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Abstract—Motivated and inspired by the emergence of
blockchains, many new protocols have recently been proposed
for generating publicly verifiable randomness in a distributed yet
secure fashion. These protocols work under different setups and
assumptions, use various cryptographic tools, and entail unique
trade-offs and characteristics. In this paper, we systematize the
design of distributed randomness beacons (DRBs) as well as the
cryptographic building blocks they rely on. We evaluate protocols
on two key security properties, unbiasability and unpredictability,
and discuss common attack vectors for predicting or biasing the
beacon output and the countermeasures employed by protocols.
We also compare protocols by communication and computational
efficiency. Finally, we provide insights on the applicability of
different protocols in various deployment scenarios and highlight
possible directions for further research.

I. INTRODUCTION

Public, trustworthy randomness has been a goal for millen-
nia, dating at least to the earliest known use of dice around
3000 BCE. Today, public randomness is crucial to applications
including gambling and lotteries [28], electronic voting [2],
selecting parameters for cryptographic protocols [10], [74],
leader election in proof-of-stake protocols [61], [72], and
blockchain sharding [4], [73].

The concept of a randomness beacon was first formalized
by Rabin [84] to describe an ideal service that regularly emits
fresh random values that no party can manipulate or predict.
Because no such ideal beacon exists, various protocols are
used to approximate this beacon functionality for practical use.

Centralized Beacons. Relying on a trusted third party like
NIST [56], [70] or random.org [66] might be the simplest way
to realize a beacon. It carries drawbacks typically associated
with centralized services, such as the risk of compromise or
misbehavior and the inability of the end user to verify the
security of the beacon. In particular, it is straightforward to
design a malicious beacon that outputs statistically random
values which are predictable given a trapdoor. For example,
given a semantically secure encryption scheme the under-
handed beacon can simply use a secret key to encrypt a counter
in each interval. Security of the underlying encryption scheme
guarantees this is indistinguishable from random without ac-
cess to the key, but completely predictable given the key.

Implicit Beacons. Another approach is to construct a bea-
con using publicly available implicit sources of entropy such
as stock market data [41] or proof-of-work (PoW) blockchains
like Bitcoin [16], [28], [78], [97]. These entropy sources
are potentially vulnerable to malicious insiders (e.g. high-
frequency traders making unnatural trades to fix stock prices,
financial exchanges blocking trades or reporting incorrect data,

miners that can withhold blocks or choose between colliding
blocks, etc.). These beacons are plausibly secure and low-cost
in practice, but they still lack formal models of security. As
a result, while we consider these important targets for future
research, we will not discuss them in detail in this work.

Distributed Randomness Beacons. A natural approach to
reduce trust in a centralized beacon is a multi-party distributed
randomness beacon (DRB). DRB protocols are designed to
remain secure and live despite some fraction of malicious par-
ticipants. DRB protocols are typically epoch-based, producing
fresh random output in each epoch.

The goal of this paper is to systematize current research
on DRBs. We propose a general framework encompassing
all DRB protocols in the landscape. To aid comparison and
discussion of properties, we provide an overview of these
protocols along with the cryptographic building blocks used
to construct them. We identify two key components of DRB
design: selection of entropy providers and beacon output
generation, which can be decoupled from each other. Enabling
a more holistic analysis of a DRB as a result, we also pro-
vide new insights and discussion on potential attack vectors,
countermeasures, and techniques that lead to better scalability.

Paper organization. We begin with preliminaries including
our system model, a strawman DRB under perfect synchrony
(an ideal assumption), commit-reveal [21], and the definition
of an ideal DRB in Section II. Section III introduces protocols
using delay functions (verifiable delay functions [23] and
timed commitments [27]), which offer the best fault tolerance
(dishonest majority) and simplicity, assuming secure delay
functions can be implemented in practice. In Section IV to VII,
we introduce non-delay-based DRB protocols categorized by
the number of nodes contributing marginal entropy (i.e. per-
epoch randomness that is independently generated at a node
level) in each epoch. Sections IV and V review protocols in
which all nodes contribute marginal entropy. These protocols
vary in mechanisms used to recover from faulty nodes, in-
cluding financial punishment [83], [100], threshold secret shar-
ing [34], [90], and threshold encryption [49]. Section VI covers
committee-based protocols in which each epoch includes an
extra committee selection step, after which only a committee
(subset) of nodes contributes marginal entropy. These proto-
cols are more complex but can offer greater communication
efficiency with large numbers of nodes. Section VII covers
pseudorandom protocols that do not require any marginal
entropy; these protocols can be highly efficient but have no
mechanism to recover from compromise. We conclude with
discussion and comparisons in Sections VIII–IX and Table I.
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II. PRELIMINARIES

A. System Model
We consider a system with a fixed set of n participants

P = {P1, P2, ..., Pn} (also called nodes). We may also write
P = {1, 2, ..., n} for the purpose of algebraic formulations. Of
the n, up to t nodes may be faulty (also called malicious or
Byzantine) and engage in incorrect (arbitrary) behavior during
a protocol run. An adversary A that controls up to t such nodes
is called t-limited. Otherwise, nodes that are honest abide by
the specified protocol.

We assume a standard public key infrastructure (PKI) such
that all nodes know each others’ public keys, and that all nodes
are connected via point-to-point secure (providing authen-
ticity) communication channels. All messages exchanged by
honest nodes are digitally signed by the sender, and recipients
always validate each message before proceeding. By default,
we assume a synchronous network, in which there exists some
known finite message delay bound ∆. This means that an
adversary can delay a message by at most ∆.

Moreover, we assume a computationally bounded adversary
A which runs in probabilistic polynomial time (PPT). In
particular, this means A cannot break standard cryptographic
primitives such as hash functions, digital signatures, etc. For
delay-based protocols, we also assume the adversary cannot
compute delay functions in fewer than T time steps. The three
ways in which A can deviate from a protocol are omitting a
message (i.e. withholding attack), sending invalid messages,
and colluding to coordinate an attack based on private in-
formation shared among malicious nodes. Additionally, A
has the power to perform a grinding attack, in which A
privately precomputes and iterates through polynomially many
combinations of inputs to an algorithm in order to derive a
desirable output. By default, we assume a (t-limited) static
adversary that chooses nodes to be corrupted before a protocol
run whereas an adaptive adversary can choose nodes to be
corrupted at any time during a protocol run (we assume a
model where nodes remain corrupted once corrupted).

We denote our computational model’s security parameter
by λ. We call a function negl(λ) negligible if for all c > 0
there exists a λ0 such that negl(λ) < 1

λc for all λ > λ0.
The group elements g, h ∈ G are generators of G while
p, q denote primes where q | p − 1 (unless stated explicitly)
such that Gq is a group of prime order q. The notation
tuple[0] denotes the first element of tuple. Furthermore, we
model any hash function H(·) as a random oracle [13]. In
the context of a distributed randomness beacon, we use τ to
denote epoch number and Ωτ to denote the beacon output (i.e.
the distributed randomness output) in epoch τ . The entropy-
providing committee denoted by Cτ refers to a subset of nodes
(hereafter called entropy providers) that proactively generate
and provide marginal entropy in epoch τ .

B. Strawman Protocol: Rock-Paper-Scissors
Distributed randomness assuming perfect synchrony (∆ =

0) is straightforward. Consider the following one-round proto-
col where each participant i broadcasts its entropy contribution

(i.e. independently generated randomness) ei
$←− Zp to every

other participant at the same time. The protocol’s random
output Ω is calculated (via modular addition in Zp) as:

Ω =

n∑
i=1

ei (1)

Repeating this protocol periodically would yield a DRB.
This protocol is simple—in fact, it is essentially what humans
approximate when playing rock-paper-scissors (with ei

$←−
Z3). Under perfect synchrony, it is secure as long as any single
participant chooses its ei randomly. However, security falls
apart completely once messages can be delayed. Consider a
simple scenario with three participants {P1, P2, P3} producing
Ω = e1 + e2 + e3. If P3 can read e1 and e2 before sending e3
(due to non-zero message latency) to P1 and P2, then P3 can
fix the output Ω to any value Ω̃ by choosing e3 = Ω̃−e1−e2.
Effectively, the protocol cannot tolerate any malicious partici-
pants without perfect synchrony. Indeed, humans may attempt
to cheat in rock-paper-scissors by quickly adjusting their play
in reaction to what their opponent is playing.

C. Commit-Reveal
A classic fix for the above synchrony problem is to introduce

a cryptographic commitment step before each party reveals its
entropy contribution.

1) Commit. Each participant Pi broadcasts a cryptographic
commitment ci = Com(ei, ri) (with fresh randomness ri)
to its entropy contribution ei rather than ei itself. Note
that Com(x, r0) denotes a cryptographic commitment
to x with hiding and binding properties [21], [44]. If
participants sample ei from a suitably large space, it is
also secure to simply publish ci = H(ei).

2) Reveal. Once all participants have shared their corre-
sponding commitments, each participant Pi then opens
its commitment by revealing the pair (ei, ri). In turn,
Pi verifies each received pair (ej , rj) for j ̸= i by
recomputing cj = Com(ej , rj). Given that these checks
pass, the final output Ω can be computed as in Equation 1.
If any of the checks do not pass, however, the protocol
aborts and outputs ⊥.

With the additional commit step, it becomes impossible for
any participant to manipulate the output Ω, as the contribution
values are bound by commitments published before any partic-
ipants reveal. Nonetheless, the protocol can still be biased, as
the last-revealing participant Pk can in fact compute Ω earlier
than others and hence can decide to withhold (not reveal)
(ek, rk) if Ω is not to its liking. This is called the last-revealer
attack. Note that this attack is indistinguishable from an honest
node going offline, and indeed the protocol in this basic form
also has no robustness against non-Byzantine faults.

