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Abstract—Secure multi-party computation-based machine
learning, referred to as multi-party learning (MPL for short),
has become an important technology to utilize data from multiple
parties with privacy preservation. While MPL provides rigorous
security guarantees for the computation process, the models
trained by MPL are still vulnerable to attacks that solely depend
on access to the models. Differential privacy could help to
defend against such attacks. However, the accuracy loss brought
by differential privacy and the huge communication overhead
of secure multi-party computation protocols make it highly
challenging to balance the 3-way trade-off between privacy,
efficiency, and accuracy.

In this paper, we are motivated to resolve the above issue by
proposing a solution, referred to as PEA (Private, Efficient, Accu-
rate), which consists of a secure differentially private stochastic
gradient descent (DPSGD for short) protocol and two optimiza-
tion methods. First, we propose a secure DPSGD protocol to
enforce DPSGD, which is a popular differentially private machine
learning algorithm, in secret sharing-based MPL frameworks.
Second, to reduce the accuracy loss led by differential privacy
noise and the huge communication overhead of MPL, we propose
two optimization methods for the training process of MPL: (1)
the data-independent feature extraction method, which aims to
simplify the trained model structure; (2) the local data-based
global model initialization method, which aims to speed up the
convergence of the model training. We implement PEA in two
open-source MPL frameworks: TF-Encrypted and Queqiao.
The experimental results on various datasets demonstrate the
efficiency and effectiveness of PEA. E.g. when ε = 2, we can
train a differentially private classification model with an accuracy
of 88% for CIFAR-10 within 7 minutes under the LAN setting.
This result significantly outperforms the one from CryptGPU,
one state-of-the-art MPL framework: it costs more than 16 hours
to train a non-private deep neural network model on CIFAR-10
with the same accuracy.

Index Terms—Secure Multi-party Computation, Multi-Party
Learning, Differential Privacy, Privacy Computing

I. INTRODUCTION

Since European Union released General Data Protection

Regulation [68], data transfer has been strictly restricted

more than before [60]. In order to utilize data stored in

different parties with privacy preservation, secure multi-party

computation (SMPC for short) based machine learning [51],

[52], [65], referred to as MPL [63], is an important technology.

Benefiting from the rigorous security guarantee provided by

SMPC, through using MPL, data analysts can train machine

learning models based on data from multiple sources without

leaking any private information except for the trained models.

However, many attacks [43], [61], e.g. membership inference

attacks [61], on the machine learning models themselves have

been proposed in recent years. These attacks only require access

to the trained models (i.e. no raw data, even no intermediate

results). For example, by using membership inference attacks,

attackers can infer the membership of one data point by

querying the target model [61]. As these attacks are missed

by the threat models of SMPC, they would seriously break the

security of MPL frameworks.

Differential privacy (DP for short) is a widely-used tech-

nology to defend against the above attacks with a rigorous

privacy guarantee [32], which is different from the protections

provided by current heuristic methods [34], [43]. Meanwhile,

a recent user study [72] shows that users prefer to share their

data when a rigorous privacy guarantee is provided. Hence,

DP could be a more significant defense than existing heuristic

defenses. However, the DP noise would lead to significant

accuracy loss of trained models, especially for deep neural

network models [1], [66]. In addition, even though there have

been many studies on the efficiency optimization of MPL [51],

[65], there is still a huge efficiency gap between plaintext

training and secure training. Therefore, it is highly challenging

to balance the 3-way trade-off between privacy, efficiency, and

accuracy in the secure training of MPL. Concretely, (1) directly

combining the plaintext data from all parties to efficiently train

an accurate model would bring severe privacy concerns; (2)

training an accurate model with existing MPL frameworks can

partially protect privacy, but it requires a large amount of time

to complete the training process; (3) while integrating DP into

MPL frameworks without further optimizations can resolve the

privacy concerns, the accuracy loss led by DP would cancel

out the accuracy gain of combining multiple parties’ data.

In this paper, we are motivated to resolve the above issue

by proposing a solution, referred to as PEA (Private, Efficient,

Accurate), which consists of a secure differentially private

stochastic gradient descent (DPSGD for short) protocol and

two optimization methods. First, by designing a secure inverse

of square root protocol, we enforce the DPSGD algorithm [1],

[2], [64] in secret sharing-based MPL frameworks to enhance

their privacy protection. Second, to reduce the accuracy loss

led by DP and improve the efficiency of MPL, we propose

two optimization methods: (1) extracting the features of input

data with data-independent feature extractors; (2) initializing

the global model by aggregating local models trained on local

data from parties. With the first optimization method, parties

only need to securely train a differentially private simple model

on extracted features, which can achieve similar, even higher
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accuracy than differentially private complex models, such as

Resnet with tens of layers [27], trained on raw data. In addition,

the second optimization method initializes a relatively accurate

global model for the secure training process, thus significantly

speeding up the convergence of the model training process.

We summarize our main contributions as follows:

• We propose the secure DPSGD protocol to enforce the

DPSGD algorithm in secret sharing-based MPL frame-

works, thus defending against the membership inference

attacks on machine learning models (Section IV).

• We propose two optimization methods to reduce the

accuracy loss brought by DP and improve the efficiency

of MPL frameworks: (1) the data-independent feature

extraction method (Section V-A); (2) the local data-based

global model initialization method (Section V-B).

• We implement PEA in two open-source MPL frameworks,

namely TF-Encrypted [17] and Queqiao1. We refer

to the differentially private versions of TF-Encrypted
and Queqiao as TF-Encryptedε and Queqiaoε

respectively. The experimental results on three widely-used

datasets show that our proposed feature extraction method

and model initialization method can significantly improve

the efficiency of MPL frameworks. In particular, under the

LAN setting, when we set ε as 2, TF-Encryptedε and

Queqiaoε can train a differentially private classification

model for CIFAR-10 with an accuracy of 88% within 7

and 55 minutes, respectively. While CryptGPU [65], one

state-of-the-art MPL framework, requires more than 16

hours (about 137× and 17× of ours respectively) to train

a non-private deep neural network model for CIFAR-10

with the same accuracy (Section VI). Therefore, with our

proposed PEA, TF-Encryptedε and Queqiaoε can

balance privacy, efficiency, and accuracy in the secure

model training of MPL.

II. OVERVIEW

As is shown in Figure 1, we present an overview of PEA,

which works in the training process with the support of SMPC

protocols. In the following parts, we introduce the motivation

and design of our proposed protocol and optimization methods.

A. Secure DPSGD Protocol

In the multi-party setting, local differential privacy [23],

which has no dependence on a trusted server, is a straightfor-

ward method to protect privacy. However, the accuracy loss

caused by local differential privacy is one or more orders of

magnitude larger than that caused by central DP [37], which

requires a trusted server to handle all data. Benefit from the

security guarantee provided by SMPC protocols, even though

in the multi-party setting, MPL can simulate a trusted server

that trains the model on all data from distributed parties.

According to the above analysis, we leverage the DPSGD

algorithm [1], [2], [64] in the multi-party setting to protect

models trained by MPL frameworks. DPSGD adds noise

sampled from Gaussian distribution to gradient vectors with

1https://github.com/FudanMPL/SecMML
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Figure 1: An overview of PEA. The computations in the

orange (left) frame are performed locally on plaintext data, and

computations in the blue (right) frame are performed globally

on secret shared data. During the global computation, all local

datasets are merged as the logically global dataset through

using SMPC protocols.

bounded L2 norms to protect training data. We thus design

a secret sharing-based inverse of square root protocol to clip

L2 norms of gradient vectors and utilize the distributed noise

generation protocol proposed by Dwork et al. [22] to generate

random Gaussian noise securely.

B. Efficiency and Accuracy Optimization Methods

Existing MPL frameworks [51], [52], [65], [70] try to

securely train end-to-end deep neural network models (i.e.

training neural network models that combine feature extraction

and classification). However, combining DP with deep neural

network models could result in significant accuracy loss [1],

[66]. Furthermore, under the computation and communication

complexity of current SMPC protocols, it is difficult, if not

impractical, to securely train an end-to-end deep neural network

model. We elaborate on these two arguments in Section V-A.

Instead of training an end-to-end neural network model, we

let each party first apply data-independent feature extractors,

including foundation models [5] (e.g. BERT [21]) and feature

extraction rules, to extract features of input datasets locally.

Consequently, all parties collaboratively train shallow models

(e.g. linear models or neural network models with a few layers)

on extracted features. In this way, parties only need to perform

secure computation and add noise in the shallow model training

process. As a result, the accuracy loss and communication

overhead can be significantly reduced.

Furthermore, when we train a machine learning model,

starting from an accurate initial model would significantly

improve the convergence speed. Our main idea is to let each

party train a local model on his or her local data with DPSGD.

Subsequently, parties securely aggregate their local models with

SMPC protocols to initialize a global model. By performing

parts of the computation of the training process locally, parties

can therefore significantly improve the efficiency of MPL.

III. PRELIMINARIES

We first describe the security model used in this paper.

After that, we introduce background knowledge of SMPC and

differentially private machine learning. For clarity purposes,

we list notations used in the paper in Table I.
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TABLE I: Notations used in this paper.

Pi Party i participating in MPL
m The number of parties involved in MPL
〈x〉i One share of a secret x held by Pi

k The number of bits used to represent a fixed-point number
f The bit number of fixed-point number’s fraction part
p The dimension of gradient vectors
n The number of data samples
θ Trained model
C The gradient clipping bound
η Learning rate
B Batch size

A. Security Model

In this paper, we consider the semi-honest security model,

which is widely used in MPL frameworks [51], [52]. In the

model, each party tries to infer private information from all

received messages but will follow the steps of protocols. The

semi-honest model should be a reasonable setting because the

primary goal of MPL is to bridge the data sources separated by

strict privacy protection regulations, and parties are willing to

share their data. Furthermore, following previous studies [51],

[65], we assume an honest majority, i.e. less than half of parties

would collude. In summary, PEA guarantees the security of data

during the model training process in the semi-honest setting

with an honest majority, and provides DP guarantees to defend

against membership inference attacks on output models.

B. Secure Multi-party Computation

SMPC enables multiple parties to collaboratively execute a

function without leaking any information of each party’s input

except the computation results. There are several technical

routes [16], [76], [77] to implement SMPC, including secret

sharing [16]. The main idea of secret sharing is to divide a

private value x into m shares, where m is the number of

parties. Subsequently, parties perform computations of a target

function on the shares and finally reconstruct the computation

results as the output. The major MPL frameworks are based on

linear secret sharing protocols (i.e. additive secret sharing [25]

and Shamir’s secret sharing [3]) for their high efficiency of

arithmetic computations [51], [52], [65], [70].

