users sees the way
channel funds are redistributed. The other user only learns
the initial and final balances published on-chain. We
formalize BlindChannel in the Universal Composability
Framework [9] and formally prove its security. We believe
BlindChannel does not only serve BlindHub but also can
be of independent interests.

• We introduce BlindHub, a three-party (sender (S), tum-
bler (T), receiver (R)) protocol for private conditional

1In existing privacy-preserving PCHs [23], [27], [48], since the payment
amount is fixed, the privacy goal (referred as unlinkability property) does
not deal with the value privacy. However, since we do not require fixed
payment amount, we modified the existing definitions for PCNs [1], [20],
[33] supporting variable values into the PCH model.

variable-amount payments, where T only pays to R if
S pays to T, but T could not link S and R. BlindHub
protocol only requires digital signatures and timelocks
from the underlying blockchain. Combining BlindHub
and BlindChannel, we give the first Bitcoin-compatible
PCH construction that achieves atomicity, relationship
anonymity, and supporting variable amounts simultane-
ously (see Fig. 7).

• We introduce a new primitive, as a building block of
BlindHub, namely Blind Adaptor Signatures (BAS). BAS
is an adaptor signature protocol built on top of a blind
signature scheme. We give a concrete instantiation and
the corresponding security proof of BAS.

• We provide an instantiation of BlindHub based on an
ECDSA-based BAS and randomizable signatures on ran-
domizable commitments, which can be instantiated by
the scheme in [3]. To analyze the security of BlindHub
and inspired by Blind Conditional Signatures (BCS) [23],
we also introduce a new cryptographic notion that we
call Flexible Blind Conditional Signatures (FBCS). This
enables us to analyze the security of BlindHub. Finally,
we provide a concrete instantiation of BlindChannel that
is compatible with Bitcoin utilizing garbled circuits-based
zero-knowledge proofs. The implementation results show
that our protocol is relatively practical, and by leveraging
state-of-art proof techniques can be further optimized.
The source code for implementation of our protocol can
be found in https://github.com/blind-channel/blind-hub.

C. Related Work

Monero and ZCash, the most famous privacy-preserving
cryptocurrencies, provide confidential transactions. To provide
relationship anonymity, they use some on-chain cryptographic
mechanisms (e.g. ring signature and zero-knowledge proof)
that other currencies do not necessarily support. In addition,
Monero and Zcash have been a target of attacks that reduce
transaction privacy [10], [13], [29], [31], [39], [52], [54],
[55]. Towards a different direction, mixing protocols provide
relationship anonymity using a centralized tumbler that mixes
users’ coins. Some of these mixing protocols are on-chain and
hence suffer the scalability issue of their underlying blockchain
[7], [8], [21], [28], [35], [36], [38], [45]–[47], [49], [50],
[56]. In the off-chain protocols, BOLT [25] is built upon
Zcash, Perun [18], NOCUST [30] and MixCT [17] can only
be deployed on Turing complete blockchains (e.g. Ethereum),
TeeChain [32] relies on trusted execution environments (e.g.
Intel SGX) and Tumblebit [27] and A2L [48] do not support
variable amount payments. In Table I, we present a comparison
of the state-of-the-art off-chain mixing services.

The authors of [27] informally introduced the concept
of a synchronization puzzle enabling relationship anonymity
from a corrupt hub point of view in TumbleBit. In addition,
TumbleBit relies on hashed time-lock contracts (HTLCs),
which suggests it cannot be an interoperable solution. Tairi,
et al. [48] then introduced A2L and further gave a formal
security notion of synchronization puzzle in the universal

22463

TABLE I
STATE-OF-THE-ART IN OFF-CHAIN MIXING SERVICES.

Atomicity Value Privacy Relationship Anonymity Interoperability Amount Flexibility
BOLT [25] # (Blind signatures, Script modifications)
Perun [18] # # # (Ethereum)

NOCUST [30] # # # (Ethereum)
MixCT [17] # (Ethereum)

Teechain [32] H# (Trusted Hardware)
Tumblebit [27] N.A.b H# (HTLC-based currencies) #

A2La [48] N.A.b (Digital signature and timelocks) #
A2L+, A2LUC [23] N.A.b (Digital signature and timelocks) #

BlindHub (Digital signature and timelocks)
a The model of A2L is proven to be insecure by [23].

b N.A.: not applicable since the amount in these protocols is fixed.

composability (UC) framework. The synchronisation puzzle of
[48] is more interoperable and efficient compared to the one
in TumbleBit. Very recently, Glaeser et al. [23] pointed out
that there is a gap in the security model of A2L, and their UC
proof is flawed. To amend this situation, they proposed a new
notion called blind conditional signatures (BCS) and provided
the corresponding game-based security definitions. Besides,
they proposed A2L+, a modified version of A2L, and proved
that A2L+ satisfies the security notions of BCS. However, we
observe that the notion of BCS is limited. If a coin-mixing
service is built upon BCS, the messages (transactions) shared
between T and S/R are required to be the same. This allows
T to access the payment amount on the transaction, which
enables T to link the sender and receiver through the amount
when the amount is allowed to be variable. We later introduce
FBCS to tackle this issue.
Comparison with BOLT [25]. BOLT is also an off-chain mix-
ing protocol that achieves privacy-preserving variable-amount
payments. On a high level, BlindHub and BOLT both achieve
privacy for variable-amount payments by hiding the amount
and leveraging blind signatures to validate the channel update.
However, there are some differences between BlindHub and
BOLT. For example, BOLT relies on the anonymous payment
channel (APC) scheme that allows different transactions in the
same channel to be unlinkable. This is important to achieve
privacy and atomicity simultaneously in BOLT. However, the
APC scheme used in BOLT utilizes a blind signature scheme
that is not Bitcoin-compatible.2 We use a different idea to
achieve the privacy and atomicity, for which we leverage
adaptor signatures, randomizable puzzles, and randomizable
signatures. In particular, the adaptor signature enables the
atomicity of the payments on both sides of the tumbler. The
randomizable puzzle helps to transfer the adaptor witness in
an unlinkable way, and the randomizable signature is used to
link the adaptor witness and the amount.

II. SOLUTION OVERVIEW
We first give the system model and security and privacy

goals for the PCH construction, then, we provide an overview
of our solution. It is noted that the privacy definitions are
adopted from [20].

2In [37], it is conjectured that BOLT can be modified to be Bitcoin-
compatible with the cost of using hash-based commitments and generic
circuit-based multi-party computation for blind signing with ECDSA.

System Model. BlindHub, as a payment channel hub (PCH)
protocol, is composed of a payment hub (referred as Tumbler
T) and multiple users, who have established payment channels
with the Tumbler T. PCH allows one user (referred as Sender
S) to be able to pay another (referred as Receiver R) via T.
Users have authenticated communication channels with T, and
any two users intending to make payments also have a private
communication channel. For the sake of simplicity, we focus
on the payment of a single pair of sender and receiver. It
is noted that there can be multiple senders paying multiple
receivers at the same time.
Threat Model. As commonly done in the literature [27],
[33], [34], we consider a static attacker, who corrupts parties
at the beginning of each epoch. Note that the privacy of
sender/receiver could be compromised if the tumbler colludes
with receiver/sender. We will discuss this in more details in the
Appendix A. Moreover, it is important to state that Blindhub
runs over epochs, and our privacy guarantees are valid if
the users do not abort during an epoch. More specifically,
Blindhub guarantees relationship anonymity (which we will
introduce later) when all the payments are successful. How-
ever, anonymity can be undermined if the tumbler launches
the abort attack. In the case of an abort, the anonymity set
of the sender and receiver pairs will be reduced from the
epoch set to the uncompleted payments within the epoch. For
example, if the tumbler aborts a payment from the sender, the
receiver whose payment also fails is regarded as the potential
one that is linked to the sender. Note that privacy in the
presence of an abort is a common problem in existing schemes
that rely on epoch-based anonymity sets, such as A2L [48],
A2L+/A2LUC [23] and TumbleBit [27]. However, we believe
that a rational tumbler would not abort because it would
also hurt its reputation. Yet, how to avoid the abort attack
in the Bitcoin-compatible PCHs remains an interesting open
problem.

A. Security and Privacy Goals

We now informally define the security and privacy goals of
PCH. The formal definitions are given in Appendix C.
Griefing Resistance. The PCH should only initiate a payment
procedure if R can prove that the payment request are previ-
ously backed by some coins locked by a S during the payment
procedure.

32464

Atomicity. For any payment of m coins from S to R, the PCH
should ensure that either R receives m coins from T and T
receives m coins from S, or both parties receive none.
Value Privacy. T should not know the payment amount
between S and R.
Relationship Anonymity. T should not be able to find out if
there is any relation between S and R of a specific payment.

B. Our Solution

We present a payment channel hub that achieves griefing
resistance, atomicity, value privacy and relationship anonymity
and supports variable amounts simultaneously. Below we
propose our solution in an incremental way. We first give
a naive approach to solve the problem, then we discuss the
challenges of this naive approach and show how to overcome
them. We repeat this process until we reach the final version
of our protocol.
Recall that in A2L [48] or Tumblebit [27], the amount is
required to be fixed for achieving the relationship anonymity
since, otherwise, T can easily link the corresponding sender
and receiver just by observing which sender-receiver pair
shares the same amount. To circumvent the fix-amount limi-
tation, our idea is to hide the amount from T, so that T can
no longer learn the relationship information from the amount.
Specifically, we hide the amount by committing to it. However,
using this approach for our purpose is far from simple. Recall
that in a payment channel, users need to reach an agreement
on the channel state when they update the channel. If one
user commits and hides the amount, the other user will be
prevented from confirming the channel state, which will lead
to a failure of channel update.
BlindChannel. For the challenge of updating the channel
while hiding the amount, we propose a new model for the
payment channel, to capture this scenario, called BlindChan-
nel, as shown in Fig. 1.

Fig. 1. Comparison between a normal channel and a BlindChannel. The black
colour represents the party that does not know the balance after the update.
c(m) denotes the commitment of m.

To present the idea of BlindChannel, we first recall some
background knowledge of payment channels. Suppose there
are two users sharing a channel, and their initial balances are
Bs and Br coins. Now one user (sender) wants to pay the
other user (receiver) m coins. After the payment, the sender’s
and receiver’s balances become Bs −m coins and Br +m
coins, respectively. In such a normal channel setting, both
parties are aware of the payment amounts and their updated

balances. However, in the BlindChannel setting, only one user
can know the channel balances, while the other cannot. We call
the former unblind party and the latter blind party. To reach
an agreement between the parties on the payment amount
and securely update the channel, we utilize zero knowledge
proofs [12], [40]. Roughly speaking, each time they need to
update the channel, the unblind party is required to send the
blind party the commitments of the payment amount and their
updated balances, and prove to the blind party that the payment
amount in the BlindChannel equals the one committed in the
given commitment. For ease of presentation, we call this proof
amount consistency proof.
Value Privacy: A Simple PCH from BlindChannel. To
further explain the idea, we present a simple payment channel
hub based on BlindChannel, as shown in Fig. 2

Fig. 2. A simple PCH based on BlindChannel.