D. Ideal Distributed Randomness Beacons
Clearly, a DRB should prevent any one participant from

tampering with (e.g. predicting, biasing, or aborting) the
output. We formalize the security properties of an ideal DRB
as follows:
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Gunbias
A,b,DRB(λ)

ppτ ← DRBτ .Setup(λ)

σ ← A0(ppτ )

Ωτ,1 ← DRBτ
A1(σ)∪(P\A1(σ))

Ωτ,0 ← DRBτ
P

b′ ← A2(σ,Ωτ,b)

Return b = b′

Fig. 1: Security game for DRB unbiasability.

Definition II.1 (Ideal distributed randomness beacon). An
ideal distributed randomness beacon satisfies the following
security properties:1

1) Unbiasability. A DRB is unbiasable if, for any PPT
adversary A = (A0,A1,A2), the adversary’s advantage
in the game depicted in Figure 1, given by

Advunbias
A,DRB(λ) =

∣∣∣Pr [Gunbias
A,1,DRB(λ) = 1

]
− Pr

[
Gunbias
A,0,DRB(λ) = 1

]∣∣∣
is negligible, i.e. Advunbias

A,DRB(λ) ≤ negl(λ).
2) Liveness. We define liveness [39] by requiring that the

advantage of A denoted by Pr[Ωτ = ⊥] (i.e. the prob-
ability that the beacon output at the end of epoch τ is
null) is negligible, given a DRB that runs among honest
participants and A.

3) Unpredictability. We define two types of unpredictability.
Suppose a DRB’s epoch τ starts at time Tτ,0 and finalizes
(Ωτ becomes publicly available) at Tτ,1 in the optimistic
case (if every node is honest and online) and at Tτ,2 in
the worst case.
• A DRB is α-intra-unpredictable (α > 0) if A partici-

pating in DRBτ (Figure 1) cannot predict any property
of Ωτ at time Tτ,2−α with non-negligible advantage:

Pr[Ωτ ∈ Y ] ≤ |Y |
2ℓΩτ (λ)

+ negl(λ)

where Y denotes the set of possible values predicted
by A and ℓΩτ (λ) denotes the bit-length of Ωτ . It is
α-intra-predictable otherwise.

• A DRB is β-inter-unpredictable (β ≥ 1) if A cannot
predict any property of Ωτ+β′ (as defined above) for
any β′ ≥ β before Tτ,2 with non-negligible advantage.

Unbiasability. In the unbiasability game Gunbias
A,b,DRB depicted

in Figure 1, the adversary algorithm A0 first precomputes an
advice string (σ) given the DRB’s public parameters ppτ in
epoch τ (which may include the previous beacon output, a list
of participants in epoch τ , the identity of the epoch leader,
etc. depending on protocol specifications). Our definition is
quite general in that the advice string may encode any biasing

1We present a game-based security definition here, as it is the most com-
monly used in the literature. Other formulations, such as ideal functionalities
as used in UC-security [33], are possible.

“strategy.” This string is taken by A1, which then (statically
and within epoch τ ) corrupts up to t nodes in the honest
node set P = {1, . . . , n}, interacts with P \ A1, and outputs
the beacon output Ωτ,1. In contrast, Ωτ,0 denotes the honest
beacon output generated by P (and not involving A1). For
both, the notation DRBτ

P̃ denotes a DRB in epoch τ with a
participant set P̃ . Then A2 distinguishes the two cases given
the same advice string. A DRB is unbiasable if the adversary
can do so with negligible probability. Our definition includes
the possibility of private biasing, e.g. the adversary biases the
result in a way that requires a secret key to detect. This means
that the biased beacon outputs can even appear pseudorandom
(indistinguishable from uniform distribution) to an outsider, a
notion not considered in previous works [19], [28], [46].
Liveness. While liveness implies a notion called guaranteed
output delivery [46], [89] (all honest nodes receive Ωτ at the
end of epoch τ ), it is in turn implied by unbiasability (due to
the fact that Ωτ,0 from Figure 1 is never null). For instance,
commit-reveal, due to the last-revealer attack, does not satisfy
liveness and thus is biasable.
Unpredictability. We note that β-inter-unpredictability
(though in different forms) has been considered in previous
works [19], [20] for β ≥ 1, but we extend the notion to
“β = 0” and explicitly consider α-intra-unpredictability in
conjunction with β-inter-unpredictability, in order to exhibit
variations across all possible DRBs. While neither implies the
other, both are defined using the same probability formulation
(involving Pr[Ω ∈ Y ]), which has not been considered in
previous works [19], [46], [89] and captures cases where (say)
A predicts the first bit of Ω is 1 (in which case Y is a set of
possible beacon output values whose first bit is 1), predicts
the middle 10 bits make a prime number, etc. We also note
that β̃-inter-unpredictability implies β-inter-unpredictability
for all β > β̃, and that α-intra-unpredictability for all α > 0
implies unbiasability. The reason is that biasability allows A
in Gunbias

A,b,DRB to make a prediction towards its biasing strategy
encoded in σ, implying that there exists α > 0 such that the
protocol is α-intra-predictable.

III. DELAY-BASED PROTOCOLS

One way to prevent the last-revealer attack is to compute
Ωτ using a delay function after combining each node’s entropy
contribution. If the delay is suitably long, no participant can
predict what effect a potential contribution will have on the
output before its contribution must be published. Typically, a
verifiable delay function (VDF) [23], [24] is used to accom-
plish this while maintaining efficient verifiability of the result.

Definition III.1 (Verifiable delay function). A verifiable delay
function (VDF) is a function that takes a specified number
of sequential steps to compute (even with a large amount of
parallelism available) but takes significantly less time to verify.
It is described by the following algorithms:

• Setup(λ, T )→ pp is a randomized algorithm that outputs
public parameters pp given security parameter λ and
delay parameter T .

377



• Eval(pp, x) → (y, π) computes y in T sequential steps
and (optionally) a proof π, given pp and an input x.

• Verify(pp, x, y, π) → {0, 1} outputs 1 if y is the unique
correct evaluation of the VDF on input x and 0 otherwise.

Two well-known VDF proposals, due to Pietrzak [82]
and Wesolowski [98], make use of the (believed) inherently
sequential nature of repeated squaring in a group of unknown
order. VDFs can also be constructed from incrementally ver-
ifiable computation [23], [71] or isogenies [48]. VDFs can
be used to derive unbiasable randomness either from existing,
biasable protocols (e.g. commit-reveal or public implicit bea-
cons) or as the building block for an entirely new protocol
(like RandRunner [88]).

A. Modifying Commit-Reveal
The Unicorn protocol [74] uses the Sloth function (a VDF

precursor based on computing square roots modulo a prime)
in a manner similar to commit-reveal. In fact, commitments
are no longer needed; participants simply publish their en-
tropy contributions directly. Unicorn can be improved using
a modern VDF in place of Sloth to achieve faster (constant
time) verification time for a given delay parameter. We refer
to VDF-enhanced Unicorn as Unicorn++. It runs as follows:

1) Collect. Every participant Pi broadcasts its entropy con-
tribution ei between time t0 and t1 (assuming synchro-
nized clocks). At t1, they are combined into xτ =
H(e1, . . . , en).

2) Evaluate. Some party evaluates the VDF with xτ and a
chosen delay parameter T (part of pp) via

yτ , πτ = VDF.Eval(pp, xτ )

such that Ωτ = H(yτ ), which is posted and can be effi-
ciently verified by any observer using πτ via VDF.Verify.

As long as T is longer than the duration of t1 − t0, Uni-
corn++ successfully defends against any attack possible by
the last entropy provider. Also desirably, it is unbiasable
by an adversary that controls n − 1 of the participants, as
even one honest entropy contribution requires computation
of VDF.Eval from scratch. The downside of the protocol is
that somebody must evaluate the VDF, which is slow by
design. It is possible to outsource this computation, even in a
decentralized manner [94], as it does not matter for security
who evaluates since VDFs are deterministic and verifiable.

We note a variation of above [28], [30], replacing or bolster-
ing the participant entropy contributions with stock prices [41]
or PoW blockchain headers [16], [78], [97] (which are oth-
erwise susceptible to manipulation) to supply xτ in Collect.
Such schemes are collectively denoted by Ext. Beacon+VDF
in Table I. Unfortunately, they do not easily compare to
other DRBs, as the security model depends on the cost of
manipulating the external beacon, which has not yet been
formally analyzed.

B. Adding Recovery to Commit-Reveal
Another way to modify commit-reveal is to leverage a dif-

ferent class of delay functions called timed commitments [27]

in place of regular commitments used in commit-reveal. The
idea is simple: timed commitments are commitments with an
additional slow recovery process (the committed value can be
recovered in T sequential steps but not before) in case the
committer withholds.

Definition III.2 (Timed commitment). A timed commitment
is a commitment with an additional algorithm whereby the
committed value can be recovered (or forced open) in T
sequential steps but not before:

• ForceOpen(c) → (x, r0) outputs the committed value
(x, r0) in T sequential steps given a commitment c =
Com(x, r0).

This recovery process avoids the last-revealer attack, as
a withholding participant’s contribution can be recovered.
Thus, the resulting distributed randomness protocol can be
seen as a “commit-reveal-recover” protocol (Section V). This
approach was suggested by Boneh and Naor [27] though not
specified in detail. Thyagarajan et al. [93] proposed leveraging
homomorphic timed commitments to combine contributions
and only require one delay function even if all participants
refuse to open (rather than one computation per withholder).
Bicorn [40] realizes the above logic in a simple, efficient DRB
with comparable overhead to basic commit-reveal.

