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Abstract—Human developers can produce code with cyberse-
curity bugs. Can emerging ‘smart’ code completion tools help
repair those bugs? In this work, we examine the use of large
language models (LLMs) for code (such as OpenAI’s Codex
and AI21’s Jurassic J-1) for zero-shot vulnerability repair. We
investigate challenges in the design of prompts that coax LLMs
into generating repaired versions of insecure code. This is
difficult due to the numerous ways to phrase key information—
both semantically and syntactically—with natural languages. We
perform a large scale study of five commercially available, black-
box, “off-the-shelf” LLMs, as well as an open-source model and
our own locally-trained model, on a mix of synthetic, hand-
crafted, and real-world security bug scenarios. Our experiments
demonstrate that while the approach has promise (the LLMs
could collectively repair 100% of our synthetically generated and
hand-crafted scenarios), a qualitative evaluation of the model’s
performance over a corpus of historical real-world examples
highlights challenges in generating functionally correct code.

Index Terms—Cybersecurity, AI, code generation, CWE

I. INTRODUCTION

Commercial large language models (LLMs), trained on vast
amounts of source code, have been enthusiastically promoted
as tools to help developers in general coding tasks like
translating between programming languages and explaining
code [1]–[4] by predicting likely text completions given some
“prompt” comprising comments, function names, and other
code elements. This is similar to the multi-tasking capabilities
that LLMs for natural language exhibit [5], [6]. Of the many
tasks coders do, we are interested in fixing security bugs;
developers might ordinarily run security tools such as fuzzers
or static analyzers, try to understand the feedback, locate the
issue, and modify the code to repair the bug. This is hard.

In this paper, we ask: Can LLMs for code completion
help us fix security bugs (Fig. 1)? “Out-of-the-box” LLMs
for coding, such as OpenAI’s Codex [7] and AI21’s Jurassic-
1 [8] are trained on open-source code in myriad languages that
contain a large variety of comments [9]–[11] and functionality
(both buggy and non-buggy). This powers the ability of LLMs
to complete code in different ways, given some context such
as the designer’s intent in code comments.

While recent work [12] suggests that code completions with
the LLM GitHub Copilot can introduce security weaknesses,
Pearce et al. conclude that models can still “increase the
productivity of software developers”, especially when paired
with “appropriate security-aware tooling during. . . generation
to minimize the risk” [12]. As one can guide LLMs by adding
cues to prompts (as suggested by user guides like [4]), we
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Fig. 1. Prior work suggests that large language models (LLMs) can help
programmers write functional code. Can they help fix security bugs too?

seek to characterize the feasibility of using black-box, “off-the-
shelf” LLMs for “zero-shot” generation of replacement code
for an identified security bug, perhaps as part of an overarch-
ing program repair framework. This contrasts prior work that
trained specialized neural machine translation (NMT)-based
models for fixing software bugs (e.g., [13]–[16]). Unlike prior
approaches which are trained to predict the exact same tokens
as a human developer’s fix, we want to investigate off-the-shelf
LLMs’ apparent ability to “understand” the broader context
from a source code file.

We focus on creating security patches as they are important,
can be tricky to write, and often require relatively small
changes of code in a single file [17]. The smaller footprint
of security patches suggests that current off-the-shelf LLMs
might be capable of designing bug fixes. We want to know
if LLMs—despite not being trained specifically on security
fixes (and, indeed, being trained on a great deal of insecure
code)—are nonetheless capable of generating valid fixes for
vulnerable code. We seek answers to these research questions:

RQ1: Can off-the-shelf1 LLMs generate safe and functional
code to fix security vulnerabilities?

RQ2: Does varying the amount of context in the comments of
a prompt affect the LLM’s ability to suggest fixes?

RQ3: What are the challenges when using LLMs to fix vul-
nerabilities in the real world?

RQ4: How reliable are LLMs at generating repairs?
To answer these questions, we evaluate recent LLMs on a
range of synthetic, hand-crafted, and real-world buggy scenar-
ios. Our contributions are as follows.

(1) We compare prompts, contextual cues, and model set-
tings (temperature, sampling strategy, etc.) for encouraging
LLMs to generate functional and secure code. (Section III)
(2) We provide the first evaluation of LLMs for zero-shot
generation of security fixes, showing that off-the-shelf models
are capable of producing security fixes without any additional

1From this point on, our discussion of LLMs is specifically about off-the-
shelf, general coding LLMs available at the time of this study.
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training in simple scenarios (Section IV). However, when we
evaluate the LLMs on some real-world scenarios (Section V),
we find that they can struggle to generate plausible fixes and
as such are still not ready to provide real-world value in a
program repair framework. (3) To encourage further research
into the use of LLMs in vulnerability repair, we open-source
our datasets and evaluation framework, including the training
data and trained model for ‘gpt2-csrc’.

II. BACKGROUND AND MOTIVATION

A. Security Bugs

Developers perform many tasks in creating and maintaining
software; they can sometimes fall into patterns of insecure
code, such as those in MITRE’s Common Weakness Enumer-
ation (CWE) database [18]. Challenges around security bugs
include detecting them, localizing root causes, understanding
root causes, and creating/testing patches.

Several tools and techniques try to identify security bugs
statically, such as those in OWASP’s list [19]. Develop-
ers can also use run-time sanitizers like Address Sanitizer
(ASAN) [20] and Undefined Behavior Sanitizer (UBSAN) [21]
to identify a bug’s root cause. Sanitizers instrument code at
compile time to help catch memory safety errors or undefined
behavior as early as possible, and provide detailed information
about the location and cause of the error. For example, ASAN
adds checks before every memory access to validate that
addresses point to valid objects. If the access is invalid, it
reports the callstack and where an object was allocated (in the
case of use-after-free vulnerabilities) or the name of the local
variables involved in a stack-based overflow. UBSAN’s checks
detect undefined behavior like integer overflow, division by
zero, and shifts larger than the integer bit-width. Unlike
static analysis, sanitizers require a proof-of-concept input that
triggers the bug. For security bugs, particularly those found
by fuzzers, such inputs are often included with the bug report.

Given a bug report, what should a developer do? To date,
expert developers develop patches by hand [17], with ongoing
research efforts toward automatic program repair [22]. Tools
that can speed up or even eliminate this costly manual bug-
fixing process stand to greatly improve the state of software
security. In this work, we want to use LLMs to repair identified
security bugs by generating alternative replacements.

B. “Prompting” Large Language Models (LLMs)

Broadly, LLMs act as ‘Scalable sequence prediction mod-
els’ [1]: given a prompt comprising a sequence of tokens, they
output the ‘most likely’ set of tokens that continue/complete
the sequence (similar to a smart autocomplete). For example,
an LLM can be asked to complete a function body, given some
signature and/or comment [1].

Here, tokens refer to common character sequences. Most
LLMs (including those evaluated in this work) operate on
tokens, not individual characters. Each token has a unique
numeric identifier, up to a user-defined vocabulary size. This
byte pair encoding (BPE) [23] process allows the models
to ingest more text into their (fixed-size) input window. For

TABLE I
LLMS WE INVESTIGATED.

Model
#
Params

# Vocab
(tokens)

Max.
tokens API restrictions

code-cushman-001 (unknown) ∼50K 2048 150,000 tokens/minute (open beta)
code-davinci-001 (unknown) ∼50K 4096 150,000 tokens/minute (open beta)
code-davinci-002 (unknown) ∼50K 4096 150,000 tokens/minute (open beta)
j1-jumbo 178 B ∼256K 2048 30,000 tokens/month (free plan)
j1-large 7.8 B ∼256K 2048 100,000 tokens/month (free plan)
polycoder 2.7 B ∼50K 2048 N/A
gpt2-csrc 774 M ∼52K 1024 N/A

Codex, which uses the same tokenizer as GPT-3 (extended to
include tokens for runs of whitespace to better deal with code
indentation) [1], an average token represents ≈four characters.

Because LLMs aim to output “realistic” continuations of an
input, different inputs (prompts) can coax the model into per-
forming different tasks. LLM responses to individual prompts
can be tuned further using parameters such as temperature
(roughly, the model’s propensity for choosing unlikely tokens),
top p (consider only tokens up to a cumulative probability p),
length (how many tokens to generate), and stop words2. This
output code will either continue until the model “thinks” it
should end (i.e., ‘stopping’ was the most-likely next token),
or until it reaches a pre-specified length.

C. Studied Off-the-Shelf Large Language Models

We are interested in how LLMs perform when generating
replacement code for program repair. We evaluate several
LLMs, summarizing their essential characteristics in Table I.
These include OpenAI’s Codex models [1], AI21’s Jurassic-1
models [8], [25], and the ‘polycoder’ model [26]. These “off-
the-shelf” models are trained on vast quantities of open-source
software code. In Codex’s case, this includes the majority
GitHub’s open-source code3. As a result of both the difficulty
involved in their training, their size (billions of parameters),
and potential commercial importance, these LLMs are ‘black-
box’. The exact nature of these LLMs—their architecture, the
weights, tokenizers, inputs and output layers are opaque to
end-users. Even if they were ‘open’, these LLMs are currently
infeasible to run on local machines due to their mammoth
size and complexity. Instead, they are accessed via managed
internet APIs. As the gatekeepers to the LLMs, these APIs
restrict the choice of model configurations, output and input
lengths, and the query frequency that end-users may use.

To contrast the LLMs that operate remotely, we also
evaluate two “local” models: Xu et al.’s recent ‘polycoder’
model [26] and our own locally-trained C/C++ code model,
‘gpt2-csrc’. With 2.7 billion and 774 million parameters,
respectively, ‘polycoder’ and ‘gpt2-csrc’ are small enough to
run locally on a high-end consumer GPU.

2A full discussion of what parameters influence LLM generation is beyond
the scope of this paper, but Huggingface’s tutorial on decoding methods for
Transformers [24] is a good introduction.

3The exact amount is not published, although GitHub Copilot—the com-
mercial adaptation of Codex—advertises itself as being trained over ‘billions’
of lines of code [2].
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While prior work examined GitHub Copilot’s performance
in security-relevant contexts [12], we exclude Copilot in this
study for three reasons: (1) at the time of this study, access is
restricted via a wait-list, (2) once past the wait-list, access to
the model suggestions is restricted to closed-source, graphical-
based integrated development environment plugins that are not
suitable for large-scale studies, and (3) given that Copilot is
based upon Codex, we feel that evaluating Codex will likely
exhibit comparable performance.

D. Design of ‘gpt2-csrc’

Although we expect that the larger, commercial LLMs will
be more effective at vulnerability repair, including our locally
trained LLM has practical and scientific benefits. First and
most pragmatically, having a local model allows us to generate
as many samples as we like without being subject to API rate
limits. And from a scientific perspective, gpt2-csrc is more
attractive for experimentation as we can inspect and control
every aspect of its implementation, from the training dataset
and training procedure to the exact technique used when
sampling from the model (beam search, nucleus sampling,
etc.). This allows us to check, for example, whether a patched
version of a vulnerability we are investigating already exists in
the training data. Polycoder shares some of these benefits as
well, but its training dataset, which consists of code scraped
from GitHub, is not directly available: although the author
have shared the SHA1 hashes of the training data files, we
would have to scrape GitHub ourselves and determine which
revisions match the provided hashes.

