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Abstract—System Management Mode (SMM) is a secure oper-
ation mode for x86 processors supported by Unified Extensible
Firmware Interface (UEFI) firmware. SMM is designed to provide
a secure execution environment to access highly privileged data
or control low-level hardware (such as power management). The
programs running in SMM are called SMM drivers and System
Management Interrupt (SMI) handlers are the most important
components of SMM drivers since they are the only components
to receive and handle data from outside the SMM execution
environment. Although SMM can serve as an extra layer of
protection when the operating system is compromised, vulner-
abilities in SMM drivers, especially SMI handlers, can invalidate
this protection and cause severe damages to the device. Thus,
early detection of SMI handler vulnerabilities is important for
UEFI firmware security.

To this end, researchers have proposed to use hybrid fuzzing
techniques for detecting SMI handler vulnerabilities. Particu-
larly, Intel has developed a hybrid fuzzer called Excite and uses
it to secure Intel products. Although existing hybrid fuzzing
techniques can detect vulnerabilities in SMI handlers, their
effectiveness is limited due to two major pitfalls: 1) They can
only feed input through the most common input interface to
SMI handlers, lacking the ability to utilize other input interfaces.
2) They have no awareness of variables shared by multiple
SMI handlers, lacking the ability to explore code segments
related to such variables. By addressing the challenges faced by
existing works, we propose RSFUZZER, a hybrid greybox fuzzing
technique which can learn input interface and format information
and detect deeply hidden vulnerabilities which are triggered by
invoking multiple SMI handlers. We implemented RSFUZZER
and evaluated it on 16 UEFI firmware images provided by six
vendors. The experiment results show that RSFUZZER can cover
617% more basic blocks and detect 828% more vulnerabilities
on average than the state-of-the-art hybrid fuzzing technique.
Moreover, we found and reported 65 0-day vulnerabilities in
the evaluated UEFI firmware images and 14 CVE IDs were
assigned. Noticeably, 6 of the 0-day vulnerabilities were found
in commercial-off-the-shelf (COTS) products from Intel, which
might have been tested by Excite before releasing.

Index Terms—UEFI; SMM; Fuzzing; SMI handler; SMM
Vulnerabilities;

I. INTRODUCTION

The Unified Extensible Firmware Interface (UEFI) specifi-

cation [1] is securing billions of devices worldwide, including

personal computers, servers, smart phones, internet of things

§Corresponding Author

devices and so forth. When used with x86 processors, UEFI

firmware provides two execution modes: the normal execution

mode, and the System Management Mode (SMM). The normal

execution mode is used for running user-space and kernel-

space programs while SMM is used for running programs

which need access to highly privileged data or need control

over low-level hardware (e.g., serial peripheral interface (SPI)

flash). The programs running in SMM are called SMM drivers
and System Management Interrupt (SMI) Handlers are the

most important components of SMM drivers because they not

only serve as the only channel to receive data from kernel-

space programs but also carry out the diverse functionalities

of SMM drivers.

The basic mechanism of SMM is to separate the execution

environment of SMM drivers from the execution environment

of user-space and kernel-space programs by creating a memory

space dedicated to SMM drivers. This memory space is called

SMRAM and it becomes inaccessible for any other programs,

including kernel-space programs, after the system is booted

up. By isolating the execution environment for SMM drivers,

SMM can protect the computer even when the kernel is

fully compromised [2], [3]. However, vulnerabilities in SMM

drivers can lead to a breakdown of this protection [2], [4], [5].

Worse still, since SMM drivers execute with high privilege,

exploiting their vulnerabilities can cause even greater dam-

age than exploiting kernel vulnerabilities. For example, the

exploitation of a vulnerability in an SMI handler can lead to

UEFI Bootkit installation [2], [4], [5]. Therefore, vulnerability
detection for SMM drivers, especially SMI handlers, is
crucial for UEFI firmware security.

Fuzzing is an effective technique for discovering soft-

ware [6], [7], [8], [9], [10], [11], [12], [13] and firmware [14],

[15] vulnerabilities. According to how much program intrinsic

information is needed, fuzzing techniques can be categorized

as blackbox fuzzing, greybox fuzzing and whitebox fuzzing.

Among the three types of techniques, greybox fuzzing shines

in practical usefulness as it strikes a balance between efficiency

and effectiveness [15], [6], [7], [16], [17], [18], [13], [19], [8],

[20], [21], [22]. To further boost the capability of detecting

deeply hidden vulnerabilities for greybox fuzzing, researchers

have proposed the technique of hybrid greybox fuzzing, where

symbolic or concolic execution engines are introduced to help
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penetrate branch constraints in the programs.
On the one hand, as a testing technique, fuzzing excels in

finding vulnerabilities in programs which have complex input

handling logic. On the other hand, in order to perform various

functionalities, SMI handlers need to receive and handle inputs

with diverse formats and they are the only interface for SMM

drivers to receive input data from kernel-space. Hence, SMI
handlers are the most suitable targets for leveraging fuzzing
to detect vulnerabilities in SMM drivers.

Although SMI handlers are suitable for fuzzing, applying

existing fuzzing techniques is challenging. Currently, several

works [23], [24], [25] have considered fuzz SMI handlers.

For Excite [25], its effectiveness is hindered by the pitfall

that Excite only processes single-dimensional input space (i.e.,

the communication buffer between kernel-space programs and

SMI handlers) but SMI handlers can also read inputs from

hard-coded memory addresses. For [23], [24], [25], inputs are

generated with no awareness of the cross-handler variables that

may influence the execution of the SMI handlers. Besides the

efforts from industry, in academia, the most related work is

Syzgen [26]. Syzgen is designed to fuzz closed-source macOS

drivers, which are similar to SMI handlers from the fuzzing

point of view. Applying the techniques of Syzgen to SMI

handlers is faced with even more challenges. For example,

most vulnerabilities in SMI handlers are silent corruptions

instead of crashes, making it hard for the fuzzer to detect.
To address the challenges faced by existing techniques,

we propose a hybrid greybox fuzzing technique called RS-

FUZZER. RSFUZZER contains two major components: a con-

colic execution engine which can extract useful information

about the SMI handler inputs and a greybox fuzzing engine

which can run in single-handler fuzzing mode and cross-

handler fuzzing mode. Every time the greybox fuzzing engine

finds a new seed 1, the seed is used for concolic execution

on an SMI handler before being added to the seed pool. By

analyzing the concolic execution trace of the seed, RSFUZZER

extracts two types of information related to SMI handler

inputs. First, RSFUZZER learns about the input interfaces of

the SMI handler, especially the hard-coded memory addresses

used for passing inputs from kernel-space programs. Second,

RSFUZZER learns about the format of the inputs related to

each input interface. The format refers to both the nested object

structures and the data types of the object fields. With the two

types of input information acquired, RSFUZZER can generate

valid test cases for testing a single SMI handler. However,

only valid test cases are not enough for testing the deep logic

inside SMI handlers. The reason is that some variables are

shared among different SMI handlers as they are initialized

by one SMI handler and used by multiple SMI handlers. If

such variables are used in branch conditions, failing to resolve

their values will lead to an early exit during the test case

execution, leaving the deeper code untouched. Therefore, when

fuzzing a single SMI handler, RSFUZZER employs a strategy

to extract cross-handler variable information, which can reflect

the producer-consumer relations among the SMI handlers for

1In this paper, we denote all the input files fed to the SMI handlers by
fuzzers as test cases, and only those kept by the greybox fuzzer for subsequent
mutations as seeds.

every cross-handler variable. This information is then used

in cross-handler fuzzing mode to help decide the correct

sequences of invoking multiple SMI handlers. In RSFUZZER,

the greybox fuzzing engine starts with single-handler fuzzing

mode at first. If the fuzzing engine cannot detect new basic-

block coverage for a certain amount of time, RSFUZZER will

consider that the testing of single SMI handlers has reached

a bottleneck and it will switch into the cross-handler fuzzing

mode. Whenever a seed found under the cross-handler fuzzing

mode brings new insights about the input interfaces or input

formats, RSFUZZER will switch into single-handler fuzzing

mode and test the SMI handler related to the newly extracted

insights. By adaptively switching between single and cross-

handler fuzzing modes, RSFUZZER can substantially test the

SMI handlers and detect deeply hidden vulnerabilities.