The advantage of Bicorn over Unicorn++ is that in the
optimistic case (where every participant is honest) the protocol
has no delay, analogous to a simple commit-reveal. Context
may be important to consider if the optimistic case is unlikely
to occur (e.g. due to poor network conditions or too many
participants), in which case Unicorn++ is simpler and also
requires only one delay function computation.

All of the protocols in this family share a fundamental
predictability downside: if only one participant (or a colluding
coalition) withholds while all others reveal, then the attacker(s)
can simulate the optimistic case and learn Ωτ early. As this
implies T -intra-unpredictability (with delay parameter T ), a
protocol should consider Ωτ to be potentially available to
adversaries as of Tτ,1 (optimistic case), even if it is not
publicly known until Tτ,2 (worst case).

C. Chain of VDFs

A disadvantage of above approaches is that each epoch
may require consensus [37] on inputs to the delay function,
incurring communication cost. Also, the rate at which beacon
outputs are generated is limited by T (by default in Uni-
corn++ and in Bicorn’s ForceOpen case). RandRunner [88]
tackles these issues by leveraging a VDF design that builds
a deterministic chain of outputs (more precisely, a chain of
n interleaved VDFs each set up by a node) to bypass per-
epoch consensus while allowing each epoch’s duration to be
independent of T in the optimistic case.

Namely, RandRunner uses Pietrzak’s VDF [82], where
knowledge of a trapdoor allows an efficient evaluation of a
VDF without T sequential steps unlike VDF.Eval (but with
T steps otherwise). In its setup, each Pi broadcasts ppi (each
corresponding to a different VDF per participant). Then the

478



idea is that, in each epoch, H(Ωτ−1) is input to the VDF of
the epoch leader—selected via either round-robin (i.e. taking
turns in some permuted order) or random selection (i.e. using
Ωτ−1 as seed), discussed in Section VI-A1. In the optimistic
case, the honest leader (the only one that knows its trapdoor)
efficiently evaluates and publishes the VDF output as the
beacon output while in the faulty case (if the leader withholds),
others can evaluate the same value albeit more slowly.

Thus, RandRunner optimistically generates each beacon
output rapidly with only O(n) communication complexity.
Adversarial leaders can increase the epoch duration to T
and the communication complexity to O(n2).2 The protocol
exhibits two other beneficial properties. First, liveness is
retained even with a dishonest majority and when network
connectivity breaks down completely, as one can simply
compute the beacon outputs over time via VDF.Eval. Second,
it is impossible to bias the beacon once bootstrapped such that
even the strongest adversary can only predict but not bias. The
trade-off is that RandRunner can never achieve the ideal 1-
inter-unpredictability property due to the existence of leaders
that can withhold and adversaries with higher compute power.
In other words, β-inter-unpredictability can be achieved only
with β > 1, though β can be bounded [88] with assumptions.

IV. COMMIT-REVEAL-PUNISH

Another approach to preventing last-revealer attacks is
commit-reveal-punish, which assumes that all participants are
rational entities and use financial penalties to discourage
withholding. This requires some form of escrow (e.g. smart
contracts on Ethereum [99]) to collect initial deposits from the
participants which can be slashed (destroyed or redistributed)
if misbehavior is detected. Commit-reveal-punish schemes
defend against the last-revealer attack either by forcing every
participant to reveal [6], [17], [83] or by tolerating some
number of withholding participants via threshold commit-
reveal [100]. These two approaches are summarized below.

A. Enforcing Every Reveal

Extending basic commit-reveal, RANDAO [83] implements
commit-reveal-punish in a straightforward way. Each partici-
pant is required to deposit coins at the time of commitment,
which are slashed if that participant withholds its value during
the reveal phase. The drawback of this approach is twofold.
First, honest failures are indistinguishable from withholding
and must also be punished. Attackers might exploit this by
trying to block victim nodes from publishing (e.g. by bidding
up the price of gas in a smart contract platform). Second, a
high deposit of O(n2) coins is required to ensure fairness [6],
[17]. Thus, RANDAO is suitable only if participants are
expected to be highly available and possess an ample supply of
coins. Practical deployment also requires understanding of the
value to participants of manipulating the beacon (to ensure the
opportunity cost of lost deposits is higher). This assumption

2We assume consensus at a protocol level incurs O(n2) communication
cost (bitwise) by default.

is reasonable for applications such as a lottery but may not
apply for a public beacon whose use is not known in advance.

B. Rational Threshold Commit-Reveal

Economically Viable Randomness (EVR) [100] provides
an alternative requiring constant deposits while tolerating
(honest) faults to an extent. This is achieved by devising a
threshold variant of commit-reveal (i.e. in which t + 1, as
opposed to all n, nodes reveal to compute Ωτ ) and having
an incentive mechanism around it. The threshold nature also
invites collusion, which is counteracted by EVR’s inform-
ing mechanism: if the escrow is notified of collusion (via
informing), it rewards the informer and slashes the deposits
of all others (collective punishment). Realizing this, nodes
are discouraged to collude, fearing another node within the
coalition would inform.

EVR requires multiple cryptographic building blocks (in-
troduced here, as they are used in other DRBs throughout the
paper). EVR uses Escrow-DKG [101], an extension of DKG
(distributed key generation) [59], [63], [65], [81], to realize
a threshold commit-reveal. DKG allows a set of n nodes to
collectively generate a pair (sk, pk) of group secret and public
keys such that sk is shared and “implied” (i.e. never computed
explicitly) by n nodes via the following building blocks.

Definition IV.1 ((t, n)-secret sharing). The dealer in a (t, n)-
secret sharing shares a secret to n participants such that any
subset of t+1 or more participants can reconstruct the secret,
but smaller subsets cannot.

Definition IV.2 (Shamir’s secret sharing). A concrete real-
ization of (t, n)-secret sharing, Shamir’s secret sharing [91]
allows a dealer to share a secret s = p(0) for some secret
sharing polynomial p ∈ Zq[X] of degree t among n partic-
ipants each holding a share si = p(i) for i = 1, ..., n. Any
subset of t+1 or more participants can reconstruct the secret s
via Lagrange interpolation (Appendix H1), but smaller subsets
cannot. In this paper, we use (t, n)-secret sharing and Shamir’s
secret sharing interchangeably.

Definition IV.3 (Verifiable secret sharing). Verifiable secret
sharing (VSS) [54], [80] protects a (t, n)-secret sharing
scheme against a malicious dealer sending incorrect shares
by enabling verification of each share. VSS can be described
by the following algorithms (see Appendix A for details):

• Setup(λ) → pp generates the public parameters pp, an
implicit input to all other algorithms.

• ShareGen(s)→ ({si}, C) is executed by the dealer with
secret s to generate secret shares {si} (each of which is
sent to node i correspondingly) as well as commitment
C to the secret sharing polynomial of degree t.

• ShareVerify(si, C)→ {0, 1} verifies share si using C.
• Recon(A, {si}i∈A) → s reconstructs s via Lagrange

interpolation from a set A of t + 1 nodes that pass
ShareVerify.

Definition IV.4 (Distributed key generation). A distributed
key generation (DKG) [59], [81] allows n participants to
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collectively generate a group public key (with an implicit
group secret key), individual secret keys, and individual public
keys without a trusted third party. It does so by running n
instances of VSS (with each participant acting as a dealer for
its independent secret).

• DKG(1λ, t, n) → (ski, pki, pk) outputs the i-th node’s
secret key, its public key (e.g. pki = gski ), and a group
public key pk (e.g. pk = gsk) for an implicit group secret
key sk given security parameter 1λ, t, and n.

The intuition behind DKG is that it allows t+1 (but not less)
out of n nodes to jointly use sk via Lagrange interpolation
without necessarily knowing sk. See Appendix B for details.
Unlike secret sharing schemes, one DKG setup can lead to an
unlimited number of usages, as the group secret key is never
computed explicitly during normal use.

The crux of EVR is adopting Escrow-DKG. It is first dif-
ferent from a classic DKG in that an escrow platform Escrow
(e.g. smart contract) disincentivizes misbehavior. Second and
more importantly, Escrow-DKG’s implicit group secret key
sk is in fact the beacon output that becomes computed and
publicized (unlike traditional DKGs in which the group secret
key is never revealed). EVR proceeds in four phases:

1) Setup. Every participant registers by depositing 1 coin
per secret (i.e. entropy contribution), and Escrow accord-
ingly sets the threshold parameter t = 2n/3 required for
Escrow-DKG. It also sets the illicit profit bound (i.e. extra
profit an adversary can gain as a result of using EVR’s
output as opposed to an ideal beacon) to n − t = n/3
and the informing reward to n.

2) Commit. Escrow-DKG is run, and each participant ends
up with an individual key pair (ski, pki) as well as pk.

3) Inform. Any colluding participant that preemptively
knows Ωτ is incentivized to inform Escrow to earn an
informing reward obtained via collective punishment.

4) Reveal. Ωτ = sk is reconstructed once t + 1 (or more)
participants reveal their ski’s. Initial deposits are returned
after verification by Escrow. If Ωτ is not reconstructed by
the end, Escrow also initiates collective punishment.

While a malicious node in EVR might withhold to abort the
protocol during Reveal or collude to learn Ωτ before Reveal,
security comes from the fact that both are disincentivized.
First, setting the illicit profit bound to n−t makes withholding
unprofitable, as the n − t or more participants needed to
successfully abort EVR would earn an amount bounded by
the illicit profit bound at the cost of losing their deposits. This
prevents biasability. Second, setting the informing reward to n
makes informing more profitable than any illicit profit. Thus,
any coalition of nodes colluding to preemptively learn Ωτ is
economically unstable, as all nodes are incentivized to defect
and act as an informer. This prevents predictability.