To train the gpt2-csrc LLM, we created a dataset of C/C++
code gathered from the top 10,000 most popular Debian
packages.4 We preprocessed the training data to filter out non-
source code files (using common filename extensions used for
C/C++ code, such as .c, .cpp, .h, etc.), removed files that
were not plain-text, and deduplicated the source files using
locality-sensitive hashing, resulting in ≈17GB of code. For
tokenization we trained a BPE tokenizer on the source dataset.
This is distinct from the tokenizers used in the other models
we evaluate, which use tokenizers tuned for English text, and
allows us to represent source code using slightly fewer tokens
(12% fewer, on average, than Codex). Finally, we trained a
standard GPT2-774M LLM (36 layers, 20 attention heads, max
sequence length 1024), using the NVIDIA Megatron codebase
with learning rate of 0.0001, weight decay of 0.01, and a
cosine learning rate decay schedule. The model was trained
for four GPU-months (one month on 4×RTX8000 GPUs).

III. FROM PROMPTS TO PROMPT ENGINEERING

LLMs trained on large corpora of data can inadvertently
gain some ability to perform multiple tasks, even in a “zero-
shot” setting [5], [6]. Similarly, LLMs for code can per-
form several tasks (e.g., [27]) by careful construction of the
“prompt” (the sequence of tokens we provide to the model).
Because predicted tokens are based on probabilities, there is

4According to the Debian Popularity Contest, https://popcon.debian.org/.
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Fig. 2. We focus on understanding LLMs’ generation of replacement code
that “repairs” a security bug (shaded area). The testing framework uses
existing security tools to identify bugs in programs. We convert them to
“prompts”, with information from the original program and the bug report.
LLMs ingest “prompts” to produce potential repaired code. Using external
tools and regression test suites, we evaluate if these suggestions repair the
original programs.

no guarantee that a given prompt will make the model do what
a user intends (i.e., alignment failure [1])—we can only hope
that prompts coax a model towards what we intend.

To date, the notion of “prompt engineering” is nascent, with
empirical prior work showing that the security code weak-
nesses in a model’s (GitHub’s Copilot) outputs are sensitive
to the prompt [12], which comprises both existing code and
comments in a given snippet to be completed. How to engineer
prompts to get the “best” out of models, particularly when the
exact characteristics of the training data are opaque, remains
an open problem. Current models have finite token limits for
the amount of context they can ingest. Generally, within the
scope of a single source file, prompts for coding could include:
(i) opening comments (e.g., notices, change histories) (ii)
imports and defines (e.g., package declarations, pre-processor
directives) (iii) existing code and comments, potentially related
to line(s) of code to be completed and (iv) the place in a file
where a user wants code completion recommendations.

If a source file is small enough for a model to ingest, the
entire file can be the prompt; if not, we need to be judicious in
selecting the parts used to assemble the prompt (the practical
implications of this become apparent in Section V). If we want
a specific type of recommendation from a model, we need to
modify the prompt appropriately, e.g., adding comments or the
start of some code near to where a user wants help.

For guidance, let us consider the recommendations from
LLM documentation/user-guides (e.g., [4]). Prompts should
“start with a comment, data or code” and contain informa-
tion that might be helpful or needed by a “programmer. . . to
perform a task”. Each of these elements can exhibit different
styles, including characteristics like comment verbosity and
naming conventions. Prior studies of code comments in open-
source software reveal a wide range of reasons for them [9]–
[11], [28], including marking intent for developers, such as
explaining functionality or indicating where fixes should occur
(e.g., marking something as FIXME or FIXED). We observed
the existence of “BUG” and “FIXED” in comments from
searching GitHub and adopted those as potential elements of
a prompt. Similarly, source code can appear inside comments;
“commented-out” code often appears in code commits as part
of the bug-fixing process [29]. Comments vary in complexity,
from sparse single line comments that describe something as
a “bugfix” through to verbose comments that include prior
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instances of code (thus providing a high level of context). We
explore comment types for prompting LLMs in Section IV.

IV. RQ1 / RQ2: SYNTHETIC EXPERIMENTATION

A. Overview

To begin measuring how well LLMs can help with ‘fix-
ing security bugs’ we generate a large, synthetic collection
of buggy programs (Section IV-B), and attempt repair of
these with Codex LLMs with different parameter settings
(Section IV-C). We then broaden to the other LLMs and
domains using handcrafted vulnerable programs and prompts
(Section IV-D and Section IV-E).

The first stage of this experiment is a Model Parame-
ter Sweep to identify good ‘typical’ parameters for LLM
code repair generation, and then the second stage investi-
gates prompts to determine if different prompt patterns with
increasing ‘bug context’ has an impact on the quality of
code generated by black-box LLMs. For our experiments, we
designed and implemented the framework depicted in Fig. 2.
While this resembles an automated repair system, its function
is to automate and scale the investigation for investigating
LLM performance. As a base case, we first provide a vulner-
able program (scenario) to a security evaluation tool which
generates a bug report; we adopted CodeQL [30] given its
ability to statically analyze several types of bugs. From the
bug report and the original program, we derive a prompt
which is provided to the LLM. This returns a code completion
which can be merged with the original program to provide
a potentially fixed program. We evaluate each program for
correctness using a set of functional and security tests.

Experimental Platform: We perform our LLM experiments
on a single desktop-class PC with Intel i7-10750H processor,
16 GB DDR4 RAM, NVIDIA RTX 2070 with 8 GB VRAM;
using Ubuntu 20.04. We develop our framework using Python
3.8.10 and gcc 9.3.0-17. We use CodeQL version 2.7.2.
Open-source: all code and the generated data is available.
See the Appendix / Ref [31].

B. Model Parameter Sweep: Vulnerable Program Generation

In this section we check the effect of model parameters
(specifically, temperature and top p) on LLMs’ generated
code. Here we keep consistent (i) the kinds of bugs being
searched for, and (ii) the prompt text (inasmuch as it can be
kept consistent between different programs). This means that
we need many kinds of examples of the same bug. For this
exercise we draw on prior work [12] that demonstrated LLMs’
propensity for generating vulnerable code and use OpenAI’s
Codex to generate vulnerable programs.

CWE choice We experiment on two synthetic examples for
two notable CWEs—CWE-787: Out of bounds Write (Rank
#1 on MITRE’s “Top 25 List” [32]); and CWE-89: Improper
Neutralization of Special Elements used in an SQL Command
(‘SQL Injection’) (Rank #6). We select these two CWEs
because (1) as noted by MITRE, they are high-impact bugs.
Their presence in an application can lead to catastrophic conse-
quences, including data loss and exfiltration and root privilege

escalation; (2) they are ‘concrete’ in that their presence or
absence can be determined directly from the given code, that
is, they do not require any additional context; and (3), they
are from two different levels of abstraction. Memory buffer
errors tend occur in “lower-level” languages like C, and SQL
injection errors tend to be in “higher-level” languages like
Python, meaning we gain a sense of the LLM performance
across two different aspects of software development.

Synthetic generation To generate large numbers of unique
but similar vulnerable programs, we specify (i) the beginning
of a short program relevant to these CWEs, (ii) get the target
LLM to complete the program, and then (iii) evaluate those
programs for functional and security correctness by running
them through unit tests and CodeQL, respectively. We then
(iv) take the set of unique functional but vulnerable programs
as our dataset for bug-fixing. The initial program prompts are
listed in Fig. 3(a), which is a simple C program for multiplying
two floats and returning the result as a string; and Fig. 3(b),
which is a small Python component that used to unsubscribe
emails from a mailing list in a SQL database.

From these two programs we prompted the OpenAI
Codex engines ‘code-cushman-001’ and ‘code-davinci-
001’ to generate 10 programs for each combination
of temperature {0.00, 0.25, 0.50, 0.75, 1.00} and top p
{0.00, 0.25, 0.50, 0.75, 1.00}. This resulted in 250 suggestions
for each model, or 500 overall. We then try to compile each
program to check if it is valid (i.e., that it can be compiled)
before checking for functional and security correctness. For
interest, we include the statistics for the initial generation in
Table VIII in the Appendix.

In total the two language models generated 95 unique
buggy programs containing CWE-787 (where the suggested
code does not allocate enough memory for the string
returned by multiply doubles str, which, if filled using
sprintf, needs to be at least 318 bytes, as the maximum
length of a double represented as a string is 317 characters
plus a null byte), and 22 unique buggy programs containing
CWE-89 (where the SQL query assembled in the function
unsubscribe email from all subscriptions are
vulnerable to SQL injection—i.e., if the string was constructed
using concatenation). Interestingly, whereas CWE-787 had
fewer vulnerabilities at the higher temperatures, CWE-89 had
more. This could be because of the training data used by
Codex: more of the training C data had such memory errors,
and less of the training Python data had SQL injection errors.

C. Model Parameter Sweep: Vulnerable Program Repair

We now take the unique functional and vulnerable programs
from CWE-787 (95 of the Functional and Vulnerable pro-
grams) and CWE-89 (22 of the Functional and Vulnerable
programs) and augment the original prompt with the faulty
code identified by CodeQL to produce new repair scenarios.
Here, each faulty program is augmented in the same manner.
To contextualize the need and nature of a fix, we design a
basic prompt which includes all the information emitted from
CodeQL as part of a comment. We also comment out the
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1 / / m u l t i p l y t h e two d o u b l e s and r e t u r n as new s t r i n g
v a r i a b l e

2 c h a r * m u l t i p l y d o u b l e s s t r ( d ou b l e d1 , d ou b l e d2 ) ;
3

4 i n t main ( i n t a rgc , c h a r * a rgv [ ] ) {
5 / / l o a d two d o u b l e s from t h e a rgumen t s
6 do ub l e d1 = s t r t o d ( a rgv [ 1 ] , NULL) ;
7 do ub l e d2 = s t r t o d ( a rgv [ 2 ] , NULL) ;
8

9 / / m u l t i p l y t h e two d o u b l e s i n t o s t r i n g r e p r e s e n t a t i o n
10 c h a r * d 3 s t r = m u l t i p l y d o u b l e s s t r ( d1 , d2 ) ;
11

12 / / p r i n t t h e s t r i n g
13 p r i n t f ( ”%s\n ” , d 3 s t r ) ;
14

15 / / f r e e t h e s t r i n g
16 f r e e ( d 3 s t r ) ;
17 }
18

19 c h a r * m u l t i p l y d o u b l e s s t r ( d ou b l e d1 , d ou b l e d2 ) {
20 / / m u l t i p l y t h e two d o u b l e s

(a) Initial C prompt for CWE-787 ‘string’ out of bounds write case study.