In this example, S and R try to make a payment via T
without revealing the amount. The order of payment is as
follows: first, T pays R, then, S pays T. Assume that all parties
are honest. Firstly, R invokes a channel update request with T
and performs the amount consistency proof (step 1). After the
success of the channel update, R sends a commitment of m,
com(m), to S (step 2). On receiving com(m), similar to step
1, S invokes a channel update with T and performs the amount
consistency proof (step 3). This concludes the payment. With
this example, we show a private payment between S and R
without revealing the payment amount to T, assuming the
honesty of the parties. This assumption is critical to the above
example since otherwise, a malicious S can just refuse to pay
T after R is paid by T, hence a loss of T’s money. Namely,
the atomicity does not hold in the malicious case.
Atomicity: Linking Puzzle with Transaction Amount. To
ensure atomicity, we first try to use puzzles introduced in
A2L [43], as shown in Fig. 3. Then, we show that this is
not secure for the variable transaction amounts. Finally, we
give a solution by linking the puzzle with the amount.

Fig. 3. Adding a puzzle to a PCH based on BlindChannel.

After adding a puzzle to our simple PCH based on Blind-
Channel, R first sends the commitment of the amount to T and
gives the amount consistency proof. Afterwards, T generates
a puzzle to which it already knows the solution and shares it
with R. Then, instead of directly updating the BlindChannel

42465

state with R to finalize the payment, T updates the channel
with R to a conditional state. Namely, the channel update
could only be completed if the condition is satisfied. Now T
sets the condition to be the puzzle being solved. To solve the
puzzle, R needs to send it to S, who will buy the solution of
the puzzle from T, and sends it back to R, and finally, R can
claim the same amount of money from T with this solution.

However, this technique is not enough to guarantee the
atomicity when the amount is hidden and allowed to be
variable since a malicious sender can use another amount m2

which is smaller than m1 to make the payment with T. As a
result, T receives less money than what he sends out. Observe
that the cause of this attack is that we do not correlate the
amount to the puzzle solution.

Fig. 4. Linking the amount with the puzzle.

To address this issue, we should link the amount to the
puzzle solution. Besides, the link should be authenticated by T.
We capture the link using a red box and show this in Fig. 4. By
linking the commitments, T is ensured that the aforementioned
attack cannot be launched.

Relationship Anonymity: Randomizable Commitment,
Puzzle and Linkage. So far, we build up a PCH satisfying
atomicity, below we focus on how to guarantee the relationship
anonymity. Observe that T can easily know the relationship
between S and R by observing which pair of sender and
receiver share the same commitment of the amount, the puzzle,
and the link. To hide their relationship, our approach is to make
all the above primitives randomizable. Specifically, each time
R sends the required elements to S, he sends randomized ones
rather than the original ones. In this manner, we can hide their
relationship perfectly.

Fig. 5. Rerandomize the commitment, the puzzle and the link.

Griefing Resistance: Linking Token with transaction
amount. The remaining security goal to achieve is griefing
resistance. The idea in A2L [48] to achieve griefing resistance
is as follows: S firstly asks for a one-time anonymous creden-
tial from T and forwards it to R, who just shows the credential
to T before initiating the payment. But to apply it to our
scenario, we should also “link” the credential to the amount,

since otherwise, the aforementioned attack can be carried out
similarly.

Fig. 6. Protocol for the registration phase before initiating the payment.
Randomized contents are put in a box with different colours.

In more detail, our approach is illustrated in Fig. 6. Firstly,
S generates a token and commits it. Then, S sends the
commitment of the token, the commitment of the amount,
as well as an amount consistency proof to T. Secondly, they
involve in updating the channel to a conditional state. The
condition is set to be a timelock state. Thirdly, if the channel
update is successful, T returns a linked commitment of the
token and the commitment of the amount to S, who forwards
them to R. Then, R randomizes the “linked” commitment of
the token and the commitment of the amount and sends them
to T. To enable T to check the uniqueness of the committed
token, R attaches an additional token-uniqueness proof πtup

to prove that the committed token indeed has not been used
before. Finally, T checks the validity of the “link” and the
uniqueness of the token. If the check passes, R and T starts
the payment.
Our solution Overview. After introducing our ideas in several
steps, we wrap them up now and give an overview of our PCH
protocol, as shown in Fig. 7. In our protocol, we instantiate the
link as randomizable signatures on randomizable commitments
(RSoRC), which will be introduced in Section III. Besides, we
instantiate the randomizable puzzle as linear-only encryption,
which is similar to the approach adopted in A2L+ [23]. Also
inspired by A2L and A2L+ [23], [48], we leverage adaptor
signatures to realize conditional channel update. Detailed
descriptions of BlindChannel and BlindHub are provided in
Section V and VI, respectively.

III. PRELIMINARIES

We denote by 1λ, for λ ∈ N, the security parameter. We
assume that the security parameter is given as an implicit input
to every function, and all our algorithms run in polynomial
time in λ. We denote by x← $X the uniform sampling of the
variable x from the set X . We write x← A(y) to denote that
a probabilistic polynomial time (PPT) algorithm A on input
y, outputs x. We use the same notation also for the assignment
of the computational results, for example, s← s1+s2. If A is
a deterministic polynomial time (DPT) algorithm, we use the
notation x := A(y). We use the same notation for expanding
the entries of tuples, for example, we write σ := (σ1, σ2) for a
tuple σ composed of two elements. We say a function negl is
negligible in λ if it vanishes faster than any polynomial with
input λ.
Commitment scheme. Denote message space, randomness

52466

Fig. 7. Overview of our solution. Sender pays receiver via tumbler. The overview can be divided into two layers: one layer is the BlindHub protocol, which
corresponds to the interactions in the gray box. BlindHub protocol can be divided into three phases: 1) registration, 2) puzzle promise, and 3) puzzle solver.
For the ease of presentation, we present the transcripts transferred among the paries and ignore the process of generating them. The definitions of all the
notations written in the gray box can be found in BlindHub protocol given in Section VI. Another layer is the BlindChannel protocol, which corresponds to
the interactions with the BlindChannel (the long red/black rectangle) in the green box. For the sake of simplicity, we just present the simplified input and
output of BlindChannel. c(·) denotes commitment. Bs,Bt denotes the balances of sender and tumbler in the channel shared with sender. B′

t,B
′
r denotes the

balances of tumbler and receiver in the channel shared with receiver. The balance in the square bracket [·] represents that the balance is still in conditional
state while balance that is not in [·] represents that the balance is already in the normal state.

space and commitment space asM,R, and CM, respectively.
A commitment scheme ΠCOM consists of the following algo-
rithms: on input m ∈ M, r ∈ R, (r,C) ← ΠCOM.com(m, r),
and should satisfy hiding and biding properties. Hiding states
that given the commitment, one cannot determine the values.
Biding requires that one cannot change the value after they
have committed to it.
Non-interactive zero-knowledge. Let R be an NP relation
and L be defined as the set L := {x | ∃w, s.t. R(x,
w) = 1}. We say R is a hard relation if: 1) there is a
PPT sampling algorithm GenR that on input 1λ and output a
statement/witness pair (Y, y) ∈ R. 2) R is poly-time decidable.
3) for all PPT A, A on input Y outputs a valid witness y
with negligible probability. A non-interactive zero-knowledge
proof scheme ΠNIZK consists of two PPT algorithms: PNIZK(w,
x): The prover algorithm that on input a witness w and its
statement x, outputs a proof π. VNIZK(x, π): The verification
algorithm that on input the statement x and the proof π,
outputs a bit b ∈ {0, 1}. The prover can provide a verifier with
π to convince her of the prover’s knowledge of the witness w
for the statement x without disclosing any further information.
Linear-Only Homomorphic Encryption. A public key en-
cryption scheme ΠEnc with a message space M and ciphertext
space C consists of the following algorithms: KGen(λ): On
input the security parameter λ, outputs a key pair (ek, dk).

Enc(ek,m): on input the public key ek and a message m ∈M,
outputs a ciphertext c ∈ C. Dec(dk, c): A deterministic
algorithm that on input the private key dk and the ciphertext
c ∈ C, outputs a message m ∈M. Correctness of a public key
encryption scheme ΠEnc guarantees that for every message
m ∈ M and every key pair (dk, ek) ← KGen(λ), Dec(sk,
Enc(ek,m)) = m holds. The encryption scheme that is used in
this work is required to provide CPA-security [24]. Also, ΠEnc

is called additively homomorphic if for every m1,m2 ∈ M
and every public key ek generated by (ek, dk) ← KGen(λ),
it holds that Enc(ek,m1) · Enc(ek,m2) = Enc(ek,m1 +m2).
Linear-Only encryption (LOE) [26] models homomorphic en-
cryption by oracle queries rather than concrete algorithms. The
formal description of the oracles modelled by homomorphic
encryption can be found in the full verion [44] (Fig. 16 in
Appendix E.4) . By homomorphically adding 0 to the desired
ciphertext, this paradigm enables (perfect) re-randomization of
the ciphertext.
Digital signature scheme. A digital signature scheme Σ usu-
ally contains three algorithms: KeyGen(1λ): inputs a security
parameter 1λ and outputs a secret key/public key pair (sk, pk).
Signsk(m): input a secret key sk and message m ∈ {0, 1}∗ and
outputs a signature σ. Vfpk(m,σ): on the input of a public key
pk, a signature σ and a message m, outputs a bit b indicating
whether a signature is valid (b = 1) or not (b = 0). The

62467

correctness property holds as long as for any key pair (sk, pk)
created by the key generation function and any message m,
if a signature σ is produced using the signing algorithm with
input (sk,m), the verification algorithm output 1 on input (pk,
σ,m).
Adaptor signature scheme. An adaptor signature scheme
is defined upon a hard relation R and a signature scheme
Σ = (KeyGen,Sign,Vf) and it consists of four algorithms
ΠR,Σ = (PreSign,Adapt,PreVf,Ext) with the following syn-
tax: for each statement/witness pair (Y, y) ∈ R, PreSign(sk,
m, Y) is a PPT algorithm that outputs a pre-signature σ̂ and
σ := Adapt(σ̂, y) is a valid signature. PreVf(pk,m, Y, σ̂) is
a DPT algorithm that outputs a bit b. Finally, Ext(σ, σ̂, Y)
is a DPT algorithm that outputs witness y, s.t., (Y, y) ∈ R.
An adaptor signature achieves pre-signature correctness if
the pre-signature w.r.t. a statement Y is valid and it can
be adapted into a full signature, from which we can extract
the witness y. Adaptor signature achieves unforgeability if
producing a forgery for some message m is hard even given a
pre-signature on m w.r.t. a random statement Y ∈ LR. Adaptor
signature achieves pre-signature adaptability if for any valid
pre-signature w.r.t. Y can be completed into a valid signature
using a witness y with (Y, y) ∈ R. A more detailed description
can be found in the full version [44] (Appendix E.1).