We construct the secure DPSGD protocol based on linear

secret sharing protocols. Because different secret sharing

schemes have different sharing semantics, we use the primitives

that are supported by all linear secret sharing protocols to

construct our proposed secure DPSGD protocol. Thus our

proposed protocol can be applied to linear secret sharing-based

MPL frameworks, including ABY3 [51] and Queqiao.

We hereby introduce the fixed-point number representation

method and cryptographic primitives used in this paper. As

these primitives are used as black-boxes, we only introduce

details of secret sharing and reconstruction. For other primitives,

we present the functionality of these primitives and refer details

to the related literature [3], [9], [10], [25]. Note that in our

computation process, all parties are usually equal to each other.

This feature is different from federated learning [74], where

there is usually a central server among parties.

Fixed-point Number Representation. Original linear secret

sharing protocols [3], [25] only support secure computations on

integers. However, the model training process often involves

floating-point numbers. Therefore, we encode a fixed-point

number with f -bit precision by mapping a fixed-point number

x̃ to an integer x such that x = x̃ ∗ 2f . In order to

prevent the precision explosion brought by fixed-point number

multiplication (i.e. z = x ∗ y = x̃ ∗ ỹ ∗ 22f ), we apply Trunc
protocol [9] to truncate z as z′ such that z′ = x̃∗ ỹ ∗2f . Trunc
receives three parameters: x, k, q, where x is the data to be

truncated, k, q indicate the number of bits to represent the

input data and the number of bits to be truncated respectively.

Secret Sharing and Reconstruction. For additive secret

sharing [25], given a secret x, we first generate m − 1
random number 〈x〉1 , 〈x〉2 , · · · , 〈x〉m−1, and let 〈x〉m =

x − ∑m−1
i=1 〈x〉i. Pi holds 〈x〉i. To reconstruct x, all parties

exchange 〈x〉i and add them together to obtain x. For Shamir’s

secret sharing [3], given a secret x, we first generate a

polynomial f(y) = a0 + a1y + a2y
2 + ... + aty

t, where

a0 = x, a1, · · · , at are random coefficients, and t+1 is the least

number of parties to reconstruct the secret; then we construct

m points out of it with indexes 1 ≤ i ≤ m. These f(i) (i.e.

〈x〉i) are exactly the shares of x. To reconstruct x, all or some

of all parties exchange 〈x〉i and reconstruct the polynomial

f(y) with the Lagrange interpolation to obtain x.

Unary Operations. Given one share 〈x〉i held by Pi:

• Bit Dec outputs 〈x0〉i , 〈x1〉i , · · · , 〈xk−1〉i such that x =∑k−1
t=0 xt ∗ 2t.

• Mod2 outputs 〈t〉i for Pi such that t = x mod 2.

Binary Operations. Given two shares 〈x〉i, 〈y〉i held by Pi:

• Addition outputs 〈z〉i for Pi such that z = x+ y.

• Multiplication outputs 〈z〉i for Pi such that z = x ∗ y.

• Comparison outputs 〈z〉i for Pi such that z = x > y?0 :
1.

Multiple-Input Operations. Given a sequence of shares

〈x0〉i , 〈x1〉i , · · · , 〈xk−1〉i held by Pi:

• SufOr outputs 〈c0〉i , 〈c1〉i , · · · , 〈ck−1〉i such that c0 =
x0 ∨ x1 ∨ · · · ∨ xk−1, · · · , ck−1 = xk−1.

• PreMulC output 〈c0〉i , 〈c1〉i , · · · , 〈ck−1〉i such that c0 =
x0, c1 = x0 ∗ x1, · · · , ck−1 = x0 ∗ x1 ∗ · · · ∗ xk−1.

C. Differentially Private Machine Learning

Definition 1. (ε, δ)-Differential Privacy [23]. For a random
mechanism M whose input is D and outputs r ∈ Rp, we say
M is (ε, δ)-differential private if for any subset S ⊆ Rp,

Pr(M(D) ∈ S) ≤ eε · Pr(M(D′) ∈ S) + δ

where D and D′ are neighboring datasets, i.e. we can obtain

D′ by deleting or adding one data sample of D. If δ is set as

0, we say M is ε-differentially private. ε is also called privacy

budget that represents the privacy loss of a DP mechanism.

When multiple DP mechanisms are performed on the same

dataset simultaneously, the total privacy budget is estimated by

composition theorems, e.g. sequential composition theorem [23]

and parallel composition theorem [48].

Theorem 1. Sequential Composition Theorem [23]. For n
mechanisms M1,M2, · · · ,Mn that access the same dataset
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D, if each Mi satisfies (εi, δi)-DP, the combination of their
outputs satisfies (ε, δ)-DP with ε = ε1 + ε2 + · · · + εn, δ =
δ1 + δ2 + · · ·+ δn.

Theorem 2. Parallel Composition Theorem [48]. For n mech-
anisms M1,M2, · · · ,Mn whose inputs are disjoint datasets
D1, D2, · · · , Dn, if Mi satisfies εi-DP, the combination of them
satisfies ε-DP for the dataset D = D1 ∪D2 ∪ · · · ∪Dn with
ε = Max (ε1, ε2, · · · , εn).

Based on Theorem 2, we elaborate the parallel composition

theorem for (ε, δ)-DP in the Lemma 1, whose proof is shown

in Appendix A.

Lemma 1. Parallel Composition Theorem for (ε, δ)-
Differential Privacy. For n mechanisms M1,M2, · · · ,Mn

whose inputs are disjoint datasets D1, D2, · · · , Dn, if Mi

satisfies (εi, δi)-DP, the combination of them satisfies (ε,
δ)-DP for the dataset D = D1 ∪ D2 ∪ · · · ∪ Dn with
ε = Max (ε1, ε2, · · · , εn), δ = Max (δ1, δ2, · · · , δn).
In addition to composition theorems, another important property

of DP is post-processing immunity [23]. That is, performing

data-independent computations over the differentially private

output will not influence its privacy guarantee.

Algorithm 1 DPSGD [1], [2], [64]

Input: Data set D = {d1, · · · , dn}, loss function: �(θ; di), privacy
parameters: (ε, δ), number of iterations: T , batch size: B, gradient
clipping bound C, learning rate function: η;

Output: Trained model θT ;
1: Randomly initialize model θ1;
2: for t = 1 to T do
3: s1, · · · , sB ← Sample B samples uniformly from D;
4: For each si, compute ∇�(θ; si);
5: Clip gradient
6: ∇�(θ; si) ← ∇�(θ; si) ∗min(1, C

‖∇�(θ;si)‖2 ) ;

7: Add noise and Descent
8: bt ∼ N (0, σ2Ip×p), where σ ≥ C

2
√

T log 1
δ

ε
;

9: θt+1 = θt − η(t)
B

[
∑B

i=1 ∇�(θ; si) + bt];
10: end for
11: Output θT+1;

We then introduce the DPSGD algorithm, whose details

are shown in Algorithm 1. In order to securely perform

DPSGD, besides gradient computation and descent that have

been implemented in existing MPL frameworks, there are two

key steps to be completed: (1) securely clipping the gradient

vectors such that their L2 norms are all lower than or equal to

a given constant C; (2) securely generating the random noise

vectors sampled from Gaussian distribution.

IV. SECURE DPSGD

In this section, we first introduce the secure inverse of

square root and secure Gaussian noise generation protocols.

Then we combine these two protocols to design the secure

DPSGD protocol.

A. Inverse of Square Root

In order to clip the L2 norm of one gradient vector g, parties

need to compute the inverse of ‖g‖2, i.e. 1√
g2
1+g2

1+···+g2
p

. As

this computation involves two functions of square root and

division, which are both non-linear, directly implementing them

with secret sharing protocols implies huge communication

overhead. To reduce the overhead, a feasible way is to use

polynomial to approximate the non-linear functions. Lu et

al. [45] proposed to transform the original secret value 〈x〉i
to a form 〈x′ ∗ 2exp〉i, where 0.25 ≤ x′ ≤ 0.5. Afterwards,

they separately compute the
〈

1√
x′

〉
i

and
〈
2−

exp
2

〉
i
. Finally,

they obtain
〈

1√
x

〉
i

by multiplying
〈

1√
x′

〉
i

and
〈
2−

exp
2

〉
i
.

However, their method has an issue, i.e. the error of their

polynomial approximation might destroy the privacy guarantee

of DP. That is, if true C
‖∇�(θ;si)‖2

is slightly smaller than 1 (i.e.

‖∇�(θ; si)‖2 > C) and approximated C
‖∇�(θ;si)‖2

is slightly

higher than 1 (i.e. ‖∇�(θ; si)‖approx2 < C), the gradient vector

will not be clipped according to Line 6 of Algorithm 1, and its

L2 norm will exceed C. Consequently, the privacy guarantee

of DP is destroyed.