1 d e f c r e a t e s u b s c r i p t i o n s t a b l e ( db ) :
2 c u r s o r = db . c u r s o r ( )
3 # d e l e t e t a b l e i f i t e x i s t s
4 c u r s o r . e x e c u t e ( ”DROP TABLE IF EXISTS s u b s c r i p t i o n s ” )
5

6 c u r s o r . e x e c u t e ( ”””CREATE TABLE s u b s c r i p t i o n s (
7 e m a i l v a r c h a r ( 2 5 5 ) n o t n u l l ,
8 c h a n n e l v a r c h a r ( 2 5 5 ) n o t n u l l ,
9 PRIMARY KEY ( emai l , c h a n n e l )

10 ) ””” )
11 db . commit ( )
12

13 #URL h a n d l e r t o remove a u s e r from a l l s u b s c r i p t i o n s
14 @bp . r o u t e ( ' / e m a i l / u n s u b s c r i b e a l l ' , methods =[ 'GET ' ] )
15 d e f u n s u b s c r i b e a l l ( ) :
16 e m a i l = r e q u e s t . a r g s . g e t ( ' e m a i l ' )
17 db = g e t d b c o n n e c t i o n ( )
18 u n s u b s c r i b e e m a i l f r o m a l l s u b s c r i p t i o n s ( db , e m a i l )
19 db . c l o s e ( )
20 r e t u r n r e d i r e c t ( ' / ' )
21

22 # D a t a b a s e f u n c t i o n t o d e l e t e a u s e r from a l l s u b s c r i p t i o n s
23 d e f u n s u b s c r i b e e m a i l f r o m a l l s u b s c r i p t i o n s ( db , e m a i l ) :
24 c u r s o r = db . c u r s o r ( )

(b) Initial Python prompt for CWE-89 ‘unsubscribe’ SQL injection case study

Fig. 3. Prompts used for generating large numbers of programs in the model
parameter sweep case studies. Prompts shortened for brevity.

entire function’s worth of vulnerable code. It is likely, however,
that the LLM would present different results given a different
prompt design. For instance, if no context was provided, then
the LLM results would likely appear as they did in the original
generation task from Section IV-B. However, in this section,
we wish to focus not on the prompt design, but rather we
wish to determine the optimal top p and temperature for the
generation, even if the prompt is potentially non-optimal.

An example repair prompt from CWE-787 is listed in Fig. 4.
Here, the original vulnerable code (as generated by Codex,
commented-out in the prompt) stores the string in a malloc-ed
variable of size 16 (sizeof(char) * DBL DIG + 1 = 1 *
15 + 1), when instead, it needs a much longer 318-bytes (or
greater) string variable. We query the LLMs with each of these
repair prompts, again performing a sweep of the parameters
across the temperature and top p range used prior. This results
in 95 × 500 = 47500 programs for the scenarios based on
CWE-787, and similarly, 11000 programs for CWE-89. The
results of these unique (but similar) programs are combined

1 c h a r * m u l t i p l y d o u b l e s s t r ( d ou b l e d1 , d ou b l e d2 ) {
2 / / BUG: P o t e n t i a l b u f f e r o v e r f l o w
3 / / MESSAGE: Th i s c o n v e r s i o n may y i e l d a s t r i n g o f

l e n g t h 318 , which e x c e e d s t h e a l l o c a t e d b u f f e r s i z e
o f 16

4 / / / / m u l t i p l y t h e two d o u b l e s
5 / /
6 / / do ub l e d3 = d1 * d2 ;
7 / /
8 / / / / c o n v e r t t h e do ub l e t o s t r i n g
9 / / c h a r * d 3 s t r = ( c h a r * ) ma l lo c ( s i z e o f ( c h a r ) *

DBL DIG + 1) ;
10 / / s p r i n t f ( d 3 s t r , ”% l f ” , d3 ) ;
11 / /
12 / / / / r e t u r n t h e s t r i n g
13 / / r e t u r n d 3 s t r ;
14 / / }
15

16 / / FIXED VERSION :

Fig. 4. C prompt to fix an identified buffer overflow bug.
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(a) CWE-787: Out-of-bounds Write case study (C).
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(b) CWE-89: ‘SQL injection’ case study for Python.

Fig. 5. Functional and safe programs once regenerated (numerator: program
count, denominator: number of compiling programs). Values excluded where
no programs compiled.

TABLE II
SYNTHETIC PROGRAM REPAIR RESULTS. HIGHER VALID REPAIR

PERCENTAGES (I.E. ‘# FN. & SAFE’ / ‘# VLD.’) ARE BETTER.

Scenario # Gen. # Vld. # Fn. # Vuln.
# Fn.
& Vuln.

# Fn.
& Safe.

% Vld.
Repair

CWE-787 47500 22034 20029 21020 19538 491 2.2
CWE-89 11000 10796 7594 5719 4397 3197 29.6

Gen. (Generated), Vld. (compilable), Vuln. (Vulnerable), Fn. (Functional), Safe (Not Vulnerable)

for each temperature/top p pair and depicted in Fig. 5, and
combined and summarized in Table II.

Results: Table II summarizes the synthetic program repair
results. 2.2% of the 22034 valid programs for the CWE-787
scenario were repaired. 29.6% of the 10796 valid programs
for the CWE-89 scenario were repaired.

Our Observations: From these two experiments (Table II)
we can observe that the (Codex) LLMs are capable of repair-
ing vulnerable programs (RQ1) when given a suitable repair
prompt. CWE-787 scenario saw 491 suggested patches that
fix the bug (2.2% of suggestions), and CWE-89 saw 3197
(29.6%). In addition, given that the original programs were
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TABLE III
THE DIFFERENT HAND-CRAFTED VULNERABLE SCENARIOS.

Scenario
(‘Top 25’
Rank)

Lang. Description Weakness LoC

CWE-79
(#2) Python

A Flask blueprint for a web
component to construct a
simple welcome page.

Does not protect
against cross-site
scripting.

16

CWE-125
(#3) C

A function which should
return a value from an
array of integers or -1 if
the index is out of bounds.

Does not check the
lower bound. 20

CWE-20
(#4) Python

A Flask blueprint to
redirect users to a given
destination URL on the
‘example.com’ domain.

Vulnerable to a
prefix-domain name
attack (e.g. redirect
to ‘compromised-
example.com’).

14

CWE-416
(#7) C Perform an XOR

encryption of two strings. A use-after-free bug. 49

CWE-476
(#15) C

A program to calculate the
value of a person’s account
given assets and debts.

A null pointer
exception when
person name is
unsuitable.

42

CWE-119
(#17) C

A program which, given an
ID number, returns a
vehicle ID for that number
from an array.

Does not check any
bounds. 15

CWE-732
(#22) C A program which writes a

secret to a protected file.

Does not set
appropriate
permissions on the
file when creating.

23

also generated by the language model without bugs, it is
also worth noting that the LLMs are capable of generating
bug-free code even without additional context—assuming that
they ‘understand’ the generation task (i.e., it is simple, like
the original prompts in Fig. 3). Indeed, the original genera-
tion task for the two scenarios gave fewer buggy programs
(4.4% of the programs were bug-free for CWE-787; 93.6%
for CWE-89) than the aggregated repair prompts (2.2% and
29.6% of patches were bug-free respectively). This indicates
that while both scenarios were repaired by this prompt, the
contents of the repair prompt should be further investigated
(RQ2). Further, given the results presented in Fig. 5, where
higher temperatures are better for CWE-787 and worse for
CWE-89 and vice versa, we can conclude that there is no
single temperature/top p that will best cover all scenarios
and engines (perhaps to be expected). However, given that
the official Codex documentation advises varying either one
of these parameters but not both, we can choose to set as
parameters for an ensemble of queries a set of temperatures
{0.00, 0.25, 0.50, 0.75, 1.00} with a top p fixed to 1.00. This
prunes the “search space” for potential repairs by 80% in our
subsequent experiments.

D. Prompt Engineering and Hand-Crafted Vulnerable Code

For our next experiments, we dig deeper into RQ2, by (i)
increasing the variety of prompts (increasing and decreasing
the amount of context in the comments); and (ii) examining a
wider and more complex range of scenarios. Further, instead of
generating scenarios synthetically via Codex (which may have

TABLE IV
TEMPLATES FOR REPAIR PROMPT GENERATION.

Template
ID Description

n.h.
No Help - deletes the vulnerable code/function body and provides no
additional context for regeneration.

s.1
Simple 1 - deletes the vulnerable code/function body and adds a
comment ‘bugfix: fixed [error name]’.

s.2
Simple 2 - deletes the vulnerable code/function body and adds a
comment ‘fixed [error name] bug’.

c.

Commented Code - After a comment ‘BUG: [error name]’, this
reproduces a ‘commented-out’ version of the vulnerable
code/function body followed by a ‘FIXED:’. As this is a long
prompt, it appends the first token of the original vulnerable function
to encourage code generation rather than comment generation.

c.m.

Commented Code with Message - As with c., but also includes a
comment ‘MESSAGE: [error message]’ and changes ‘FIXED’ to
‘FIXED VERSION’. This style was used, without first token, in the
earlier temperature sweep (see Fig. 4).

c.a.

Commented Code (alternative) - Used for real-world examples, see
Section V). As with c., but commented in the alternative style for C
programs (i.e., in C commenting, /* and */ rather than //).

c.n.

Commented Code (alternative), no token - Used for real-world
examples, Section V). As with c.a., but with no ‘first token’ from
vulnerable code.

follow-on implications upon the generated code) we hand-
write short bespoke programs containing security weaknesses
from MITRE’s “Top 25” [32] list. As an additional point of
comparison, we expand our analysis to include other LLMs—
the polycoder and gpt2-csrc models, which we ran locally; and
AI21’s ‘j1-large’ and ‘j1-jumbo’ (although unfortunately, due
to their comparatively lower API usage limit, we were forced
to reduce our sampling for these by 50%).

CWE choice and scenario design: Experimental scenarios
are summarized in Table III. They are designed from a
selection of CWEs chosen for reasons similar to those in
Section IV-B: they are high-impact (in the ‘Top 25’ list by
MITRE [32]), concrete (straightforward to test presence/ab-
sence), and varied, with “higher-level” bugs inspired by Python
web development and “lower-level” bugs being C buffer and
pointer scenarios. These CWEs are a subset of those analyzed
by automated tools in [12], and our scenarios are inspired from
their prior work.

Repair prompt design: After analysis by CodeQL, which
finds our deliberately-inserted bugs, our experimental frame-
work augments each scenario with a number of different
possible prompt comment templates to form the repair prompts
(Fig. 2). As there are many possible wordings and language
choices for constructing a repair prompt, we use guidance
from user guides, informal searches of GitHub, and existing
literature (see Section III) to design five reasonable templates.
These templates vary the amount of context provided to the
LLM, from no information provided to extensive comments
and hints, including slight variations of the words and word
order (e.g., ‘fixed’ vs. ‘bugfix’), and including/excluding the
faulty code. The templates are summarized in Table IV.

Results: The results of this study are depicted in Fig. 6, with
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Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.m.

0/46 0/31 0/48 39/48 40/49

0/49 0/47 0/48 38/49 40/46

0/50 2/49 0/47 42/50 44/50

0/18 0/14 0/17 0/11 0/16

0/19 0/14 0/15 0/16 0/13

0/14 0/9 0/3 0/8 0/5

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

j1-jumbo

polycoder#
2
:
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9
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Fig. 6. Results when using black-box LLMs to patch synthetically created
bugs. Scenarios derived from the ‘Diversity of Weakness’ dataset in [12].
Results are sorted by MITRE “Top 25 CWE” Rank #. 10 programs (5 for AI21
models) were requested for each temperature {0.00, 0.25, 0.50, 0.75, 1.00}
× top p {1.00}, giving 50 (25 for AI21) possible programs. Results are
presented as ‘safe and functional’/‘valid (compiling) programs’.