We implemented RSFUZZER as a hybrid greybox fuzzing

framework for SMI handlers. We applied RSFUZZER to 16

UEFI firmware images from six original equipment man-

ufacturers (OEMs). The results show that RSFUZZER can

effectively detect previously-unknown vulnerabilities in SMI

handlers of the UEFI firmware. In total, RSFUZZER found

65 SMI handler vulnerabilities (including 58 single-handler

vulnerabilities and seven cross-handler vulnerabilities) and we

have disclosed all these vulnerabilities to the corresponding

vendors. Until now, 33 vulnerabilities were confirmed by

the developers and 20 of them were fixed. Additionally,

14 vulnerabilities were assigned with CVE IDs. Moreover,

through a comparison with the state-of-the-art interface-aware

fuzzer, Syzgen [26], we found that RSFUZZER outperforms

Syzgen in terms of both code coverage (617% more basic

blocks on average) and vulnerability discovery (828% more

vulnerabilities on average).

In summary, we make the following contributions:

• We proposed a hybrid greybox fuzzing technique called RS-

FUZZER, which can identify SMI handler input interfaces,

recover the input formats and perform both single and cross-

handler fuzzing. To the best of our knowledge, RSFUZZER

is the first fuzzing technique which can detect cross-handler

vulnerabilities.

• We implemented RSFUZZER as a hybrid greybox fuzzing

framework and thoroughly evaluated it on 16 UEFI firmware

images from six vendors. The evaluation results show that

RSFUZZER can unveil deeply hidden vulnerabilities in SMI

handlers and outperform state-of-the-art fuzzers.

• We detected 65 previously unknown vulnerabilities in the

UEFI firmware of commercial-off-the-shelf (COTS) devices

with RSFUZZER. We have responsibly disclosed all the

vulnerabilities to the vendors. Until now, 33 of them are

confirmed by the vendors and 20 are fixed. In addition, 14

CVE IDs have been assigned.

• We plan to open source RSFUZZER to facilitate open-

science.

II. BACKGROUND

SMM Driver and SMRAM. The Unified Extensible

Firmware Interface (UEFI) is a widely used specification

defining the software interface between the Operating System
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(OS) and the firmware. UEFI is compatible with several main-

stream processor architectures such as x86, x86-64, ARM, etc.

With x86 or x86-64 processors, UEFI can provide a secure ex-

ecution environment for running in System Management Mode

(SMM). The programs executed in SMM are called SMM

drivers. Normally, SMM drivers are used to handle security

critical functions such as power management, sensitive data

access and system hardware control.

To facilitate secure execution, SMM drivers are loaded

from the firmware into a distinct and isolated memory space

called SMRAM during the boot up process. Once the boot

up process is finished, the SMRAM is locked. After getting

locked, SMRAM is not accessible from kernel-space or user-

space programs but only SMM drivers can read/write SMRAM

content. Therefore, SMM can provide an extra layer of pro-

tection when the operating system is compromised.

To allow SMM drivers to access and manipulate security

critical data and hardware, SMM drivers are granted with ring

-2 privilege. Therefore, SMM drivers have higher privilege

than the kernel, which operates with ring 0 privilege. The ring

-2 privilege enables SMM drivers to access the entire memory

using a physical address.

SMI and SMI Handlers. Usually, each SMM driver contains

three components: � A set of protocols which work as vendor

defined interfaces for communicating with other SMM drivers.

� A group of SMI handlers. A System Management Interrupt

(SMI) handler represents a runtime service, each of which is

assigned with a unique ID, namely SMI number. SMI handlers

use a memory region called CommBuffer to receive data from

kernel-space programs. � An initialization function, which is

used to register all the protocols and SMI handlers during the

boot up process. After the system has booted up, the registered

protocols and SMI handlers of all the SMM drivers in the

UEFI firmware are stored in SMRAM.

SMM can be invoked via signaling an SMI, which can be

generated by both hardware and software. When a kernel-

space program needs to enter SMM, it first needs to prepare the

content of the CommBuffer. Specifically, it needs to specify

the SMI number to invoke a certain SMI handler. Then, the

kernel-space program can signal an SMI to the processor.

When the processor receives the SMI signal, it will suspend

the normal execution of both kernel and user-space programs

and start the execution of the corresponding SMI handler.

The processor state is restored in SMRAM before executing

the corresponding SMI handler. The resume from system

management mode (RSM) instruction restores the processor

to the state that it was in prior to a SMM interrupt.

SMI handlers carry out the main tasks for the SMM drivers,

such as CPU overheating protection, power management, and

SPI flash refreshing. Moreover, they serve as the only inter-

faces that can interact with kernel-space programs. In order

to complete different tasks, SMI handlers need to receive and

handle a variety of inputs with different formats. Since SMI

handlers have complex input handling logic and are the only

interfaces for feeding inputs to SMM drivers, they are the most

suitable targets for leveraging fuzzing to detect vulnerabilities

for SMM drivers.

Arbitrary Write

Multiple Input
Interfaces

1
2
3

4
5
6
7
8
9
10

11
12
13
14

15
16
17
18
19
20

Cross-handler
Variable Read

Cross-handler
Variable Write

Cross-handler
Variable Write

int signature; 
char* buffer; 
int num; 

Handler1(void arg1, void arg2, void* CommBuffer) {
    if (CommBuffer->cmd == 0x2) { 

struct SA * obj_a = *(0x40E); 
signature = obj_a->signature; 
num = obj_a->num; 
... 

} 

Handler2(void arg1, void arg2, void* CommBuffer) {
    buffer = (struct SF *) CommBuffer->buffer; 
    ... 
} 

Handler3(void arg1, void arg2, void* CommBuffer) {
    if (signature == 0x54768345) { 

if (buffer->number < num) {
            *buffer = 0; 
    ... 
}

C1

C3

C3C2

C4

C5

C2

Figure 1: The running example.

III. THREAT MODEL

In this paper, we assume that the adversary has ring 0

privilege but no ring -2 privilege. This assumption means

that the adversary can modify all the physical memory except

the SMRAM. Thus, the adversary is able to feed inputs with

controllable contents to the SMI handler via CommBuffer. If

the SMI handler has a vulnerability, the adversary may exploit

it with crafted inputs to hijack its control flow to escalate the

privilege and launch malicious attacks. For example, SMI han-

dler vulnerabilities can lead to leakage of private information,

permanent lockdown of the computer, or even installation of

UEFI Bootkit. Therefore, early detection of the vulnerabilities

in SMI handlers is important for system security.

IV. RUNNING EXAMPLE

Figure 1 shows the code snippet of an arbitrary-write

vulnerability. This happens when the program reaches line 18
. The value of buffer is controlled by user inputs. Therefore,

attackers can write the value 0 to any memory address.

In order to fuzz an SMI handler, we first need to figure

out its input interfaces to which we can feed test inputs. An

SMI handler can have multiple input interfaces. For example,

Handler1 in Figure 1 has two input interfaces: the CommBuffer
variable and the hard coded memory address 0x40E. Note

that although CommBuffer is officially specified by UEFI as

the communication channel between SMI handlers and kernel-

space programs, in practice, a lot of SMI handlers also receive

data from kernel-space programs via hard coded memory

addresses. Therefore, the first challenge C1 is that some SMI
handlers need to receive test inputs from multiple input
interfaces. After identifying the input interfaces, we can try

to generate test inputs. However, to test the SMI handlers

effectively, these test inputs need to be well-structured. For

example, the variable buffer is a struct extracted from the

input CommBuffer. If we cannot embed the content of buffer
correctly in the test inputs generated for CommBuffer, we

cannot sufficiently test the handlers which use the buffer
variable due to input parsing failures. Therefore, the second

challenge C2 is that the test inputs for SMI handlers need
to have certain formats.
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Figure 2: The overview of RSFUZZER.

In order to reach line 18 and trigger the vulnerability, we

need to invoke Handler3 and pass the if conditions in line 16
and line 17. These if conditions involve the signature and

buffer variables whose values are initialized in Handler1 and

Handler2 respectively. Thus, we need to invoke Handler1 and

Handler2 before invoking Handler3 to trigger the vulnerability.

Therefore, the third challenge C3 is that triggering certain
vulnerabilities requires the involvement of multiple SMI
handlers. Since signature and buffer are used in multiple SMI

handlers, we call them cross-handler variables.