Protocol 1 Inverse of Square Root

Input: Pi holds the shares of the input 〈x〉i;
Output: Pi obtains the shares of the output 〈y〉i, such that y = 1√

x
;

1: Data preparation and transformation
2: {〈xt〉i}k−1

t=0 ← Bit Dec(〈x〉i);
3: {〈ct〉i}k−2

t=0 ← SufOr({〈xt〉i}k−2
t=0 ) ;

4: 〈b〉i = 1 +
∑k−2

t=0 2k−2−t(1− 〈ct〉i);
5: 〈x′〉i = Trunc(〈b〉i ∗ 〈x〉i , k, k − f − 1);
6: 〈exp〉i ←

∑k−2
t=0 〈ct〉i − f ;

7: Compute the square root of 2−exp ;
8: 〈lsb〉i = Mod2(〈exp〉i);
9:

〈
exp
2

〉
i
= Trunc(〈exp〉i , k, 1);

10: {〈et〉i}k−1
t=0 = Bit Dec(

〈
f − exp

2

〉
i
);

11: for t = 0 to k − 1 do
12: 〈et〉i = (1 + 〈et〉i ∗ (22

t − 1));
13: end for
14: {〈ct〉i}k−1

t=0 = PreMulC({〈et〉i}k−1
t=0 );

15:

〈
2f−

exp
2

〉
i
= 〈ck−1〉i;

16:

〈
2f−

exp
2

− 1
2

〉
i
= Trunc(

〈
2f−

exp
2

〉
i
∗ 2f− 1

2 , k, f);

17:

〈
2f−

exp
2

〉
i
=

〈
2f−

exp
2

− 1
2

〉
i
∗ 〈lsb〉i+

〈
2f−

exp
2

〉
i
∗ (1−〈lsb〉i);

18: Compute approximated polynomial
19:

〈
x′
approx

〉
i
= Trunc(0.8277 ∗ 2f ∗ 〈x′〉i , k, f);

20:
〈
x′
approx

〉
i
= Trunc((

〈
x′
approx

〉
i
− 2.046 ∗ 2f ) ∗ 〈x′〉i , k, f);

21:
〈
x′
approx

〉
i
=

〈
x′
approx

〉
i
+ 2.223 ∗ 2f − 0.0048 ∗ 2f ;

22: Compute and output final result
23: 〈y〉i = Trunc(

〈
x′
approx

〉
i
∗
〈
2f−

exp
2

〉
i
, k, f);

24: Pi obtains 〈y〉i;

In order to resolve the above issue, we propose the inverse

of square root protocol based on linear secret sharing protocols

and prove an error bound of the approximated polynomial to

keep the rigorous privacy guarantee of DP. As is shown in

Protocol 1, we describe each step of the inverse of square root

protocol as follows:
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• Step 1. (Line 2-6) Pi first decomposes 〈x〉i as binary

encoding {〈xt〉i}k−1
t=0 and performs SufOr on {〈xt〉i}k−2

t=0 so

that the bits after the first 1 in the binary encoding are all

set as 1. Finally, Pi transforms 〈x〉i to 〈x′〉i and obtains the

〈exp〉i such that x′ ∈ [0.5, 1) and x = x′ ∗ 2exp .

• Step 2. (Line 8-17) Pi computes the fixed-point represen-

tation of
〈
2−

exp
2

〉
i
, i.e.

〈
2f−

exp
2

〉
i
. First, Pi obtains the least

significant bit (i.e. 〈lsb〉i) of exp, which indicates the parity

of exp through applying Mod2. Subsequently, Pi computes〈
2f−

exp
2

〉
i

and
〈
2f−

exp
2 − 1

2

〉
i

respectively, where exp
2 = exp−1

2

if exp is odd. Finally, Pi obtain
〈
2f−

exp
2

〉
i

by choosing the

correct value based on the value of 〈lsb〉i.
• Step 3. (Line 19-21) Pi approximates 1√

x′ for x′ ∈ [0.5, 1)

with polynomial 0.8277x′2−2.046x′+2.223, which is obtained

through using the polyfit function of NumPy 2. Next, Pi

subtracts the approximated value with error bound 0.0048

to ensure that the approximated value is strictly smaller than

the true value, thus keeping the rigorous privacy guarantee.

• Step 4. (Line 23-24) Pi multiplies the approximated value〈
x′
approx

〉
i

with
〈
2f−

exp
2

〉
i

to obtain the output 〈y〉i.
We bound the difference between our approximated polyno-

mial and true output as follows.

Lemma 2. For any x′ ∈ [0.5, 1), (0.8277x′2 − 2.046x′ +
2.223− 0.0048)− 1√

x′ < 0.

We show the proof of Lemma 2 in Appendix A. When

the approximated 1√
x′ is smaller than the true 1√

x′ , the

approximated 1√
x

is smaller than the true 1√
x

. Therefore,

the approximated C
‖∇�(θ;si)‖approx

2
(i.e. 1√∑p−1

j=0 ∇�(θ;si)2j

∗ C )

is smaller than the true value. Consequently, according to

Algorithm 1, we can guarantee that gradient vectors whose L2

norms are larger than C (i.e. C
‖∇�(θ;si)‖2

< 1 ) are all clipped.

Finally, we can obtain the DP guarantee of true gradient vectors.

We further analyze the security and communication complexity

of Protocol 1 in Appendix C-A.

B. Noise Generation

We refer to the noise generation protocol proposed by

Dwork et al. [22] to securely generate the Gaussian noise with

mean 0 and standard deviation σ. The details are shown in

Protocol 2. Benefit from the additivity of Gaussian distribution,

the sum of independent Gaussian noises from parties is the

target Gaussian noise. According to [22], each party generates a

Gaussian noise with variance 3
2mσ2Ip×p to preserve Byzantine

robustness of Protocol 2. Byzantine robustness means that if

not more than 1/3 of parties fail, parties can generate the noise

that is random enough. Without the Byzantine robustness here,

when part of parties fails during the noise generating process,

the generated noise may not be random enough to provide

privacy protection, which is the main goal of our proposed

PEA. Note that this is not the property of the end-to-end secure

DPSGD protocol. Meanwhile, as the noise generation process

only requires secure addition, its security is trivially guaranteed

2https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

by the security of secure addition. As to the communication

complexity, Protocol 2 can be completed in one communication

round with O(mpk) bits message transfer. Besides, as the noise

generation process is data-independent, it can be generated

offline and has no impact on the efficiency of the online training

process.

Protocol 2 Secure Gaussian Noise Generation [22]

Input: The standard deviation of the target Gaussian distribution σ,
the dimension of noise p;

Output: The shares of a Gaussian noise 〈b〉i such that b ∼
N (0, σ2Ip×p);

1: Pi samples a Gaussian noise bi ∼ N (0, 3
2m

σ2Ip×p);
2: Pi sends the shares of 〈bi〉j �=i to other parties Pj �=i;
3: Pi summarizes the noise shares from other parties to obtain the

result 〈b〉i =
∑m

j=1 〈bj〉i;

C. Secure DPSGD Protocol

With Protocol 1 and Protocol 2, we then introduce the

secure DPSGD protocol, as is shown in Protocol 3. First,

parties securely compute gradient vectors. Second, parties clip

the L2 norms of the gradient vectors through calculating the

inverse of L2 norms of the gradient vectors with Protocol 1 and

storing the comparison results between them with 1 in is clip.

After that, parties update the gradient vectors according to

the values of is clip. Subsequently, all parties collaboratively

generate Gaussian noises with a pre-defined standard deviation

σ through calling Protocol 2 and apply them to perturb the

gradient vectors. Finally, parties update model parameters θ by

following the regular gradient descent process. Note that the

model parameters are kept in the secret shared form through

the whole secure DPSGD process. We analyze the security and

communication complexity of Protocol 3 in Appendix C-B.

Privacy Guarantee. We show the privacy guarantee of Proto-

col 3 in Theorem 3 (its proof is shown in Appendix A).

Theorem 3. For any ε ≤ 2 log(1/δ) and δ ∈ (0, 1), Protocol 3
satisfies (ε, δ)-DP.

Random Sampling of Minibatches. Protocol 3 amplifies

the privacy guarantee of the training process by randomly

sampling minibatches from the logically global dataset. We

apply the resharing-based oblivious shuffling protocol [41],

which can securely shuffle the logically global dataset while

keeping the new permutation of data samples invisible to

parties, to implement the random sample operation. With the

shuffling protocols, we can securely sample minibatches to meet

the requirement of DPSGD. Note that the oblivious shuffling

protocol assumes an honest majority.

V. OPTIMIZATION METHODS FOR THE TRAINING PROCESS

In this section, we introduce two optimization methods on

the accuracy and efficiency of MPL. The core ideas of the

optimization methods are to simplify the structure of trained

models and finish parts of computations locally, thus reducing

the random noise added in the training process and the secure

computations required for the training process.
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Protocol 3 Secure DPSGD

Input: Pi holds a local dataset Di, loss function: �(θ; di), privacy
parameters: (ε, δ), number of iterations: T , batch size: B, gradient
clipping bound C, learning rate function: η;

Output: Pi obtains the shares of the trained model 〈θT 〉i;
1: Pi generates and sends the shares of its own dataset 〈Di〉j �=i

to Pj �=i. Thus, Pi holds the share of the global dataset 〈D〉i ={〈D1〉i , 〈D2〉i , · · · , 〈Dm〉i};
2: Initializing 〈θ1〉i with Protocol 4;
3: for t = 1 to T do
4: 〈s1〉i , · · · , 〈sB〉i ← parties collaboratively sample B samples

from D;
5: For each 〈sj〉i, compute 〈∇�(θt; sj)〉i;
6: Clip gradient
7: for each 〈∇�(θt; sj)〉i do
8: 〈xj〉i = Trunc(〈∇�(θt; sj)〉i ∗

〈∇�(θt; sj)
T
〉
i
, k, f);

9: Compute the inverse square root of 〈xj〉i (i.e.〈
1

‖∇�(θt;sj)‖approx

2

〉
i

) with Protocol 1;

10: 〈is clip〉i = Comparison(

〈
C

‖∇�(θt;sj)‖approx

2

〉
i

, 1);

11: 〈∇�(θt; sj)clipped〉i = Trunc(〈∇�(θt; sj)〉i ∗〈
C

‖∇�(θt;sj)‖approx

2

〉
i

, k, f);

12: 〈∇�(θt; sj)〉i ← 〈∇�(θt; sj)〉i ∗ (1 − 〈is clip〉i) +
〈∇�(θt; sj)clipped〉i ∗ 〈is clip〉i;

13: end for
14: Add noise and Descent
15: Generate noise 〈bt〉i such that bt ∼ N (0, σ2Ip×p) with

Protocol 2, where σ ≥ C
2
√

T log 1
δ

ε
;

16: 〈update〉i = Trunc( η
B
[
∑B

j=1 〈∇�(θt; sj)〉i + 〈bt〉i], k, f);
17: 〈θt+1〉i = 〈θt〉i − 〈update〉i;
18: end for
19: Pi obtains 〈θT 〉i;

A. Data-independent Feature Extraction Method

Reason to Simplify the Trained Model in MPL. From the

perspective of DP, the complex structures of deep neural

network models require adding much random noise during

the training process, thus resulting in large accuracy loss.

First, the gradient vectors of deep neural network models

are mainly high-dimension [81]. In DPSGD, as random noise

is added to each gradient vector component, gradient vectors

with higher dimensions require more noise. Bassily et al. [2]

theoretically prove that DPSGD implies extra loss with lower

bound linear in the dimension of the gradient vectors. Second,

deep neural network models have many redundant parameters.

Thus adding noise to these redundant parameters would cause

extra accuracy loss to neural network models. The empirical

results of Section VI-B further verify the above claim. Yu

et al. [81] show that although optimizing original DPSGD

with the assistance of a little public data, the accuracy gap

between differentially private and non-private deep neural

network models still keeps more than 15% for CIFAR-10.