Randomizable signatures on randomizable commitments
scheme. Randomizable commitment allows anyone to trans-
form a commitment into a fresh one of the same message.
In this paper, we need a signature scheme that satisfies the
following requirements: 1) it enables the issuance of signatures
on randomizable commitments and 2) anyone, knowing neither
the signing key nor the committed message, can randomize
the commitments, and compute a new signature on these
randomized commitments. Specifically, we call a signature
scheme randomizable on randomizable commitments (RSoRC)
if it provides the following algorithms: RCSign and RCRand
in addition to the ones given by a standard digital signature
scheme. Given a set of randomizable commitments CM1,
. . . ,CMn, a signer can generate a randomizable signature
σ̃ ← RCSign(CM1, . . . ,CMn). Given a randomizable sig-
nature σ̃ , the corresponding commitments CM1, . . . ,CMn

and a randomness r, anyone can generate a new valid ran-
domizable signature and a set of randomized commitments
(CM′

1, . . . ,CM
′
n, σ̃

′) ← RCRand(σ̃,CM1, . . . ,CMn, r). The
signature that fulfils these requirements, and which we use
in our construction, can be instantiated by the signature on
randomizable ciphertexts scheme [3]. Though in the scheme of
[3] the message space is defined upon ciphertexts, actually, it
can also be defined upon commitments which can be presented
as group elements on the elliptic curves where discrete loga-
rithm problem is hard. We give the formal definition, security
properties and concrete construction of the primitive in the full
version [44] (Appendix D).

One-more Discrete logarithm (OMDL) problem. OMDL
problem [5] says that one cannot solve q+1 challenge group
elements given only q DL solving oracles. A more detailed
definition of OMDL can be found in the full version [44]

(Appendix E.2.2).

IV. BLIND ADAPTOR SIGNATURE

In this section, we introduce a new primitive called Blind
Adaptor Signature (BAS), which is an important building
block to construct BlindHub. Before introducing BAS, we first
briefly recall what a blind signature is. In a blind signature
scheme, a user can obtain a signature from a signer on a
message m such that: (1) the signer cannot recognize the
signature later (blindness, which implies that the message m
is unknown to the signer) and (2) the user can compute only
one single signature per interaction with the signer (one-more
unforgeability). A more detailed definition of a blind signature
can be found in the full version [44] (Appendix E.2).

A. Blind Adaptor Signature

Combining a blind signature and an adaptor Signature, we
give a new primitive called Blind Adaptor Signature. We first
give the formal definition as follows.

Definition 1 (Blind Adaptor Signature Scheme). A blind
adaptor signature (BAS) scheme ΠBAS with respect to a hard
relation R with a language LR := {Y |∃y : (Y, y) ∈ R}
consists of the following algorithms:

• BAS.Setup(1λ): It takes the security parameter 1λ and
returns public parameters param.

• BAS.KeyGen(param): It takes the public parameters
param and returns a secret/public key pair (sk, pk).

• (b, σ̂) ← ⟨BAS.PreSign(sk, Y),BAS.User(pk,m, Y)⟩ an
interactive protocol is run between the signer with private
input a secret key sk and the user with signer’s public key
pk and a message m as inputs. A statement Y ∈ LR is the
public input. The signer outputs b = 1 if the interaction
completes successfully and b = 0 otherwise, while the
user outputs a pre-signature σ̂ if interaction completes
correctly, and ⊥ otherwise.

• BAS.PreVerify,BAS.Adapt and BAS.Ext are the same
as PreVerify,Adapt and Ext of the adaptor signature.

For a 1-round (i.e., two messages) protocol, the interaction
can be realized by the following algorithms: (msgU,0) ←
BAS.User0(pk,m), (msgS,1, b) ← BAS.Sign1(sk,msgU,0),
σ ← BAS.User1(msgS,1).

Below we give informal security definitions of BAS. We
present the formal definitions in the Appendix B .
One-more Unforgeability. The unforgeability model is de-
fined to capture the attack that the adversary returns n distinct
message-signature pairs when he is only given k2 < n pairs
during the oracle queries. It is commonly known as the one-
more unforgeability in blind signature [22].
Blindness. In many scenarios, blind signatures should satisfy
the following blindness property: a signer cannot link a
message/signature pair to a particular execution of the signing
protocol. But to realize the BlindChannel (as formally defined
in the full version [44] (Appendix J.2)),we only need a weak
blindness: given the transcript, the signer could not figure out
what the message is. Compared to the normal blindness, weak

72468

blindness allows the signer to link the message/signature pair
to a particular execution, as long as the signer can obtain the
message/signature pair. Pre-signature Adaptability. The pre-
signature adaptability of ΠBAS is the same as that of an adaptor
signature. It is because the PreSign algorithm is not involved
in the model.
Witness extractability. The witness extractability guarantees
that given a valid signature/pre-signature pair w.r.t. a mes-
sage/statement pair (m,Y) one can extract the corresponding
witness y of Y .

V. DESCRIPTION OF BLINDCHANNEL

This section first provides some security and privacy proper-
ties required by a payment channel in the BlindHub protocol.
Then, we present an overview as well as the protocol descrip-
tion of BlindChannel, which was briefly mentioned in Section
II. In the full version [44] (Appendix J.2) we will prove that
BlindChannel is a secure realization of an ideal functionality
that achieves the security and privacy properties stated in this
section.

A. Security and Privacy Properties

Below we give informal definitions of security and privacy
properties required by BlindChannel. The full version of this
paper [44] (Appendix J.2) provides more details.
The BlindChannel scheme ΠBC is secure if the followings
hold: 1) the blind party could not figure out the way channel
funds are redistributed. 2) A BlindChannel is successfully
created/updated only if both parties in the channel agree with
the creation/update. 3) An honest party P in the channel has
the guarantee that either the current state of the channel can
be enforced on the ledger, or P can enforce a state where she
gets all coins in the channel.

B. BlindChannel Overview

Similar to other payment channels, BlindChannel allows
two parties to pay to each other arbitrarily many times
without publishing every single transaction on the blockchain.
However, in BlindChannel protocol, only one of the parties,
i.e. the unblind party, determines the payment amount and
the other party, i.e. the blind party, cannot see the payment
amount. Also, as required by BlindHub protocol, all payments
are conditioned on solving a puzzle, introduced in [34]. We
start by reviewing the generalized channels [2], and then
gradually introduce our solution.
Generalized Channel. To create a generalized channel [2],
Alice (denoted by A) and Bob (denoted by B) publish a
funding transaction TXFU to respectively send a and b coins
into a shared address. Both parties also hold the same copy
of two transactions, by broadcasting which they can close the
channel: 1) The commit transaction TXCM that sends the channel
funds, held in the funding transaction’s output, into a new
shared address and 2) The split transaction TXSP that splits the
channel funds, held in the commit transaction’s output, among
parties. So, the split transaction has two outputs holding a and
b coins owned by A and B, respectively.

Now assume A decides to pay 0 < v ≤ a coins to B. To
do so, A and B create a new commit and split transactions
where the split transaction contains two outputs holding a− v
and b+v coins owned by A and B, respectively. Since one of
the parties may submit a stale state to the blockchain, channel
parties need a way to detect and penalize such frauds. So,
after each channel update, channel parties exchange revocation
secrets that allow the honest party to send all the funds in the
stale commit transaction’s output to his own address. But we
still need a way to guarantee that the malicious party cannot
publish the stale commit transaction and spend its output
using her counter-party’s revocation secret. In the generalized
channel, the adaptor signature is leveraged to guarantee that
once a party, e.g. A, publishes a commit transaction, a secret,
called the publishing secret, is revealed to B. Thus, once A
publishes a stale commit transaction, the honest party B can
use A’s revocation secret and A’s publishing secret to take
all the channel funds. Also, to guarantee that the malicious
party cannot publish both a stale commit transaction and its
corresponding split transaction, the split transaction cannot be
published within T rounds since the commit transaction is
published on the blockchain. Therefore, the commit transac-
tion has one output that can be spent by: 1) A if she knows
B’s revocation and publishing secrets, 2) split transaction after
T rounds, or 3) B if he knows A’s revocation and publishing
secrets.
Adding Privacy to the Channel. Now assume two parties U
and B create a channel like a generalized channel. However,
we want the channel update in this channel to be different from
the channel update in a generalized channel. Particularly, B
in this channel is a blind party, i.e. he is not supposed to see
the payment amount. Since the commit transaction contains
no data about the payment amount (i.e. v in the previously
stated scenario), the two sides can exchange their signatures
on the commit transaction like a generalized channel. But since
outputs of the split transaction reveal data about the payment
amount, B should blindly sign it. However, before signing
the split transaction, the unblind party U , using the zero-
knowledge proofs and without revealing the value of each
output in the split transaction, performs amount consistency
proof (as informally defined in Section II) and also proves that
the transaction that B will blindly sign contains the correct
elements, i.e., the correct input and outputs (details of zero
knowledge proof used in BlindChannel are provided in the
full version [44] (Appendix G)).

By publishing the latest commit and split transaction, U
can close the channel. However, since B does not hold the
split transaction, it is possible that after publishing the commit
transaction, U becomes unresponsive to lock B’s funds in the
channel and raise a hostage situation. So a new sub-condition
is added to the commit transaction’s output that allows B
to claim the output after 2T rounds. Thus, once the commit
transaction is published by either of two parties, U has to
publish its corresponding split transaction within 2T rounds.
Otherwise, B would get all channel funds.
Adding Conditional Payment to the Channel. In the Blind-

82469

Hub protocol, which we will present later, a payment from T
to R is performed provided the corresponding payment from S
to T completes. Correspondingly, BlindChannel parties need
to perform conditional payments. Let us provide a high-level
overview of the required modifications. Assume that U and B
have a and b coins in the channel, respectively, and U wants
to conditionally pay v coins to B (for v < a). So, B and
U create a new commit and split transaction where the split
transaction has three outputs: 1) the first output holding a− v
coins owned by U , 2) the second output holding b coins owned
by B, and 3) the third output for conditional payment of v
coins to the party B where party B has a pre-signature from
party U on a transaction called the adaptor execution delivery
(or briefly delivery) transaction TXAED that spends this output
and sends its coins to B. So if B has the corresponding secret
to adapt the pre-signature to a valid signature, he can claim the
third output of the split transaction. Otherwise, party U , who
has B’s signature on another transaction called the timeout
transaction TXTO, can claim the output after a timeout.

Although B receives U ’s pre-signature on the delivery
transaction, the transaction body itself cannot be given to B, as
it reveals the payment amount; Only the hash of the transaction
body, which is used to create and verify the pre-signature,
is given to B. However, B should not be able to guess
the payment amount by exhaustively searching all possible
payment amounts to find the body of the delivery transaction
for which the hash value matches. This requirement is satisfied
if the delivery transaction’s input or equivalently transaction
identifier of the split transaction is difficult to guess. To achieve
this requirement, U keeps the address that she is using in
the first output of the split transaction private. Then, finding
the transaction identifier of the split transaction and hence the
body of the delivery transaction would be infeasible to B.
Nevertheless, U uses zero-knowledge proofs to prove that once
the split transaction is published on the blockchain, B will
learn the currently unknown elements of the delivery transac-
tion, i.e., its input transaction identifier as well as the payment
amount. Moreover, since the timeout transaction reveals data
about the payment amount, B should blindly sign it. However,
before signing the timeout transaction, the unblind party U ,
using the zero-knowledge proofs and without revealing the
payment amount and the split transaction identifier, proves the
transaction that B will blindly sign is well-structured.