Furthermore, two more challenges are hindering the de-

tection of this vulnerability by fuzzing. For Challenge C4,

some vulnerabilities are guarded by path constraints. For

example, the value of signature must equal 0x54768345 to

reach line 18. For Challenge C5, some vulnerabilities are just
silent corruptions which do not crash the SMI handlers. For

programs running with privilege higher than ring -1, writing to

an arbitrary memory address is likely to crash the program and

thus gets captured by the fuzzer. But SMI handlers have the

ring -2 privilege to access any memory location even though

sometimes they should not use this privilege. Hence, Handler3
will not crash on line 18 no matter how the value of buffer is

tweaked. As a result, a fuzzer can never detect the vulnerability

shown in Figure 1 by monitoring crashes.

We are now ready to make the following observations: �
To generate meaningful test cases, we need to learn the input
knowledge, including the input interfaces and the structure of

each input interface. � To sufficiently test the SMI handlers,

we need to learn the cross-handler knowledge, including

the producer-consumer relations between SMI handlers and

the cross-handler variable information. � To increase code

coverage, We need to resolve the path constraints. � To detect

more memory related vulnerabilities, we need the capability

to detect silent corruptions. Based on these observations, we

propose RSFUZZER, which can address all the five challenges.

V. APPROACH

Figure 2 shows the overview of RSFUZZER. The overall

inputs are all the SMI handlers of a UEFI firmware image

and the overall outputs are the Proof-of-Concept (PoC) inputs

which can trigger crashes in the SMI handlers of the UEFI

firmware. RSFUZZER executes in two modes: the single-
handler fuzzing mode and the cross-handler fuzzing mode.

In the single-handler fuzzing mode, RSFUZZER selects an

SMI handler, generates test cases based on seeds from the

corresponding seed pool of the SMI handlers and executes the

SMI handler with the test cases. Note that the initial seed pools

are generated randomly by RSFUZZER. If a test case triggers

the SMI handler to crash, it is reported as a PoC input. If a

test case reports new basic-block coverage, it will be kept as

a seed. Before a seed is added to the seed pool, RSFUZZER

conducts input knowledge extraction on it.

Input knowledge extraction is to run concolic execution with

the seed on the SMI handlers, where the input-related variables

are symbolized and the other variables are concretized 2 (Sec-

tion V-A). Input knowledge extraction runs in two steps: First,

RSFUZZER identifies the input interfaces of the SMI handlers

according to predefined rules. Second, for every identified

input interface, RSFUZZER infers the corresponding input

structure with the symbolic representation of the input. The

extracted input knowledge includes both the input interfaces

of the SMI handlers and the corresponding input structure for

each input interface, and is stored together with the seed to

facilitate structure-aware test case generation (Section V-B).

When executing the SMI handlers with a test case in

the single-handler fuzzing mode, RSFUZZER conducts the

cross-handler knowledge extraction by recording the variable-

handling behaviors of the SMI handlers and identifying cross-

handler variables (Section V-C). The extracted cross-handler

knowledge is used for invoking the SMI handlers properly

during the cross-handler fuzzing mode (Section V-D).

In the cross-handler fuzzing mode, RSFUZZER first se-

lects a cross-handler variable, then acquires a queue of SMI

handlers related to this variable according to their producer-

consumer dependencies. Then, RSFUZZER generates test

cases based on seeds from the corresponding seed pool of

each SMI handlers and executes the queue of SMI handlers

with the corresponding test cases. RSFUZZER switches from

single-handler fuzzing mode to cross-handler fuzzing mode

when no new basic-block can be found in a given time limit.

Empirically, we set this time limit as 5 minutes. RSFUZZER

switches from cross-handler fuzzing mode to single-handler

fuzzing mode whenever it finds a seed and extracts new

knowledge from the seed. After switching to the single-

handler fuzzing mode from the cross-handler fuzzing mode,

RSFUZZER will select the SMI handlers related to the newly

extracted knowledge for fuzzing. By switching between the

2During the execution of SMI handlers, some variables are not related to
the input but they can affect the execution. We need to use concrete values
extracted from the execution of the seeds for these variables.
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two modes, RSFUZZER can substantially test the SMI handlers

of a UEFI firmware image.

The key novelty of RSFUZZER for a UEFI firmware image

is to learn input format and function relations incrementally

by switching between single and multi-handler fuzzing modes.

A. Input Knowledge Extraction

Input Interface Identification. SMI handlers can receive

inputs from both CommBuffer and hard-coded addresses. For

CommBuffer, the solution is straightforward. According to the

UEFI specification, CommBuffer is always the third parameter

for SMI handlers. Therefore, we do not need to identify the ac-

tual memory address of CommBuffer. Instead, we can allocate

a new memory region, store the test data inside and replace

the third parameters of the SMI handlers during fuzzing to test

the CommBuffer handling logic. For hard-coded addresses,

we use a heuristic-based approach to identify them. Although

CommBuffer is the suggested channel for communication

between SMI handlers and kernel space programs, according

to [27], the lower 1 MB of the physical memory is reserved to

provide fixed resources for working with option ROMs. This

memory region is outside the SMRAM and is not part of the

CommBuffer. For example, the value in the 0x40E address

contains the segment number of a memory region called the

Extended BIOS Data Area (EBDA). Therefore, if a hard-

coded address in the lower 1 MB of the physical memory

is dereferenced by an SMI handler, it will be treated as an

input interface by RSFUZZER.

Input Format Inference. Since the inputs related to the input

interfaces are struct variables, we need to infer their formats

in order to generate meaningful test inputs. In order to recover

the input formats, we need two types of knowledge: The data

type knowledge and the nested structure knowledge.

The data type knowledge refers to the data types of the

variables inside the structures. In RSFUZZER, we separate

the variable types into two categories and provide two cor-

responding strategies for identifying them. The two categories

are the pointer type and the basic arithmetic types, where the

basic arithmetic types include int, char, float and double. The

identification of pointer type variables is straightforward: If

a variable is eventually used for memory address dereference

through its def-use chain, then it is considered as a pointer. The

identification of the basic arithmetic type variables is based on

heuristics: If a variable is used for arithmetic operations with

another variable of a known basic arithmetic type, then this

variable is considered to have the same data type as the known

variable. For example, if a variable is used to compare with

an integer, then this variable is considered to have the data

type of int. Note that the purpose of RSFUZZER to identify

the types of the basic arithmetic type variables is only to know

their sizes. Therefore, RSFUZZER can tolerate imprecise type

identifications as far as the size of the variable is correct.

The nested structure knowledge refers to how the structures

reside in or contain other structures. Usage of nested struc-

tures is common in the inputs of SMI handlers. Therefore,

inferring the nested structures of the inputs is important

for recovering their formats. For the nested structures, we

have two observations: � A pointer variable, which points

to a structure, is mostly used in indirect memory accesses

(i.e., [base + index * scale + displacement]). � An upper level

structure always contains a pointer variable that points to a

lower level structure in the nested structures framework. Based

on these observations, we propose an approach to recursively

recover the nested structures of the SMI handler inputs. The

overall input for nested structure knowledge extraction is

the concolic execution trace of an SMI handler with a seed

input and the overall output is a hash map called sym ptr in

which the symbols of pointers are keys and the corresponding

pointers are values. For every instruction in the execution trace,

RSFUZZER updates sym ptr according to the operators and the

symbolic expression of the operands.

Algorithm 1 depicts how sym ptr is updated for every

instruction. In Algorithm 1, two details need to be emphasized:

� RSFUZZER simplifies the expression of indirect memory ac-

cesses from [base + index * scale + displacement] into [base +
offset] by calculating the value of index * scale + displacement.
� The function get original sym is recursively called so that

RSFUZZER can not only resolve the aliases of the pointers

but also clearly track the base pointer of the root structure.

After getting updated by every instruction in the execution

trace, sym ptr contains the nested structure knowledge of

how the structures are connected and which structure is the

root structure. By combining the data type knowledge and

the nested structure knowledge, RSFUZZER can recover the

format of the inputs for every input interface.