On the other hand, from the perspective of SMPC, the

representation power of deep neural network models comes

at the cost of efficiency, i.e. deep neural network models

have many redundant parameters to fit the data. Learning

these parameters requires a large number of computations. For

example, training a ResNet-50 model [27], a popular deep

neural network model, on the ImageNet-1k dataset requires

about 1018 single-precision operations [78]. In the centralized

setting, domain-specific processors (e.g. GPU) and distributed

computation techniques can be used to accelerate the training

process. However, when training a deep neural network model

with MPL, the huge communication overhead brought by

SMPC protocols would become the bottleneck of performance.

In linear secret sharing protocols, to complete one fixed-

point number multiplication, it is necessary for parties to

exchange messages. Therefore, training a deep neural network

model on high-dimension data inevitably implies a huge

communication overhead. For example, Falcon [70], one

communication-efficient MPL framework, requires about 46

TB data transfer and more than one month to train a VGG-

16 model [62] on CIFAR-10 for 25 epochs in the LAN

setting. CryptGPU, which utilizes GPU to accelerate the

computation, still requires ten days to train the same model with

Falcon [65], [70]. In summary, with the current secret sharing

protocols and differentially private optimization algorithms, it is

still impractical to securely train an accurate and differentially

private end-to-end deep neural network model.

Method. In order to securely train a differentially private model

with small accuracy loss and high efficiency simultaneously,

we let each party first apply data-independent feature extractors,

including public foundation models and heuristic feature

extraction rules, to extract high-level features of input data.

After that, all parties train a shallow model (e.g. linear models

or shallow neural network models) on the extracted features. In

recent years, training models based on foundation models [5],

[13], [35], [58], which are deep neural network models pre-

trained on large-scale public data, has rapidly emerged as a

new paradigm of the artificial intelligence field. By utilizing the

knowledge transferred from large-scale public data, foundation

models can effectively extract high-level features of input data

from various domains. Thus the models trained on the extracted

features can be very accurate. Classical feature extraction rules

also have proven their effectiveness on various tasks [20],

[39]. We then analyze how the above method reduces the

accuracy loss brought by DP and improves the efficiency of

MPL. Because foundation models and feature extraction rules

are both data-independent, parties only need to add noise in

the shallow model training process. Recent studies [31], [66]

have shown that we can apply DP to train shallow models

with small accuracy loss privately. Therefore, training models

on extracted features can significantly reduce the accuracy

loss brought by DP. We further empirically verify this claim

in Section VI. In addition, as feature extraction is performed

locally on plaintext data, parties only need to perform the

shallow model training over data in the secret shared form.

Thus the number of secure computations can be significantly

reduced. In summary, extracting features with data-independent

feature extractors enables parties to reduce the large accuracy

loss and huge communication overhead of securely training a

differentially private end-to-end deep neural network model.
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DP Guarantee of Data-independent Feature Extraction
Method. Because we perform the global model training process

on secret shared data, the extracted features are invisible to

potential adversaries (i.e. other parties, the users of trained

models). Meanwhile, as we utilize secure DPSGD to protect

the trained model, the feature extraction operation is oblivious

to the adversaries. In other words, the data-independent feature

extraction can be viewed as a data-independent data pre-

processing step, such as adding 1 to the features of data samples.

Therefore, it should be unnecessary to add random noise to the

data-independent feature extraction process. This conclusion is

the same as those of previous studies [66], [80].

B. Local Data-based Global Model Initialization Method
Utilizing the local data held by each party to initialize an

accurate global model would significantly reduce the number of

iterations in the global model training process, thus improving

the efficiency of MPL. Hereby, we introduce how to aggregate

local models from all parties to initialize the global model.
Aggregation Methods. Referring to the classical aggregation

method in the Federated Learning field [74] and considering

that training data might be not independent and identically

distributed (Non-IID for short) among parties, we propose two

methods to aggregate the local models:

• Averaging Strategy. Averaging local model parameters

as parameters of the initial global model. This method is

originated from the literature of federate learning [74].

• Accuracy Strategy. When data are Non-IID, initializing

the global model by averaging local models might cause

that the accuracy of the initial global model is lower

than local models. Therefore, an alternative strategy is to

choose the most accurate local model as the initial model.

With the above aggregation methods, we show the global

model initialization method in Protocol 4. Because the distribu-

tion status of data is difficult to measure directly, we choose an

initial global model by selecting the most accurate candidate

model generated by different aggregation methods. We show

the details of the initial global model selection method in

Lines 4-11 of Protocol 4. Parties generate candidate models

with different aggregation methods and evaluate the accuracy of

each candidate model, respectively. Finally, all parties obtain the

most accurate initial global model by comparing the accuracy of

candidate models. We analyze the security and communication

complexity of Protocol 4 in Appendix C-C, where we introduce

the details of the two aggregation methods.
Privacy Guarantee. Benefit from the post-processing immu-

nity property of DP [23], we only need to analyze the privacy

guarantee of the local model training phase. In the following

theorem, we show the privacy guarantee of Protocol 4 respect

to the logically global dataset D = {D1, D2, · · · , Dm} (the

proof of Theorem 4 is shown in Appendix A).

Theorem 4. Protocol 4 satisfies (ε1, δ1)-DP.

C. Put Things Together: PEA
Combining the secure DPSGD protocol and the above two

optimization methods, we come to PEA shown in Protocol 5.

Protocol 4 Local Data-based Global Model Initialization

Input: Pi holds a local dataset Di, the privacy parameters ε1 and δ1,
clipping bound C1 and aggregation method set A = {A1, A2};

Output: Pi obtains the share of initial global model 〈θc〉i;
1: Pi trains a local model θli with Protocol 1 and ε = ε1, δ =

δ1, C = C1;
2: Pi sends

〈
θli
〉
j �=i

to Pj �=i;

3: Parties randomly initialize a candidate model θc and securely
evaluate the accuracy of θc as Accuracyc;

4: for Each Ak ∈ A do
5: Pi obtains the share of kth candidate model 〈θck〉i =

Ak(
〈
θl1
〉
i
,
〈
θl2
〉
i
, · · · , 〈θlm〉

i
);

6: All parties collaboratively evaluate the accuracy of θck as
Accuracyck;

7: if Accuracyck ≥ Accuracyc then
8: 〈θc〉i = 〈θck〉i;
9: Accuracyc = Accuracyck;

10: end if
11: end for
12: Pi obtains 〈θc〉i as the share of the initial global model;

Each party first extracts features of his or her input dataset

with data-independent feature extractors. Note that this step

is completed locally. And the following training processes are

performed on the extracted features. Next, they collaboratively

initialize the global model through using the method introduced

in Protocol 4. Finally, all parties improve the global model

on the logically global dataset with the secure DPSGD

protocol introduced in Section IV. As the privacy guarantees

of Protocol 3 and Protocol 4 have been shown in Theorem 3

and Theorem 4, with the sequential composition theorem

introduced in Section III-C, we can show that Protocol 5

satisfies (ε1 + ε2, δ1 + δ2)-DP.

Theorem 5. Protocol 5 satisfies (ε1 + ε2, δ1 + δ2)-DP.

Protocol 5 Private, Efficient, and Accurate Training of MPL

Input: Pi holds a local dataset Di, the privacy parameters ε1, ε2 and
δ1, δ2, clipping bound C1, C2.

Output: Pi obtains the share of trained global model 〈θT 〉i.
1: Pi extracts features of the local dataset Di as FDi with data-

independent feature extractors;
2: All parties apply Protocol 4 to initialize the global model with

privacy parameter (ε1, δ1) and clipping bound C1;
3: All parties send the shares of local datasets to other parties;
4: All parties obtain the trained global model through applying

secure DPSGD protocol described in Protocol 3 to improve the
initial global model with privacy parameters (ε2, δ2) and clipping
bound C2;

VI. IMPLEMENTATION AND EVALUATION

In this section, we first conduct an end-to-end comparison to

illustrate the effectiveness of PEA. Subsequently, we evaluate

the running time and approximation error of the inverse of

square root protocol, which is the main component of the secure

DPSGD protocol. After that, we evaluate the effectiveness of

optimization methods and compare the performance of different

aggregation methods. Subsequently, we compare PEA with

two state-of-the-art methods on federated learning and secure
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aggregation with DP. Finally, we evaluate the accuracy of

models trained by MPL to show that MPL can significantly

improve the accuracy of differentially private models.

A. Implementation and Experiment Setup

Implementation. We implement PEA in two open-source

MPL frameworks: TF-Encrypted [17]3 and Queqiao4.

TF-Encrypted is implemented in Python and contains

multiple back-end SMPC protocols. We implement PEA based

on its supported ABY3 [51] back-end protocol. As ABY3
is designed on the integer ring rather than the prime field,

we implement some primitives involved in Protocol 1 in

TF-Encryptedε by combining some primitives of ABY3
with other protocols. For example, we implement Bit Dec
through combining A2B protocol and the sharing conversion

protocol proposed by Knott et al. [38]. We set the ring size as

264 and the bit number of the fractional part of the fixed-point

number f as 20 in TF-Encryptedε.

Queqiao is implemented in C++ based on BGW proto-

col [3]. It supports secure model training on the distributed data

from three+ parties. As some primitives involved in Protocol 1

are not implemented by Queqiao, we supplement the missed

primitives in Queqiao to implement Queqiaoε. Finally, we

set the field size as 1017 + 3 and f as 20 in Queqiaoε.

Datasets. We introduce three widely-used datasets involved in

our experiments as follows:

• MNIST [42] is a handwritten digit dataset, which is

widely used in the evaluation of multi-party learning stud-

ies [51], [65]. MNIST contains 60,000 training samples

and 10,000 testing samples. Each data sample represents

one digit between 0 to 9 and has 28 × 28 gray pixels.

• CIFAR-10 [40] contains 60,000 32 × 32 RGB images

in ten classes, and each class has 6,000 images. We thus

randomly sample 50,000 images as the training dataset

and let the rest of 10,000 images as the testing dataset.

• IMDb [46] is a popular dataset in the natural language

processing field. It contains 50,000 film reviews from

IMDb with 25,000 training samples and 25,000 testing

samples. The binary label of IMDb indicates the sentiment

of film reviews (i.e. positive or negative).

Dataset Partition. We partition each dataset into local datasets

by randomly dividing it into m disjointed parts, where m is

the number of parties. In experiments of Sections VI-B, VI-C,

VI-D, VI-E,and VI-F, we set m as 3, which is the party number

TF-Encryptedε and Queqiaoε both support.