Despite the benefits of the threshold nature and constant
deposits enabling a flexible incentive mechanism, EVR re-
quires further economic assumptions beyond those needed for
commit-reveal-punish. Specifically, EVR assumes a limit on
illicit profit and a bound on the total number of coins n/3 (a

participant with more coins than this is not allowed to join
EVR as per decentralization assumption [100]).

V. COMMIT-REVEAL-RECOVER

Without using escrow to enforce desired behavior, commit-
reveal-recover variants defend against the last-revealer attack
by providing a mechanism to recover or reconstruct a partic-
ipant’s entropy contribution if withheld. This can be achieved
by either threshold secret sharing or threshold encryption.
Protocols based on commit-reveal-recover assume a t-limited
adversary and require the cooperation of at least t+ 1 nodes
to reconstruct such that two desirable properties are achieved
simultaneously: there is no need for all n nodes to reveal
while any subset of t Byzantine nodes cannot collude to
preemptively reconstruct. Note that this creates an inherent
trade-off: while a smaller value of t helps tolerate more honest
faults, it also means that a smaller subset can collude to predict
the beacon output in advance.

A. From Threshold Secret Sharing

Commit-reveal-recover variants often use publicly verifiable
secret sharing (PVSS) [34], [90] as a subprotocol in order to
allow any external party (not just the participants) to verify
the correctness of sharing and reconstruction.

Definition V.1 (Publicly verifiable secret sharing). Pub-
licly verifiable secret sharing (PVSS) is a VSS with the
following additional algorithms to enable public verifica-
tion: PVSS.KeyGen (which generates secret-public key pair
per participant), PVSS.Enc (for public-key encryption), and
PVSS.Dec (decryption). The idea is that PVSS.ShareGen uses
above to encrypt and decrypt PVSS shares and also to generate
public proofs, e.g. non-interactive zero-knowledge (NIZK)
proofs. Then PVSS.ShareVerify can be run by anyone (not
just the participants). See Appendix C for details.

The idea in these commit-reveal-recover variants is that
each participant generates a secret (i.e. entropy contribution),
distributes PVSS shares to each other participant, and re-
ceives n respective shares of n other participants’ secrets.
These shares are then used to compute Ωτ via Lagrange
interpolation3 (PVSS.Recon) in case some nodes withhold.
Based on when and how such Lagrange interpolation takes
place, we subdivide the protocols into the following cat-
egories: commit-reveal-recover, share-reconstruct-aggregate,
and share-aggregate-reconstruct.

1) Commit-Reveal-Recover: Extending commit-reveal,
commit-reveal-recover adds a step to the commit phase
where every participant is additionally required to distribute
PVSS shares of its corresponding secret so that others
can reconstruct it via Lagrange interpolation (recover) if
withheld. The trade-off is additional communication cost,
which amplifies if O(n) Lagrange interpolations need to take
place. Scrape [34] adopts this technique.

3In this paper, we assume one Lagrange interpolation at a protocol level
incurs O(n2) and O(n3) communication cost (bitwise) in the optimistic and
worst cases, respectively.
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Scrape. With its own PVSS scheme [34] designed for ef-
ficiency, Scrape runs as follows after the initial generation
(PVSS.KeyGen) of (ski, pki) for each of the n nodes.

1) Commit. Every node Pj runs PVSS.ShareGen(s(j)) as a
dealer and publishes the encrypted shares Enc(pki, s

(j)
i )

for i ∈ [n] and encryption proofs. Pj also publishes a
commitment to the secret exponent Com(s(j), rj) (with
fresh randomness rj). Upon receiving encrypted shares
and proofs, all nodes run PVSS.ShareVerify to verify
correct encryption. Let Cτ be the set of nodes with
published commitments and valid shares.

2) Reveal. Once t+1 nodes have distributed their commit-
ments and valid shares, every node Pj , j ∈ Cτ , opens its
commitment by revealing (s(j), rj).

3) Recover. For every node Pa ∈ Cτ that withholds
(s(a), ra) in Reveal, other nodes Pj for j ̸= a reconstruct
hs(a)

via PVSS.Recon, which requires each node to
publish its decrypted share hs

(a)
j and the proof of correct

decryption passing PVSS.ShareVerify.
4) Aggregate. The final randomness is Ωτ =

∏
j∈Cτ

hs(j) .
Note that Scrape, in the optimistic case (without Recover),

is just a commit-reveal with O(n2) PVSS shares distributed
in the network during commit, O(n) per node. In the worst
case (with Recover), it requires an entirely new round of
communication and potentially O(n) Lagrange interpolations.
Albatross. Extending Scrape, Albatross [35] provides an
improved amortized communication complexity of O(n) per
beacon output by generating a batch of O(n2) beacon outputs
per epoch (as opposed to one). This is achieved by two
techniques: packed Shamir secret sharing and linear t-resilient
functions [35]. As packed Shamir secret sharing allows sharing
of O(n) secrets (as opposed to one) per instance while linear t-
resilient functions allow outputting of O(n) values (as opposed
to one) in the final randomness aggregation step, each of these
techniques multiplicatively contributes O(n) to the number of
beacon outputs produced per epoch.

2) Share-Reconstruct-Aggregate: Another approach is to
skip the commit-reveal phase and by default reconstruct each
secret shared via PVSS. In other words, all nodes can distribute
their PVSS shares (share), perform Lagrange interpolation per
secret for a total of O(n) times (reconstruct), and aggregate
the interpolated secrets to output Ωτ (aggregate). While the
resulting share-reconstruct-aggregate saves a round of com-
munication (Reveal) from Scrape’s worst case, its average
case does incur substantial communication cost due to O(n)
Lagrange interpolations, each of which requires cooperation of
t+1 nodes. Hence, this approach is preferable when it can be
assumed that most epochs will require recovery due to faulty
participants. RandShare [92] uses this technique.

3) Share-Aggregate-Reconstruct: Another alternative is to
harness the homomorphic property of PVSS, due to which
only one, as opposed to O(n), Lagrange interpolation re-
constructs Ωτ if nodes perform aggregate before reconstruct,
hence share-aggregate-reconstruct. SecRand [64] uses this
technique to reduce communication overhead accordingly.

B. From Threshold Encryption

While protocols based on threshold secret sharing can incur
high communication cost of O(n4) due to O(n) Lagrange
interpolations, protocols relying on a different cryptographic
primitive, namely threshold encryption [49] (which does not
rely on PVSS), offer a variant where only one Lagrange inter-
polation suffices even in the worst case. Though reminiscent
of share-aggregate-reconstruct, these protocols differ in that
they require a DKG, which may be run multiple times to
refresh keys. In this section, we summarize how a protocol
like HERB [39] uses threshold encryption to construct a DRB.

The main idea is simple: n participating nodes run a DKG,
encrypt their respective entropy contributions under the group
public key pk, homomorphically combine all ciphertexts into
one group ciphertext, and jointly (requiring at least t+1 nodes)
decrypt the group ciphertext via one Lagrange interpolation.
Effectively, the DKG is what makes this possible, as it allows
the usage of sk (to decrypt a ciphertext under pk) without
knowing it (recall from Definition IV.4).

HERB achieves a communication complexity of O(n2) and
O(n3) in the optimistic and worst cases, respectively. Its
requirement of DKG in the setup presents a caveat however,
as a new DKG must take place for any attempt to refresh keys
of participants, e.g. in case of a suspected hack or a simple
reconfiguration (in which the set of participants changes). This
can incur additional cost per DKG.

VI. COMMITTEE-BASED PROTOCOLS

All aforementioned commit-reveal variants include every
node in the entropy-providing committee Cτ for every epoch.
Incorporating marginal entropy from all nodes scales poorly
with large numbers of participants, and hence a natural opti-
mization is to select a smaller subset of nodes to contribute
marginal entropy in each epoch (i.e. reduce |Cτ |).

In this section, we consider DRBs that are committee-based,
with Cτ such that 1 ≤ |Cτ | < n. Committee-based protocols
proceed in two steps: committee selection and beacon output
generation. As the names suggest, Cτ is agreed upon during
committee selection while the beacon output Ωτ is generated
and agreed upon during beacon output generation. We observe
that committee selection and beacon output generation are,
at least theoretically, modular such that subprotocols can be
independently chosen for the two components. We visualize
these two dimensions of committee-based DRBs in Table II.
We also observe that the protocols introduced so far (e.g.
commit-reveal-recover) can be used as a module in a larger
committee-based protocol, with the chosen committee execut-
ing the chosen protocol in each epoch.

A. Step 1. Committee Selection

The first step of a committee-based DRB involves selecting
Cτ in a way agreed by all nodes. We classify committee
selection mechanisms into two: public and private.
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1) Public Committee Selection: In a public committee se-
lection, only public information is needed to derive Cτ .
Round-Robin (RR). A simple example is round-robin (RR),
in which nodes simply take predetermined turns being se-
lected. While RR can work with committees of any size,
typically RR is used to select a committee of size one (i.e.
a leader) corresponding to node i ≡ τ (mod n). Protocols
like BRandPiper [19] (in which the epoch leader is the only
active entropy provider) adopt RR as their leader selection
mechanism due to its innate fairness property [8] (also known
as chain quality [58] in the blockchain context) where all
nodes, by RR’s definition, take equal leadership.
Random Selection (RS). A second example is random
selection (RS), which uses some public randomness (most
commonly the last beacon output Ωτ−1) to derive Cτ . In
HydRand [89] and GRandPiper [19], Cτ consists of a node
i ≡ Ωτ−1 (mod ñ) where ñ is the number of eligible
nodes. Ouroboros [72] uses a similar process called follow-
the-satoshi [18], [72] which selects nodes weighted by stake.