For the case where U is the payee of the payment,
everything is the same, but the delivery transaction is signed
by the payer using the BAS scheme, introduced in Section
IV. Also, U ’s signature on the timeout transaction is given to
the payer without letting him guess the body of the timeout
transaction itself.

C. BlindChannel Protocol Description

The BlindChannel lifetime can be divided into 4 phases,
including “create”, “update”, “close”, and “punish”. We intro-
duce these phases through the following sub-sections.

Create. A blind channel between two parties B and U is

Fig. 8. Creation of a Blind Channel

created like a generalized channel [2], i.e. through publishing
a funding transaction TXFU, parties send their coins into a joint
account. However, to prevent parties from locking each other’s
coins into this joint account and raising a hostage situation,
they must commit to the initial channel state in advance.
So, before signing and publishing the funding transaction,
parties create two transactions: 1) a commit transaction TXCM
that sends the channel funds into a new joint address and
2) a split transaction TX

[2]
SP that distributes the channel funds

among parties. Fig. 8 summarizes the channel creation phase.
Following [2], we use charts to show transaction flows. Each
transaction is denoted by a rectangle containing a box for each
output. The output value is written inside the box, and the
output condition is written above (used for timelocks) and
below (used for public keys) the arrow coming out of the
output. Outputs with multiple subconditions are denoted by a
diamond inside the output box with an arrow corresponding
with each subcondition. If a transaction contains a non-zero
timelock, it is written inside the transaction rectangle. Let
us explain in more detail the different steps of the channel
creation phase.

1) Create [TXFU]: At the first step, B and U create the body
of the funding transaction [TXFU]. To do so, they send
each other their funding sources.

2) Create [TXCM]: Each party P ∈ {B,U} generates a
revocation public/private pair (RP , rP) ← GenR and
a publishing public/secret pair (YP , yP) ← GenR, and
sends the public values RP and YP to the other party.
Using the transaction identifier of TXFU and each other’s
public values, parties create the body of the commit
transaction, i.e. [TXCM].

3) Create [TX
[2]
SP]: Using the transaction identifier of TXCM,

parties create the body of the split transaction [TX
[2]
SP].

4-6) Create TX
[2]
SP/TXCM/TXFU: Parties exchange the required

92470

signatures to transform [TX
[2]
SP]/[TXCM]/[TXFU] into

TX
[2]
SP /TXCM/TXFU.

7) Publish TXFU: Parties publish TXFU on the blockchain.
Update. Channel update is performed by adding a third

output for a conditional payment to the split transaction where
the payer in the channel between S and T (resp. the channel
between T and R) is S (resp. T). This third output can
be claimed by the payee if having the value of a secret,
the payee can adapt a pre-signature on the corresponding
delivery transaction to a full signature. Otherwise, after a
specific timeout, the payer publishes the corresponding timeout
transaction and gets refunded. Fig. 9 Summarizes the channel
update phase when the payer is the unblind party. The channel
update phase in more details is as follows.

1) Create [TXCM]: The same as step 2 in the create phase.
2) Create [TX

[3]
SP]: Having the transaction identifier of TXCM,

U firstly creates the body of the split transaction [TX
[3]
SP],

commits it into coms, and generates a zero knowledge
proof πs to perform amount consistency proof and also
prove that coms is the commitment on the well-structured
split transaction.

3) Create [TXAED]: Having the transaction identifier of TX[3]SP ,
U generates the body of the adaptor execution delivery
(AED) transaction [TXAED], uses the adaptor statement
from the external application (e.g., obtained in the puzzle
promise phase of ΠBH) to generate a pre-signature σ̃U

a

on [TXAED], and also generates a zero knowledge proof
πa to prove to B that the pre-signature is on the well-
structured delivery transaction [TXAED]. Party U sends the
pre-signature σ̃U

a , the hash value SigHash([TXAED]) and
the proof to B.

4) Create [TXTO]: Having the transaction identifier of TX
[3]
SP ,

U generates the body of the timeout transaction [TXTO].
5) Create TXTO: U commits [TXTO] into comt, and generates a

zero knowledge proof πt to prove to B that the committed
message is the well-structured timeout transaction [TXTO].
After verifying πt, B generates a blind signature σB

t on
TXTO for U .

6) Create TX
[3]
SP : B generates a blind adaptor signature with

YP as the adaptor statement on TXSP for U .
7) Create TXCM: the same as step 5 in the create phase.
8) Revoke: Both parties revoke the previous state by ex-

changing the corresponding revocation keys.
9) Create TXAED: B adapts the pre-signature σ̃U

a into σU
a and

sends the corresponding witness ys to U .
10) Create [TX′CM]: the same as step 2 in the create phase.

11-12) Create [TX
[2]
SP]/TX

[2]
SP : Having the transaction identifier of

TXCM, U firstly creates the body of the split transaction
[TX

[2]
SP], commits it into coms, and generates a zero knowl-

edge proof πs to perform amount consistency proof and
also prove that coms is the commitment on the well-
structured TXSP. Then, B sends the blind signature on
TX

[2]
SP to U .

13 Create TX′CM: the same as step 5 in the create phase.
14 Revoke: Both parties revoke the previous state by ex-

changing the corresponding revocation keys.
The case where the unblind party is the payee of payment is
similar to the above scenario. The main differences are that
B uses the BAS scheme to blindly create a pre-signature on
delivery transaction for U . Moreover, U sends her signature
on the timeout transaction to B without sending him the body
of the transaction. We refer the corresponding diagram to the
full version [44] (Fig. 22, Appendix I) .

Close. To close the channel, party U reveals the value of
the latest split transaction and B verifies it. Then, U and
B collaboratively create a new transaction that spends the
funding transaction’s output, and its outputs are the same
as the latest split transaction. By publishing this transaction
on the blockchain, parties close the channel. Each party
P ∈ {B,U} can also non-collaboratively close the channel,
given that the other party is unresponsive. To do so, if P
is an unblind party, he simply publishes the latest commit
and split transaction on the blockchain. If P is a blind party,
he publishes the commit transaction. Then, U will have to
publish the corresponding split transaction within 2T rounds.
Given that the published split transaction contains a third
output with conditional payment, if U is the payer of that
conditional payment, either B extracts the split transaction
identifier and the payment amount from the published split
transaction, creates [TXAED], adapts U ’s pre-signature σ̃U

a into
σU
a , and finally creates and publishes TXAED before a specific

timeout or U publishes TXTO. For the case where U is the
payee, either U publishes TXAED before a specific timeout or B
extracts the split transaction identifier and the payment amount
from the published split transaction, creates TXTO and publishes
it on the blockchain.

Punish. Once the latest commit transaction is published, if
U does not publish its corresponding split transaction within
2T rounds, B uses the fourth sub-condition of the commit
transaction’s output to claim all channel funds. Moreover, if
one of the parties, e.g., U , publishes an old commit transaction
TXCM, B uses his own signature in TXCM and its corresponding
adaptor statement and pre-signature to extract U ’s publishing
secret yU . Then, having yU as well as U ’s revocation secret
rU , B claims TXCM’s output.

VI. DESCRIPTION OF BLINDHUB

In this section, we describe the protocol of BlindHub. before
the description, we first give the system assumptions.

System assumptions. As in TumbleBit [27], we assume
the protocols are run in phases and epochs. Each epoch is
composed of four phases: (i) registration phase, (ii) puzzle
promise phase, (iii) puzzle solver phase, and (iv) open phase.
We assume that both S and R have already carried out the key
generation procedure. We assume that communication between
honest sender and receiver is unnoticed by T when exchanging
the puzzle and its solution. We further assume that T will
provide NIZK proofs to prove to a user during their first
interaction that his encryption key and his verification key
of RSoRC scheme are in support of ΠEnc.KeyGen(1

λ) and
ΠRSoRC.KeyGen(1

λ), respectively.

102471

Fig. 9. Update of a Blind Channel Initiated by Payer

Protocol of BlindHub. We now describe the registration,
puzzle promise, puzzle solver and open phases.

Registration. The Registration Phase is as follows:

1) S starts by generating a random token identifier tkid and
commits token tkid and amount amt to Ctkid and Camt

respectively. Besides, S generates NIZK proofs πtkid, πamt

to prove knowledge of tkid and amt, respectively. Then
S sends Ctkid,Camt, πtkid, πamt to T.

2) T aborts if πtkid or πamt is incorrect. Else, T generates
randomizable signatures on Ctkid and Camt : σtkid ←
RCSign(Ctkid,Camt) and sends σtkid to S.

3) S aborts if σtkid is invalid. Else, S randomizes Ctkid,Camt,
σtkid to obtain C′

tkid,C
′
amt, σ

′
tkid and sends C′

tkid,C
′
amt, tkid,

r′tkid, r
′
amt, σ

′
tkid to R, where r′tkid, r

′
amt are the openings of

C′
tkid C′

amt, respectively.

Puzzle Promise. Once the registration protocol is com-
pleted, the Puzzle Promise protocol starts and proceeds as:

1) On receiving C′
tkid,C

′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid, R gener-

ates a token-uniqueness proof πtup to prove the tkid
committed in C′

tkid has not been used before. In addition,
R generates π′

amt to prove knowledge of amt in C′
amt.

Then, R sends C′
tkid,C

′
amt, σ

′
tkid, πtup, π

′
amt to T.

2) T aborts if one of the followings is not valid: σ′
tkid, πtup,

π′
amt. Else, T firstly samples the adaptor witness and

statement (Y, y), encrypts the witness y into a ciphertext
cy , and produces a NIZK proof πy proving that y is a valid
solution to puzzle cy . Secondly, T performs randomizable
signatures of randomizable commitments (RSoRC) on
adaptor statement Y and the commitment of the amount
Camt : σ̃ ← RCSign(Y,Camt). After these, T uses Y
as adaptor statement to run the blind adaptor signature
protocol with R to generate σ̂′

t on the transaction for
R : σ̂′

t ← BAS.Sign1(sk
Σ
t , h, Y), where h = H(tx)(In

BlindChannel, R has sent h to T and proven knowledge
of the pre-image of h, which is tx. So T is convinced that
h is a valid hash value). Finally, T sends Y, cy, πy, σ̃, σ̂

′
t

to R.
3) R aborts if πy is invalid. Else, R randomizes Y,C′

amt,
σ̃ : (Y ′,C′′

amt, σ̃
′, β) ← RCRand(pp, Y,C′

amt, σ̃), and the
puzzle cy : c′y ← PRand(β, cy). Finally, R sends c′y, Y

′,
C′′
amt, σ̃

′ and r′′amt, the opening of C′′
amt, to S.