Running Example Explanation. We use the running exam-

ple in Figure 1 to demonstrate how RSFUZZER performs

input format inference for CommBuffer with the execution

traces of Handler2 and Handler3. The lines of code for

handling CommBuffer related data are line 12 and line 17
of Figure 1. Figure 3 shows how RSFUZZER recovers the

format of CommBuffer by analyzing the instructions in the

execution traces. In Figure 3, the assembly codes related to

line 12 are ASM−1 − ASM−2. Similarly, the assembly codes

related to line 17 are ASM−3 − ASM−7. Assume RSFUZZER

already knows that r8 holds the pointer of CommBuffer. After

analyzing ASM−1, RSFUZZER will get the information that

rax is now pointing to [CommBuffer+8] and CommBuffer is

a pointer. After analyzing ASM−2 − ASM−4, RSFUZZER will

get the information that r14 is an alias of [CommBuffer+8].
After analyzing ASM−5, RSFUZZER will get the information

that [CommBuffer+8] is a pointer since it is used for memory

dereference. Lastly, after analyzing ASM−6, RSFUZZER will

know that [[CommBuffer+8]+0x10] is an integer variable since

it is used to compare with an integer. To this end, the final

knowledge learned by RSFUZZER is that the variable at

the offset 0x8 of the first structure is a pointer pointing to

the second memory region (i.e., the structure buffer in this

example) and the variable at the offset 0x10 of the second

structure is an integer.

B. Test Case Generation

RSFUZZER combines the generation-based method with the

mutation-based method to generate valid seeds and test cases

based on the results of the input knowledge extraction.
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Final Knowledge12: buffer = (struct SF *) CommBuffer->buffer;

17: if (buffer->number < num) {

ASM-1: mov rax, [r8+8]    ;r8 is CommBuffer
ASM-2: mov qword_3760, rax;qword_3760 is buffer

ASM-3: mov rax, qword_3760;qword_3760 is buffer
ASM-4: mov r14, rax
ASM-5: mov rdx, [r14+0x10]
ASM-6: cmp rdx, qword_3780;qword_3780 is num 
ASM-7: jl 0x7c0

rax -> (CommBuffer,8)
qword_3760 -> (CommBuffer,8)

rax -> (CommBuffer,8)
r14 -> (CommBuffer,8)
rdx -> ((CommBuffer,8),0x10) 

((CommBuffer,8),0x10) is
int

Legend

Nested Structure Knowledge Data Type Knowledge

(CommBuffer,8) is pointer

CommBuffer
0x8: pointer

buffer

0x10: int

CommBuffer is pointer

Figure 3: An example of input format inference for CommBuffer in Figure 1

Algorithm 1: Nested Structure Knowledge Extraction

Input: trace: The execution trace.
Output: sym ptr: The hash map storing symbols and their

related pointers.
1 Def infer_structure(trace):
2 sym ptr ← {(r8,(CommBuffer,0))}
3 for inst ∈ trace do
4 src op, dst op ← get_operands(inst)
5 use sym ← get_src_symbol(src op,

sym ptr)
6 def sym ← get_dst_symbol(dst op,

sym ptr)
7 sym ptr[def sym] ← use sym
8
9 Def get_src_symbol(op, sym ptr):

10 if op is dereference then
11 (base, offset) ← get_base_offset(op)
12 base ← get_original_sym(base, sym ptr)
13 variable ← (base, offset)
14 else
15 variable ← op
16 return get_original_sym(variable, sym ptr)
17
18 Def get_dst_symbol(op, sym ptr):
19 if op is dereference then
20 (base, offset) ← get_base_offset(op)
21 base ← get_original_sym(base, sym ptr)
22 variable ← (base, offset)
23 else
24 variable ← op
25 return variable
26
27 Def get_original_sym(variable, sym ptr):
28 if variable ∈ sym ptr.keys() then
29 variable ← sym ptr[variable]
30 return get_original_sym(variable,

sym ptr)
31 else
32 return variable

Structure-based Seed Generation. Whenever a new piece of

knowledge is acquired during the input knowledge extraction

phase, RSFUZZER will allocate the well-formatted memory

according to the newly learned knowledge, fill the random

data in the allocated memory to generate a new seed and put

it into the seed pool.

Algorithm 2 describes how RSFUZZER allocates memory

for a new seed. It traverses the hash map sym ptr generated

by Algorithm 1 and allocates memory for the pointers (line 5).

The allocation is performed recursively. If a structure is not

allocated or insufficient allocated (line 11 and line 18), then

RSFUZZER allocates the memory based on the offset recorded

by its corresponding element in sym ptr, guaranteeing the

sufficient space for the later accessing. The address of the

newly allocated structure is recorded in the address offsetting

from the base address of its upper level structure (line 20).

If an input interface is met, structs records the address of its

corresponding memory newly allocated.
Last but not least, for SMI handlers with multiple input in-

terfaces, RSFUZZER generates a separate seed input for every

input interface and stores them together as one conceptual seed

in the seed pool.

Algorithm 2: Structure Allocation

Input: sym ptr: The hash map storing symbols and their
related pointers.

Output: structs: The hash map storing input interfaces and
the addresses of their allocated memory.

1 Def recover_structs(sym ptr):
2 structs = {}
3 structs size = {}
4 for sym ∈ sym ptr.values() do
5 if is_pointer(sym) then
6 recover_recursively(sym, structs)
7
8 Def recover_recursively(sym, structs):
9 base ← sym.base

10 if is_input_interface(base) then
11 if structs size[base]<sym.offset then
12 structs[base] ←

memory_alloc(sym.offset)
13 structs size[base] ← sym.offset
14 return (structs[base], sym.offset)
15 else
16 if is_pointer(base) then
17 (mem, off) ←

recover_recursively(base, structs)
18 if structs size[mem+ off ]<base.offset

then
19 temp mem ←

memory_alloc((base.offset))
20 mem_write(mem+ off , temp mem)
21 structs size[mem+ off ] ← base.offset
22 return (temp mem, base.offset)

Constraint-based Test Case Mutation. The structure-based

generation is not enough for generating proper test cases which

can reach the deep logic of SMI handlers. The reason is that

most SMI handlers perform sanity checks against the variables

of the input structures and malformed inputs will be rejected

early by the SMI handlers. As discussed in Section V-A,

RSFUZZER performs concolic execution with a seed before

putting it into the seed queue. Besides the information needed

for input knowledge extraction, new seeds which can pass
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if (signature == 0x54768345)

if (buffer->number < num) ...

*buffer = 0; ...

B1

B2 B3

B4 B5

Seed A: B1
True

True False

False
B3

Seed B: B1 B2 B5

PoC: B1 B2 B4

Seeds

M1

M2

Control Flow Graph

Figure 4: An example of constraint-based test case mutation

for Handler3 in Figure 1

sanity checks are also generated during the concolic execution.

However, sometimes the SMT solver may take too long or

fail to solve the constraints. Therefore, we still need to apply

mutations to the seeds to further explore different program

states of the SMI handlers.

Instead of mutating all the variables in the input structures,

RSFUZZER only mutates the variables that can influence the

branching conditions. In RSFUZZER, a branch is marked

as touched only if both of the true and false branches are

executed. Given a seed input, RSFUZZER will mutate the

variables which are related to untouched branches with the

following mutation strategies.

• M1: replace the specific variable with the value used in the

branch condition. This strategy is designed to pass equality

comparisons (e.g., a == b).

• M2: replace the specific variable with variations of the

value used in the branch condition with minor changes. This

strategy is designed to pass inequality comparisons (e.g., a
> b or a < b).

Figure 4 shows an example of how RSFUZZER performs

constraint-based test case mutation. In Figure 4, the control

flow graph of Handler3 of the running example is shown

on the right and the test cases generated by RSFUZZER are

on the left. Assuming Seed A is an initial seed which is

generated randomly by RSFUZZER and it can only cover

basic block B1 and basic block B3. During the concolic

execution, RSFUZZER finds that the variable signature is

related to the untouched branch of B1. Assuming the SMT

solver takes too long to find a satisfiable input for passing

the condition, RSFUZZER will apply mutation strategy M1
to replace the value of signature with the value 0x54768345.

After mutation, RSFUZZER can generate Seed B, which can

pass the branch condition of B1 but cannot pass the branch

condition of B2. Similarly, by conducting concolic execution

with Seed B, RSFUZZER will notice that B2 contains an

untouched branch and buffer−>number is the related variable.

This time, RSFUZZER will apply the mutation strategy M2
because the condition is an inequality comparison. By applying

M2, RSFUZZER may replace the value of buffer−>number
with the value num−1, which leads to the PoC input.

Taint-based Test Case Mutation. Since SMI handlers have

ring -2 privilege, they can access entire physical memory.