Randomized selection means that some nodes may, in the-
ory, never be selected and therefore never be able to contribute
entropy. A more serious concern is that an adversary can
attempt to bias Ωτ via grinding in order to bias Cτ+1 (which
can bias Ωτ+1 and so on). In the worst case, this can lead to a
vicious cycle in which an adversary controlling enough nodes
on the current committee to manipulate the beacon output can
ensure it will also control enough nodes on the next committee,
and so on ad infinitum.

This is not an issue in RR, as its committee selection is
deterministic and independent of the preceding beacon output.
Nonetheless, a trade-off of RR is that denial-of-service (DoS)
becomes indefinitely possible (for all epochs τ for τ > τ̃ given
Ωτ̃ ) since each committee is publicly known in advance. All
in all, RR gains unbiasability (due to determinism) at the cost
of indefinite DoS, while RS reduces the risk of DoS, i.e. that
only for epoch τ + 1 (due to randomization given Ωτ ), at the
cost of potential grinding attacks.
Leader-Based Selection (LS). A third example, leader-based
selection (LS) is a hybrid method that exhibits both deter-
minism and randomization. It runs in two steps: the first step
involves electing an epoch leader (either by RR or RS) while
the second involves selection of Cτ by the elected leader. It
is in this way that the mechanism is deterministic from the
leader’s perspective while randomized from that of others.

One approach to limit the power delegated to the leader is
that |Cτ | needs to be greater than t so that a malicious leader
wouldn’t be able to choose Cτ maliciously. RandHound [92],
SPURT [46], and OptRand [20] demonstrate such LS.

• RandHound. As instantiated in RandHerd [92], Rand-
Hound’s leader election (i.e. via RS as the first step of
LS) involves a public lottery where each node generates
a lottery ticket H(C ∥ pki) given a public configuration
parameter C (assuming its randomness) such that node
argmini H(C ∥pki) becomes the leader (originally called
client). In the second step of LS, RandHound adopts a
form of sharding (involving PVSS groups). The leader

selects more than a threshold number of nodes in each
shard (PVSS group), guaranteeing a threshold number of
entropy providers across all shards.

• SPURT and OptRand. Unlike RandHound, SPURT and
OptRand adopt RR as the first step of LS, with nodes
simply taking turns as an epoch leader. Then the leader
chooses Cτ based on received encrypted messages.

Given an underlying DRB that utilizes a leader to orches-
trate communication, LS is a natural choice to committee
selection, as a leader helps mitigate the protocol’s commu-
nication cost overall.

2) Private Committee Selection: In a private committee
selection, also known as a private lottery, each node needs
to input some private information (e.g. secret key) in order to
check whether or not it has been selected into Cτ (i.e. has won
a lottery to serve on the committee). The general formulation
of a private lottery is given by

fpriv(·) < target

where fpriv(·) is a lottery function (i.e. pseudorandom func-
tion) that takes some private input priv and target denotes
the lottery’s “difficulty level” (a la proof-of-work), which can
be adjusted to make the lottery arbitrarily easy or hard to win.

Each node calculates fpriv(·) and checks if the above
inequality is satisfied, in which case it “wins” the lottery and
becomes an entropy provider. As an adversary can perform a
grinding attack by trying many values of priv until a desirable
function output is achieved, one crucial requirement is that
priv should be provably committed in the past and thus be
ungrindable at the time of computation of fpriv(·).

A prime example of a private lottery is one based on
VRFs (verifiable random functions [51], [77]), which output a
pseudorandom value (as well as a proof for verification) given
secret key sk and input x (see Appendix D). Most notably,
Algorand [61] uses VRFs to realize a lottery every epoch.
Quite naturally, one’s private input to VRFsk(·) is its secret
key. The lottery4 is given by

VRFsk(Ωτ−1 ∥ role) < target

where role is some parameter specific to Algorand. As both
Ωτ−1 and role are already public and ungrindable at the
time of computation, Algorand makes sure sk is likewise
ungrindable by requiring that sk is committed in advance.
Similar private lotteries are used by Ouroboros Praos [47],
Caucus [8] (where a hash chain replaces VRFs), and NV (from
Nguyen-Van et al. [79]). See Table II for details.

Private lotteries provide two notable benefits: resilience to
DoS attack (due to its property of delayed unpredictability [8]
where one cannot predict the eligibility of honest nodes until
they reveal) and independent participation (i.e. nodes do not
have to know other participants in advance to participate)
allowing less communication cost as well as a more permis-

4While there are multiple versions of Algorand, we consider its first version,
as they do not differ fundamentally.
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sionless setting. Nonetheless, it can introduce the possibility
of biasing via withholding (as discussed in Section VIII-B).

B. Step 2. Beacon Output Generation

Given a concrete committee Cτ , the next step is to output
Ωτ . While a typical commit-reveal-recover run among nodes
in Cτ may be sufficient to realize a DRB, other approaches
provide different trade-offs. We classify variants which re-
quire fresh (independently generated on the spot) per-node
entropy (contribution) and those which combine previous
beacon output with precommitted (independently generated but
precommitted, hence ungrindable) per-node entropy.

1) Fresh Per-Node Entropy: Beacon output generation ap-
proaches involving fresh (also referred to as true random-
ness [36], [46] as opposed to pseudorandomness) per-node
entropy are typically commit-reveal-recover variants from Sec-
tion V. Some protocols in this family include the following:
Share-Reconstruct-Aggregate. In Ouroboros, nodes in Cτ
(i.e. slot leaders of epoch τ ) perform a RandShare-style share-
reconstruct-aggregate using PVSS to output Ωτ . RandHound
uses a similar approach, facilitated by an epoch leader.
Share-Aggregate-Reconstruct. In SPURT, OptRand, and
BRandPiper, nodes in Cτ perform a SecRand-style share-
aggregate-reconstruct to output Ωτ . BRandPiper has a twist: it
utilizes the idea of buffering PVSS shares in advance. While
there is one entropy provider per epoch, n secrets (one from
each node) are combined such that it provides the ideal 1-inter-
unpredictability property as opposed to t-inter-unpredictability
(as in HydRand or GRandPiper). The trick is that each epoch
leader generates n fresh secrets (entropy contributions) that
become combined with others’ secrets in the next n epochs,
respectively. In an epoch, one node distributes O(n2) PVSS
shares (buffered by other nodes) whereas, in a typical share-
aggregate-reconstruct like SPURT and OptRand, each of O(n)
nodes distributes O(n) PVSS shares (with no buffering).
From Threshold Encryption. Similar to HERB, entropy
providers in NV [79] contribute their fresh entropy using
ElGamal although they use its classical, non-threshold version
due to NV’s centralized model in which a third party called
the Requester is the direct recipient of a beacon output. As
a result, each entropy provider generates and encrypts its
entropy and sends it to the Requester, which then decrypts
all the messages received from entropy providers and outputs
their sum as Ωτ . Naturally, this Requester version of NV can
be modified into what we call NV++, which differs from
NV in two ways. First, nodes in Cτ (once finalized) can be
made to perform HERB among themselves. This eliminates
the existence of the centralized Requester. Second, entropy
provision (i.e. broadcasting one’s entropy) can be coupled with
proof of membership to Cτ (i.e. broadcasting the fact that
a node has won the VRF private lottery). In NV, these two
are separate steps potentially incurring adaptive insecurity (a
concept delineated in Section VIII-C).

2) Combining Previous Output and Precommitted Per-Node
Entropy: To optimize communication cost, one can require
less input from entropy providers each epoch. The canonical

optimization involves utilizing Ωτ−1 as a source of entropy
to produce Ωτ . The caveat in doing so is that grinding may
become possible once Ωτ−1 becomes public, which is why
it is necessary to require entropy providers’ contribution for
epoch τ to be precommitted before combining with Ωτ−1 to
output Ωτ . This prevents grindability while taking advantage
of the convenience of Ωτ−1. Such a requirement is observed
in many committee-based protocols, though their details may
seem unrelated on the surface.

• HydRand and GRandPiper. Each epoch, an entropy
provider (i.e. epoch leader) in HydRand commits its
entropy that becomes opened (revealed) in the next epoch
it is selected as the leader again. In other words, the epoch
leader’s precommitted entropy eτ̃ from its last epoch τ̃ of
leadership is the one that becomes combined with Ωτ−1

in the form of heτ̃ to generate

Ωτ = H(Ωτ−1 ∥ heτ̃ )

while PVSS recovery is used in case the leader fails to
open eτ̃ in epoch τ . Notable in HydRand is the fact
(achieving ungrindability of heτ̃ ) that one honest node
must be present in any t+1 consecutive epochs due to the
requirement that a leader cannot gain another leadership
in the next t epochs. Similar overall is GRandPiper’s
beacon output generation (see Table II).

• Algorand and Ouroboros Praos. These schemes use a
VRF for beacon output generation (rather than only for
committee selection as in NV++). The secret key sk of
the epoch leader often corresponds to precommitted per-
node entropy as long as the assumption that nodes cannot
switch their sk at the time of VRF’s computation holds.
Algorand’s beacon output is given by

Ωτ = VRFsk(Ωτ−1 ∥ τ)

combining the previous output Ωτ−1 with the precommit-
ted entropy sk. Note that the input to the VRF in beacon
output generation is different from that in committee
selection, as the VRF output in committee selection is
always going to be less than target by design. Ouroboros
Praos’ beacon output is generated similarly (see Table II).