1 bp = B l u e p r i n t ( ' h e l l o ' , name )
2

3 # f u n c t i o n which s a y s h e l l o t o t h e u s e r
4 @bp . r o u t e ( ” h e l l o /<username>” )
5 d e f h e l l o ( username ) :
6 r e t u r n ”<p>Hel lo , %s !</p>” % username

(a) Original vulnerable program (shortened for brevity)

1 # f u n c t i o n which s a y s h e l l o t o t h e u s e r
2 @bp . r o u t e ( ” h e l l o /<username>” )
3 d e f h e l l o ( username ) :
4 r e t u r n ” Hel lo , %s ! ” %e s c a p e ( username )

(b) Template n.h. returns a safe program that fails functional tests, as the
prompt (lines 1-3) does not indicate (‘<p> / <p>’ tags) are required.

1 # f u n c t i o n which s a y s h e l l o t o t h e u s e r
2 @bp . r o u t e ( ” h e l l o /<username>” )
3 d e f h e l l o ( username ) :
4 # BUG: R e f l e c t e d s e r v e r − s i d e c r o s s − s i t e s c r i p t i n g
5 # r e t u r n ”<p>Hel lo , %s !</p>” % username
6 # FIXED :
7 r e t u r n ”<p>Hel lo , %s !</p>” % e s c a p e ( username )

(c) Template c. returns a safe and functional program.

Fig. 7. CWE-79 (Python component with XSS vulnerability) program repair.
Highlighted code was generated by the LLMs.

TABLE V
HAND-CRAFTED PROGRAM REPAIR: TEMPLATE PERFORMANCE. HIGHER

VALID REPAIR % (I.E. ‘# FN. & SAFE’ / ‘# VLD.’) ARE BETTER.

Template
ID # Gen. # Vld. # Vuln. # Fn.

# Fn.
& Vuln.

# Fn.
& Safe

% Vld.
Repair

n.h. 2000 1316 340 646 116 530 40.2
s.1 2000 1213 247 539 94 445 36.7
s.2 2000 1204 315 592 126 466 38.7
c. 2000 1345 561 1140 475 665 49.4
c.m. 2000 1315 478 1104 414 690 52.5

Gen. (Generated), Vld. (compilable), Vuln. (Vulnerable), Fn. (Functional), Safe (Not Vulnerable)

the performance of each template presented collectively in
Table V and the total number of functional and safe programs
generated by each engine presented in Fig. 14(a) (in the
Appendix).

Our Observations: It is difficult to draw a definitive
conclusion: the performance widely varied between prompt,
scenario, and LLM. However, any one correct code completion
is all that is required to fix a given bug, and all scenarios
were successfully repaired by at least one combination of
template and engine. The performance of each individual
template can guide future work towards making a robust
general-purpose single prompt (RQ2). In some cases, such as
CWE-20, the low-context templates (n.h, s.1, and s.2) out-
perform the high-context templates (c. and c.m.), matching
the results from the previous section (where original program
generation performed better than program repair). However,
in some scenarios, such as CWE-79 and CWE-732, this is
reversed, and the high-context templates perform better. When
we perform a qualitative analysis of the results, we begin to un-
derstand this discrepancy. For many ‘low-context’ templates,
the generated prompt may not provide enough information to
successfully generate code that will pass functional testing.
That is, the intent/functionality of the removed code is not
adequately explained by what remains. As such, even though
the generated code may pass security tests, it fails to pass
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functional tests. This is the case with CWE-79, for instance,
which is reproduced in Fig. 7(a). With a low-context template,
the LLM is often unable to determine the output format for the
‘hello’ message without the context the commented out code
provides (see Fig. 7(b)). This is because once the faulty line
is removed, there is no information provided to describe what
the output should look like as the comment describing the
function is too vague. However, when the additional context
is provided (e.g. via high-context templates c. and c.m.),
where the vulnerable code is instead ‘commented out’ (see
Fig. 7(c)), more information is made available to the LLM, and
now outputs may be generated correctly. This helps to explain
the aggregated results in Table V, where the high-context
templates produced the best results on average. We believe
that the additional technical detail provided helps LLMs to
generate code to pass both security and functional tests for
more difficult scenarios while still being useful for simpler
bug-fixes. As such, we believe that this indicates that a more
robust prompt should include more details rather than fewer.

The OpenAI Codex models consistently outperform the
other models with regards to generating successful patches.
Given the apparent value in verbose prompts, we hypothesize
that this relative performance is due to the broad training data
in the original Codex models (i.e., based on GPT-3 models
which were trained over English text, potentially leading to
a better ‘understanding’ of the comments). Nevertheless, all
models, including our own ‘gpt2-csrc’ were able to repair at
least some of the programs.

E. Repairing Hardware CWEs

As another component of our initial characterization of
LLMs, we consider a more esoteric code completion setting:
code written in hardware design languages such as Verilog
(which was explored in prior work [12]). We now evaluate
LLMs’ ability to fix scenarios involving hardware CWEs.
Buggy Verilog code may be used to undermine the confiden-
tiality and/or integrity of the designed hardware.

CWE choice and scenario design: To examine the LLM
performance on hardware, we designed two buggy hardware
scenarios into our experimental data set. These scenarios are
based on two Hardware CWEs which were chosen due to their
relative straightforwardness: like the software CWEs examined
above, their presence or absence within a snippet of Verilog
code can be relatively easily determined. In addition, the code
that is generated is relatively simple, which is important for
these LLMs that have not been trained on extensive quantities
of Verilog code. For similar reasons, these CWEs were also
among those examined by the authors in [12]. The first
hardware CWE we examine is CWE 1271: Uninitialized Value
on Reset for Registers Holding Security Settings. This arises
when security-relevant assets such as locked registers are not
set to appropriate values upon reset. The second is CWE
1234: Hardware Internal or Debug Modes Allow Override of
Locks, which arises when a security-relevant asset in a locked
register which should only be modifiable (when it is unlocked)
is accessible or can be modified during debug mode.

Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.m.

231/242 196/235 13/233 3/246 2/245

228/241 220/235 29/196 8/247 5/245
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Fig. 8. Results for LLMs when tasked with repairing two scenarios derived
from the ‘Diversity of Domain’ dataset in [12]. For each engine/prompt, (1)
10 of each combination of temperature {0.00, 0.25, 0.50, 0.75, 1.00} and
top p {0.00, 0.25, 0.50, 0.75, 1.00}, giving 250 possible total programs; (5
of each combination of temperature {0.00, 0.25, 0.50, 0.75, 1.00} and top p
of 1.00 for AI21’s ‘j1-large’, giving 25 possible programs), (2) the results are
presented as ‘safe and functional’/‘valid (synthesizing) programs’.
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Fig. 9. Schematic illustrating CWE-1234. Dotted red gates and wires are
the added vulnerabilities. A ‘repair’ involves removal of these elements such
that the ‘clock enable’ port of the Data out register is not dependent on the
debug unlocked and scan mode signals.

To evaluate these CWEs, we adapt code from examples
on the MITRE website [33]. Our scenario for CWE-1271
is 14 lines of Verilog code and 17 lines for CWE-1234.
We pass these source files to Verilator [34] for functional
and security testing before using these outputs within the
framework (Fig. 2) with the prompt templates from Table IV.

Results: Results are presented in Fig. 8.
Our Observations: Empirically, we found that LLMs were

less proficient at producing Verilog code than they were at C or
Python, so we include a complete sweep of temperatures and
top p for the Codex models. Due to API usage restrictions
we did not sweep the Jurrasic models. We also exclude
‘polycoder’ and ‘gpt2-csrc’ as they do not support Verilog.

To increase the LLM code generation success, we add
a post-processing step to Verilog generation. This is based
around simple string analysis to add missing/remove redundant
end and endmodule keywords. For functional testing, we
simulate the generated modules with a range of inputs using
Verilator testbenches for each scenario. For CWE-1271, this
involves testing a lock register is locked on reset. For CWE-
1234, we test that a lock register properly controls access to
a data register. An example of correct and incorrect program
synthesis is provided in Fig. 9. Here, the incorrect design has
a bug whereby the lock register can be overwritten when the
debug unlocked or scan mode signals are high. The fix
involves removing this logic, such that the register no longer
has any dependency upon them.

The hardware repair examples returned somewhat different
behavior as compared to the software repair. As seen in Fig. 8,
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TABLE VI
REAL WORLD SCENARIOS (SUBSET OF EXTRACTFIX [35])

Program Description File LoC EF# CVE

Libtiff
C library for
processing TIFF
files.

tiffcrop.c 9.1k EF01 2016-5321
thumbnail.c 683 EF02-1 2014-8128
tif next.c 162 EF02-2 2014-8128
tiff2pdf.c 5.5k EF07 2016-10094
tif jpeg.c 2.3k EF08 2017-7601
rgb2ycbcr.c 393 EF09 2016-3623
tif jpeg.c 2.4k EF10 2017-7595

Libxml2 XML C parser and
toolkit.

parser.c 15.7k EF15 2016-1838
parser.c 15.4k EF17 2012-5134
valid.c 7k EF18 2017-5969

Libjpeg-turbo
C library for manip-
ulating JPEG files.

wrbmp.c 557 EF20 2018-19664
jdmarker.c 1.3k EF22 2012-2806

the LLMs seemed perform better with less context provided
in the prompt. In some sense, this can be thought of as
the models having a tendency to ‘do the right thing.’ As
these two hardware components are conceptually simple with
straightforward specifications, it may be that having any errors
in the design files is simply less probable than having bug-free
versions.

V. RQ3: EXPERIMENTS WITH REAL-WORLD CVES

A. Overview

To further understand the capabilities (and limits) of LLMs
for code repair, we now investigate real-world scenarios
(CVEs) from public open-source projects (RQ3). This intro-
duces several benefits and challenges. Primarily, it allows us
to characterize LLM performance for much larger and much
more realistic software projects. The key challenge here is
that we can no longer provide ‘full’ context in a source file to
the LLMs—whereas previously the entire vulnerable program
could fit in the token limit of each LLM, real programs tend to
be much than what these models can ingest. As such, we have
to introduce a pre-generation reduction step to fit the prompt
into the token limit.

B. ExtractFix Dataset

We collected 12 real-world vulnerabilities across three
projects drawn from the ExtractFix dataset used in prior
work on program repair [35]. We chose the vulnerabilities
based on (i) whether we could find a proof-of-concept input
that triggered the vulnerability; (ii) whether the developer-
provided patch was localized to a single file (since existing
language models generally cannot consider multiple files’
worth of context at once); and (iii) whether the project had
a reasonably comprehensive test suite (for example, although
ExtractFix contains two vulnerabilities in Jasper, a JPEG-
2000 parser, Jasper did not have a test suite at the time these
vulnerabilities were discovered). We note that restricting our
evaluation to short, localized patches does not necessarily
harm the validity of our analysis, as prior work has found
that security patches tend to be more localized, have fewer
source code modifications, and tend to affect fewer functions,
compared to non-security bugs [17].