Puzzle Solver. The Puzzle solver protocol is follows:
1) S firstly randomizes c′y, Y

′,C′′
amt, σ̃

′ received from R
into c′′y , Y

′′,C′′′
amt, σ̃

′′ to preserve its own anonymity and
thwart attacks involving collusion of T and R. Secondly,
S generates π′′

amt to prove knowledge of amt in C′′
amt.

Thirdly, S generates a proof πskΣs
to prove that (skΣs ,

pkΣs) is in support of ΠAS.KeyGen(1
λ). Then Sgenerates

an adaptor signature σ̂s on the transaction tx′ using the
randomized adaptor statement Y ′′ : σ̂s ← PreSign(skΣs ,
h′, Y ′′), where h′ is already proven to be a valid hash
value in BlindChannel, as explained before. Finally, S
sends c′′y , Y

′′,C′′′
amt, π

′′
amt, σ̂s, σ̃

′′ to T.
2) T aborts if one of the followings is incorrect: the adaptor

signature σ̂s(T has obtained h′ = H(tx′) in Blind-
Channel, so T is able to perform the verification), the
randomizable signature σ̃′′ and the proof π′′

amt. Else, T
decrypts c′′y to obtain the doubly randomized version y′′

of the value y (i.e., the secret value required by R to
complete the adaptor signature σ̂′

t from puzzle promise).
As y′′ is randomized, T cannot link it to R and yet can
adapt σ̂s with y′′ to generate the full signature σs, which
is then sent to S.

3) S aborts if the signature σs is not valid. Else, S extracts
y′′ using the adaptor signature σ̂s and the valid signa-
ture σs, recovers y′ by getting rid of one layer of the
randomization and shares it with R.

Open. R further removes its part of the randomness from
y′ and gets the original value y, which it uses to adapt the
adaptor signature σ̂′

t into a full valid one σ′
t.

Figures illustrating the above protocols are given in the full
version [44] (Appendix K).

VII. PCH INSTANTIATION

Here we realize a PCH by combining BlindChannel and
BlindHub. In particular:

1) Collateral Setup: Before the BlindHub registration phase
begins, S updates the channel state of BlindChannel to

112472

the conditional payment state with T to establish an
escrow for the remainder of the protocol between S and
T, where the payment amount is the one committed in
Camt used in the BlindHub. It is noted here that since it
is in the BlindChannel setting, T has no idea how much
the collateral is, but T is still able to verify if R has some
collateral backed up in the puzzle promise phase. Besides
the invisibility, the collateral has two other properties: 1)
it can be recovered by S after the timeout expires unless
S authorizes the spending of it, and 2) it is locked and
cannot be reused before the timeout unless T authorizes
the releasing of it.

2) Payment channel update proposals: Before the puzzle
promise phase of BlindHub starts T updates the Blind-
Channel with R to conditionally pay m coins from the
balance of T to the balance of R, where m is committed
in Camt used in BlindHub. Here T cannot see the amount,
but T is able to verify if the same amount of coins
has been paid to itself when deciding whether or not to
release the coins to R. A similar payment for the same
amount of coins is proposed in the BlindChannel between
S and T before the puzzle solver phase is initiated. As a
part of atomicity, here there is an expiration time set for
both payments so that the coins can be redeemed by the
original owners when the payment is not successful (e.g.,
one of the parties does not collaborate).

3) Payment channel update resolutions: If BlindHub pro-
tocol is finally successful, the channel between S and T is
updated first, and the channel between T and R is updated
next. On the other hand, if BlindHub protocol fails, the
balances of both channels are left as before the start of
the execution of the payment.

4) Collateral release: At the end of the protocol, the coins
locked by S at the beginning of the payment are released
and sent back to S.

VIII. FLEXIBLE BLIND CONDITIONAL SIGNATURE

In a recent work [23], Blind conditional signature (BCS)
is proposed to capture the functionality of a synchronization
puzzle from [27], [48]. Briefly speaking, synchronization
puzzle protocol is a protocol among S, R and T, where R and
T execute puzzle promise protocol and generate a puzzle τ ,
which is used as input in the puzzle solver protocol executed
by S and T, and finally a signature is produced. We refer
reader to [23] for the original definitions. Below we propose a
variant of BCS to better capture the functionality of BlindHub.
We call it Flexible Blind Conditional Signature (FBCS). The
main difference between BCS and FBCS is follows: 1) In BCS,
the T and S/R can both have access to the transaction, while in
FBCS, only S/R can have access to the transaction, and T can
only access to the commitment of the transaction. 2) In FBCS,
we additionally introduce RSoRC scheme ΠRSoRC. 3) In BCS,
the output of the promise protocol is a puzzle τ := (Y, cy),
while in FBCS, the output of the promise protocol includes
τ := (Y, cy,Camt, σ̃), where Y, cy,Camt, σ̃ are as defined
in Section VI. It is noted that since synchronization puzzle

only covers promise and solver protocol, the parts related to
registration phase in the promise protocol of BlindHub(the
token tkid, randomizable signature σ̃ and the token-uniqueness
proof) are removed from the promise algorithm of FBCS.

Definition 2 (Flexible Blind Conditional Signature). A blind
conditional signature ΠFBCS := (Setup,Promise,Solver,
Open) is defined with respect to two signature schemes ΠDS :=
(KGen,Sign,Vf),ΠBAS := (KGen,Sign,Vf), ΠRSoRC :=
(KGen,Sign,Vf) and consists of the following efficient algo-
rithms.

• (ekt, dkt)← Setup(1λ): The setup algorithm takes as input
the security parameter 1λ and outputs a key pair (ekt, dkt).

• (⊥, {τ,⊥}) ← Promise

〈
T
(
dkt, sk

Σ
t , sk

χ, com(mTR)
)

R
(
ekt, pk

Σ
t , pk

χ,mTR

) 〉
:

The puzzle promise algorithm is an interactive protocol
between two users T (Tumbler) (with inputs the decryption
key dkt, the signing key of the underlying digital signature
scheme skΣt , the signing key of RSoRC scheme skχ, and a
message mTR) and R (Receiver) (with inputs the encryption
key ekt, the verification key of the underlying digital signa-
ture scheme pkΣt , the verification key of RSoRC scheme pkχ

and a message mTR) and returns ⊥ to T and either a puzzle
τ or ⊥ to R.

• ({(σ∗, s),⊥}, {σ∗,⊥}) ←

Solver

〈
S
(
skΣs , ekt, pk

χ,mST, τ
)

T
(
dkt, pk

Σ
s , pk

χ, com(mST)
)〉: The puzzle

solving algorithm is an interactive protocol between two
users S (Sender) (with inputs the signing key of the
underlying digital signature scheme skΣs , the encryption
key ekt, the verification key of RSoRC scheme pkχ, a
message mST, and a puzzle τ) and T (Tumbler) (with
inputs the decryption key dkt, the verification key of the
underlying digital signature scheme pkΣs , the signing key
skχ of ΠRSoRC and a message mST) and returns to both
users either a signature σ∗ (S additionally receives a secret
s) or ⊥.

• {σ,⊥} ← Open(τ, s): The open algorithm takes as input a
puzzle τ and a secret s and returns a signature σ or ⊥.

The security of FBCS is defined as Correctness, Blindness,
Unlockablity, and Unforgeability. Below we only present the
informal definitions of these security properties. We leave the
complete formal definitions in the full version [44](Appendix
F) .
ΠFBCS is correct if S and R are able to obtain the valid

signatures on mST and mTR, respectively after the BlindHub
protocol is successfully completed. ΠFBCS is blind if T cannot
link two promise/solve sessions together. ΠFBCS is unlockable
if it is hard for T to generate a valid signature on a message
from S that prevents R from being able to unlock the entire
signature in the accompanying promise session. ΠFBCS is
unforgeable if R could not output a valid signature on
mTR before S successfully complete the solver protocol with

122473

T. ΠFBCS is secure if it is correct, blind, unlockable, and
unforgeable.

Finally, we can give our main theorem in this section. The
corresponding proofs can be found in the full version [44]
(Appendix G).

Theorem 1. Let ΠEnc be a linear-only homomorphic encryp-
tion scheme, ΠAS is a secure adaptor signature scheme, ΠBAS

is a secure BAS scheme, ΠRSoRC is a secure signature on
randomizable commitments scheme, ΠNIZK is a sound proof
system. Assuming the hardness of one-more discrete logarithm
problem, the BlindHub protocol is a secure flexible blind
conditional signature scheme.

IX. SECURITY ANALYSIS OF PCH

We now analyze the security of our PCH system. More for-
mal security definitions and proofs of the following theorems
can be found in Appendix C .
Griefing Resistance. It requires a user to prove that the pay-
ment request is previously backed by some locked coins during
the payment procedure. In our construction, the authenticity
is enforced by T performing σ̃ ← RCSign(Ctkid,Camt) and
securely updating the BlindChannel during the registration
phase, and R proving the uniqueness of the token committed
in Ctkid as well as securely updating the BlindChannel in the
promise phase. The security depends on the unforgeability of
ΠRSoRC, the biding property of ΠCOM, the security of ΠBC and
the soundness of ΠNIZK.

Theorem 2. Assuming the security of ΠBC, the unforgeability
of ΠRSoRC , the biding of ΠCOM and the soundness of ΠNIZK,
our PCH system achieves griefing resistance.

Atomicity ensures that the money received by R from T
should be the same as that received by T from S. Below we
analyze the balance security of T and S respectively. T loses
money if the money it paid to the R is more than that received
from S. This will violate either the unforgeability of ΠFBCS

or the security of ΠBC. S loses money if at the end of the
puzzle solver protocol T receives money, but R does not get
paid. This will violate either the unlockability of ΠFBCS or the
security of ΠBC.

Theorem 3. Assuming the unlockability and unforgeability of
ΠFBCS and the security of ΠBC, our PCH system achieves
atomicity.

Value Privacy requires that the payment value could not be
leaked to T. This is enforced by committing the amounts
throughout the protocol. The security depends on the blindness
of ΠFBCS and the privacy of ΠBC.

Theorem 4. Assuming the blindness of ΠFBCS and security of
the ΠBC, our PCH system achieves value privacy.

Relationship anonymity requires that the relationship of S
and R should be hidden from T. This is enforced as follows.
Firstly, we assumed that all protocols are phase- and epoch-
coordinated, which eliminates timing attacks in which T

purposefully delays or accelerates its interactions with another
party. Secondly, we assumed that S and R communicate
through a secure and anonymous communication channel,
so T cannot eavesdrop and utilize the network information
to link S and R. Thirdly, the elements generated in the
registration/promise phase will be randomized before being
used in the promise/solver phase. Fourthly, our PCH system
achieves value privacy, which prevents the tumbler to learn the
relationship from the payment value.

Theorem 5. Assuming the blindness of ΠFBCS and security of
ΠBC, our PCH system achieves relationship anonymity.