• Caucus. Each new reveal (hτ in epoch τ ) from an entropy
provider’s private hash chain in Caucus corresponds to
that node’s precommitted entropy. The beacon output

Ωτ = hτ ⊕ Ωτ−1

naturally follows its committee selection mechanism
H(hτ ⊕ Ωτ−1) < target. See Table II for details.

VII. PROTOCOLS WITH NO MARGINAL ENTROPY

It is possible to devise a protocol where no node contributes
any marginal entropy (|Cτ | = 0) as the beacon runs, producing
the beacon output solely via cryptographic pseudorandomness.
This can improve efficiency as no node needs to generate
and communicate fresh entropy. However, the beacon becomes
predictable forever (β-inter-unpredictability fails for all β) if
compromised (perhaps undetectably).

983



Such a DRB can be based on a distributed verifiable random
function [31], [32], [57] (DVRF, also known as threshold VRF
or TVRF [36]). The idea is that the VRF’s sk is distributed
among n nodes via DKG such that t+1 nodes can cooperate
to compute a per-epoch VRF output (as well as its proof), as
if the computation involves one master node with sk.

Definition VII.1 (Distributed verifiable random function). A
distributed verifiable random function (DVRF) is a VRF where
any t+1 out of n nodes can jointly compute a pseudorandom
output while any t Byzantine nodes cannot. It can be described
by the following algorithms:

• DKG(1λ, t, n)→ (ski, pki, pk) runs a typical DKG.
• PartialEval(ski, x) → (yi, πi) outputs the partial evalu-

ation yi as well as its proof of correctness πi given an
input x and a node’s secret key ski.

• PartialVerify(pki, x, yi, πi)→ {0, 1} verifies the correct-
ness of the partial evaluation yi given its proof πi, an
input x, and a node’s public key pki.

• Combine(A, {(yi, πi)}i∈A) → (y, π) outputs the DVRF
evaluation y as well as its proof of correctness π
given a set A of t + 1 nodes and their outputs of
PartialEval(ski, x), all of which pass PartialVerify.

• Verify(pk, {pki}, x, y, π) → {0, 1} verifies the DVRF
evaluation y given π, input x, and public keys.

DVRF-based DRB. Each beacon output of a DVRF-based
DRB is then given by

Ωτ = DVRF.Combine(A, {DVRF.PartialEval(ski, f(Ωτ−1))}i∈A)[0]

where ski denotes each node’s secret key after a DKG and f
denotes some deterministic function of Ωτ−1.

The output is equivalent to one trustworthy master node
with complete knowledge of sk computing the output as:

Ωτ = VRFsk(f(Ωτ−1))

There is no marginal entropy contributed by the participants,
as f typically takes a form resembling f(Ωτ−1) = H(τ ∥
Ωτ−1). The ideal 1-inter-unpredictability of the above DVRF
formulation relies on the fact that no one node (or up to t
nodes) can gain knowledge of sk to be able to compute and
predict future beacon outputs.
DVRF-based DRB from a chain of unique signatures.
Since taking the hash of a verifiable unpredictable function
(VUF) [77] is equivalent to a VRF, a unique digital signature
(which is a VUF [51]) can be made into a DVRF by computing
its threshold variant [22] and hashing the output (assuming
a hash function as a random oracle [13]). Dfinity [32] and
drand [1] (while differing slightly in minor details) both use
the BLS signature scheme [26] to realize a DRB as

Ωτ = H(Signsk(τ ∥ Ωτ−1))

where Signsk(·) is a threshold BLS signature computed by at
least t+1 nodes with sk as the implicit group secret key gen-
erated via DKG. The actual computation involves combining
of partial signatures computed using ski (see Appendix H2).

Variations on a chain of unique signatures. Besides a chain
of BLS signatures, there exist several other variations.

• RandHerd [92]. Two modifications are made in Rand-
Herd. First, a form of “sharding” into groups (each of size
c) allows reduction of overall communication complexity.
Second, the underlying signature scheme used is Schnorr
instead of BLS. Each Ωτ is a threshold Schnorr signature
on message m = tτ where tτ denotes the timestamp at
the epoch’s beginning. As m can technically be chosen
(and thus biased) by the leader, one simple improvement
can be setting m = τ ∥ Ωτ−1 a la Dfinity or drand.

• DDH-DRB and GLOW-DRB [57]. These two DRBs
modify Dfinity-DVRF (i.e. each epoch of Dfinity) and
explore space-time trade-off by using DLEQ NIZKs (Ap-
pendix H3) in place of pairing equations (Appendix G).
See Appendix E and F for details.

• Strobe [12]. In Strobe, threshold RSA decryption con-
ceptually replaces the threshold BLS process. Note that
RSA decryption and BLS signature are similar in that one
needs a secret value (decryption key d and signer’s sk,
respectively) to perform the respective operations. The
analogy is that threshold BLS distributes sk in a threshold
manner (via DKG) while threshold RSA distributes d
(not via DKG). The difference is that the latter requires
a trusted setup (knowledge of factors of N , the RSA
modulus), and this is Strobe’s main downside. Its benefit
of using threshold RSA decryption is equally clear:
the simple relationship Ωd

τ = Ωτ−1 (mod N) allows
efficient generation of all past beacon outputs (a novel
property of a DRB called history generation).

VIII. DISCUSSION

A. Relation to Collective Coin Flipping Protocols

Conceptually, distributed randomness is not a new line of
research. Dating to Blum’s classic work on coin flipping
over the phone [21], distributed randomness has been much
researched, albeit in a different context as elaborated below.
Namely, Ben-Or and Linial in their seminal work [14], [15]
introduced the full information model for the collective coin
flipping problem, in which n participants with unbounded
computational power communicate only via a single broadcast
channel to generate a common random bit (such that an honest
majority is required [29], [86] and thus assumed). Numerous
works exist in this setting, largely classifiable into different
types of adversaries dealt with: static [3], [5], [15], [29], [53],
[68], [85], [86], adaptive [15], [50], [62], [67], [69], [75], and
variants of adaptive [7], [43], [52], [62], [76]. See [67], [69]
for this line of research.

Overall, these works concern upper and lower bounds
on corruption threshold, bias (deviation from coin flipping
probability 1/2), and round complexity, all of which provide
interesting theoretical insights. Nonetheless, these bounds are
often asymptotic (hence not practical) and are grounded in a
more lax definition of security where it is sufficient that bias
is bounded (but can still be nontrivial). This is in contrast

1084



to the modern literature on DRBs considered in this paper,
which aims to design protocols which are as unbiasable as
possible, output multiple bits per epoch, have explicit round
complexity and fault tolerance, and assume computationally
bounded adversaries in a cryptographic setting as well as
point-to-point communication channels in the first place.

Outside the full information model (such that cryptography
is allowed), the well-known lower bound by Cleve [42] states
that for any r-round coin flipping protocol there exists an
efficient adversary controlling half or more of the participants
that can bias the output by Ω(1/r). In other words, it is
impossible to have an unbiasable coin flipping protocol with
a dishonest majority.

While this may seem to contradict the fault tolerance
of delay-based DRBs from Section III, we note that delay
functions help circumvent Cleve’s impossibility result in the
following two ways. First, timed commitments allow recovery
of a value that is withheld (either due to honest or Byzantine
fault) and lost from an honest node’s perspective. In Cleve’s
proof, the notion of a “default bit” is used in such withholding
situation whereas timed commitments effectively deprecate
this default bit mechanism, sidestepping the proof logic.

Second, an implicit assumption in Cleve’s model is that a
Byzantine node is capable of grinding through possibilities to
its liking and can arbitrarily choose which messages to output
based on inputs from other nodes that are honest. However,
VDFs limit this capability such that it is not possible for
even a dedicated attacker to grind through possibilities in an
attempt to fix an output of some computation if a VDF is
applied. As a result of above, delay-based DRBs are able
to enjoy both the highest fault tolerance and unbiasability
without violating any classical lower bounds. In a similar vein,
Bailey et al. [11] recently showed that VDFs can circumvent
some classical impossibility results for general multiparty
computation (MPC), of which DRBs are a special case.

B. Withholding Attacks

In a withholding attack, an adversary can influence the
outcome by not publishing some information. Any leader-
based protocol is vulnerable due to the inherent reliance on a
leader’s availability, affecting the protocol’s liveness (as well
as unbiasability and potentially unpredictability). Any protocol
with a private lottery is also fundamentally vulnerable.

1) Protocols with a leader. RandHound, RandHerd, and
SPURT suffer from the leader unavailability issue in case
the leader withholds such that their liveness is affected
and a beacon output can be aborted.5 A fallback is needed
if a leader withholds (e.g. HydRand’s PVSS recovery).

2) Protocols with a private lottery. The issue of withhold-
ing is more fundamental with private lottery schemes like
Algorand, as there is no accountability. There are two
possible remedies. First, we can require all participants
to post their lottery outputs every single epoch even if

5In contrast to a leader in SPURT, that in RandHound or RandHerd can
abort after seeing the beacon output in plaintext.

they lose the lottery, in which case any lack of message
would be indicative of withholding. However, this incurs
communication cost, negating the advantages of a private
lottery. Second, SSLE (single secret leader election) [25]
can be used to guarantee one winner per epoch, en-
abling detection of withholding. The guarantee of one
winner as opposed to the expectation of one winner is
what differentiates SSLE. While this makes withholding
obvious, it does not prevent withholding by itself, nor
does it detect who withholds in the case of withholding.
Designing efficient SSLE protocols remains an open and
active research area.