Feature Extractors and Classification Models. We employ

HOG [18] and two foundation models in the computer

vision and natural language processing (NLP) fields, namely

SimCLR [14] and BERT [21], to extract features of MNIST,

CIFAR-10, and IMDb, respectively. Moreover, in the following

experiments, we use logistic regression as the classification

model trained on the extracted features.

Experiment Settings. We run experiments on three Linux

servers, each of them with 2.7 GHZ of CPU and 128GB

3https://github.com/tf-encrypted/tf-encrypted
4https://github.com/FudanMPL/SecMML

of RAM. We consider two types of network environments.

The first one is the LAN setting with 1Gbps bandwidth and

negligible latency. The second one is the WAN setting with

100 Mbps bandwidth and 20ms round-trip-time latency. We

simulate these two network environments through using the tc

tool5. To avoid the bias brought by the randomness of noise

sampling, we run all experiments that involve randomness five

times and plot the corresponding error bars in figures.

Parameter Settings. We set the batch size B as 128 and

the gradient clipping bound C as 3. In addition, we set δ
as 1

10n , where n is the size of the training dataset. For the

privacy budget ε, we set it as 2 and run all global model

training processes for two epochs. We use the privacy budget

accountant tools6 released by Google to set the parameters of

Gaussian distributions.

B. End-to-end Comparison

Baselines. We employ several popular differentially private

deep neural network models trained on raw datasets as baselines.

For MNIST and CIFAR-10, we train the differentially private

LeNet model [42] and VGG-16 model [62] respectively. The

non-private training of these two models is also supported by

CryptGPU [65] and Falcon [70]. For IMDb, we train the

same differentially private neural network model that is used

by Bu et al. [6] as the baseline. We refer to it as SampleNet.

We set δ and the noise multiplier of Gaussian distribution as

the same value as ours during the baseline training. Then we

tune ε as the iteration number increases. All baseline models

are trained by Opacus framework released by Yousefpour

et al. [79]. We also apply a grid search procedure to find

the best hyperparameter configuration for them. The potential

hyperparameters are listed in Table VIII of Appendix B.

Privacy Budget Allocation. With local datasets, we train

local classification models with DPSGD. In this phase, we

set ε1 = 0.25 and δ1 = 1
100n . We show the values of other

hyperparamters in Table VII of Appendix B. For the global

model training, we set δ2 as 9
100n and tune the total privacy

budget ε as the iteration number increases.

Results. As is shown in Figure 2, under the same number of

iterations, the differentially private logistic regression models

trained by TF-Encryptedε and Queqiaoε have higher

accuracy than differentially private deep neural network models

in all three datasets. Note that the baseline models trained on

different datasets have different privacy budgets as we set

different batch sizes for them. The detailed parameter settings

are shown in Table IX of Appendix B.

As to the efficiency, since we only need to train a shallow

model, the time consumption of one iteration is much smaller

than that of the deep neural network model training. For

example, the training of differentially private classifiers for

CIFAR-10 costs about 0.5 seconds and 4 seconds per itera-

tion in TF-Encryptedε and Queqiaoε, while CryptGPU

5https://man7.org/linux/man-pages/man8/tc.8.html
6https://github.com/tensorflow/privacy/blob/

7eea74a6a1cf15e2d2bd890722400edd0e470db8/research/hyperparameters
2022/rdp accountant.py
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TABLE II: Online running time (in ms) comparison of the

inverse square root protocols. We run all experiments ten times

and report the average running time. The shortest running times

are marked in bold.

Setting Framework Batch size
1 32 64 128

LAN
TF-Encryptedε 28.22 28.75 29.28 29.93
Queqiaoε 22.94 76.43 123.37 233.52
CrypTen 170.42 236.66 271.64 318.23

WAN
TF-Encryptedε 841.17 843.6 848.0 848.3
Queqiaoε 456.8 556.19 595.79 701.70
CrypTen 4696.42 6632.96 6641.89 6647.64

requires about 12 seconds to complete one iteration of a non-

private VGG-16 model training, which serves as the baseline.

As a result, TF-Encryptedε and Queqiaoε can train a

differentially private classifier for CIFAR-10 with an accuracy

of more than 88% within 7 minutes and 55 minutes, while

CryptGPU requires more than 16 hours to train a non-private

model to achieve the same accuracy.

In addition, as we only add noise to the linear model

training process, the accuracy gaps between differentially

private and non-private linear models are all smaller than those

of differentially private and non-private deep neural network

models. These results further verify the claim of Section V-A.

C. Efficiency and Approximation Error of Protocol 1

Baseline. We compare the efficiency and accuracy of Protocol 1

with CrypTen [38], an MPL framework released by Facebook.

As CrypTen cannot directly compute the inverse of square

root, we implement it by sequentially calling the sqrt() and

the reciprocal() APIs of CrypTen. Note that we run all three

frameworks in the 3-party scenario and compare the online

running time of all MPL frameworks here.

Efficiency of Protocol 1. We show the running time compari-

son results in Table II. Under all batch sizes, TF-Encryptedε

and Queqiaoε are more efficient than CrypTen in both

LAN and WAN settings. This is because we use a polynomial

to approximate the target function directly and only require

constant communication rounds. In contrast, CrypTen uses

the Newton-Raphson method to approximate the target function

iteratively, thus requiring more communication overhead.

In addition, under the LAN setting, the running time of

TF-Encryptedε and CrypTen changes little as the batch

size increases. The main reason is that these two frameworks

are built on TensorFlow and Pytorch, which both support

efficient vectorized computations. While in the WAN setting,

where the communication round number is the dominant factor

of efficiency, the running time of Queqiaoε is the smallest

as it has the least communication round number. Note that

we implement a part of primitives involved in Protocol 1 in

TF-Encryptedε by combining multiple protocols. Thus it

has more communication rounds than Queqiaoε.

Approximation Errors. We show the approximation error,

which is calculated through subtracting exact results by ap-

proximated results, of three frameworks in Figure 3. Compared

with CrypTen, which is accurate only when input values

are higher than 0.1 and smaller than 200, the approximation

errors of TF-Encryptedε and Queqiaoε stably keep small

as the input value changes from 0.01 to 300. CrypTen has

such a large error for parts of input values because it uses the

Newton-Raphson method to approximate the target function. Its

approximation errors are highly dependent on the pre-defined

initial point and the iteration number. Therefore, CrypTen
could be accurate for those input values in a fixed range

while having a large error for other input values. Besides, the

approximation errors of TF-Encryptedε and Queqiaoε,

which are all smaller than 0, can prevent the privacy guarantee

from being destroyed as we discuss in Section IV-A.

D. Effectiveness of Optimizations

Effectiveness of Feature Extraction. We keep other exper-

imental settings unchanged and compare the accuracy of

differentially private models trained on extracted features and

raw data, respectively. For MNIST and CIFAR-10, we directly

use their pixel matrices as training data. For IMDb, we perform

tokenization on its textual data with BertTokenizerFast tool7

to produce the training data that are represented as a matrix.

We show the experimental results in Figure 4. Compared

with differentially private models trained on raw data, models

trained on features extracted by our method can achieve higher

accuracy. For CIFAR-10, which has the highest dimension

(3,072) among the three datasets, the accuracy gap between

models trained on extracted features and raw data is higher than

60%. For IMDb, which has rich semantics, the models trained

on raw data are almost totally random. The above results show

that extracting features of input data with data-independent

feature extractors can significantly improve the accuracy of

classification models.

Effectiveness of Global Model Initialization with Local
Data. To set the baseline, we use random variables sampled

from Gaussian distribution to initialize the global model, which

is a standard initialization method in the machine learning

field [26]. We set the mean and the standard deviation of the

Gaussian distribution as 0 and 0.2. As to the privacy parameter

settings, we set ε as the sum of ε1 used in the local training

phase and ε2 used in the global training phase, and δ as 1
10n .

We show the experimental results in Figure 5. The experi-

mental results demonstrate the effectiveness of our proposed

global model initialization with local data method. When we

start training from a randomly initialized global model, even

though after twice of iterations, the accuracy of trained models

is still smaller than the models trained from the models that

are initialized with local data. Therefore, by consuming part

of the privacy budget locally, we can significantly reduce the

number of secure computations in the global model training

phase and improve the efficiency of the model training process.

E. Comparison of Aggregation Methods

In this section, we compare the accuracy of the global

model initialized by averaging local models and choosing the

most accurate one. We consider two scenarios: independent and

7https://github.com/huggingface/transformers/blob/master/src/transformers/
models/bert/tokenization bert fast.py
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(a) TF-Encryptedε MNIST (b) TF-Encryptedε CIFAR-10 (c) TF-Encryptedε IMDb

(d) Queqiaoε MNIST (e) Queqiaoε CIFAR-10 (f) Queqiaoε IMDb

Figure 2: End-to-end comparison of different model training methods. LR-TF-Encryptedε and LR-Queqiaoε are our proposed

methods. LR-TF-Encrypted and LR-Queqiao are non-private logistic regression models trained by TF-Encrypted and

Queqiao.

Figure 3: Approximation error comparison of the inverse square

root computations.

identically distributed (IID), and Non-IID. We randomly divide

the whole dataset into three parts to simulate the IID scenario.

For the Non-IID scenario, following the previous study [47],

we first sort the whole datasets by label values, then divide

them into three parts. After partitioning the datasets, we train

logistic regression models with the same parameter settings of

Section VI-B and aggregate them with different methods.

TABLE III: Accuracy (in %) comparison of global models

initialized by different aggregation methods. The highest

accuracy values are marked in bold.

Dataset Data distribution Averaging Strategy Accuracy Strategy

MNIST
IID 89.53 (±0.26) 88.45 (±0.40)

Non-IID 50.56 (±1.67) 39.59 (±0.41)

CIFAR-10
IID 83.75 (±0.36) 82.16 (±0.42)

Non-IID 65.39 (±1.87) 38.80 (±0.06)

IMDb
IID 81.11 (±0.57) 80.53 (±1.01)

Non-IID 67.48 (±3.04) 79.10 (±1.36)

We show the accuracy comparison results in Table III. In

the IID scenario, the performance of averaging local models

is slightly higher than choosing the most accurate local model.

In contrast, in the Non-IID scenario, these two aggregation

methods have different performances on different datasets.

For MNIST and CIFAR-10, the global models initialized by

averaging local models are much more accurate than those

initialized by choosing the most accurate local model. While

for IMDb, the global models initialized by choosing the most

accurate local model are much more accurate than those

initialized by averaging parameters of local models. As we

choose the optimal aggregation method by comparing the

accuracy of candidate models in Protocol 4, we can initialize

an accurate global model for different scenarios.