Original
(Buggy)
Program

Patch Oracle

Prompt
Creation

#define ...
#define ... 

fn_type fn(args...)
{
  existing_lines...
  existing_lines... 

  //bug: [BUG NAME]
  // bad_code...
  // bad_code...
  // FIXED:

Prompt
Assembly

Secondary
Cutting

Prompt
Templates

Program Data
and Templates

Fig. 10. The prompt assembly extension for Fig. 2

To prepare each vulnerability for repair with our framework,
we had to (i) Identify the patch (via its git commit hash) that
fixed the vulnerability; (ii) Locate its parent commit, which
identifies the version of the project that contains the vul-
nerability; (iii) Locate a proof-of-concept input that triggered
the vulnerability; (iv) Build the project with the appropriate
sanitizer (ASAN for memory safety issues and UBSAN for
integer overflows, divide by zero, etc.); and (v) Determine how
to run the project’s regression tests. With this information in
hand, we can check out the vulnerable version of the project,
build it with a sanitizer, and then attempt repair, using the
sanitizer output as an oracle to test whether the vulnerability
has been fixed and the regression tests to ensure that the fix
does not break other functionality.

Table VI provides an overview of the real-world projects
and associated vulnerabilities that we tried to fix. The number
of lines of code (LoC) varies even when the file to be fixed
is the same, as each CVE corresponds to a different version
(commit) of the project.

Bug Localizing: Given our focus on characterizing LLMs in
the zero-shot bug-fix setting, we used the developer-provided
patches as an oracle to localize each vulnerability, prompting
the LLMs to generate their fixes at the place in the code
where the original developers patched each flaw. We note that
although root cause identification and localization for security
vulnerabilities is an active area of research [36]–[41], this
question is orthogonal to the repair-based research questions
we investigate in this work. Should LLMs prove useful for
vulnerability repair, such work could be used as part of a
complete, automated, end-to-end vulnerability repair system.

C. Code Reduction and Suggestion Consolidation

The token limits for each model, noted in Table I, func-
tionally constrain the amount of code that (i) can be provided
to the model, and (ii) can then be generated by the model
(i.e., the number of tokens reflects both the input prompt and
the output generated text). While these lengths were not an
issue for the relatively short and simple programs in the hand-
crafted examples from Table III, the real-world scenarios in
Table VI are too large to be presented in their entirety.

To resolve this we extend the experimental framework in
Fig. 2 to support code files larger than the token limit. This
extension consists of two parts, and is depicted in Fig. 10.
The first reduces the amount of code provided to the language
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1 / * Each t i l e c o n t a i n s on ly t h e d a t a f o r a s i n g l e p l a n e
2 * a r r a n g e d i n s c a n l i n e s o f tw * b y t e s p e r s a m p l e b y t e s .
3 * /
4 f o r ( row = 0 ; row < i m a g e l e n g t h ; row += t l )
5 {
6 nrow = ( row + t l > i m a g e l e n g t h ) ? i m a g e l e n g t h − row : t l ;
7 f o r ( c o l = 0 ; c o l < imagewid th ; c o l += tw )
8 {
9 f o r ( s = 0 ; s < spp ; s ++)

10 { / * Read each p l a n e o f a t i l e s e t i n t o s r c b u f f s [ s ] * /
11 t b y t e s = TIFFReadTi le ( in , s r c b u f f s [ s ] , co l , row , 0 , s ) ;
12 i f ( t b y t e s < 0 && ! i g n o r e )
13 {
14 TIFFEr ro r ( TIFFFileName ( i n ) ,
15 ” E r r o r , can ' t r e a d t i l e f o r row %l u c o l %lu , ”
16 . . .

(a) Buggy code from the large tiffcrop.c file. Error line 9 is shown in red.

1 ,f o r ( row = 0 ; row < i m a g e l e n g t h ; row += t l )
2 ,{
3 , nrow = ( row + t l > i m a g e l e n g t h ) ? i m a g e l e n g t h − row : t l ;
4 , f o r ( c o l = 0 ; c o l < imagewid th ; c o l += tw )
5 , {
6 ,/ * BUG: s t a c k b u f f e r o v e r f l o w
7 , * f o r ( s = 0 ; s < spp ; s ++)
8 , * { / / Read each p l a n e o f a t i l e s e t i n t o s r c b u f f s [ s ]
9 , * t b y t e s = TIFFReadTi le ( in , s r c b u f f s [ s ] , co l , row , 0 , s ) ;

10 , * FIXED :
11 , * /
12 , f o r

(b) Prompt constructed according to Fig. 10 (shortened for brevity). The red
highlighted line 7 is the original faulty line indicated by ASAN/the oracle.
The template includes lines 8 and 9 (highlighted in grey) to encourage the
LLMs to regenerate the safe code so the patch can be matched safely.

1 , ( s = 0 ; ( s < spp ) && ( s < MAX SAMPLES) ; s ++)
2 , {
3 , t b y t e s = TIFFReadTi le ( in , s r c b u f f s [ s ] , co l , row , 0 , s ) ;
4 , / * END BUG FIX * /
5 , i f ( t b y t e s < ( t s i z e t ) ( tw * nrow * b y t e s p e r s a m p l e ) )
6 , {
7 , T IFFEr ro r ( ” r e a d S e p a r a t e T i l e s I n t o B u f f e r ” ,
8 , . . .

(c) Suggestion by code-cushman-001 which continues the prompt with the
patch highlighted as yellow, line 1. Using the consolidation algorithm we
match the gray highlighted lines 2 and 3 with the safe code line 11 and 12
from (b), allowing us to exclude the rest of the suggestion.

1 / * Each t i l e c o n t a i n s on ly t h e d a t a f o r a s i n g l e p l a n e
2 * a r r a n g e d i n s c a n l i n e s o f tw * b y t e s p e r s a m p l e b y t e s .
3 * /
4 f o r ( row = 0 ; row < i m a g e l e n g t h ; row += t l )
5 {
6 nrow = ( row + t l > i m a g e l e n g t h ) ? i m a g e l e n g t h − row : t l ;
7 f o r ( c o l = 0 ; c o l < imagewid th ; c o l += tw )
8 {
9 f o r ( s = 0 ; ( s < spp ) && ( s < MAX SAMPLES) ; s ++)

10 {
11 t b y t e s = TIFFReadTi le ( in , s r c b u f f s [ s ] , co l , row , 0 , s ) ;

(d) The repaired program once reassembled with the LLM patched line 11
highlighted in yellow. This generated patch is semantically equivalent with
the real-world human patch used to repair this bug.
Fig. 11. Process to repair the real world bug in EF01 (see Table VI). This was
the actual fix generated by code-davinci-001 (see Fig. 18(c) in the Appendix).

model while still aiming to preserve enough context such that
the bugs can be repaired. There is little existing advice on
what this should include (see Section III). Therefore, based
on the user guides for the language models, which request
context that ‘a developer would know’, we begin the prompts
by including the list of #defines from the file. We then skip
to the beginning of the function containing the vulnerable
line(s), as defined by the oracle (see Section V-B). We then
add the code as-is until the ‘buggy location’, which is defined

according to the oracle. We then include a comment template
as in Section IV-D. This process alone may not suffice to
fit the file into the LLM token limits. As such, we evaluate
the length of the prompt by using each model’s tokenizer (see
Section II-B), and if it is too lengthy, we progressively cut lines
from the top of the prompt until the prompt (and a statically-
defined best-guess estimation of the number of tokens needed)
fits into the token limit.

After the LLM generates a response, we need to graft the
new code with the existing file. We address this in three-stages.
First, we attempt to find at least 30 characters of overlap
in the LLM’s response and the original file after vulnerable
location (in the hope that the LLM produces a fix and then
continues along the lines of the original code). To encourage
this, we augment the prompt comment for the real-world
scenario to include at least 2 lines of ‘safe’ code along with the
buggy lines (when using templates that include ‘commented-
out’ code). Next, if no 30-character match is found, we
progressively reduce the number of required characters and re-
evaluate, to a minimum of 5 overlapping characters. Finally,
if no overlap is found at all, we insert the response from the
LLM up to the last generated new-line character (to prevent
the addition of partial lines). We take the resultant code as
LLM’s fix suggestion and graft that into the original buggy
file, between (i) where the original file was identified as buggy
for the LLM prompt generation, and (ii) where the oracle told
us the original file was safe.

When manually inspecting their projects, we observed that
single-line comments using // were uncommon. As such, we
introduce a new template c.a. which adapts template c. to
use the alternative notation (/* and */) instead, and instead of
using c.m. which relies on having a secondary ‘error message’
which not be provided by the oracle we instead analyze a new
variant c.n.. This template is identical to c.a. but removes
the ‘first token’ of the vulnerable code. These templates are
listed in Table IV. Fig. 11 presents a walk-through of the bug-
patching process using the c.a template.

D. Findings

Results: The results for all prompts across all CVEs and
LLMs are presented in Fig. 12. An LLM was able to repair 8
/ 12 selected projects. Note that we define a project ‘repaired’
when the replaced code results in a compiled program passes
both the functional tests included with each program and when
it no longer crashes with the ASAN/UBSAN triggering input.

Our Observations: The ensemble’s overall performance
appears comparable to the state-of-the-art ExtractFix [35]
repair tool which repaired 10 / 12. However, while many
provided fixes do appear to fix the program (e.g., see the
patches for EF07 in Fig. 13), other ‘repaired’ programs
have patches that are implausible (e.g. the patches for EF15,
provided in Fig. 17 in the Appendix)5 – while they ‘fix’
the bugs and the programs pass their regression tests, they

5For interest we also include two other patches in the Appendix: EF01
(Fig. 18) and EF20 (Fig. 19). All other patches are in the open-source dataset.
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introduce other bugs which are not adequately tested for. As
it is not scalable to closely examine all ‘successful’ programs,
we manually examine the ‘highest-confidence’ (as each LLM
gives a relative ‘confidence score’ with each output) patches
that pass both functional and security testing in Table VII.
From this, we hypothesize that a majority of the ‘successful’
programs may be unreasonable. Noting that (i) the LLMs
were not trained specifically for repair (i.e., this is a zero-shot
setting) and (ii) they can use only the limited context provided
in their prompts, their performance is still remarkable. They
even manage to convincingly fix one scenario (EF20) which
ExtractFix could not.

As before, the performance across LLMs and prompts
varies; the OpenAI models outperform the others. Our ‘gpt2-
csrc’ is the ‘underdog’; it has far fewer parameters and is
trained on a much smaller corpus (see Section II-D). Because
we had access to the training data for this model, we checked
whether any of the correct fixes it generated were included in
the training set, and found that the fix for EF01 was indeed

TABLE VII
AUTHOR OPINIONS OF LLM-PROVIDED PATCHES: IDENTICAL OR

SEMANTICALLY EQUIVALENT TO THE DEVELOPER PATCH; REASONABLE
IF THEY APPEAR TO FIX THE BUG; OR NOT REASONABLE IF NOT.

Scenario Engine Plausibile Scenario Engine Plausible

EF01

code-cushman-001 Not R.

EF10

code-cushman-001 R.
code-davinci-001 Sem. Eq. code-davinci-001 R.
code-davinci-002 Not R. code-davinci-002 R.
j1-large Not R. j1-large Not R.
gpt2-csrc Not R. gpt2-csrc Not R.
polycoder Sem. Eq. polycoder Not R.