Therefore, unwanted memory access of SMI handlers does not

trigger crashes and we need sanitization techniques to capture

the silent corruptions. Inspired by the heuristics discussed in

[28], we propose a taint-based test case mutation and memory

hardening strategy to turn silent corruptions into crashes. First,

before fuzzing, RSFUZZER allocates a piece of memory and

marks it as unexecutable, unreadable and unwritable even

for SMI handlers. This piece of memory serves as the red

zone for SMI handlers. Then, during the concolic execution,

for each instruction, RSFUZZER takes the following three

steps to analyze it: � RSFUZZER checks whether the an-

alyzed instruction is a memory-related instruction (e.g., call

to memory manipulation functions such as memcpy, pointer

dereference instruction, etc.); � If the instruction is memory-

related, RSFUZZER will utilize the symbolic expression of

the pointer used in the analyzed instruction to check whether

it is user controllable or not; � If the pointer used in the

analyzed instruction is user controllable, RSFUZZER will mark

the pointer as potentially dangerous. Last, during fuzzing,

RSFUZZER will mutate the values of the potentially dangerous

pointers so that they will point to the red zone memory.

By purposefully making the pointers point to the red zone,

RSFUZZER can convert most of the silent corruptions into

crashes and capture them.

Algorithm 3: Cross-handler Knowledge Extraction

Input: trace: The execution trace.
Output: chvar pro: The hash map storing cross-handler

variables and their related producer handlers.
Output: chvar con: The hash map storing cross-handler

variables and their related consumer handlers.
1 Def extract_cross_handler_knowledge(trace):
2 chvar pro ← {}
3 chvar con ← {}
4 for inst ∈ trace do
5 (l var, r var) ← get_variables(inst)

/* Retrieve the handler that
contains the current instruction
*/

6 handler ← get_inst_handler(inst)
7 update_live_var(inst, chvar pro, chvar con)

8 if l var �= Null then
9 lmem ← get_access_mem(l var)

10 chvar pro[lmem] ∪ ← {handler}
11 if r var �= Null then
12 rmem = get_access_mem(r var)
13 if rmem ∈ chvar pro then
14 chvar con[rmem] ∪ ← {handler}

C. Cross-handler Knowledge Extraction

When executing the SMI handlers with a test case in

the single-handler fuzzing mode, RSFUZZER conducts the

cross-handler knowledge extraction by recording the variable-

handling behaviors of the SMI handlers and identifying

cross-handler variables. The extracted knowledge is used for

scheduling the SMI handlers in the cross-handler fuzzing

mode. The cross-handler variables are the variables used by

multiple SMI handlers while the variable-handling behaviors

of an SMI handler refer to if the SMI handler is the producer

or the consumer of a particular cross-handler variable.

The following information is crucial for a fuzzer to perform

fuzzing tests on cross-handler code segments: � Cross-handler
variable writers: A set of SMI handlers that write to the cross-

handler variable involved in the cross-handler code segments.
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� Cross-handler pointers: For each cross-handler variable

writer, it is necessary to know which pointers the target cross-

handler variable is transformed or directly copied from. This is

because cross-handler variables that are directly transformed or

copied from input data are more likely to affect the execution

state of the cross-handler code segment.

To this end, we need to identify the cross-handler variables

involved in the cross-handler code segments. We find that

cross-handler code segments have three key features: (1) the

cross-handler code segments always access the same memory

location, (2) at least one code segment can write to the

memory location (3) the cross-handler variable can be alive

across SMI handlers. The complete algorithm used to identify

the cross-handler variables is depicted in Algorithm 3. We

use these three features to identify candidate cross-handler

code segments and cross-handler variables for fuzzing. More

specially, we also record the birth time of a variable when the

variable is created and update the life cycle of the variable

(line 6) to distinguish the multiple variables that occupy the

same memory location (e.g., the same stack memory being

reused by different functions). For each instruction, we take the

following steps to determine whether the instruction contains a

cross-handler variable. First, we retrieve the memory location

accessed by the instruction (line 9 and line 12). Second, for

read operation, the algorithm checks whether the retrieved

memory location is occupied by a variable created in another

SMI handler (line 13).
D. SMI Handler Scheduling

RSFUZZER switches from single-handler to cross-handler

fuzzing mode when no new basic-block can be found in a

given time limit (which defaults to five minutes). In cross-

handler fuzzing mode, RSFUZZER schedules SMI handlers

according to their producer-consumer relations on the cross-

handler variables.

For each accessed cross-handler variable, RSFUZZER re-

trieves the cross-handler variable’s producer-consumer de-

pendency by using the extracted producer-consumer handler

information. Given these dependencies, RSFUZZER can guide

the SMI handler scheduling and find more interesting test

cases concerning the cross-handler context. A cross-handler

variable should be produced by an SMI handler before it be

consumed by another SMI handler. Therefore, RSFUZZER

executes the SMI handler that produces the cross-handler

variable for each cross-handler variable. Then, RSFUZZER

deals with the consumers SMI handler in random order. We

can bypass a sanity check against a cross-handler variable

by � mutating input bytes used in analyzed sanity check

and replacing them imprecisely with expected values extracted

from the analyzed sanity check; � executing the cross-handler

variable writer with the mutated test case; � executing the

SMI handler that contains the analyzed sanity check with the

recorded test case that can reach the analyzed sanity check.

In the cross-handler fuzzing mode, on seeing a seed, RS-

FUZZER will also conduct knowledge extraction from the seed

to learn additional SMI behavior and input knowledge. Our

approach can improve the quality of the test cases during the

subsequent fuzzing test due to two reasons. � The first two

steps can guarantee that it is more likely to change the targeted

cross-handler variable with a value that is computed from the

mutated input bytes. � The third step can guarantee that the

subsequent fuzzing test will reach the analyzed sanity check.

As shown in running example (Figure 1), when executing

the Handler3 in cross-handler fuzzing mode, RSFUZZER first

identifies the signature as a cross-handler variable based on the

following observations: � Both Handler1 and Handler3 access

the same memory location occupied by signature; � Handler1
produces the signature; � the signature produced by Handler1
is still alive when executing the Handler3. RSFUZZER then

recognizes a valid sequence of SMI handlers that includes both

Handler1 and Handler3 by leveraging the recorded producer-

consumer dependency of signature. In addition, RSFUZZER

is able to conduct constraint-based mutation on signature to

bypass the sanity check at line 16 by leveraging the extracted

input knowledge and constraint information. Following the

same procedure, RSFUZZER is able to identify the cross-

handler variable buffer and set up the valid sequence of SMI

handlers (Handler2 and Handler3 in turn) by leveraging the

recorded producer-consumer dependency of buffer.

VI. IMPLEMENTATION

We implement a prototype of RSFUZZER by combining

AFL++, a customized UEFI emulator based on Qiling [29],

and Triton [30]. The concolic execution engine is built by

integrating Triton into our customized UEFI emulator. The

greybox fuzzing engine is built on top of AFL++ where the

coverage feedback needed is provided by our customized em-

ulator. We trace jump instructions during emulation to collect

basic-block coverage information. Instead of introducing every

implementation detail, we focus on explaining the design of

our customized UEFI emulator which can perform partial

emulation for SMI handlers to achieve faster execution speed.

Partial Emulation. An UEFI firmware image contains lots

of low-level drivers handling the boot and runtime phases.

However, not all are required by SMI handlers. Emulating all

the drivers costs extra computation resources and may cause

compatibility issues since some drivers may have specific

hardware dependencies. Thus, partial emulation can avoid

wasting extra resources on other drivers by focusing only on

the drivers related to our target SMI handlers. To emulate

the SMM drivers at boot phase, we dispose of a high-

level abstraction of the SMM-drivers-related UEFI modules to

replace the real boot steps on the mainboard. As the standard

boot processes are defined in UEFI specification clearly, we

can deploy a general boot phase SMM drivers emulation

platform by leveraging Qiling [29] to initialize the emulated

SMM drivers and support the fuzzing test among different SMI

handlers at runtime.

For the runtime services of SMI handlers and related SMM

drivers in the virtual SMRAM region, we reuse the original

drivers instead of understanding and re-implementing the

required dependencies due to the following facts. (1) An SMI

handler represents a runtime service implemented by calling

exported functions of runtime dependence drivers. (2) SMI

handlers’ functionalities could be customized by the vendors

according to the specific hardware feature. In other words, the

exported functions of runtime dependence drivers could be
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customized by the vendors according to the specific hardware

feature. (3) The vendor-specific customized code is more likely

to be involved in vulnerable flow.