C. Adaptive Security

A DRB is adaptively secure if its security properties remain
unaffected against an adaptive adversary instead of a static one.
Here, we discuss a way to remedy adaptive attacks.

1) Requiring lottery winners (in protocols with private
lotteries) to broadcast marginal entropy and proof of
selection into Cτ in the same message. While some
private lottery schemes may involve less than or equal to
t entropy providers per epoch, the fact that one message
(per entropy provider) comprises both announcement of
winning the lottery and provision of marginal entropy
allows adaptive security (e.g. as in Algorand). By the time
an adversary knows which nodes to corrupt adaptively in
an epoch (after the nodes reveal their identity as entropy
providers), there is no extra step left to be corrupted. A
similar line of research has recently emerged in the MPC
literature in a model called YOSO (You-Only-Speak-
Once) [60], inspired by Algorand.

On the one hand, it is important for the sake of adaptive
security that there is no central point of dependency in any
step of a protocol. Otherwise, participating nodes depend on
the leader (functioning as either an orchestrator or an entropy
provider) such that an adversary can adaptively corrupt such
leaders. On the other hand, we note that a proof of adaptive
security does not follow immediately from a protocol’s lack
of leaders and can in fact be tricky to show. Only recently has
it been shown that threshold BLS is adaptively secure [9].

D. Comparison of DRBs

Table I provides an overall comparison of DRBs. Fault
Tolerance indicates the minimum number of faulty nodes that
can abort a protocol (after the initial setup). Protocols with
Independent Participation allow a node to contribute to beacon
output without the knowledge of other nodes in advance.
However, it differs from a permissionless setting in the sense
that a node may still have to register in advance to allow
verification of its contribution.

Verifier Complexity refers to the computational cost for a
passive observer (not participating in the protocol) to verify a
beacon output. We exclude the cost associated with the initial
setup for both verifier and communication complexities. We
assume a verifier complexity of O(n) per Lagrange interpola-
tion or Scrape’s PVSS [34] run. Communication Complexity
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TABLE I: DRB Comparison
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Optimistic Worst

Commit-Reveal II Commitment 1 ✓ All O(∆) 1 ✗ O(n) O(n2) O(n3) Bias O(1)

Unicorn++

III

VDF n ✓ All O(∆) 1 ✓ O(n) O(n2) O(n3) None O(1)

Ext. Beacon+VDF VDF n ✓ External O(∆) 1 ✓ O(1) O(n) O(n2) None O(1)

RandRunner Trapdoor VDF n ✗ None T ‡ t§ ✓ O(log T )‡ O(n) O(n2) Predict O(n3)

Bicorn Timed commitment n ✓ All T ‡ 1 ✓ O(n) O(n2) O(n3) None O(1)

RANDAO
IV

Commitment n ✓ All O(∆) 1 ✓ O(n) O(n2) O(n2)† None O(n)†

EVR Escrow-DKG n/3 ✗ All O(∆) 1 ✓ O(n3) O(n3) O(n4) None O(n)

Scrape

V

PVSS n/2 ✗ All O(∆) 1 ✓ O(n2) O(n3) O(n4) Biasr O(n3)

Albatross PVSS n/2 ✗ All O(∆) 1 ✓ O(1) O(n) O(n2) Biasr O(n3)

RandShare (P)VSS n/3 ✗ All O(∆) 1 ✓ O(n3) O(n3) O(n4) Biasr O(1)

SecRand PVSS n/2 ✗ All O(∆) 1 ✓ O(n2) O(n3) O(n4) Biasr O(n3)

HERB Thr. ElGamal n/3 ✗ All O(∆) 1 ✓ O(n) O(n2) O(n3) Biasr O(n4)

HydRand

VI

PVSS n/3 ✗ Committee* O(∆) t ✓ O(n) O(n2) O(n3) Bias O(n3)

GRandPiper PVSS n/2 ✗ Committee* O(∆) t ✓ O(n2) O(n2) O(n2) Bias O(n3)

BRandPiper (P)VSS n/2 ✗ Committee* O(∆) 1 ✓ O(n2) O(n2) O(n3) Bias O(n4)

Ouroboros PVSS n/2 ✗ Committee O(∆) 1 ✓ O(n2) O(n3) O(n3)† Bias O(n2)†

RandHound PVSS n/3 ✗ Committee O(∆) 1 ✗ O(cn) O(c2n) O(c2n2) Bias O(n3)

SPURT PVSS n/3 ✗ Committee O(∆) 1 ✗ O(n) O(n2) O(n2) Bias O(n3)

OptRand PVSS n/2 ✗ Committee O(∆) 1 ✓ O(n) O(n2) O(n2) Bias O(n3)

Algorand VRF n/3 ✓ Committee* O(∆) 1 ✗ O(1) O(n) O(n)† Bias O(n2)†

Ouroboros Praos VRF n/2 ✓ Committee O(∆) 1 ✗ O(n) O(n2) O(n2)† Bias O(n2)†

Caucus Hash chain n/3 ✓ Committee* O(∆) 1 ✗ O(1) O(n) O(n2) Bias O(n3)

NV++ VRF, thr. ElGamal n/3 ✗ Committee O(∆) 1 ✗ O(n) O(n) O(n)† Bias O(n2)†

drand

VII

Thr. BLS n/2 ✗ None O(∆) 1 ✓ O(1) O(n2) O(n3) Predict O(n4)

RandHerd Thr. Schnorr n/3 ✗ None O(∆) 1 ✗ O(1) O(c2n) O(n4) Bias O(n4)

DDH-DRB DDH-based DVRF n/2 ✗ None O(∆) 1 ✓ O(n) O(n2) O(n3) Predict O(n4)

GLOW-DRB Pairing-based DVRF n/2 ✗ None O(∆) 1 ✓ O(1) O(n2) O(n3) Predict O(n4)

Strobe RSA, VSS n/2 ✗ None O(∆) 1 ✓ O(1) O(n2) O(n3) Predict O(n)

c is the size of a shard in RandHerd and RandHound. We assume a leader can be Byzantine for both. Albatross’ verifier and communication complexities are per beacon output.
In Ouroboros and Ouroboros Praos, we assume the number of slot leaders in an epoch is denoted by n. We assume Scrape’s PVSS [34] is used as the default PVSS scheme.
Max Damage refers to the maximum damage possible when n − 1 adversarial nodes cooperate (see Section VIII-D). r In a non-rushing adversary model, max damage would
be predict rather than bias. * Each committee consists of a leader by default or by expectation. † PBB (public bulletin board) is assumed.
‡ T denotes VDF’s delay parameter, and verification of Pietrzak’s VDF is logarithmic in T . § β = t for RandRunner’s β-inter-unpredictability assuming a dishonest minority
without any computational advantage. See [88] for more scenarios.

concerns bitwise point-to-point communication among nodes
by default. Alternatively, we consider a public bulletin board
(PBB) (e.g. blockchain) as a reliable information exchange
medium in protocols where it is intrinsic. In a PBB model, we
consider both the bitwise writing cost (amount of data posted
to PBB) and reading cost (by all nodes where each node only
reads data relevant to it). In the absence of PBB, Byzantine
consensus [37] incurs O(n2) cost per decision by default.

Max Damage refers to the maximum damage possible when
n − 1 rushing [59] adversarial nodes cooperate. The reason
for this column is to observe the consequence of when the
honest majority assumption fails, which has happened in
practice (e.g. a $625 million Axie Infinity’s Ronin hack in
2022 [87]). A rushing adversary may delay sending messages
until after reading messages sent by all honest nodes in a
given round of communication. There can exist a separation
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between what rushing versus non-rushing adversaries can do
especially in protocols from Section V: if one can generate its
entropy contributions after seeing (or otherwise simultaneously
with) all the honest nodes’ entropy contributions, then biasing
(or otherwise predicting) is possible. The same fundamental
reasoning applies to (say) Ouroboros, where slot leaders (i.e.
entropy providers) communicate in sequential slots (and hence
the adversary can reconstruct an honest node’s entropy contri-
bution before generating its own). In escrow-based protocols,
we assume the adversaries are rational.

Recovery Cost refers to the communication cost associated
with recovering from an adversarial corruption. Regenerating
keys (e.g. PVSS.KeyGen or for private lottery schemes) and
VDF.Setup incur O(n3) recovery cost without PBB (and
O(n2) with PBB) while we conservatively assume each DKG
incurs O(n4) recovery cost (although it can be optimized [65]).
Finally, we note that it is possible to employ multiple DRBs
as subprotocols to a multi-tiered DRB (an approach taken by
Mt. Random [36]) in order to combine and take advantage of
various DRB properties at the same time.

IX. CONCLUDING REMARKS

Our systematization highlights important insights both for
practitioners and researchers. Based on our comparative frame-
work, we would advise practitioners planning to deploy a DRB
to consider the following high-level guidelines:

• Delay-based protocols stand above the competition in
terms of scalability, flexibility, and robustness, enabling
an efficient DRB with unlimited, open participation and
security given any honest participant. In theory, VDFs
appear to be a silver bullet for DRBs, though they have
yet to be widely used in practice and assumptions about
VDF security and hardware speeds remain relatively new.
They also invoke a unique practical cost in that somebody
must be able to compute a VDF (preferably by running
specialized hardware), which can add latency to the DRB.

• If not using VDFs, practitioners need to think critically
about two design dimensions: how large is the set of
participants, and how frequently will it change? Given
a small, static set of participants, DKG-based protocols,
e.g. HERB (from threshold encryption) and drand (from
DVRF), scale better than PVSS-based protocols. HERB
and drand are both competitive in this setting, differing
in randomness quality and max damage.