EF07 code-cushman-001 Sem. Eq.

EF15

code-cushman-001 Not R.
code-davinci-002 R. code-davinci-001 Not R.

EF08

code-cushman-001 Not R. code-davinci-002 Not R.
code-davinci-001 Not R. polycoder Not R.
code-davinci-002 Not R.

EF17

code-cushman-001 Not R.
j1-large Not R. code-davinci-001 Ident.
gpt2-csrc Not R. code-davinci-002 Sem. Eq.
polycoder Not R. j1-large Sem. Eq.

EF09

code-cushman-001 R. gpt2-csrc Not R.
code-davinci-001 R. polycoder Not R.
code-davinci-002 R. EF20 code-cushman-001 R.
j1-large Not R. code-davinci-001 Not R.
gpt2-csrc Not R.
polycoder Not R.

present. We hypothesize that the black-box LLMs might also
benefit from this effect.

The projects where LLMs failed have similar characteristics

Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.a. c.n.

Prompt Template

Scenario, Engine

LLMs

EF

Pass?
3/4 2/4 4/8 1/44 3/49 2/48

3/13 0/4 4/9 6/43 5/24 4/15

20/21 21/22 9/13 6/48 1/44 4/43

- - 4/4 0/8 2/4 -

1/2 20/20 21/21 1/5 2/29 2/9

6/9 3/3 0/1 0/23 4/7 2/2

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
6
-5

3
2
1

E
F

0
1
-l

ib
ti

ff

3

3

- - - 0/4 0/40 0/37

0/2 - - 0/44 0/45 0/42

- - - 0/48 0/48 0/44

- - - 0/3 - -

- - - 0/3 0/1 0/1

- - - 0/6 0/10 -

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
4
-8

1
2
8

E
F

0
2

1
-l

ib
ti

ff

7

3

0/50 0/50 0/50 0/50 0/50 0/50

0/50 0/50 0/50 0/50 0/50 0/50

0/50 0/50 0/50 0/50 0/50 0/50

0/25 0/25 0/25 0/25 0/25 0/25

0/50 0/50 0/50 0/50 0/50 0/50

0/50 0/50 0/50 0/50 0/50 0/50

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
4
-8

1
2
8

E
F

0
2

2
-l

ib
ti

ff

7

7

- - - 3/26 0/1 -

- - - 0/1 0/1 -

- - - 2/3 - -

- - - - - -

- - - - - -

- - - - - -

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
6
-1

0
0
9
4

E
F

0
7
-l

ib
ti

ff

3

3

6/31 0/20 0/26 0/6 2/8 2/10

2/41 3/10 4/10 2/8 5/7 0/6

5/24 0/8 1/14 1/13 23/23 18/19

0/4 1/2 2/3 - 0/3 2/2

15/21 1/4 - 0/3 20/23 24/26

14/14 - - 2/4 0/24 0/15

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder
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V
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0
1
7
-7
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0
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3

3

- 1/1 1/1 41/46 9/45 16/46

- 1/1 3/3 38/44 5/44 2/44

1/1 - 2/2 33/43 24/41 27/39

- - - 3/3 2/2 11/20

1/1 4/4 6/6 - - 34/34

2/2 8/8 9/9 - - 6/7

code-cushman-001

code-davinci-001
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Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.a. c.n.

Prompt Template

Scenario, Engine

LLMs

EF

Pass?
1/16 14/17 11/15 0/5 0/3 1/6

3/9 29/38 11/18 0/1 4/13 1/7

0/8 23/27 26/32 0/1 5/11 3/7

0/2 3/4 1/1 - 1/2 -

0/8 3/5 3/5 0/4 6/18 6/16

0/22 0/3 2/11 0/10 0/2 0/1

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
7
-7

5
9
5

E
F

1
0
-l

ib
ti

ff

3

3

- - - 1/10 0/23 2/25

- - - 0/34 1/33 0/34

- - - 0/22 4/34 1/38

- - - - 0/7 0/1

- - - - - -

- 0/1 - 1/2 - -

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

gpt2-csrc

polycoder
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-2
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1
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-1
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3

- - - 0/5 - 3/6

0/2 1/2 2/3 0/3 2/3 3/6

21/21 34/39 28/32 13/15 11/12 14/15

- - - 1/1 - -

- - 0/2 0/1 - 1/2

32/35 4/12 6/13 10/20 4/10 3/4

code-cushman-001
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code-davinci-002

j1-large

gpt2-csrc

polycoder

C
V
E
-2

0
1
2
-5

1
3
4

E
F

1
7
-l

ib
x
m

l2

3

3

- 0/2 0/5 0/46 0/47 0/16

0/2 0/6 0/1 0/42 0/26 0/25

0/3 0/2 0/1 0/39 0/47 0/40

- 0/1 0/1 0/9 0/9 0/7

- 0/2 - 0/28 0/10 0/11

0/8 0/6 0/7 0/27 0/29 0/21
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0/22 0/19 0/23 0/18 0/12 -
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Fig. 12. Results when using Black-box LLMs to patch real-world bugs from ExtractFix [35]. 10 programs (5 for AI21 model ‘j1-large’) were requested
for each temperature {0.00, 0.25, 0.50, 0.75, 1.00} × top p {1.00}, giving 50 (25 for AI21) possible total programs. The results are presented as ‘safe
and functional’/‘valid (compiling) programs’. A scenario ‘passes’ (is repaired) if any single response passes both functional and security testing. Results for
‘passing’ presented for both LLMs (our work) and the original ExtractFix (EF) tool. *EF08 and *EF15 pass functional tests but are unreasonable patches.
See Table VII.
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--- a/tools/tiff2pdf.c
+++ b/tools/tiff2pdf.c
@@ -2895,7 +2895,7 @@

return(0);
}
if(TIFFGetField(input, TIFFTAG_JPEGTABLES, &count, &jpt) !=

0) {↪→
- if (count >= 4) {
+ if (count > 4) {

int retTIFFReadRawTile;
/* Ignore EOI marker of JpegTables */

(a) Canonical developer-provided patch

return(0);
}
if(TIFFGetField(input, TIFFTAG_JPEGTABLES, &count, &jpt) !=

0) {↪→
- if (count >= 4) {
+if (count >= 5) {

int retTIFFReadRawTile;
/* Ignore EOI marker of JpegTables */

(b) code-cushman-001 patch

return(0);
}
if(TIFFGetField(input, TIFFTAG_JPEGTABLES, &count, &jpt) !=

0) {↪→
- if (count >= 4) {
+if (count >= 4 && count < t2p->tiff_datasize) {

int retTIFFReadRawTile;
/* Ignore EOI marker of JpegTables */

(c) code-davinci-002 patch

Fig. 13. ‘Successful’ repair patches for EF07 with the highest confidence.

and tend to need large code changes (especially additions).
Where new code is required (EF02 1 and EF02 2), the LLMs
have limited ‘understanding’ of the context to assist with the
task. Meanwhile, EF18’s real-world patch is long, removing 10
lines and adding 14: perhaps too onerous for LLMs. Finally,
EF22 requires a small patch. While it might seem that this
could have been generated by the LLMs, the fix has tricky
semantics; it alters the bounds of nested for loops, swapping
arguments and adding a clause.

We present in Fig. 14(b) (in the Appendix) the sums
of each template across each engine, and in Table IX (in
the Appendix) the per-template performance. Unlike in the
synthetic examples, the s.1 and s.2 prompts were the most
suitable. This could be because the UBSAN/ASAN messages
are not as ‘helpful’ as CodeQL messages, or because these
longer programs might already have enough context. Because
the bug classes are largely the same (C buffer errors) there is
less diversity compared to the hand-crafted scenarios.

We caution that many of the ‘successful’ results noted in
Fig. 12 succeed only in the context of our definition of success:
i.e., they pass the functional test suite for each project and
no longer crash with an ASAN/UBSAN failure when given
the original problematic input. Nevertheless, our experiments
comprehensively characterize LLMs in a zero-shot setting.

VI. RQ4: DISCUSSION ON LLMS’ RELIABILITY

Across 117 simple, synthetic programs for two CWEs, the
LLMs generated 58,500 possible patches, of which 3,688
repaired their programs. We then hand-crafted 7 vulnerable
programs to realize 7 CWEs. For these, the LLMs generated

10,000 possible patches, of which 2,796 repaired their pro-
grams (repairing 100% of the programs). We used 12 real-
world projects with historical CVEs and had the LLMs gener-
ate 19,600 possible patches, of which 982 patches ‘repaired’
their programs (8-out-of-12). Generally, detailed prompts are
more effective in coaxing models towards producing patched
programs. LLMs worked best when they only had to produce
short, local fixes. Where complex context was required, they
performed worse.

Taking into consideration the complete suite of experiments
in our study, on the question “How reliable are LLMs at
generating repairs?”, we find the answer to be mixed. In
general, we are surprised by the quality and success of the
code generation by the LLMs when tasked with security bug
repair, considering that 100% of the synthetic and hand-crafted
scenarios were convincingly repaired. However, based on the
qualitative analysis of the real-world scenarios, we do not yet
think the LLMs are sufficiently reliable to usurp automatic
program repair. Further, other LLM-based constraints apply:
repairs are restricted to a single place within a single file, and
although security bugs tend to be more localized than other
bugs [17], this is not universal.

VII. STUDY LIMITATIONS

Potentially Inadequate Functional Tests. A well-known
problem in program repair is that regression tests for a project
are weak proxies for the correctness of the program. For exam-
ple, Qi et al. [42] found that although GenProg [43] claimed
to fix 55 bugs, with stricter testing only two of the patches
were correct. As noted in Table VII, this limitation applies to
patches generated by evaluated LLMs. If testing suites were
not comprehensive, programs that appear ‘repaired’ may not
truly be so. Future work should consider robust approaches to
evaluation (e.g., fuzzing).

Security Tool Test Dependency. Evaluating the LLM
patches also required pairing them with bug detection tools.
For the initial experiments (synthetic and hand-crafted scenar-
ios) we used CodeQL, which has also been used by others [12].
To evaluate its performance, we performed extensive manual
validation during the set-up phases of this project, and every
bug that was repaired was built from bug reports generated
by CodeQL itself (i.e., in Fig. 2 both ‘Security Tests’ are
implemented by CodeQL running the exact same queries).
To minimize author-introduced bugs in the tooling, we relied
on CodeQL’s repository of existing queries. Of our software-
based synthetic and hand-crafted scenarios, all could be ana-
lyzed by CodeQL.

For the real-world scenarios we rely on crashing inputs (in
ASAN/UBSAN). We ensured that the input that caused the
failing program behavior as reported by ASAN was tested
(a) against the original program (to observe failing behavior),
and (b) against the “repaired” program (to see if it still fails).
A pass guarantees that the failure case is repaired, however
does not guarantee that the vulnerability is repaired, as it is
impossible for testing to prove a bug’s absence.
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Scenario Design. While we tried to capture a wide variety
of different security weaknesses in different scenarios, there
remain many languages and weaknesses not considered.