It is commonly believed that runtime dependencies have two

key features [27]: (1) the driver allocates memory space for

protocol instance and initializes the instance by filling in the

function pointers and the other data declared in the instance’s

structure; (2) the driver exports functions by registering the

protocol instance to the protocol manager through a standard

UEFI API (i.e., InstallProtocol [27]). By following [31], we use

these two features to find candidate runtime dependency for

emulating the targeted SMI handler. For hardware I/O, if an

input value affects execution by appearing in path constraints,

then we symbolize this value and use symbolic execution to

get a needed value. Otherwise, we use a random value.

VII. EVALUATION

A. Experiment setup

Dataset Preparation. We obtained 16 UEFI firmware images

(in the latest version when tested) from public official websites

of 6 popular OEMs including HP, Lenovo, Asus, Dell, Intel,

and Gigabyte. These firmware images cover major computer

types (including personal computer, Desktop, Embedded Mini

personal computer, and workstation).

Evaluated Techniques. We use Syzgen and SPENDER as the

baseline techniques for comparison. Syzgen is an interface-

aware fuzzing tool for detecting vulnerabilities hidden in

closed-source macOS drivers. It automates the generation

of interface templates for closed-source macOS drivers. To

recover the nested objects, it monitors the key internal API

invoked in macOS drivers to perform a deep copy that

copies nested objects from user space to kernel space. It

infers dependence between interfaces by analyzing execution

traces collected from existing applications. We implemented

the method of Syzgen based on the RSFUZZER framework

to identify the nested object and infer dependence between

SMI handlers, replacing corresponding knowledge extraction

method (Section V-A). Note that we also implemented the

memory hardening strategy used for the taint-based mutation

in RSFUZZER (Section V-B). The rationale is that we want

both techniques to have the same awareness of silent cor-

ruptions so that we can focus on the comparison of input

knowledge extraction capabilities of these two techniques. If

we do not implement the memory hardening strategy for Syz-

gen, it can hardly capture any vulnerabilities in SMI handlers.

SPENDER is a static framework that detects specific taint-style

vulnerabilities hidden in SMI handlers. Since SPENDER is a

dedicated technique for SMI handlers and it can be applied to

closed-source targets, we include it as a baseline technique.

Evaluation criteria. We use two criteria (i.e., vulnerability

discovery and code coverage) to evaluate the effectiveness of

RSFUZZER. For code coverage, we consider mainly block

coverage (i.e., the number of unique block hits). For vulnera-

bility discovery, we track the number of unique vulnerabilities

and the detailed vulnerability types detected by RSFUZZER.

Experiments Settings. For each UEFI firmware image, we

repeated each experiment 10 times with time budgets of 24

Table I: Our UEFI firmware dataset and evaluation results.

Characteristics of Firmware #Vulnerabilities

OEM Type Firmware Model
#SMI

Handlers
Tot

Single
Handlers

Cross
Handlers

HP Desktop HP Obelisk 875 39 6 5 1
HP WorkStation HP Z2 Mini G4 71 4 3 1
HP WorkStation HP Z440 39 7 7 0
HP PC HP 20-c000 38 3 2 1

Lenovo PC Thinkpad X1 Fold 52 4 4 0
Lenovo Desktop ThinkStation S30 13 2 2 0
Lenovo Desktop Thinkstation P900 38 4 3 1
Lenovo Desktop ThinkCentre M700 50 2 2 0
ASUS PC ASUS P453UJ 33 5 4 1
ASUS Mini PC ASUS UN65U 35 5 5 0
Dell PC Alienware X51 R3 43 9 8 1
Dell PC Alienware 13 R3 38 5 4 1
Intel Mini PC Intel NUC8i3CYSM 40 3 3 0
Intel Mini PC Intel NUC10i7FN 49 3 3 0

Gigabyte PC Z690 GAMING X 24 2 2 0
Gigabyte PC X570 GAMING X 44 1 1 0

Total - - 646 65 58 7

hours to reduce the effect of fuzzing randomness. The lines of

plots (Figure 6) are average basic block numbers. Moreover,

we use p-values to measure the statistical significance of the

results.

Experiment Environment. We run RSFUZZER on a PC with

a dual-core Intel Core i5-7260U CPU @2.20GHz, 16 GB of

RAM, and Ubuntu 18.04.

B. Vulnerability Discovery

To assess the effectiveness of RSFUZZER, we run it against

the UEFI firmware images in our dataset to find new vulnera-

bilities. For all tested firmware, RSFUZZER was able to auto-

matically identify the input channels of the SMI handlers, and

feed fuzzer-generated input data to the analyzed SMI handler.

To summarize, RSFUZZER found 65 new vulnerabilities, 20 of

which were confirmed by the corresponding vendors. Of these,

14 were already confirmed as Common Vulnerabilities and

Exposures (CVEs) and were fixed by the vendors, as shown

in Table II. It is worth noting that many firmware images

(especially those from Intel, Dell, ASUS, AMD, and Lenovo)

have been extensively researched by security researchers and

have been found to have many vulnerabilities. Despite this,

RSFUZZER was able to discover a significant number of new

vulnerabilities, demonstrating its ability to generate highly

structured input and drive fuzzing tests into deeper paths under

complex sanity checks.

In addition, Table I shows two categories of vulnerabil-

ities: (i) single-handler vulnerabilities, which were detected

using the single-handler knowledge extraction module; and

(ii) cross-handler bugs, which were detected using the cross-

handler knowledge extraction module. In total, RSFUZZER

found 58 single-handler vulnerabilities and 7 cross-handler

vulnerabilities, demonstrating its effectiveness in detecting

both types of vulnerabilities.

As shown in Table II, RSFUZZER has discovered 6 classes

of vulnerabilities in SMM, including improper input valida-

tion, out-of-bound write, buffer overflows, use of uninitialized

3Due to the fact that the vulnerable platform is nearing end of life, the
product team is unable to allocate resources for remediations for this issue.
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Table II: Statistics of vulnerabilities IDs found by RSFUZZER.

CVE ID CVSS
Score(v3)Vendor Type Vulnerability

Status

CVE-2021-41289 7.1 ASUS Buffer Overflow Confirmed, Fixed
CVE-2022-21933 7.8 ASUS Input invalidation Confirmed, Fixed
CVE-2021-3843 6.7 Lenovo Input invalidation Confirmed, Fixed
CVE-2021-3719 6.7 Lenovo Input invalidation Confirmed, Fixed
CVE-2021-3661 8.1 HP Buffer Overflow Confirmed, Fixed
CVE-2021-3439 7.8 HP Out of Bound Write Confirmed, Fixed
CVE-2021-3809 8.8 HP Use After Free Confirmed, Fixed
CVE-2021-3808 8.8 HP Use After Free Confirmed, Fixed
CVE-2022-24416 8.2 Dell Input Validation Confirmed, Fixed
CVE-2021-36343 7.5 Dell Out of Bound Write Confirmed, Fixed
CVE-2022-24415 8.2 Dell Input Validation Confirmed, Fixed
CVE-2021-36323 7.5 Dell Input Validation Confirmed, Fixed
CVE-2021-36324 7.5 Dell Input Validation Confirmed, Fixed
CVE-2021-36325 7.5 Dell Input Validation Confirmed, Fixed

PSRC-15616 - Dell Missing InitializationConfirmed, EOF3

PSRC-15772 - Dell Pointer Dereference Confirmed, EOF
PSRC-15773 - Dell Out of Bound Write Confirmed, EOF
PSRC-15774 - Dell Out of Bound Write Confirmed, EOF
PSRC-15775 - Dell Buffer Overflow Confirmed, EOF
PSRC-15776 - Dell Buffer Overflow Confirmed, EOF

variables, untrusted pointer dereference, and use after free.

Among these, improper input validation is the most common

type of vulnerability. This occurs when SMI handlers fail to

validate input properly, allowing attackers to exploit the vul-

nerability and launch attacks that could result in altered control

flow, arbitrary memory access, or arbitrary code execution.

Furthermore, to demonstrate the practical security impact

of these bugs, we acquired two of the affected devices and

successfully crafted PoCs for two of the vulnerabilities, e.g.,

an kernel-space program successfully gains SMM privilege

and runs arbitrary code in the SMRAM, enabling malicious

capabilities such as modifying the content of SPI Flash nor-

mally restricted to SMM, and to perform permanent malicious

attacks. Since it was not feasible for us to acquire all affected

devices, the POCs of the remaining vulnerabilities are crafted

using our emulator and we confirmed that 18 other previously

unknown vulnerabilities were also exploitable. As is shown

in Table II, for all the confirmed vulnerabilities with assigned

CVSS v3 scores, the average CVSS v3 base score of the re-

ported vulnerabilities is 7.7 (except those CVE entries reserved

by vendors), indicating the high security impact of the reported

vulnerabilities.