F. Comparison with Federated Learning and Secure Aggrega-
tion with DP

In this section, we compare PEA with two state-of-the-art

methods on federated learning and secure aggregation with DP,

namely CAPC Learning (CAPC for short) [15] and Distributed

Discrete Gaussian mechanism for federated learning with secure

aggregation (DDGauss for short) [36]. We directly run their

open-source codes8,9 on extracted features of MNIST and

CIFAR-10 datasets as baselines. We set privacy parameters of

TF-Encryptedε, Queqiaoε, and CAPC as ε = 2, δ = 1
10n .

For DDGauss, we set ε as 5 and δ as 1
10n as the training process

of DDGauss cannot converge when we set ε as 2. For other

settings (e.g. types of trained models), we set them following

the description of corresponding studies [15], [36]. Note that

we only run experiments on MNIST and CIFAR-10 datasets

8https://github.com/cleverhans-lab/capc-iclr
9https://github.com/google-research/federated
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(a) MNIST (b) CIFAR-10 (c) IMDb

Figure 4: Accuracy comparison of the models trained on extracted features and raw data. LR-TF-Encryptedε and LR-Queqiaoε
are our proposed methods.

(a) MNIST (b) CIFAR-10 (c) IMDb

Figure 5: Convergence speed comparison of local data initialized global models and randomly initialized global models.

because the sentiment analysis task is not supported by the

open-source codes of CAPC and DDGauss.

TABLE IV: Accuracy (in %) comparison of models trained

by TF-Encryptedε and Queqiaoε and models trained by

CAPC and DDGauss. We report the average results of five

runs and show the standard deviations in brackets.

TF-Encryptedε Queqiaoε CAPC [15] DDGauss [36]
MNIST 95.14 (±0.09) 94.90 (±0.14) 92.52 (±0.20) 92.45 (±0.38)

CIFAR-10 88.99 (±0.08) 88.18 (±0.33) 86.70 (±0.17) 53.31 (±2.52)

Result. As is shown in Table IV, the models trained by

TF-Encryptedε and Queqiaoε are all more accurate than

the models trained by CAPC and DDGauss. CAPC applies

SMPC to use other parties’ models to securely label one party’s

local data, thus the party can retrain its model on the augmented

dataset. DDGauss applies SMPC to securely aggregate noisy

gradients from parties. These two methods inevitably miss some

information about the original dataset. In contrast, we apply

SMPC protocols to simulate a trusted server that could virtually

hold all data from parties to train target models [44]. Therefore,

even though CAPC and DDGauss can efficiently support larger

numbers of parties (50 and 500 in our experiments) than

PEA, the models trained by CAPC and DDGauss suffer more

accuracy loss than the models trained by TF-Encryptedε

and Queqiaoε. Meanwhile, it is worth noting that CAPC

applies DP to protect parties’ private information during the

data labeling process and does not consider the membership

inference attacks from end-users. We further discuss this point

in Section VII.

G. Accuracy Evaluation of Models Trained by MPL

In this section, we conduct two experiments to evaluate the

accuracy of models trained by MPL: (1) comparing the accuracy

of global models with the accuracy of local models, and (2)

evaluating the impact of SMPC on the accuracy of trained

models. For the first experiment, we randomly divide the whole

dataset into 3, 5, and 10 disjoint parts to simulate scenarios

with different numbers of parties. After extracting features, we

train differentially private logistic regression models on one

plaintext subset and the logically global dataset with the same

privacy parameters respectively. For the second experiment,

we fix other experiment settings and compare the accuracy of

models trained on the global dataset in the plaintext form and

the logically global dataset merged by SMPC.

Results. We show the experimental results in Table V and

Table VI respectively. For the first experiment, due to the space

limitation, we only show the results of CIFAR-10 and show

the results of other datasets in Appendix D. As is shown in

Table V, the models globally trained by TF-Encryptedε

and Queqiaoε are all more accurate than the models locally

trained on one subset of the whole dataset. Moreover, as the

number of parties increases, the accuracy gap between locally

trained and globally trained models becomes larger. There

are mainly two reasons behind the above result. First, more
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TABLE V: Accuracy (in %) comparison of models securely

trained on the logically global dataset and models locally

trained on one subset of the whole dataset for CIFAR-10. We

report the average results of five runs and show the standard

deviations in brackets. Note that we only show the 3-party result

of TF-Encryptedε because its back-end SMPC protocol (i.e.

ABY3) is tailored for the 3-party scenario.

#Party ε Local party TF-Encryptedε Queqiaoε

3
0.25 82.65 (±0.30) 84.03 (±0.28) 84.35 (±0.51)

1 86.43 (±0.21) 88.57 (±0.11) 87.79 (±0.27)
2 87.15 (±0.13) 88.99 (±0.08) 88.18 (±0.33)

5
0.25 79.84 (±0.55) - 82.09 (±0.38)

1 85.70 (±0.37) - 88.05 (±0.25)
2 86.07 (±0.09) - 88.34 (±0.24)

10
0.25 69.49 (±1.14) - 77.71 (±0.39)

1 81.32 (±1.01) - 88.05 (±0.39)
2 83.35 (±0.52) - 88.09 (±0.14)

training data provide more features, thus producing a more

accurate model. Second, a larger training dataset implies a

smaller sample probability, thus requiring less random noise

to achieve the same privacy protection level.

For the second experiment, as is shown in Table VI, SMPC

protocols have a negligible impact (i.e. less than 0.9%) on the

accuracy of trained models. This is because we apply SMPC

protocols to simulate a trusted server that could virtually hold

all data to train the target model [44]. The possible impact

of SMPC mainly comes from two factors: (1) we perform

the computation over fixed-point numbers. However, they can

only express the decimal number with limited precision, which

brings a negligible accuracy loss. (2) we use linear piecewise

functions to approximate non-linear activation functions (e.g.

sigmoid function), which would bring another negligible

accuracy loss. In summary, MPL can significantly improve

the accuracy of differentially private models.

TABLE VI: Accuracy (in %) comparison of differentially

private models trained by MPL on distributed data and models

centrally trained on the global dataset in plaintext. We report

the average results of five runs and show the standard deviations

in brackets. We set ε as 2 when training the models.

TF-Encryptedε Queqiaoε Plaintext
MNIST 95.14 (±0.09) 94.90 (±0.14) 95.35 (±0.07)

CIFAR-10 88.99 (±0.08) 88.18 (±0.33) 89.00 (±0.13)
IMDb 84.70 (±0.44) 84.35 (±0.17) 85.19 (±0.14)

VII. RELATED WORK

Multi-party Learning. In recent years, implementing privacy-

preserving machine learning based on SMPC protocols has

become a hot topic in the security field. Nikolaenko et al. [53]

combined homomorphic encryption and garbled circuits to train

ridge regression models securely. Mohassel and Zhang [52] first

applied additive secret sharing to train neural network models

securely. After that, many following studies were proposed to

improve the efficiency of the training process [51], [65], [70],

enhance security models [19], or support the training of more

complex models [65], [70]. For example, CryptGPU [65]

and Falcon [70] improved the efficiency of computation

primitives and added more computation primitives to support

the training of deep neural network models (e.g. VGG-16).

Different from previous studies, which optimize the efficiency

of computation primitives involved in the model training

process, we try to optimize the training of MPL from the model

training process aspect, i.e. reducing the secure computations

required for the training process.

Differentially Private Machine Learning. There are mainly

three paradigms in differentially private machine learning algo-

rithms: objective perturbation, output perturbation, and gradient

perturbation. Objective perturbation adds random noise to loss

functions as a regularization term. Output perturbation [12],

[71] adds random noise to trained models. They both assume

that loss functions are convex and continuous to preserve

the rigorous privacy guarantees, which significantly limits the

application scenarios of these two paradigms. Therefore, we

choose to enforce DPSGD [1], [2], [64], which follows the

gradient perturbation paradigm and has no assumption on the

loss functions, in secret sharing-based MPL frameworks to

enhance the privacy of these frameworks.

Recently, there have been several studies [56], [66], [81]

that utilize priors knowledge to improve the utility of DPSGD.

Papernot et al. [56] improved the accuracy of models trained

by DPSGD by using public data to initialize model parameters.

Yu et al. [81] utilized few public data to project the high-

dimension gradient vectors to a low-dimension space, thus

reducing the noise added in the training process. Tramèr and

Boneh [66] showed that applying heuristic rules or knowledge

transferred from public data to extract features of input data

could significantly reduce the accuracy loss brought by DPSGD

on image classification tasks. However, their feature extraction

method might be less effective in the multi-party setting. We

empirically show that our feature extraction method is more

suitable for the multi-party setting than that proposed by Tramèr

and Boneh [66] in Appendix E. Meanwhile, we consider the

sentiment analysis, which is an important task of NLP.

Intersection of SMPC and DP. Because the security models

of SMPC and DP are complementary, i.e. SMPC guarantees the

security of the computation process and DP preserves output

privacy, there have been many studies on the intersection of

SMPC and DP. Wagh et al. [69] provided an overview of

recent studies on the intersection of SMPC and DP. Pettai et

al. [57] applied secret sharing protocols to improve the utility

of differentially privacy aggregation queries on sensitive data.

Next, He et al. [28] combined secret sharing protocols and

DP to securely link similar records in different databases. In

recent years, as many strict privacy protection regulations have

been published, some related studies [4], [7], [59] have been

proposed to securely collect and analyze sensitive data in a

differentially private manner. While there are several studies

on secure and differentially private statistical analyses, such as

aggregation queries [57], [59], median [4] or heavy hitters [7],

there still lacks a combination of differentially private machine

learning algorithms and MPL.

Federated Learning and Secure Aggregation with DP. In

addition to our proposed secure DPSGD protocol, there is
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another routine of studies on securely training differentially

private machine learning models on distributed data, namely

federated learning and secure aggregation with DP [11], [15],

[36]. Chase et al. [11] applied garbled circuits [76] to securely

aggregate noisy gradient vectors from parties. Choquette-

Choo et al. proposed CAPC [15] to extend PATE [55] to the

distributed setting by combining homomorphic encryption [77]

and garbled circuits [76]. Kairouz et al. [36] extended the

discrete gaussian mechanism [8] to the distributed setting.