X. PERFORMANCE ANALYSIS

Implementation details. To benchmark the performance of
our protocol, we implemented3 our protocol with Rust pro-
gramming language, Swanky4 multiparty computation library,
and ZenGo-X/curv5 curve library, where ZenGo-X/curv is a
pretty wrapper of the real Bitcoin curve library. The GC circuit
files are generated with Verilog hardware description language
and the Yosys6 tool.

We instantiate adaptor signature scheme and blind adaptor
signature scheme as ECDSA-based adaptor signature and
ECDSA-based blind adaptor signature, respectively, and both
instantiations are over the elliptic curve secp256k1, which
is used on Bitcoin. We instantiate the RSoRC scheme using
the generalized version of the scheme introduced in [3] over
the BLS12-381 curve7. The linear-only encryption scheme
is instantiated using HSM-CL encryption scheme [11]. We
instantiate the commitment scheme as Pedersen commitment
scheme [41]. We instantiate BlindChannel in the Bitcoin
setting, and we instantiate the proof used in Bitcoin-based
BlindChannel as garbled circuit-based zero knowledge proof
[12], [40]. Concrete instantiation of our whole protocol can be
found in the full version [44] (Appendix K).

We leverage garbled circuit-based zero-knowledge proof
(GCZK) to prove the correctness of the committed transaction.
In a nutshell, the unblind party is going to prove the following
statements to the blind party: 1) the committed message is
a correct transaction, 2) the payment amount written in the
transaction is the one committed in a given commitment, 3)
the message is committed according to the transaction digest
algorithm defined in BIP-01438. We design a circuit to capture
the transaction digest algorithm. The circuit for proving this
statement uses 33 SHA-256 modules and consequently reaches
721054 AND gates. More details about the GCZK can be
found in the full version [44] (Appendix H).

Computation time and communication overhead. The
benchmark for the GCZK is taken on a Ryzen 5800H, 8GB

3https://github.com/blind-channel/blind-hub
4https://github.com/GaloisInc/swanky
5https://github.com/ZenGo-X/curv
6https://github.com/YosysHQ/yosys
7To enable RSoRC over BLS12-381 curve to sign on group element over

secp256k1 curve, we leverage an equality proof to bridge the gap between
these two different curves. Detailed discussions about this can be found in
the full version [44] (Appendix K).

8https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki

132474

Role Bandwidth (KB) Comp. (ms) Optimized.Comp. (ms)
Sender 55843 8172 3083
Tumbler 87855 16245 8160
Receiver 32017 9063 6067
Phase Bandwidth (KB) Comp. (ms) Optimized Comp. (ms)
Register 23832 2687 594
Promise 23834 7887 5773
Solver 23831 4381 2267
Open 16357 2284 520
Total 87860 17239 9154

TABLE II
BANDWIDTH OVERHEAD AND COMPUTATION COST. THE OPTIMIZED COST

IS OUR ESTIMATION OF THE PROTOCOL WITH [53].

RAM laptop computer, where the test data is generated from
Bitcoin regtest network9. In the local area network (LAN)
setting, performing this GCZK itself consumes 1.716 seconds.
Besides, the circuit needs additional 5 seconds to be read from
the disk, but such a time cost could be stripped since the circuit
could be preloaded into RAM in the real world. In addition,
we use the tc tool (in Linux) to emulate the WAN setting
with 250mbps bandwidth and 200ms latency, and achieve an
overall running time of ∼31 s for one payment. We show
the computation time and communication overhead by phases
in Table II. Observe that the required computation time for
different parties varies even in the same phase, which occurs
when one party finishes all the required computations and
sends messages to the other one while the other party needs
to do verification and other computation. And accordingly, the
phase-based computation time would contain some idle time.
To capture this, we also show the performance by role in Table
II.

Discussion. We note that our implementation is a proof-
of-concept realization of our work, and the bandwidth and
computational cost can be improved by using alternative
zero knowledge proofs. Our implementation results given in
Table II show that our protocol is feasible and relatively
practical. However, replacing the GCZK protocol we used to
realize proofs for circuits, with other zero-knowledge proof
techniques (e.g., [4], [15], [51], [53]) can provide better
efficiency. For example, Quicksilver [53] can prove boolean
circuits at a speeding of 7.7 million AND gates per second and
1bit/gate in bandwidth. We conjecture that we can finish the
proof in less than 1 second and have 128 times improvement
in bandwidth usage by utilizing Quicksilver. In this regard,
we estimate the time and overhead of our solution leveraging
quicksilver and add them as optimized computation time in
Table II.

Comparing performance with A2L versions. A2L pro-
tocol completes in 3 seconds regarding the implementation
results given by the authors [48]. However, as pointed out in
[16], the CL encryption parameters10 chosen in A2L may not
be sufficient for security reasons. When, we use the parameters
suggested in [16], the A2L protocol is expected to run in 6

9https://developer.bitcoin.org/examples/testing.html
10The discriminant, which is a parameter of unknown order group, used

in A2L is only around 1800 bits, which is lower than the required length of
3800-bit pointed out in [16].

seconds, which is in the same order of computational cost of
our protocol with the optimized implementation.

XI. CONCLUSION

We present the first Bitcoin-compatible PCH that achieves
value privacy, relationship anonymity and supports variable
amounts for payment. To achieve this, we propose BlindChan-
nel, a new payment channel protocol for privacy preserving
payment, and BlindHub, a novel three party protocol to
synchronize the payment channel update in the PCH. We
formally analyze their security and give an implementation
to show their practicality.

A. Acknowledgements
We thank Erkan Tairi, Xinyu Li, Ron Steinfeld, Raphael

Phan, Shabnam Kasra Kermanshahi, Sushmita Ruj and anony-
mous reviewers for useful discussions and suggestions. This
work is supported by the Australian Research Council (ARC)
under project DE210100019 and project DP220101234,
the Research Grant Council of Hong Kong (GRF project
106220117).

REFERENCES

[1] L. Aumayr, K. Abbaszadeh, and M. Maffei, “Thora: Atomic and privacy-
preserving multi-channel updates,” IACR Cryptol. ePrint Arch., p. 317,
2022.

[2] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei,
P. Moreno-Sanchez, and S. Riahi, “Generalized channels from limited
blockchain scripts and adaptor signatures,” in ASIACRYPT (2), ser.
Lecture Notes in Computer Science, vol. 13091. Springer, 2021, pp.
635–664.

[3] B. Bauer and G. Fuchsbauer, “Efficient signatures on randomizable
ciphertexts,” in International Conference on Security and Cryptography
for Networks. Springer, 2020, pp. 359–381.

[4] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl, “Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested
disjunctions,” in Annual International Cryptology Conference. Springer,
2021, pp. 92–122.

[5] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, “The
one-more-rsa-inversion problems and the security of chaum’s blind
signature scheme.” Journal of Cryptology, vol. 16, no. 3, 2003.

[6] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova, “On the
(in) security of ros,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2021, pp.
33–53.

[7] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-
resistant mixing for bitcoin,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, 2014, pp. 149–158.

[8] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2014, pp. 486–504.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[10] T. Cao, J. Yu, J. Decouchant, X. Luo, and P. Verı́ssimo, “Exploring
the monero peer-to-peer network,” in Financial Cryptography and Data
Security - 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, ser. Lecture
Notes in Computer Science, J. Bonneau and N. Heninger, Eds., vol.
12059. Springer, 2020, pp. 578–594.

[11] G. Castagnos and F. Laguillaumie, “Linearly homomorphic encryption
from ddh,” in Cryptographers’ Track at the RSA Conference. Springer,
2015, pp. 487–505.

[12] M. Chase, C. Ganesh, and P. Mohassel, “Efficient zero-knowledge proof
of algebraic and non-algebraic statements with applications to privacy
preserving credentials,” in Annual International Cryptology Conference.
Springer, 2016, pp. 499–530.

142475

[13] J. O. M. Chervinski, D. Kreutz, and J. Yu, “Analysis of transaction
flooding attacks against monero,” in IEEE International Conference on
Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6,
2021. IEEE, 2021, pp. 1–8.

[14] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Symposium on Self-
Stabilizing Systems. Springer, 2015, pp. 3–18.

[15] S. Dittmer, Y. Ishai, and R. Ostrovsky, “Line-point zero knowledge and
its applications,” Cryptology ePrint Archive, 2020.

[16] S. Dobson and S. D. Galbraith, “Trustless groups of unknown order
with hyperelliptic curves,” IACR Cryptol. ePrint Arch., p. 196, 2020.
[Online]. Available: https://eprint.iacr.org/2020/196

[17] J. Du, Z. Ge, Y. Long, Z. Liu, S. Sun, X. Xu, and D. Gu, “Mixct: Mixing
confidential transactions from homomorphic commitment,” Cryptology
ePrint Archive, Paper 2022/951, 2022, https://eprint.iacr.org/2022/951.
[Online]. Available: https://eprint.iacr.org/2022/951

[18] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 106–123.

[19] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 949–966.

[20] O. Ersoy, J. Decouchant, S. Prabhu Kimble, and S. Roos, “Syncpc-
n/psyncpcn: Payment channel networks without blockchain synchrony,”
arXiv e-prints, pp. arXiv–2207, 2022.

[21] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new
design for anonymous cryptocurrencies,” in International conference
on the theory and application of cryptology and information security.
Springer, 2019, pp. 649–678.

[22] G. Fuchsbauer, A. Plouviez, and Y. Seurin, “Blind schnorr signatures
and signed elgamal encryption in the algebraic group model,” in EU-
ROCRYPT 2020, ser. Lecture Notes in Computer Science, A. Canteaut
and Y. Ishai, Eds., vol. 12106. Springer, 2020, pp. 63–95.

[23] N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez, E. Tairi, and
S. A. Thyagarajan, “Foundations of coin mixing services,” Cryptology
ePrint Archive, Paper 2022/942, 2022, https://eprint.iacr.org/2022/942.
[Online]. Available: https://eprint.iacr.org/2022/942

[24] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
computer and system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[25] M. Green and I. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 473–
489.

[26] J. Groth, “Rerandomizable and replayable adaptive chosen ciphertext
attack secure cryptosystems,” in TCC, ser. Lecture Notes in Computer
Science, vol. 2951. Springer, 2004, pp. 152–170.

[27] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in Network and Distributed System Security Symposium, 2017.

[28] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions,” in
International conference on financial cryptography and data security.
Springer, 2016, pp. 43–60.

[29] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in zcash,” in 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
W. Enck and A. P. Felt, Eds. USENIX Association, 2018, pp. 463–477.

[30] R. Khalil, A. Gervais, and G. Felley, “Nocust-a securely scalable
commit-chain,” Cryptology ePrint Archive, Report 2018/642, 2018.

[31] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of monero’s blockchain,” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 153–173.

[32] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. Pietzuch, and E. G. Sirer,
“Teechain: Reducing storage costs on the blockchain with offline pay-
ment channels,” in Proceedings of the 11th ACM International Systems
and Storage Conference, 2018, pp. 125–125.

[33] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in CCS.
ACM, 2017, pp. 455–471.

[34] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” Cryptology ePrint Archive, 2018.