Finally, we examine a representative SMM driver (with

reverse-engineered code snippet) that contains an SMM-

related vulnerability, detected by RSFUZZER.

Case Study. We studied a vulnerability found by RSFUZZER

in detail. This vulnerability, which was caused by unexpected

improper input validation, was found in an SMI handler of

the Intel NUC UEFI firmware. In the experiment, RSFUZZER

raised an alert when attacker-controlled data was propagated

and dereferenced in an SMI handler, thanks to the memory

hardening during taint-based mutation (Section V-B). Figure 5

shows the flow of triggering this vulnerability. � At line 3, the

SMI handler1 reads the untrusted data pointer from the hard-

coded memory address (0x40E). � At line 6, the Handler1
invokes the function (sub 2780) that accepts data ptr as the

first argument. � At line 11, sub 2780 retrieves a function

pointer from the data ptr and invokes the function (sub 2860
). � At line 16, sub 2860 invokes the function pointed by

the function pointer argument and an arbitrary code execution

vulnerability can happen if the data ptr is malformed. The

lessons learned from this case are: � Although CommBuffer

is the officially specified communication channel between

SMI handlers and kernel-space programs, in practice, an SMI

handler can receive data from kernel-space programs via hard-

coded memory address. Intel Excite is not able to detect

this vulnerability due to the fact that it can only mutate

CommBuffer. � To trigger the vulnerability, the test input

needs to be well-structured. Therefore, random mutating is

not enough to trigger this vulnerability.

Arbitrary Code
Execustion
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Input Interface

Handler1(void arg1, void arg2, void* CommBuffer) {
    ...
    void* data_ptr = *(16 * MEMORY[0x40E] + 260);     
    if (*data_ptr != 0) {

... 
sub_2780(data_ptr); 

    }
} 

sub_2780(void* data_ptr) { 
    ...
    sub_2860(*(192 * ((data_ptr->filed1 - 16) >> 4) 
+ qword_3280 + 112 + 8 * Struc->filed2 + 8));

...
} 

void sub_2860(__int64 (*func_ptr)(void)){
    ...
    func_ptr();
    ...
}

1

2

3

4

C1

Figure 5: A vulnerability found in the Intel NUC.

C. Comparison with baseline

To evaluate the performance of the test cases generated by

RSFUZZER, we conducted a fuzzing experiment to compare

RSFUZZER with Syzgen. We tracked the growth trend of

basic block coverage and Figure 6 shows the code coverage

generated by each fuzzer for 16 firmware images. The result

shows that RSFUZZER covers significantly more unique basic

blocks at a faster pace than Syzgen in all the firmware images

since the lower bound of the 95% confidence interval of

the coverage of RSFUZZER is higher than the upper bound

of the 95% confidence interval of the coverage of SyzGen.

Specifically, as shown in Figure 6, RSFUZZER outperforms

Syzgen in terms of coverage for all firmware images. Based on

Mann-Whitney U-test, we found that all p-values are smaller

than 5.00e-2, indicating statistical significance. RSFUZZER

improves the basic block coverage by up to 617%. Syzgen

is ineffective in our setting due to the following facts. � To

recover nested objects, Syzgen keeps track of the internal API

that creates a deep copy of the nested object. However, in

UEFI firmware, there is not the API function that performs

deep copy of nested objects from kernel space to SMRAM.

� Syzgen focuses on identifying return and argument re-

lationship between different interfaces. In terms of unique

vulnerabilities, as shown in Figure 7, RSFUZZER detected a

total of 65 unique vulnerabilities, while Syzgen detected only

7. This represents an improvement of 828% in the detection

of unique vulnerabilities by RSFUZZER.
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(a) HP Obelisk 875 (b) HP Z2 Mini G4 (c) HP Z440 (d) HP 20-c000

(e) Thinkpad X1 Fold (f) ThinkStation S30 (g) Thinkstation P900 (h) ThinkCentre M700

(i) ASUS P453UJ (j) ASUS VivoMini UN65U (k) Alienware X51 R3 (l) Alienware 13 R3

(m) Intel NUC8i3CYSM (n) Intel NUC10i7FN (o) Z690 GAMING X (p) X570 GAMING X

Figure 6: The basic block coverage over time for RSFUZZER and Syzgen. The lines are the mean values of the basic block

coverage. The x-axis is the time in seconds and the y-axis is the number of basic blocks.

We also applied SPENDER [31] to the evaluated targets

as a baseline. The results show that SPENDER was able to

detect 13 unique vulnerabilities, while RSFUZZER was able

to detect 65. Our manual analysis reveals that SPENDER is

limited by the taint-style vulnerability model and the code

patterns it uses. In contrast, RSFUZZER is able to find non-

taint-style vulnerabilities such as cross-handler vulnerabilities.

Additionally, we found that all of the bugs found by Syzgen

and SPENDER can also be found by RSFUZZER. Overall,

our results demonstrate the effectiveness of RSFUZZER in

detecting a wider range of vulnerabilities compared to Syzgen

and SPENDER.

D. Effectiveness of Knowledge Extraction Module

We evaluated the effectiveness of the extracted knowledge

for fuzzing. We used two metrics (vulnerabilities and code

coverage) to confirm the impact of the extracted knowledge

on RSFUZZER. We ran RSFUZZER with and without the

extracted knowledge and compared the results. For knowledge-

Figure 7: Vulnerabilities found by RSFUZZER and Syzgen.

aware fuzzing, we simply ran RSFUZZER with the knowl-

edge extraction module. For knowledge-unaware fuzzing, we

removed the knowledge extraction module and only randomly
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Table III: Statistics for “Knowledge Extraction Module” in

terms of the number of basic block and vulnerabilities found.

Device
#Unique Basic Blocks #Vulnerabilities

Knowledge-
Aware

Knowledge-
Unaware

Knowledge-
Aware

Knowledge-
Unaware

HP Obelisk 875 1108 181 6 0
HP Z2 Mini G4 4112 934 4 0

HP Z440 2428 436 7 0
HP 20-c000 764 156 3 0

Thinkpad X1 Fold 2489 117 4 2
ThinkStation S30 162 97 2 0
Thinkstation P900 3502 313 4 2
ThinkCentre M700 1150 312 2 0

ASUS VivoMini UN65U 1293 309 5 0
ASUS P453UJ 1515 297 5 0

Alienware X51 R3 1492 529 9 0
Alienware 13 R3 2723 252 5 0

Intel NUC8i3CYSM 1022 252 3 1
Intel NUC10i7FN 2207 218 3 1
Z690 GAMING X 2128 17 2 0
X570 GAMING X 1516 166 1 0

Total 29611 4586 65 6
Improve 545% - 983% -

mutated the input data.

Table III shows the results for the number of unique

basic blocks and vulnerabilities. RSFUZZER found 65 vul-

nerabilities with knowledge-aware fuzzing, but only 6 vul-

nerabilities with knowledge-unaware fuzzing. In other words,

the knowledge extraction module helped RSFUZZER find

983% more vulnerabilities than knowledge-unaware fuzzing.

In terms of code coverage, knowledge-aware fuzz testing out-

performed knowledge-unaware fuzz testing by 545%. These

results strongly indicate the effectiveness of the knowledge

extraction module.

To further assess the contribution of input format knowledge

and cross-handler knowledge to the detection of vulnera-

bilities, we analyzed the relationship between the detected

vulnerabilities and these two types of knowledge. As shown

in Table IV, input format inference is necessary for detecting

vulnerabilities involving complex input formats. Extracting

cross-handler knowledge is also important for scheduling SMI

handlers and detecting cross-handler vulnerabilities.

Table IV: The ablation study of RSFUZZER.

Input Format Knowl. Cross-Handler Knowl. #Vulnerabilities

Y Y 7
Y N 52
N Y 0
N N 6

VIII. DISCUSSION

Limitations of RSFUZZER. One of the main limitations of

RSFUZZER is the overhead and slow performance of the

emulator, despite our use of a partial emulation strategy. This is

a common challenge for all emulation-based fuzzing tools for

stripped binaries. RSFUZZER achieves a fuzzing throughput

of 18-42 exec/sec, which is much lower than the throughput

of native execution fuzzing tools such as AFL and Libfuzzer,

which can achieve thousands of executions per second on the

same hardware setup. To assess the impact of this overhead, we

performed an in-depth investigation of the time spent at each

stage of fuzzing. We calculated the average execution time

over 10,000 rounds of execution for each firmware image.