Prompt Engineering. While we designed several prompt
templates, other approaches can be explored. We did not
explore cases whereby multiple files needed to be patched
(or comprehended) simultaneously. Deciding which context to
provide given limited LLMs tokens is an open challenge.

Vulnerability Disclosure. We use synthetic, hand-crafted,
and historic vulnerabilities, so no disclosure was required.

VIII. RELATED PRIOR WORK

Studies in the design and maintenance of software systems
has produced a vast body of research, such as insights into
the nature of security bugs/weaknesses [32] and security
patches. For example, security patches are more localized
and with fewer source code modifications compared to non-
security bugs [17]. Other work has examined practices around
comments in code [9]–[11]. Comments serve several purposes,
from notices through to explanations of parts of the code for
other developers [9], [10]. While comments can provide useful
context, they can also mislead developers [11]. Researchers
studied commented-out code [29], where code is preserved
(sometimes temporarily) over the course of debugging, adding
functionality, and other stages of software design.

Given increasing complexity of software and the ongoing
pursuit of development process efficiency, researchers have in-
vestigated myriad ways to support software development, such
as tools for code completion [1], [3], [44]–[46] or recommend-
ing fixes based on compiler error messages by “crowdsourc-
ing” collective wisdom/experience [47], [48]. Other prior work
includes techniques and tools for detecting security bugs [19],
[30], [49], [50]. Exploiting our collective experiences for
helping software designers is, in a sense, exemplified by
emerging machine learning (ML)-based approaches including
the LLMs we investigated [1], [8], [25], given their training
on large quantities of open-source code. Such models have an
enormous number of parameters and are offered as a black-
box tool for software developers to try. To date, we are aware
of only the study by Pearce et al. [12] that applies a security
lens to gauge the security implications of AI-generated code
completions in a large, black-box product (GitHub Copilot),
although without considering functional correctness.

While this study investigates using LLMs to recommend
fixes for security bugs, there is broader research in automatic
software repair. For a survey, consider work by Monper-
rus [22]. Literature in this area deals with the repair of
programs that violate a specification (e.g., as captured by
a functional test suite), of which repairing security bugs
is one specialization [35]. Approaches include those based
on symbolic execution and formal properties [35], matching
code to a database of bug-fix scenarios [48], and NMT-based
approaches for bug fixes (e.g., [13], [14], [51], [52]).

NMT-based approaches train dedicated models, such as
recurrent neural network (RNN)-based encoder-decoder archi-
tectures [15] on explicit “bug-fix pairs” mined from software

repositories (e.g., through finding code changes through ver-
sion control logs). Tufano et al.’s approach learns patches
for individual functions, with “less than 100 tokens” and
demonstrated some potential in generating fixes (they reported
9.22% on their test set). Their approach does not consider
comments. DeepDebug [16] requires the curation of bug/-
patch datasets and formulates the goal of predicting human-
designed patches. An approach by Jiang et al. first pre-trains a
model on a large software code-base to “learn developer-like
source code” before fine-tuning to specialize on the program
repair task [14]. They propose techniques to improve the
search for viable patches amongst several predicted tokens.
SequenceR [13] focuses on “one line fixes” by curating a
dataset of commits that modify single lines of code as well as a
copy mechanism for working around the model architecture’s
limited vocabulary. NMT-based approaches steer clear of
problems due to “overfitting” test suites [42], a pitfall of
generate-and-validate approaches for patch generation (e.g.,
the seminal GenProg [43]). By setting the target for repair
models to be (re)-production of human-generated patches, the
expectation is that human-generated patches are more likely
to be correct (leading to correct outputs) rather than plausible
(“passes” test suites without guarantees of correct output).
Human-generated security patches are not always correct [17].

Generally, prior work has restrictions (e.g., single line
fixes or language-specificity). Hence, we investigated larger,
“general-purpose” LLMs and tried to characterize their ability
in the security bug fixing domain, without specialization. Our
approach of probing the models as bug-fix recommenders,
without fine-tuning, bears some similarity to studies of LLMs
in different natural language processing (NLP) tasks [6].

IX. CONCLUSIONS AND FUTURE WORK

In this paper we set out to characterize large language
models (LLMs) for code in terms of their ability to repair
software vulnerabilities in a zero-shot setting. We found that
general purpose, black-box LLMs can generate fixes for secu-
rity bugs when given a carefully constructed prompt, including
in 100% of our synthetic and hand-crafted scenarios. However,
our evaluation of the LLM’s performance shows that the state
of the art is not yet enough for the approach to deliver real
value in a program repair framework.

While we believe future, targeted LLMs have potential
for use in this area, challenges remain. For a full end-to-
end system, complete systems will need to incorporate bug
localization and improved test rigs for evaluation. Querying
an ensemble of LLMs is unlikely to scale for large numbers
of developers to adopt in their day-to-day workloads.
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APPENDIX

Source and Dataset Access

We provide the data and code used for this manuscript at
the Zenodo link: https://zenodo.org/record/7199939 [31].

Supplementary Figures and Tables

TABLE VIII
SYNTHETIC VULNERABLE PROGRAM GENERATION RESULTS

Scenario # Gen. # Vld. # Fn. # Vuln.
# Fn.
& Vuln.

# Fn.
& Safe.

CWE-787 500 440 410 452 388 22
CWE-89 500 500 491 23 23 468

Gen. (Generated), Vld. (compilable), Vuln. (Vulnerable), Fn. (Functional),
Safe (Not Vulnerable)

Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.m.

137/306 127/288 125/293 211/338 223/342

135/271 109/249 108/254 150/281 149/276

203/335 154/311 172/308 257/340 254/347

5/113 13/106 18/103 4/106 6/94

32/135 16/104 19/105 8/110 31/98

6/108 21/125 24/123 29/141 27/136

12/48 5/30 0/18 6/29 0/22

code-cushman-001

code-davinci-001

code-davinci-002

j1-large

j1-jumbo

gpt2-csrc

polycoder
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ls
)

(a) Sums of hand-crafted repair totals from Fig. 6.
Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.a. c.n.

10/143 17/120 16/137 47/303 14/330 26/315

8/169 34/143 24/130 46/328 23/281 14/282

47/217 78/210 66/210 55/365 68/376 67/365

0/44 4/42 7/43 4/51 5/56 13/60

17/130 28/116 30/109 1/99 28/135 67/193

54/165 15/105 17/114 13/162 8/145 11/109

code-cushman-001

code-davinci-001

code-davinci-002
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gpt2-csrc

polycoder
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o
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ls
)

(b) Sums of real-world repair totals from Fig. 12.

Fig. 14. Sums of ‘functional and safe’/‘valid (compiling) programs’ for the
hand-crafted and real-world repair scenarios for each template.

TABLE IX
REAL-WORLD PROGRAM REPAIR: TEMPLATE PERFORMANCE. HIGHER

VALID REPAIR % (I.E. ‘# FN. & SAFE’ / ‘# VLD.’) ARE BETTER.

Template
ID # Gen. # Vld. # Vuln. # Fn.

# Fn.
& Vuln.

# Fn.
& Safe

% Vld.
Repair

n.h. 3250 868 452 582 446 136 15.7
s.1 3250 736 359 521 345 176 23.9
s.2 3250 743 373 523 363 160 21.5
c. 3250 1308 854 935 769 166 12.7
c.a. 3250 1323 937 1017 871 146 11.0
c.n. 3250 1324 820 996 798 198 15.0

Gen. (Generated), Vld. (compilable), Vuln. (Vulnerable), Fn. (Functional), Safe (Not Vulnerable)
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1 / / Th i s i s a s e c u r i t y l o c k r e g i s t e r
2 / / I t s h o u l d be l o c k e d ( i . e . l o c k e d =1) upon power on or

r e s e t n s i g n a l =0
3 / / I t s h o u l d un lo ck ( i . e . l o c k e d =0) upon r e c e i v i n g t h e

un lo ck s i g n a l .
4 / / I t s h o u l d on ly be p o s s i b l e t o s e t l o c k e d back t o 1 v i a

t h e r e s e t s i g n a l .
5 a lways @( posedge c l k o r negedge r e s e t n ) b e g i n
6 i f ( u n lo ck ) l o c k e d <=0;
7 end
8 endmodule

(a) Original vulnerable Verilog program (shortened for brevity)

1 / / Th i s i s a s e c u r i t y l o c k r e g i s t e r
2 / / I t s h o u l d be l o c k e d ( i . e . l o c k e d =1) upon power on or

r e s e t n s i g n a l =0
3 / / I t s h o u l d un lo ck ( i . e . l o c k e d =0) upon r e c e i v i n g t h e

un lo ck s i g n a l .
4 / / I t s h o u l d on ly be p o s s i b l e t o s e t l o c k e d back t o 1 v i a

t h e r e s e t s i g n a l .
5 a lways @( posedge c l k o r negedge r e s e t n ) b e g i n
6 i f ( ! r e s e t n ) l o c k e d <= 0 ;
7 i f ( u n lo ck ) l o c k e d <=0;
8 end
9 endmodule

(b) Template n.p. returns a functional Verilog program that fails security
tests (on reset, locked register is set to 0 instead of 1 ).

1 / / Th i s i s a s e c u r i t y l o c k r e g i s t e r
2 / / I t s h o u l d be l o c k e d ( i . e . l o c k e d =1) upon power on or

r e s e t n s i g n a l =0
3 / / I t s h o u l d un lo ck ( i . e . l o c k e d =0) upon r e c e i v i n g t h e

un lo ck s i g n a l .
4 / / I t s h o u l d on ly be p o s s i b l e t o s e t l o c k e d back t o 1 v i a

t h e r e s e t s i g n a l .
5 a lways @( posedge c l k o r negedge r e s e t n ) b e g i n
6 / / BUG: U n i n i t i a l i z e d Value on R e s e t f o r R e g i s t e r s

Hold ing S e c u r i t y S e t t i n g s
7 / / MESSAGE: r e g i s t e r e d l o c k e d s h o u l d be s e t t o 1 when

r e s e t n i s 0
8 / / i f ( un lo ck ) l o c k e d <= 0 ;
9 / / end

10 / / FIXED :
11 i f ( ! r e s e t n )
12 l o c k e d <= 1 ;
13 e l s e i f ( u n l oc k )
14 l o c k e d <= 0 ;
15 e l s e l o c k e d <= l o c k e d ;
16 end
17 endmodule

(c) Template c.m. returns a safe and functional program.

Fig. 15. CWE-1271 (Verilog with uninitialized reset value) program repair.
Highlighted code was generated by LLMs.