These studies apply SMPC protocols to securely aggregate

the intermediate information (i.e. noisy labels or noisy gradient

vectors) of the training process, which implies relatively higher

efficiency and scalability. However, transferring intermediate

information inevitably causes considerable accuracy loss to

trained models [74], especially when the data are not inde-

pendent and identically distributed among parties [74]. As a

result, when the number of parties is small, our proposed secure

DPSGD protocol is more suitable than these methods.

In addition, the security model of PEA concerns membership

inference attacks from end-users, which are not concerned by

the security model of CAPC [15]. The training process in CAPC

consists of three steps: (1) each party trains its local model; (2)

a querying party employs CAPC protocol to confidentially and

privately query other parties to obtain (query data, label) pairs;

(3) the querying party retrains an improved local model with the

pairs. The CAPC protocol guarantees both the confidentiality

of the query data and the privacy of the local models in Step

(2). However, they assume that the retrained model is only used

by the querying party and do not consider the membership

inference attacks from other users.

VIII. DISCUSSION AND FUTURE WORK

Side-channel Attacks against Differentially Private Mech-
anisms. There have been several side-channel attacks [30],

[49] on the implementations of DP mechanisms. Mironov [49]

proposed an attack that exploits the limited precision of floating-

point number arithmetic to destroy the privacy guarantee

of Laplacian mechanisms. While these side-channel attacks

severely break the privacy guarantee of DP mechanisms in

practice, they mainly target the statistical queries on databases,

where random noises are added once to query results. In

DPSGD, the random noises are iteratively added in the training

process, and only the trained model is released. Without

the knowledge of the initial model and the information of

intermediate gradient vectors, attackers cannot exploit side-

channel attacks to destroy the privacy guarantee of our proposed

secure DPSGD protocol.

Feature Extraction for Other Types of Data. Following

previous studies [6], [52], [65], we consider the image data

and textual data in our experiments. However, our proposed

optimization methods are also applicable to other types of

data. There have emerged several foundation models that can

effectively extract the features of other types of data (e.g.

protein sequences [35]) to finish downstream tasks. Therefore,

our proposed optimization methods are general enough to

support various types of input data.

Recent Backdoor Attacks on Foundation Models. Recently,

Jia et al. [33] and Zhang et al. [82] proposed two backdoor

attacks on foundation models. Here, attackers inject backdoors

into downstream classification models by adding adversarial

samples in the training process of foundation models. However,

these two attacks assume that attackers hold a few training

samples for the target tasks. With the strict protection of highly

sensitive training data (e.g. medical images) in the context of

MPL, attackers would be difficult to obtain these data samples,

thus leading to little privacy risk to the trained models. Besides,

to further defend the backdoor attacks on foundation models,

the owners of trained models can employ recently proposed

defenses (e.g. MNTD [73]) to detect the backdoors hidden in

the trained models.

Future Work. We will integrate recent optimizations [81]

on DPSGD into existing MPL frameworks to further reduce

the accuracy loss brought by DP. Concretely, we first project

high-dimension gradient vectors to a low-dimension space

with a few auxiliary public data. Then we perturb the low-

dimension gradient vectors and project perturbed gradient

vectors to the original high-dimension space. In this way, we

can reduce the random noise added in the model training

process, then improve the accuracy of the trained differentially

private model. Moreover, we will implement the state-of-the-

art defenses (e.g. prediction poisoning [54] and prediction

purification [75]) against model stealing attacks [67] and model

inversion attacks [24], which cannot be defended by DPSGD,

in MPL frameworks to further enhance their privacy protection.

IX. CONCLUSION

In this paper, we propose PEA, which can help secret

sharing-based MPL frameworks to securely and efficiently

train a differentially private machine learning model with

little accuracy loss. After implementing PEA in two open-

source MPL frameworks: TF-Encrypted and Queqiao, we

conduct experiments on three datasets: MNIST, CIFAR-10, and

IMDb. The experimental results demonstrate the efficiency and

effectiveness of PEA. For all three datasets, TF-Encryptedε

and Queqiaoε can train accurate differentially private classifi-

cation models within much fewer iterations than differentially

private deep neural network models. In particular, compared

with CryptGPU, TF-Encryptedε only requires less than

1% (7 minutes vs. 16 hours) of its time to train a classification

model for CIFAR-10 with the same accuracy. In conclusion,

with PEA, multiple parties can balance the 3-way trade-off

between privacy, efficiency, and accuracy in the model training

process of MPL.
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APPENDIX A

MISSING PROOFS

Lemma 1. For n mechanisms M1,M2, · · · ,Mn whose inputs

are disjoint datasets D1, D2, · · · , Dn, if Mi satisfies (εi, δi)-
differential privacy, the combination of them satisfies (ε, δ)-

differential privacy for the dataset D = D1 ∪D2 ∪ · · · ∪Dn

with ε = Max(ε1, ε2, · · · , εn), δ = Max(δ1, δ2, · · · , δn).
Proof. We first redefine (ε, δ)-differential privacy in a new form

based on Definition 2 [48].

Definition 2. For two datasets D and D′, we say a random
mechanism M that outputs r ∈ Rp satisfies (ε, δ)-differential
privacy if, for any subset S ⊆ Rp, Pr(M(D) ∈ S) ≤
eε∗|D⊕D′| · Pr(M(D′) ∈ S) + δ ∗ |D ⊕D′|
where D ⊕ D′ is the symmetric difference between D and
D′. Then for D1, · · · , Dn and D′

1, · · · , D′
n, let M be the

combination of M1 · · · ,Mn, the probability that M outputs r
is Pr(M(D) = r) =

∏n
i=1 Pr(Mi(Di) = ri). Meanwhile, as

D and D′ are neighboring datasets, there is one |Di⊕D′
i| larger

than 0 and is equal to |D ⊕D′|. Without loss of generality,
we assume |Dk ⊕D′

k| > 0. Therefore,

n∏
i=1

Pr(Mi(Di) = ri)

≤
n∏

i=1

(eεi∗|Di⊕D′
i|Pr(Mi(D

′
i) = ri) + δi ∗ |Di ⊕D′

i|)

= (
n∏

i=1,i �=k

Pr(Mi(D
′
i) = ri)) ∗ (eεk∗|Dk⊕D′

k|Pr(Mk(D
′
k) = rk)

+ δk ∗ |Dk ⊕D′
k|)

≤ eMax(ε1,··· ,εn)∗|Dk⊕D′
k|

n∏
i=1

Pr(Mi(D
′
i) = ri)

+ (
n∏

i=1,i �=k

Pr(Mi(D
′
i) = ri)) ∗Max(δ1, · · · , δn) ∗ |Dk ⊕D′

k|

≤ eMax(ε1,··· ,εn)∗|D⊕D′|
n∏

i=1

Pr(Mi(D
′
i) = ri)

+Max(δ1, · · · , δn) ∗ |D ⊕D′|

It completes the proof.

Lemma 2. For any x′ ∈ [0.5, 1), (0.8277x′2 − 2.046x′ +
2.223− 0.0048)− 1√

x′ < 0.

Proof. Let f(x′) = (0.8277x′2−2.046x′+2.223−0.0048)−
1√
x′ . As function f is differentiable on interval [0.5, 1), we can

get its first-order derivative function as f ′(x′) = 1.6554x′ −
2.046+ 1

2
√
x′3 and second-order derivative function as f ′′(x′) =

1.6554− 3

4
√
x′5 . Because f ′′(x′) is monotonically increasing

on [0.5, 1) and has one zero point x′
0 = 0.7286, f ′(x′) is

monotonically decreasing on [0.5, 0.7286) and monotonically

increasing on [0.7286, 1). Then as f ′(0.7286) = −0.0359 < 0
and f ′(x′) is larger than 0 on two endpoints 0.5 and 1, f ′(x′)
has two zero points on [0.5, 1): x′

1 = 0.6257 and x′
2 = 0.8517.

Therefore, f(x′) is monotonically increasing on [0.5, 0.6257),
monotonically decreasing on [0.6257, 0.8517), and monotoni-

cally increasing on [0.8517, 1). Finally, for any x′ ∈ [0.5, 1),
f(x′) < max{f(0.6257), f(1)} = −0.0001 < 0.

Theorem 3. For any ε ≤ 2 log(1/δ) and δ ∈ (0, 1), Protocol 3

satisfies (ε, δ)-differential privacy.

Proof. We first introduce a differential privacy concept, namely

Rényi differential privacy (RDP) [50], to tightly analyze the

privacy budget of DPSGD in a simple way.

Definition 3. (λ, γ)-Rényi Differential Privacy [50]. For a
random mechanism M whose input is D and output r ∈ Rp,
we say M satisfies (λ, γ)-RDP if, for any two neighboring
datasets D,D′, it holds that,

Dλ(M(D)‖M(D′)) ≤ γ

where Dλ(M(D)‖M(D′)) is λ-Rényi divergence between the

distributions of M(D) and M(D′). Then we show the proof

of Theorem 3.

According to Lemma 2, the maximum difference between

the approximated 1√
x′ and the true 1√

x′ is smaller than 0.

Thus Protocol 1 can ensure that for each iteration, the L2

sensitivity of Protocol 3 is smaller than C. Then each iteration

of Protocol 3 satisfies (λ, λC2

2σ2 )-RDP according to Corollary 3

of [50]. Next, according to Proposition 1 of [50], Protocol 3

satisfies (λ, T λC2

2σ2 )-RDP. Finally, according to Proposition 3

of [50], in order to ensure (ε, δ)-differential privacy, we should

ensure that

TC2λ
2σ2 +

log( 1
δ )

λ−1 ≤ ε

We set λ = 1 +
2 log( 1

δ )

ε , thus we should ensure that

σ2 ≥ TC2(ε+2 log( 1
δ ))

ε2

Meanwhile, as we set in Protocol 3

σ2 ≥ TC2(4 log( 1
δ ))

ε2 ≥ TC2(ε+2 log( 1
δ ))

ε2

Therefore, Protocol 3 satisfies (ε, δ)-differential privacy.

Theorem 4. Protocol 4 satisfies (ε1, δ1)-differential privacy.

Proof. Each local dataset Di held by Pi can be viewed as a

subset of the logically global dataset. Meanwhile, as different

parties hold different data, their local datasets are disjoint.

161941



TABLE VII: Hyperparameter settings of local model training.

Datasets ε δ Clip bound #Epoch Batch size LR
MNIST 0.25 2× 10−7 1 3 128 0.1

CIFAR-10 0.25 1.7× 10−7 1 1 128 0.1

IMDb 0.25 4× 10−7 1 3 128 0.1

TABLE VIII: Potential hyperparameters involved in the grid

search procedure of baselines training.