[35] G. Maxwell, “Coinswap: Transaction graph disjoint trustless trading,”
CoinSwap: Transaction graph disjoint trustless trading (October 2013),
2013.

[36] S. Meiklejohn and R. Mercer, “Möbius: Trustless tumbling for transac-
tion privacy,” 2018.

[37] I. Miers, “Bolt: Private payment channels,” https://electriccoin.co/blog/
bolt-private-payment-channels/.

[38] P. Moreno-Sanchez, T. Ruffing, and A. Kate, “Pathshuffle: Credit mixing
and anonymous payments for ripple.” Proc. Priv. Enhancing Technol.,
vol. 2017, no. 3, p. 110, 2017.

[39] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin, “An
empirical analysis of traceability in the monero blockchain,” Proc. Priv.
Enhancing Technol., vol. 2018, no. 3, pp. 143–163, 2018.

[40] K. Nguyen, M. Ambrona, and M. Abe, “Wi is almost enough: Contin-
gent payment all over again,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 641–
656.

[41] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[42] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” https://lightning.network/lightning-network-paper.
pdf, 2016.

[43] X. Qin, C. Cai, and T. H. Yuen, “One-more unforgeability of blind
ecdsa,” in European Symposium on Research in Computer Security.
Springer, 2021, pp. 313–331.

[44] X. Qin, S. Pan, A. Mirzaei, Z. Sui, O. Ersoy, A. Sakzad, M. F.
Esgin, J. K. Liu, J. Yu, and T. H. Yuen, “Blindhub: Bitcoin-compatible
privacy-preserving payment channel hubs supporting variable amounts,”
Cryptology ePrint Archive, 2022.

[45] T. Ruffing and P. Moreno-Sanchez, “Valueshuffle: Mixing confidential
transactions for comprehensive transaction privacy in bitcoin,” in In-
ternational Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 133–154.

[46] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security. Springer, 2014, pp. 345–364.

[47] ——, “P2p mixing and unlinkable bitcoin transactions,” Cryptology
ePrint Archive, 2016.

[48] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2l: Anonymous atomic
locks for scalability in payment channel hubs,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 1834–1851.

[49] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
692–701.

[50] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 112–126.

[51] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and
arithmetic circuits,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 1074–1091.

[52] D. A. Wijaya, J. K. Liu, R. Steinfeld, D. Liu, and J. Yu, “On the unfork-
ability of monero,” in Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security, AsiaCCS 2019, Auckland,
New Zealand, July 09-12, 2019, S. D. Galbraith, G. Russello, W. Susilo,
D. Gollmann, E. Kirda, and Z. Liang, Eds. ACM, 2019, pp. 621–632.

[53] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over
any field,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2986–3001.

[54] J. Yu, M. H. A. Au, and P. J. E. Verı́ssimo, “Re-thinking untraceability
in the cryptonote-style blockchain,” in 32nd IEEE Computer Security
Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28,
2019. IEEE, 2019, pp. 94–107.

[55] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F. Lau, “New empir-
ical traceability analysis of cryptonote-style blockchains,” in Financial
Cryptography and Data Security - 23rd International Conference, FC
2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers, ser. Lecture Notes in Computer Science, I. Goldberg
and T. Moore, Eds., vol. 11598. Springer, 2019, pp. 133–149.

152476

[56] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle,
“Coinparty: Secure multi-party mixing of bitcoins,” in Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy,
2015, pp. 75–86.

APPENDIX A
DISCUSSION REGARDING PRIVACY

Here, we discuss additional aspects of our PCH pertaining
to privacy limitations. As mentioned in A2L [48], these
limitations are inherent in the PCH settings, and thus affecting
our construction as well.

Epoch anonymity. Our payment channel hub protocol runs
in epoch. The anonymity level of the PCH system running in
epoch depends on the number of the participants within the
epoch. Say, during an epoch, if there are k payments completed
successfully, the anonymity set is of size k(i.e., k-anonymity),
since there exists k compatible interaction graphs, as defined
in Section II-A.

However, the above k-anonymity can only be achieved if
there is no intersection between sender-receiver pairs from
different epochs. Otherwise, tumbler can further eliminate the
anonymity sets.

Intersection attack. The tumbler can correlate the infor-
mation across phases and epochs to eliminate the anonymity
sets. Namely, tumbler can observe which pairs of senders and
receivers fall in the intersection of different epochs and break
their anonymity. This is called intersection attack.

We observe that fix-amount PCH system are vulnerable
to intersection attack. Since unless the amount a sender is
going to pay the receiver is exactly the same as the one
fixed in the system, he needs to run the protocol for multiple
times for one payment, which means that he needs to interact
with tumbler for multiple epochs in order to complete the
payment. As a result, the tumbler can easily link the sender
and receiver by observing which pair of sender-receiver appear
continuously. That is, the tumbler can break their anonymity
by a simple intersection attack. In contrast, BlindHub allows
variable-amount payment. It means that users only need to run
the protocol once, which protect them from the aforementioned
intersection attack.

Tumbler-Sender(Receiver) Collusion. It is possible for the
tumbler T to figure out who the sender S (receiver R) is if R
(S) is corrupted. During some anonymous payments, S or R
does not want to reveal his real identity, T can leverage the
corrupted party to make some fake payment and explore the
real identity of the uncorrupted party. For example, when R
is corrupted, he can send a fake puzzle to S, and anyone who
is asking T to solve the puzzle will be identified as S in this
payment. This can be mitigated by requiring R to prove that
the given puzzle is randomized from the original one. When
S is corrupted, T can explore who the R is by asking S not
to send the witness to R. The one who fails to provide the
witness and claim coins from T is the potential R.

Attacks with Auxiliary Information. The privacy prop-
erties are discussed without auxiliary information from the
outside. Otherwise, they cannot be guaranteed as well. For
example, when T knows that there is a certain S pays a milk

wBlindnessA,
∏

R,Σ
(λ)

1 : (pk,m0,m1)← A(1λ)
2 : b←$ {0, 1}
3 : b∗ ← AUser(pk,mb),User(pk,m1−b)(1λ)

4 : return (b == b∗)

Fig. 10. Experiment wBlindnessA,
∏

R,Σ
.

company every week at a certain time, and T can observe such
periodical payments and infer the users identify with higher
possibility. This can be mitigated by making the unregular
payment.

APPENDIX B
SECURITY MODEL AND CONCRETE CONSTRUCTION OF

BLIND ADAPTOR SIGNATURE

Here, we give detailed security models, security analysis
and concrete construction of blind adaptor signature.

A. Security Model

Suppose that there are Ns (resp. Np) interactions by the
signer in the Sign(sk) (resp. PreSign(sk, Y)) algorithm. We
use (m′, st1)← Sign1(sk,m) (resp. (m′, st1)← PreSign1(sk,
Y,m)) to represent the first interaction, where m is the mes-
sage received by the signer, m′ is the message output and st1 is
the internal state. Similarly, (m′, sti)← Signi(sti−1,m) (resp.
(m′, st1) ← PreSigni(sti−1,m)) denotes the i-th interaction,
for i ∈ [2, Ns − 1] (resp. i ∈ [2, Np − 1]), and (m′, b) ←
SignNs

(stNs−1,m) (resp. (m′, b) ← PreSignNp
(stNp−1,m))

denotes the last interaction, where b is a bit. Below we give the
formal definitions of the properties of BAS given in Section
IV and give the one-more unforgeability game of BAS in Fig.
12, weak blindness game in Fig. 10 and witness extractability
game in Fig. 11.

Definition 3 (Weak Blindness). A BAS scheme ΠBAS

achieves weak blindness if for every PPT adversary A run-
ning the experiment wBlindnessA,ΠBAS

defined in Fig. 10,
Pr[wBlindnessA,ΠBAS

(λ) = 1] ≤ negl(λ).

Witness Extractability of BAS is different from that of the
adaptor signature. It is because the message signed by the
oracles OS and OpS (as shown in Fig. 12) is unknown to the
challenger. Hence, we have to change the definition of the
oracles to avoid giving a full signature/pre-signature to the
adversary.

Definition 4 (Witness Extractability). A BAS scheme ΠBAS

is witness extractable if for every PPT adversary A run-
ning the experiment baWitExtA,ΠBAS

defined in Fig. 11,
Pr[baWitExtA,ΠBAS

(λ) = 1] ≤ negl(λ).

Definition 5 (One-more Unforgeability). A BAS scheme ΠBAS

is omaEUF–CMA secure if for every PPT adversary A run-
ning the experiment omaSignForgeA,ΠBAS

defined in Fig. 12,
Pr[omaSignForgeA,ΠBAS

(λ) = 1] ≤ negl(λ).

162477

baWitExtA,
∏

R,Σ
(λ)

1 : (pk, sk)← KeyGen(1λ)

2 : (M∗, Y)← AO′
S,O

′
pS(pk)

3 : σ̂ ← PreSign(sk, Y)↔ User(pk,M∗, Y)

4 : σ∗ ← AOS,OpS(σ̂, Y)

5 : y∗ ← Ext(Y, σ∗, σ̂)

6 : return ((Y, y∗) /∈ R ∧ Vf(pk, σ∗,M∗) = 1)

Fig. 11. Experiment baWitExtA,
∏

R,Σ
. O′

S, O
′
pS are the same as OS, OpS

in Algorithm 12 except that OS(·, Ns, ·), OpS(·, ·, Np, ·) are not allowed.

B. Concrete Construction

We now construct a provably secure blind adaptor signature
scheme based on ECDSA digital signatures that are commonly
used by blockchains. Although in the literature, there are
already blind signatures schemes [22], [43] that are compatible
with Bitcoin, their blindness property is the strong one, which
requires that a signer cannot link a message/signature pair to
a particular execution of the signing protocol. Here the blind
adaptor ECDSA we propose satisfies weak blindness.

Blind Adaptor ECDSA Construction.
Setup. On input a security parameter λ, it runs (p,G, G) ←
GpGen(1λ) and picks a cryptographic hash function H : {0,
1}∗ → Zp. It returns par = (p,G, G,H).
KeyGen. On input par, it picks sk := x←$Zp and computes
pk := X = xG.
Sign. The signer’s input includes security parameter 1λ,
signer’s public key X and secret key x, adaptor statement
Y , adaptor statement y, a and the proof of knowledge π of
the witness of Y . The user’s input includes security parameter
1λ, signer’s public key X and the message to be signed m.

1) The user hashes the message m: h = H(m), and
generates a proof-of-knowledge πh of the pre-image of
h. Then the user sends h, πh to the signer.

2) On receiving h, πh, the signer verifies the validity of
the proof πh and aborts if the proof is not correct.
Then the signer samples ka from Zp\{0}, then computes
R̂ = kaY = (r, ·), R = kaG, and gives a zero
knowledge proof πa to prove that R̂ and R share the
same discrete log under Y and G respectively. finally,
the signer generates s′ = ka

−1(h+ rx), and sends R̂, R,
πa, s

′ to the user.
3) The user aborts if s′ = 0 or PreVf(m, IY ; s

′) = 0 or
NIZKVerify(πa) = 0. Else, the user returns (r, s′) as the
adaptor ECDSA signature.