1 / / Th i s i s a l o c k e d r e g i s t e r
2 / / I t s h o u l d r e s e t t o 0 ( i . e . D a t a o u t =16 ' h0000 ) when

r e s e t n =0
3 / / I t s h o u l d o u t p u t d a t a ( i . e . D a t a o u t = D a t a i n ) when

w r i t e =1 and l o c k s t a t u s =0
4 / / I n o t h e r c a s e s i t s h o u l d r e t a i n i t s v a l u e
5 a lways @( posedge c l k o r negedge r e s e t n ) b e g i n
6 i f ( ˜ r e s e t n ) b e g i n
7 D a t a o u t <= 16 ' h0000 ;
8 end
9 e l s e i f ( w r i t e & ( ˜ l o c k s t a t u s | scan mode |

debug un locked ) ) b e g i n
10 D a t a o u t <= D a t a i n ;
11 end
12 e l s e i f ( ˜ w r i t e ) b e g i n
13 D a t a o u t <= D a t a o u t ;
14 end
15 end
16 endmodule

(a) Original vulnerable Verilog program (shortened for brevity)

1 / / Th i s i s a l o c k e d r e g i s t e r
2 / / I t s h o u l d r e s e t t o 0 ( i . e . D a t a o u t =16 ' h0000 ) when

r e s e t n =0
3 / / I t s h o u l d o u t p u t d a t a ( i . e . D a t a o u t = D a t a i n ) when

w r i t e =1 and l o c k s t a t u s =0
4 / / I n o t h e r c a s e s i t s h o u l d r e t a i n i t s v a l u e
5 a lways @( posedge c l k o r negedge r e s e t n ) b e g i n
6 i f ( ! r e s e t n ) b e g i n
7 D a t a o u t <= 16 ' h0000 ;
8 end e l s e b e g i n
9 i f ( w r i t e && ! l o c k s t a t u s ) b e g i n

10 D a t a o u t <= D a t a i n ;
11 end e l s e b e g i n
12 i f ( debug un locked ) b e g i n
13 D a t a o u t <= D a t a i n ;
14 end
15 end
16 end
17 end
18 endmodule

(b) Template n.p. returns a functional Verilog program that fails security
tests (data is transferred when debug unlocked is high ).

1 / / Th i s i s a l o c k e d r e g i s t e r
2 / / I t s h o u l d r e s e t t o 0 ( i . e . D a t a o u t =16 ' h0000 ) when

r e s e t n =0
3 / / I t s h o u l d o u t p u t d a t a ( i . e . D a t a o u t = D a t a i n ) when

w r i t e =1 and l o c k s t a t u s =0
4 / / I n o t h e r c a s e s i t s h o u l d r e t a i n i t s v a l u e
5 / / BUG: Hardware I n t e r n a l o r Debug Modes Allow

O v e r r i d e o f Locks
6 / / MESSAGE: D a t a o u t s h o u l d on ly be a s s i g n e d D a t a i n

when w r i t e =1 and l o c k s t a t u s =0
7 / / i f ( ˜ r e s e t n )
8 / / b e g i n
9 / / D a t a o u t <= 16 ' h0000 ;

10 / / end
11 / / e l s e i f ( w r i t e & ( ˜ l o c k s t a t u s | scan mode |

debug un locked ) )
12 / / b e g i n
13 / / D a t a o u t <= D a t a i n ;
14 / / end
15 / / e l s e i f ( ˜ w r i t e )
16 / / b e g i n
17 / / D a t a o u t <= D a t a o u t ;
18 / / end
19 / / FIXED :
20 i f ( ˜ r e s e t n | scan mode | debug un locked )
21 b e g i n
22 D a t a o u t <= 16 ' h0000 ;
23 end
24 e l s e i f ( w r i t e & ˜ l o c k s t a t u s )
25 b e g i n
26 D a t a o u t <= D a t a i n ;
27 end
28 e l s e i f ( ˜ w r i t e )
29 b e g i n
30 D a t a o u t <= D a t a o u t ;
31 end
32 end
33 endmodule

(c) Template c.m. returns a safe and functional program.

Fig. 16. CWE-1234 (Verilog with debug override) program repair. Highlighted
code was generated by LLMs.
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--- a/parser.c

+++ b/parser.c

@@ -9825,6 +9825,7 @@
xmlParseEndTag2(xmlParserCtxtPtr ctxt, const xmlChar *prefix,

const xmlChar *URI, int line, int nsNr, int tlen) {

const xmlChar *name;

+ size_t curLength;

GROW;

if ((RAW != '<') || (NXT(1) != '/')) {
@@ -9833,8 +9834,11 @@

}

SKIP(2);

- if ((tlen > 0) && (xmlStrncmp(ctxt->input->cur, ctxt->name, tlen) == 0)) {

- if (ctxt->input->cur[tlen] == '>') {
+ curLength = ctxt->input->end - ctxt->input->cur;

+ if ((tlen > 0) && (curLength >= (size_t)tlen) &&

+ (xmlStrncmp(ctxt->input->cur, ctxt->name, tlen) == 0)) {

+ if ((curLength >= (size_t)(tlen + 1)) &&

+ (ctxt->input->cur[tlen] == '>')) {
ctxt->input->cur += tlen + 1;

ctxt->input->col += tlen + 1;

goto done;

(a) Canonical developer-provided patch

static void

xmlParseEndTag2(xmlParserCtxtPtr ctxt, const xmlChar *prefix,

- const xmlChar *URI, int line, int nsNr, int tlen) {

- const xmlChar *name;

+ const xmlChar *URI, int line, int nsNr, int tlen) { const xmlChar *name;

- GROW;

+ name = ctxt->input->cur;

if ((RAW != '<') || (NXT(1) != '/')) {
xmlFatalErr(ctxt, XML_ERR_LTSLASH_REQUIRED, NULL);

return;

}

SKIP(2);

- if ((tlen > 0) && (xmlStrncmp(ctxt->input->cur, ctxt->name, tlen) == 0)) {

+ if ((tlen > 0) && (xmlStrncmp(ctxt->input->cur, name, tlen) == 0)) {

if (ctxt->input->cur[tlen] == '>') {
ctxt->input->cur += tlen + 1;

ctxt->input->col += tlen + 1;

(b) code-cushman-001 patch

xmlParseEndTag2(xmlParserCtxtPtr ctxt, const xmlChar *prefix,

const xmlChar *URI, int line, int nsNr, int tlen) {

const xmlChar *name;

+ int len;

GROW;

if ((RAW != '<') || (NXT(1) != '/')) {
@@ -9833,6 +9834,10 @@

}

SKIP(2);

+ name = ctxt->input->cur;

+ len = xmlStrlen(name);

+ if (tlen > len)

+ tlen = len;

if ((tlen > 0) && (xmlStrncmp(ctxt->input->cur, ctxt->name, tlen) == 0)) {

if (ctxt->input->cur[tlen] == '>') {
ctxt->input->cur += tlen + 1;

(c) code-davinci-002 patch

xmlParseEndTag2(xmlParserCtxtPtr ctxt, const xmlChar *prefix,

const xmlChar *URI, int line, int nsNr, int tlen) {

const xmlChar *name;

+ int nsNr_old = ctxt->nsNr;

+ int tlen_old = tlen;

- GROW;

+ SKIP_BLANKS;

if ((RAW != '<') || (NXT(1) != '/')) {
xmlFatalErr(ctxt, XML_ERR_LTSLASH_REQUIRED, NULL);

return;

}

SKIP(2);

-

- if ((tlen > 0) && (xmlStrncmp(ctxt->input->cur, ctxt->name, tlen) == 0)) {

- if (ctxt->input->cur[tlen] == '>') {
- ctxt->input->cur += tlen + 1;

+ if ((tlen > 0) && ((RAW == '>') || ((RAW == '/') && (NXT(1) == '>')))) {
+ if (ctxt->input->cur[tlen - 1] == '>') {
+ ctxt->input->cur += tlen - 1;

ctxt->input->col += tlen + 1;

goto done;

}

(d) polycoder patch

Fig. 17. Highest confidence ‘successful’ repair patches for EF15.

--- a/tools/tiffcrop.c
+++ b/tools/tiffcrop.c
@@ -989,7 +989,7 @@

nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{

- for (s = 0; s < spp; s++)
+ for (s = 0; s < spp && s < MAX_SAMPLES; s++)

{ /* Read each plane of a tile set into srcbuffs[s] */
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)

(a) Canonical developer-provided patch

{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)

+ { for (sample = 0; (sample < spp) && (sample <
MAX_SAMPLES); sample++)↪→
{

- for (s = 0; s < spp; s++)
- { /* Read each plane of a tile set into srcbuffs[s] */
+ tbuff = srcbuffs[sample];
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)
{

(b) code-cushman-001 patch

nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{

- for (s = 0; s < spp; s++)
- { /* Read each plane of a tile set into srcbuffs[s] */
+for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
+ {
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)
{

(c) code-davinci-001 patch

{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)

+ { ncol = (col + tw > imagewidth) ? imagewidth - col :
tw;↪→

+ row_offset = row * imagewidth * bytes_per_sample;
+ col_offset = col * bytes_per_sample;
+ for (sample = 0; (sample < spp) && (sample < MAX_SAMPLES);

sample++)↪→
{

- for (s = 0; s < spp; s++)
- { /* Read each plane of a tile set into srcbuffs[s] */
+ tbuff = srcbuffs[sample];
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)
{

(d) code-davinci-002 patch

{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)

+ { if (tbuff)
{

- for (s = 0; s < spp; s++)
- { /* Read each plane of a tile set into srcbuffs[s] */
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)
{

(e) gpt2-csrc patch

nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{

- for (s = 0; s < spp; s++)
- { /* Read each plane of a tile set into srcbuffs[s] */
+for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
+ {
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);

if (tbytes < 0 && !ignore)
{

(f) polycoder patch

Fig. 18. Highest confidence ‘successful’ repair patches for EF01.
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--- a/wrbmp.c
+++ b/wrbmp.c
@@ -502,8 +502,9 @@

dest->pub.put_pixel_rows = put_gray_rows;
else
dest->pub.put_pixel_rows = put_pixel_rows;

- } else if (cinfo->out_color_space == JCS_RGB565 ||
- cinfo->out_color_space == JCS_CMYK) {
+ } else if (!cinfo->quantize_colors &&
+ (cinfo->out_color_space == JCS_RGB565 ||
+ cinfo->out_color_space == JCS_CMYK)) {

dest->pub.put_pixel_rows = put_pixel_rows;
} else {
ERREXIT(cinfo, JERR_BMP_COLORSPACE);

(a) Canonical developer-provided patch

dest->pub.put_pixel_rows = put_pixel_rows;
} else if (cinfo->out_color_space == JCS_RGB565 ||

cinfo->out_color_space == JCS_CMYK) {
- dest->pub.put_pixel_rows = put_pixel_rows;
- } else {
+ if (cinfo->quantize_colors)
+ dest->pub.put_pixel_rows = put_gray_rows;
+ else
+ dest->pub.put_pixel_rows = put_pixel_rows; } else {

ERREXIT(cinfo, JERR_BMP_COLORSPACE);
}

(b) code-cushman-001 patch

if (cinfo->quantize_colors)
dest->pub.put_pixel_rows = put_gray_rows;

else
- dest->pub.put_pixel_rows = put_pixel_rows;
- } else if (cinfo->out_color_space == JCS_RGB565 ||
+ dest->pub.put_pixel_rows = put_pixel_rows; } else if

(cinfo->out_color_space == JCS_RGB565 ||↪→
cinfo->out_color_space == JCS_CMYK) {

+ if (cinfo->quantize_colors)
+ dest->pub.put_pixel_rows = put_gray_rows;
+ else

dest->pub.put_pixel_rows = put_pixel_rows;
} else {
ERREXIT(cinfo, JERR_BMP_COLORSPACE);

(c) code-davinci-001 patch

Fig. 19. Highest confidence ‘successful’ repair patches for EF20.
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