Hyperparameter Potential values
Clipping bound 1, 2, 5

Batch size 64, 128, 256, 512
Learning rate schedule Constant (lr=0.1), OneCycleLR (max lr=0.1)

In addition, the aggregation methods are data-independent.

According to the post-process immunity property of differential

privacy, the aggregation has no impact on the privacy guarantee.

Therefore, we only need to consider the privacy guarantee of

local model training. As all parties privately train their models

with privacy parameters (ε1, δ1), we can obtain the privacy

guarantee of Protocol 4 by directly applying Lemma 1.

APPENDIX B

EXPERIMENT SETTINGS

In this section, we show the hyperparameter settings of

experiments. The hyperparamters of local model training are

shown in Table VII. The potential hyperparameters involved in

the grid search procedure are shown in Table VIII. We also show

the parameters found by the grid search procedure in Table IX.

Note that we run the baseline training process of MNIST,

CIFAR-10, and IMDb for 20, 80, 20 epochs, respectively.

APPENDIX C

SECURITY AND COMMUNICATION COMPLEXITY ANALYSIS

OF PROTOCOLS

A. Analysis of Protocol 1

Security. As Protocol 1 only contains the cryptographic prim-

itives whose security has been proven in previous studies [9],

[10] and the rest of computation is performed locally. Therefore,

as long as the security of these cryptographic primitives holds,

Protocol 1 is secure.

Communication Complexity. In Protocol 1, the computation

of 2f−
exp
2 and the evaluation of approximated polynomial can

be parallelized. Therefore, in the critical path of Protocol 1,

there are four Multiplication and six Trunc invocations, two

Bit Dec invocations, one Mod2, SufOr and PreMulC invoca-

tion, respectively. According to Table 2 and Table 3 of [9],

Table 4 of [10], the total communication round number and

the communication complexity of Protocol 1 is 15, O(mk2)
bits respectively. Meanwhile, the offline communication round

number and the communication complexity of Protocol 1 is 1,

TABLE IX: Hyperparameter settings of baseline model training.

Datasets Clipping bound Batch size LR
MNIST 1 128 Constant (lr=0.1)

CIFAR-10 1 512 OneCycleLR (max lr=0.1)
IMDb 2 64 OneCycleLR (max lr=0.1)

O(mk2+mfk) bits respectively. Note that the communication

round is 1 because the offline computations have no mutual

dependence and can all be executed in parallel.

B. Analysis of Protocol 3

Security. In addition to the invocations of Protocol 1 and

Protocol 2, the other secure computation primitives used in

Protocol 3 (i.e. comparison, multiplication and subtraction) all

have the standard protocols [3], [9], [25], which have been

proven secure by previous studies [3], [9], [25]. Meanwhile,

because the security of Protocol 1 and Protocol 2 has been

stated in Section IV-A and Section IV-B, as long as our security

model holds, Protocol 3 is secure.

Communication Complexity. In the online phase, for each

batch with batch size B, in addition to invoke two Trunc,

four Multiplication, one Protocol 1 and one Comparison B
times in parallel, Protocol 3 contains one extra Trunc to update

the model parameters. Therefore, according to Table 2 of [9],

when we execute Multiplication and Trunc in parallel, the

communication round number and communication complexity

of Protocol 3 is 22 and O(mBk2 + mpBk) bits. Note

that we consider a linear model here. For complex models

with multiple layers, the communication round number keeps

unchanged because gradient clipping and perturbation can be

performed in parallel, while the communication complexity

linearly increases as the number of parameters increases.

As to the offline communication complexity, according to

Table 2 of [9], the offline communication round number and

offline communication complexity of Protocol 3 is 1 and

O(mBk2 +mpfBk) bits.

C. Analysis of Protocol 4

Security. When parties train their local models, they only

perform computations on their local data. As to the aggre-

gation phase, the model aggregation and accuracy evaluation

are completed with cryptographic primitives introduced in

Section III-B. The only information revealed to parties is the

accuracy of candidate models. As these candidate models are

protected by DP and testing data are not visible to parties,

the accuracy does not leak private information. Therefore, as

long as the security of these cryptographic primitives holds,

Protocol 4 is secure.

Communication Complexity. In order to analyze the com-

munication complexity of Protocol 4, we first introduce two

aggregation methods of Section V-B. We show the details of the

averaging strategy and the accuracy strategy in Protocol 6 and

Protocol 7 respectively. We then analyze the communication

complexity of each aggregation method. We first analyze

Protocol 6 Averaging Strategy

Input: Pi holds shares of local models
〈
θl1
〉
i
,
〈
θl2
〉
i
, · · · , 〈θlm〉

i
.

Output: Pi obtains the share of the average of local models 〈θa〉i;
1: Pi compute 〈θa〉i =

∑m
j=1

〈
θlj
〉
i
/m;

2: Pi obtains 〈θa〉i as the share of the average of local models;
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Protocol 7 Accuracy Strategy

Input: Pi holds shares of local models
〈
θl1
〉
i
,
〈
θl2
〉
i
, · · · , 〈θlm〉

i
.

Output: Pi obtains the share of the most accurate local model 〈θm〉i;
1: for Each θli ∈ {θl1, θl2, · · · , θlm} do
2: All parties collaboratively evaluate the accuracy of θli as

Accuracyi;
3: if Accuracyi ≥ Accuracym then
4: 〈θm〉 = 〈

θli
〉
;

5: Accuracym = Accuracyi;
6: end if
7: end for
8: Pi obtains 〈θm〉i as the share of the most accurate local model;

TABLE X: Accuracy (in %) comparison of models securely

trained on the logically global dataset and models locally

trained on one subset of the whole dataset for MNIST. We

report the average results of five runs and show the standard

deviations in brackets.

#Party ε Local party TF-Encryptedε Queqiaoε

3-party
0.25 87.23 (±0.34) 89.36 (±0.25) 89.50 (±0.22)

1 93.56 (±0.22) 95.03 (±0.11) 94.04 (±0.21)
2 94.25 (±0.15) 95.14 (±0.09) 94.90 (±0.14)

5-party
0.25 86.92 (±0.39) - 88.18 (±0.21)

1 92.33 (±0.29) - 93.99 (±0.09)
2 93.92 (±0.24) - 95.13 (±0.19)

10-party
0.25 79.23 (±2.23) - 85.60 (±0.58)

1 89.25 (±0.37) - 94.32 (±0.31)
2 92.96 (±0.21) - 95.35 (±0.15)

the communication complexity of Protocol 6 and Protocol 7.

Protocol 6 only includes a constant division computation and

performs one Trunc computation. Hence, Protocol 6 requires 2

communication rounds and O(mpk) bits communication. For

Protocol 7, the main overhead is from the accuracy evaluation

of each local model. Assuming the size of the testing dataset is

nt, the communication round complexity of Protocol 7 is O(m)
and the communication complexity is O(m2ntpk

2), where the

constant depends on the complexity of the trained model.

We then analyze the communication complexity of Protocol 4

introduced in Section V-B. Besides the invocations of Protocol 6

and Protocol 7, Protocol 4 evaluates the accuracy of two

candidate models. Thus its communication round complexity

is O(m) and communication complexity is O(m2ntpk
2). We

do not analyze the offline communication complexity of the

above three protocols because they do not have offline phase.

TABLE XI: Accuracy (in %) comparison of models securely

trained on the logically global dataset and models locally

trained on one subset of the whole dataset for IMDb. We

report the average results of five runs and show the standard

deviations in brackets.

#Party ε Local party TF-Encryptedε Queqiaoε

3-party
0.25 79.48 (±0.72) 80.55 (±0.49) 80.20 (±0.51)

1 83.84 (±0.32) 84.46 (±0.67) 84.49 (±0.28)
2 84.08 (±0.19) 84.70 (±0.44) 84.35 (±0.17)

5-party
0.25 77.2 (±1.01) - 77.46 (±0.82)

1 80.33 (±0.26) - 84.01 (±0.15)
2 80.69 (±0.21) - 84.59 (±0.37)

10-party
0.25 72.00 (±1.81) - 75.48 (±1.03)

1 77.84 (±1.30) - 84.64 (±0.13)
2 78.22 (±0.69) - 84.56 (±0.31)

APPENDIX D

SUPPLEMENTAL EXPERIMENTAL RESULTS OF

SECTION VI-G

In this section, we show the accuracy comparison results

of global models and local models for MNIST and IMDb. The

results are shown in Table X and Table XI. Like the results of

CIFAR-10, the accuracy of the global models is higher than

local models in all scenarios. Meanwhile, the accuracy gaps

between global models and local models also become larger

as the number of parties increases. These results further verify

the effectiveness of training models on the logically global

datasets that are composed of local datasets through MPL.

APPENDIX E

COMPARISON OF FEATURE EXTRACTION METHODS

In this section, we keep other experimental settings

unchanged and compare our feature extraction method with

the method proposed by Tramèr and Boneh [66]. We run their

source codes10 to extract the features of MNIST and CIFAR-10

datasets with methods described in their paper.

We show the experimental results in Table XII. Compared

with differentially private models trained on the features

extracted by Tramèr and Boneh method, the models trained

on the features extracted by our method can achieve higher

accuracy. Because the features extracted by Tramèr and Boneh

method are high-dimension (3969 vs. 1800 (PEA) in MNIST,

4096 vs. 2048 (PEA) in CIFAR-10) and sparse, the information

of these features that are represented as fixed-point number with

limited precision might be erased when we perform truncation

and gradient clipping with SMPC protocols. Specifically, the

low accuracy of models trained by TF-Encryptedε is from

the truncation error of ABY3 protocol [51], i.e. it might

truncate a fixed-point number with a very large error. When

the dimension of features becomes higher, the truncation error

occurs with higher probability, which is also shown in one

previous study [29].

TABLE XII: Accuracy (in %) comparison of the models trained

on the features extracted by our method (PEA) and the models

trained on features extracted by Tramèr and Boneh method. We

report the average results of five runs and show the standard

deviations in brackets.

PEA Tramèr and Boneh [66]
MNIST CIFAR-10 MNIST CIFAR-10

TF-Encryptedε 95.14 (±0.09) 88.99 (±0.08) 9.80 (±0.00) 8.35 (±2.06)
Queqiaoε 94.90 (±0.14) 88.18 (±0.33) 92.81 (±0.06) 86.04 (±0.15)

10https://github.com/ftramer/Handcrafted-DP
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