Verify. To verify an adaptor signature σ̂ = (r, s, Y) for
a message m and a public key X , where Y is a adaptor
statement, it computes R = Y (H(m)

s G + r
sX). It returns 1

if r = f(R), or returns 0 otherwise.
Security Analysis. Now we analyze the security of the blind

adaptor ECDSA proposed above. Firstly, the protocol achieves
weak blindness trivially, since the user only forwards the hash
of the message to the signer. Below we prove the one-more
unforgeability of our protocol by reducing it to the EUF-CMA

omaSignForgeA,
∏

R,Σ
(λ)

1 : Ss := ∅,Sp := ∅, ks1 := 0, kp1 := 0, ks2 := 0

2 : (pk, sk)← KeyGen(1λ)

3 : (M∗
1 , . . . ,M

∗
n)← AOS,OpS(pk)

4 : (Y, y)← GenR(1λ)

5 : σ̂i ← PreSign((pk, sk), Y,M∗
i), ∀i ∈ [1, n]

6 : (σ∗
1 , . . . , σ

∗
n)← AOS,OpS(σ̂1, . . . , σ̂n, Y)

7 : return (ks2 < n ∧M∗
i ̸= M∗

j ,∀i ̸= j ∈ [1, n]∧
8 : Vf(pk,M∗

i , σ
∗
i) = 1,∀i ∈ [1, n]

OS(M, i, j)

1 : if i = 1 :

2 : ks1 = ks1 + 1

3 : (M ′, stks1
,1)← Sign1(sk,M)

4 : Ss = Ss ∪ {ks1}
5 : return (ks1 ,M

′)

6 : if i = Ns :

7 : if j /∈ Ss : return ⊥
8 : (M ′, b)← SignNs

(stj,Ns ,M)

9 : if b = 1 : Ss = Ss \ {j}, ks2 = ks2 + 1

10 : return M ′

11 : if i ∈ [2, Ns − 1] :

12 : if j /∈ Ss : return ⊥
13 : (M ′, stj,i)← Signi(stj,i−1,M)

14 : return M ′

15 : return ⊥
OpS(M,Y, i, j)

1 : if i = 1 :

2 : kp1 = kp1 + 1

3 : (M ′, stkp1 ,1)← PreSign1(sk, Y,M)

4 : Sp = Sp ∪ {kp1}
5 : return (kp1 ,M

′)

6 : if i = Np :

7 : if j /∈ Sp : return ⊥
8 : (M ′, b)← SignNp

(stj,Ns ,M)

9 : if b = 1 : Sp = Sp \ {j}, k2 = k2 + 1

10 : return M ′

11 : if i ∈ [2, Ns − 1] :

12 : if j /∈ Sp : return ⊥
13 : (M ′, stj,i)← PreSigni(stj,i−1,M)

14 : return M ′

15 : return ⊥

Fig. 12. Experiment omaSignForgeA,ΠBAS

security of ECDSA adaptor signature, which is introduced
in [2]. It is noted that the one-more unforgeability of our
blind adaptor ECDSA scheme does not rely on ROS (Random
inhomogeneities in a Overdetermined Solvable system of
linear equations) assumption, and thus not affected by the ROS
attack proposed recently [6].

172478

Theorem 6. Assuming the unforgeability of ECDSA adaptor
signature and the soundness of non-interactive zero knowledge
proof, our blind adaptor ECDSA protocol achieves one-more
unforgeability.

Proof. Assume there is an adversary A that can break the one-
more unforgeability of our blind adaptor ECDSA protocol, we
construct an algorithm B that uses A to break the unforgeabil-
ity of ECDSA adaptor signature. First, the challenger C of the
ECDSA adaptor signature gives param, adaptor statement Y
and pk to B. B forwards param, Y and pk to A, and A outputs
(M∗

1 , . . . ,M
∗
n). When A queries the signing oracle with hi,

πhi
as input, B first extract the pre-image M∗

i of hi from
πhi

. Then B forwards (Y,M∗
i) to C and returns the oracle

reply to A. After running n− 1 queries to the signing oracle,
A outputs n distinct message-signature pairs (Mj , σj = (sj ,

rj)) for j ∈ [1, n] such that Rj = Y (
H(mj)

sj
G +

rj
sj
X) and

rj = f(Rj). Then B forwards (M∗
i0
, σ∗

i0
) as a forgery to C,

where M∗
i0

has not been queried in the signing oracle.

APPENDIX C
FORMAL SECURITY ANALYSIS OF PCH

Here, we formally define security properties of our PCH
and the proofs for the theorems given in Section IX.

Definition 6 (Griefing Resistance). A PCH system achieves
griefing resistance if for all PPT senders and receivers, at
any time t, the locked coins of the tumbler is no larger than
the locked coins to be sent to the tumbler.

Before proving Theorem 2, we first recall that in our PCH
construction, the griefing resistance is enforced as follows:
firstly, before the registration phase, the sender S and the
tumbler T updates their BlindChannel to a conditional pay-
ment state, where the payment amount is m committed in the
commitment of the amount Camt. Then during the registration
protocol, S sends the commitment of the token Ctkid and
Camt = com(m) to T. Then, T generates a randomizable
signature σ̃ upon Ctkid and Camt to S, who forwards (C′

tkid,
C′
amt, σ̃

′), which is the randomized version of (Ctkid,Camt, σ̃),
to the receiver R. Before the puzzle promise protocol, R and
T updates their BlindChannel to a conditional payment state
with payment amount m. Later R shows (C′

tkid,C
′
amt, σ̃

′) to
T, and generates a token-uniqueness proof to prove that the
token committed in C′

tkid has never been used before.

Proof of Theorem 2 (Sketch). Assume there is an adversary A
that can break the griefing resistance of our PCH system. It
means that A is able to lock more coins of T than those of S.
Then, there are three cases:

1) Before the registration phase, S and T updates their
BlindChannel to a conditional payment state, where the
payment amount is m. But m < m′, where m′ is
committed in Camt. But in the channel update phase, S
and T have reached agreement that the payment amount
equals to the amount committed in Camt. This violates
the security of BlindChannel, which guarantees that the

BlindChannel is successfully updated only if both parties
in the channel agree with the update.

2) S and T have updated their BlindChannel to a condi-
tional payment state, where the payment amount is m
committed in Camt. But after receiving a randomizable
signature σ̃ upon Ctkid and Camt = com(m), the adversary
(S or R) forges a new randomizable signature σ̃′ upon the
new commitment of the token Ctkid = com(tkid′) and the
new commitment of the amount C′

amt = com(m′), where
m′ > m. This voilates the unforgeability of andomizable
signatures on randomizable commitments.

3) In the puzzle promise phase, R shows (C′
tkid,C

′
amt, σ̃

′)
to T, and provides a zero knowledge proof to prove the
token is unique, and the proof passes the verification of T.
But the token is not unique. This violates the soundness
of the zero knowledge proof.

Value Privacy Game: Let T chooses two payment values
v0 and v1 for a payment pair of sender and receiver (S,R),
where the both channels (with T) have sufficient capacities for
both values. Let b ∈ {0, 1} be chosen randomly. Let payb be
the corresponding payment with payment value vb. In case of
successful payment of payb, A wins the game by guessing the
value of b: PrVP := Pr

[
b′ = b : b′ ← Av0,v1 , b

R← {0, 1}
]
.

Definition 7 (Value Privacy). A PCH satisfies value privacy
if for every PPT tumbler T, the probability of winning Value
Privacy Game is PrVP = 1/2 + ϵ, where ϵ is negligible.

Proof of Theorem 4 (Sketch). In our PCH system, the infor-
mation of the value can either be obtained from ΠFBCS or
ΠBC . If there is an adversary A (T) that can win the value
privacy game, i.e., guess the payment value with more than
1/2 probability, it implies that A is able to obtain useful
information of the value from ΠFBCS or ΠBC , which violates
the blindness of ΠFBCS and the security of ΠBC.

Relationship Anonymity Game: Let T chooses two can-
didate senders S0, S1 and receivers R0, R1. Let b ∈ {0,
1} be chosen randomly. If b = 0, then payi = (Si,Ri),
otherwise payi = (Si,R1−i) for i = 0, 1. Let Mi be the
message(s) that T exchanged (sent and received) with the
corresponding parties for the payment pairs payi for i = 0,
1. In case of simultaneous successful payments of the pairs
pay0 and pay1, T wins the game by guessing the value of b:
PrRA := Pr

[
b′ = b : b′ ← TM0,M1 , b

R← {0, 1}
]
.

Definition 8 (Relationship Anonymity). A PCH satisfies rela-
tionship anonymity if for every PPT tumbler T, the probability
of winning the Relationship Anonymity Game is PrRA =
1/2 + ϵ where ϵ is negligible in λ.

Proof of Theorem 5 (Sketch). Assume there is an adversary A
(T) that can break the relation anonymity and guess the right
payment pairs with probability of 1/2 + ϵ0, where ϵ0 is non-
negligible. It means the adversary can get information of the
relationship from either BlindChannel or BlindHub. The only

182479

information in BlindChannel can reveal the information of the
relationship is the payment amount. If the adversary A can
get information of the payment amount from BlindChannel,
it violates the security of ΠBC. Otherwise, since T can link
the parties with the corresponding promise/solver sessions
trivially, it means the adversary A can link the promise-
solver sessions with probability of 1/2 + ϵ0, where ϵ0 is
non-negligible. This violates the blindness of flexible blind
conditional signature.

Definition 9 (Atomicity). Suppose γs and γr represent the
channels shared by (S,T) and (T,R), respectively. Let payv

be the payment of (S,R) with payment value v. A PCH satisfies
atomicity if for every PPT sender S, PPT T and PPT R, for
any payment payv of S and R with any values v, the following
conditions hold:

1) If S pays v coins in γs, T pays v coins in γr.
2) If T pays v coins in γr, S pays v coins in γs.

Proof of Theorem 3 (Sketch). Assume the atomicity of our
PCH system is broken. There are two cases: 1) S pays T v
coins in γs, but R cannot receive any coin from T in γr, 2) T
pays v coins in γr, but S only pays T v′ coins in γs, where
v′ < v. It is noted that since in BlindChannel, the amount
is picked by the unblind party(S/R). Assuming the unblind
party is rational, T can only pay v coins or 0 coins in γr.
Below we discuss these two cases separately:

1) S pays T v coins in γs, but R cannot receive any coin
from T in γr: in this case, T is the adversary A. This
means either A is able to generate a valid signature on a
message from the sender that prevents the receiver from
being able to unlock the entire signature on the message
from the T, or R cannot still claim coins from the channel
even if R obtain the full signature on the message from
the T. The former case implies the unlockability of ΠFBCS

is broken, and the latter case implies the insecurity of
BlindChannel.

2) T pays v coins in γr, but S only pays T v′ coins in γs,
where v′ < v: then, S and R are both adversaries. This
implies either the unforgeability of ΠFBCS is broken, or
the insecurity of BlindChannel scheme.

192480