On average, the knowledge extraction phase was the most

time-consuming phase, due to the combination of symbolic

execution and emulation to extract single/cross-handler knowl-

edge. RSFUZZER is also limited by the availability of UEFI

firmware images. We downloaded firmware images from the

official websites of vendors, but many of these were in the

form of update bundles that contain only the modules that

need to be updated for efficiency. These bundles often miss

important modules that are not updated, reducing the number

of potential input SMI handlers in the analysis. Additionally,

the dependency drivers that produce the protocol instances are

not complete in the update bundles.
Bugs that require further research. During the manual

investigation of the analyzed SMM services, we have observed

that there are two categories of vulnerabilities, information

leak and improper access control, which cannot terminate the

SMM service execution by a fatal signal. These vulnerabilities

are merely benefited from our fuzzing test now. For the

information leak bug, some SMM services use the SetVariable
service, whose fifth argument is a pointer that points to a

buffer storing the content of the UEFI variable and fourth

argument records the size of the UEFI variable to write an

UEFI variable. Commonly, an SMM service initializes a buffer

and writes the buffer to NVRAM by calling the SetVariable
service. However, if an uninitialized variable is passed as

the fourth argument, calling SetVariable will leave a large

portion of the buffer uninitialized. These uninitialized bytes

will be manifested to NVRAM, where they can be queried

by attackers running with kernel-level privileges. The UEFI

variables are used to configure hardware by the UEFI firmware

at boot up stage. Moreover, some UEFI variables are leveraged

to configure hardware security (e.g., Secure Boot). These UEFI

variables should not be modified by the kernel-space programs.

However, we observe that some UEFI firmware images do

not protect these UEFI variables correctly in practice. An

attacker with kernel-level privileges can modify these UEFI

variables to disable the security features (CVE-2022-26863)

or lock down the entire computer system (CVE-2022-26862)

during the next power cycle. RSFUZZER cannot detect these

vulnerabilities, because they do not lead to any observable and

immediate crash of the system before rebooting the system.

Further research is needed to detect these silent vulnerabilities.

IX. RELATED WORK

Hybrid Fuzzing. Hybrid fuzzing is a technique to combine

fuzzing with symbolic execution so that these two tech-

niques can complement each other and achieve better per-

formance [10], [32], [9], [33], [34], [35], [36], [37], [38],

[39], [26]. Among all the hybrid fuzzing techniques, the

most related work is Excite [39], which is a hybrid fuzzer

dedicated to SMI handlers. Although Excite can partially solve

the challenges C2, C4 and C5, it fails to address challenges

C1 and C3. Therefore, Excite cannot detect cross-handler

vulnerabilities or vulnerabilities involving inputs from hard-

coded memory addresses (e.g., the vulnerability shown in
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Figure 5). Compared with Excite, RSFUZZER can detect more

vulnerabilities. We did not compare RSFUZZER with Intel

Excite directly through experiments because Excite focuses on

detecting vulnerability at the source-level and it is a closed-

source commercial product with limited access. However,

RSFUZZER can find 0-day vulnerabilities in Intel products,

which might have been tested by Excite. Another closely

related work is Syzgen [26], which is designed to fuzz closed-

source macOS drivers. The closed-source macOS drivers are

similar to SMI handlers from the fuzzing point of view since

the macOS drivers also require well-formatted inputs. In other

words, Syzgen focuses on addressing C2 and C4 but cannot

address C1, C3 and C5. In our experiments, RSFUZZER has

demonstrated great advantage over Syzgen by covering 617%

more basic blocks and detecting 828% more vulnerabilities on

average even if we gave Syzgen the ability to address C5. For

other hybrid fuzzing techniques, most of them only address

C4 but not C2 as they only focus on penetrating branch

constraints and do not care about recovering input formats.

In summary, none of the existing hybrid fuzzing techniques

can address all the five challenges we identified, which limits

their vulnerability detection capabilities on SMI handlers.

SMM Security Analysis. Several techniques have been pro-

posed to implant traditional automatic binary analysis ap-

proaches onto the UEFI firmware images analysis. SPENDER

[31] is a recent work which is able to scan the potential

SMM privilege escalation vulnerabilities in the striped UEFI

binaries. As a static detection approach, SPENDER can find

single-handler vulnerabilities in the firmware images. But it is

not capable of detecting cross-handler vulnerabilities, which

requires dynamic information such as the actual values of

the cross-handler variables during execution. Chipsec [23]

is a blackbox fuzzer that directly tests firmware running on

physical machines. [24] is a greybox fuzzer that combines AFL

and SIMICs [40] to fuzz the firmware. It uses code coverage

as feedback. In contrast, RSFuzzer is a hybrid-fuzzer that

involves gray-box fuzzing and concolic testing. [23] and [24]

cannot find cross-handler vulnerabilities and the vulnerabilities

that require complex input formats. In contrast, RSFuzzer

can detect cross-handler vulnerabilities and the vulnerabilities

involved in complex input formats by learning input format

and function relations incrementally by switching between

single and multi-handler fuzzing modes.

Fuzz Driver Generation. Building function-call sequences

in fuzz driver generation techniques [41], [42], [43] is simi-

lar to how RSFUZZER detects cross-handler vulnerabilities.

However, the difference is that RSFUZZER does not learn

function relations from existing consumer programs. Instead,

it learns function relations from specific mechanisms of SMI

handlers. Compared with these techniques, the novelty of

RSFUZZER is that it can learn function relations incremen-

tally by switching between single and cross-handler fuzzing

modes. Moreover, RSFUZZER is the first hybrid-fuzzer for

SMI handlers and we are the first to point out the existence

of cross-handler vulnerabilities. KSG [44] is a fuzzer for

Linux kernels. It hooks key resource(e.g.,file,socket)-handling

functions to identify the producer-consumer relations between

system calls. First, KSG relies on domain knowledge about

resource-handling functions, while RSFUZZER requires no

domain knowledge. Therefore, RSFUZZER switches between

single and multi-handler fuzzing modes to incrementally learn

function relations. Second, unlike OS-level resources, the

variables in SMI handlers require liveness checks.

Firmware Re-hosting. HALucinator [45] provides generic

implementations of Hardware Abstraction Layers (HALs)

functions to decouple the hardware from the firmware. P2IM

[46] re-hosts firmware to facilitate fuzz testing. LuaQEMU

[47] is a QEMU-based framework exposing several of QEMU-

internal APIs to a LuaJIT core injected into QEMU itself.

Unicorn [48] is a pure CPU emulator without any awareness

of operating systems built on it. Qiling [29] is built on top of

Unicorn, which is an advanced binary emulation framework

written in Python. Qiling contains OS-level utilities (such as

executable format loaders) and supports UEFI emulation [49].

Therefore, RSFuzzer delegates the emulation to Qiling and

focuses more on the fuzzing part. UEFI APIs can be catego-

rized as either boot dependencies or runtime dependencies for

SMI-handlers. However, Qiling only provided the abstractions

of some key UEFI APIs which serve as boot dependencies

and a lot of other UEFI APIs were not included. Based on our

experience, some SMI-handlers cannot be emulated due to the

lack of abstractions of some other boot-dependency APIs. In

RSFuzzer, we provided abstractions for more boot-dependency

UEFI APIs. As for the runtime-dependency APIs, we identify

and reuse the original APIs instead of using abstractions.

X. CONCLUSION

In this paper, we have identified five key challenges for

fuzzing SMI handlers. By addressing these challenges, we

propose RSFUZZER, a novel hybrid gray-box fuzzing frame-

work to detect SMI handler vulnerabilities. RSFUZZER is the

first fuzzing technique that can detect cross-handler vulnera-

bilities. Our evaluation shows that RSFUZZER can effectively

discover vulnerabilities in COTS UEFI firmware images. In

total, RSFUZZER found 65 previously unknown SMI handler

vulnerabilities and we have reported them to the corresponding

vendors. Until now, 33 of them are confirmed by the vendors

and 20 are fixed. In addition, 14 CVE IDs have been assigned.

Lastly, the evaluation also shows that RSFUZZER can signifi-

cantly outperform state-of-the-art input inference hybrid fuzzer

in both code coverage and vulnerability detection.
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