• For a small but dynamic set of participants, PVSS-based
protocols offer better flexibility (by avoiding a costly
DKG setup per reconfiguration) and randomness quality.
Committees may be needed to scale to more participants.

• Given a large, dynamic set of participants, protocols
with private lotteries like Algorand offer better scalability
and flexibility simultaneously although the randomness
quality is potentially affected by withholding.

• Finally, escrow-based protocols are suitable against
purely financially-motivated adversaries in applications
such as lotteries or finance, at the cost of locking up
some amount of capital during the protocol.

We conclude by identifying the following areas which we
consider most promising for further research:

• While VDFs are a promising tool, practical deployment
requires good estimates of the lower bound of wall-clock
VDF evaluation time. More research is needed to gain
confidence in the security of underlying VDF primitives
(such as repeated modular squaring), and hardware imple-
mentations must be built to provide practical assurance.

• VDFs might be useful as a modular layer in strengthening
other DRBs in a “belt-and-suspenders” approach, though
this does not appear to have been explored yet.

• Vulnerable to withholding, protocols based on private
lotteries can generate biased outputs. Though the guar-
antee of a single lottery winner every epoch via SSLE
makes withholding detectable, extending these protocols
to enable tracing of which node withheld is a promising
direction for further research.

• With the exception of VDF-based protocols like Uni-
corn++, all other DRBs assume a permissioned setting
requiring some initial setup (e.g. PKI or DKG) to estab-
lish participants’ identities. It is an open question which
non-VDF-based protocols can be extended to enable ad
hoc, permissionless participation.

• Most existing DRBs assume synchronous communica-
tion, which may fail in practice. Extending protocols to
handle asynchrony is an important challenge.

• Most papers today use game-based security definitions.
Universal Composability (UC) security proofs [33] could
be a useful tool for proving more robust and modular
security results.

• Finally, there is a gap between the systems-based litera-
ture on DRBs and the traditional cryptographic literature
on randomness extractors [95], [96], with DRBs simply
assuming cryptographic primitives such as hash functions
work as extractors in practice. Utilizing the existing
theory of extractors could prove useful in scenarios where
high-quality DRB outputs are required directly.
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APPENDIX

A. Verifiable Secret Sharing (VSS)

VSS schemes have two security requirements.
• Secrecy. If the dealer is honest, then the probability of

an adversary learning any information about the dealer’s
secret in the sharing phase is negl(λ).

• Correctness. If the dealer is honest, then the honest nodes
output the secret s at the end of the reconstruction phase
with a high probability of 1− negl(λ).

Feldman-VSS [54] and Pedersen-VSS [80] are the most
commonly used VSS schemes.

Feldman-VSS. The following summarizes a simple VSS
scheme proposed by Paul Feldman for sharing a secret s
among n participants where any subset of t+ 1 among them
can reconstruct the secret.

• ShareGen(s) → ({si}, C) with s ∈ Zq involves the
dealer sampling t random coefficients a1, . . . , at ∈ Zq

and constructing p(x) = s + a1x + a2x
2 + . . . + atx

t.
The shares are computed as si = p(i) in mod q for
1 ≤ i ≤ n and shared privately with each participant. The
commitments to the secret C0 = gs as well as coefficients
Cj = gaj for j = 1, . . . , t are also broadcast by the
dealer.

• ShareVerify(si, C)→ {0, 1} involves each participant Pi

checking if:

gsi =

t∏
j=0

Cij

j = C0C
i
1C

i2

2 · · ·Cit

t

If it does not hold for some i, then Pi broadcasts an
accusation against the dealer, who has to respond by
broadcasting the correct si. Correct reconstruction is
achieved by filtering out shares not passing ShareVerify.

• Recon(A, {si}i∈A)→ s outputs the secret s by perform-
ing Lagrange interpolation (see Appendix H1) with t+1
valid shares from the reconstruction set A of nodes:

s = p(0) =
∑
j∈A

p(j)λ0,j,A

The verifiability in Feldman-VSS comes from inclusion of
commitments to the coefficients. These commitments enable
participants to verify the validity of the shares that they receive
from the dealer.
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B. Distributed Key Generation (DKG)

One of the best known DKG schemes is Joint-Feldman,
proposed by Pedersen [81].

Joint-Feldman. In this DKG scheme, each participant
uses Feldman-VSS to share a randomly chosen secret. The
protocol is implemented as follows.

• DKG(1λ, t, n)→ (ski, pki, pk) proceeds in two phases—
Sharing and Reconstruction.

1) In Sharing phase, each participant Pi runs Feldman-
VSS by choosing a random polynomial over Zq of
degree t, pi(z) =

∑t
j=0 aijz

j , and sending a subshare
sij = pi(j) in mod q to each participant Pj privately.
To satisfy the verifiability portion of VSS, Pi also
broadcasts Cik = gaik for k = 0, . . . , t. Let the
commitment corresponding to the secret be denoted
by yi = Ci0. Each participant Pj also verifies the sub-
shares it receives from other participants by performing
verification steps of Feldman-VSS on each subshare. If
verification for index i fails, Pj broadcasts a complaint
against Pi. If Pi receives more than t complaints, then
Pi is disqualified. Otherwise, Pi reveals the subshare
sij for every Pj that has broadcast a complaint. We
call C the set of non-disqualified participants.

2) Reconstruction phase calculates the keys based on C.
The group public key is calculated as pk =

∏
i∈C yi

where the individual public keys are pki = yi. Each
participant Pj’s individual secret key is computed as
skj =

∑
i∈C sij . Though not computed explicitly, the

group secret key sk is equal to both
∑

i∈C ai0 and the
Lagrange interpolation involving the individual secret
keys {skj}j∈C .

C. Publicly Verifiable Secret Sharing (PVSS)

PVSS can be described by the following algorithms.

• Setup(λ) → pp generates the public parameters pp, an
implicit input to all other algorithms.

• KeyGen(λ) → (ski, pki) generates the PVSS key pair
used for encryption and decryption for node i.

• Enc(pki,m) → c and Dec(ski, c) → m′ are subalgo-
rithms used to encrypt and decrypt the share to node i,
respectively. Both Enc and Dec may optionally output a
proof (e.g. πDLEQ).

• ShareGen(s) → ({Enc(pki, si)}, {s′i}, π) with s′i =
Dec(ski,Enc(pki, si)) is a two-part process. First, the
dealer with secret s generates secret shares {si} and
sends each encrypted share Enc(pki, si) to node i with an
optional encryption proof πEnci . Second, node i decrypts
the received encrypted share to generate s′i and broadcasts
it with an optional decryption proof πDeci . Note that it
is possible that s′i ̸= si. In fact, s′i = hsi is standard due
to certain PVSS implementation details. π incorporates
{πEnci} and {πDeci} as well as any auxiliary proof
necessary.

• ShareVerify({Enc(pki, si)}, {s′i}, π) → {0, 1} verifies if
ShareGen is correct overall using π.

• Recon(A, {s′i}i∈A) → s′ reconstructs the shared secret
s′ via Lagrange interpolation (in the exponent) from a
set A of t + 1 nodes whose contributions are passed
by the ShareVerify algorithm. Typically, s′ = hs in the
landscape.

PVSS is a secure VSS scheme providing the following
additional guarantee:

• Public Verifiability. If the ShareVerify algorithm returns
1, then the scheme is valid in a publicly verifiable
manner with high probability 1− negl(λ).

Schoenmakers PVSS. One of the simplest PVSS schemes
used in practice is one by Schoenmakers [90]. As typical, the
setup involves g, h ∈ Gq . Additionally, each participant Pi

generates a secret key xi ∈ Z∗
q and registers yi = hxi as its

public key.
• ShareGen(s) → ({Enc(yi, si)}, {s′i}, π) with s′i equal

to Dec(xi,Enc(yi, si)) first involves production of
{Enc(yi, si)} by the dealer with secret s. Namely, the
dealer picks a random polynomial p of degree t with
coefficients in Zq

p(x) =

t∑
i=0

aix
i

where s = p(0) = a0 and computes Yi = Enc(yi, si) =

y
p(i)
i , which is sent to each node i along with infor-

mation needed to prove its correctness: Cj = gaj for
0 ≤ j ≤ t such that Xi =

∏t
j=0 C

ij

j = gp(i) and
DLEQ(g,Xi, yi, Yi) (see Appendix H3). Upon receiving
Yi, node i computes s′i = Dec(xi, Yi) = Y

1/xi

i = hp(i)

and generates information needed to prove its correctness:
DLEQ(h, yi, s

′
i, Yi).

• ShareVerify({Yi}, {s′i}, π) → {0, 1} verifies the encryp-
tion proof of correctness DLEQ(g,Xi, yi, Yi) where Xi’s
are computed from Cj’s as well as the decryption proof
of correctness DLEQ(h, yi, s

′
i, Yi).

• Recon(A, {s′i}i∈A) → hs performs the following La-
grange interpolation in the exponent∏

i∈A

(s′i)
λ0,i,A = h

∑
i∈A p(i)λ0,i,A = hp(0) = hs

where λ0,i,A denotes the Lagrange coefficients. Note that,
unlike VSS, the scheme does not require the knowledge
of the values p(i) by the participants. The secret keys xi

are not exposed as well and thus can be reused.

D. Verifiable Random Function (VRF)

A VRF [51], [77] is a function that, given an input x and
a secret key sk, generates a unique, pseudorandom output y
as well as a proof π verifying that the computation has been
done correctly. Due to π, it is possible to repeatedly generate
new pseudorandom outputs with one sk and varying inputs in
a verifiable manner whereas otherwise (e.g. using a classical
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pseudorandom function) one needs to divulge the secret key
and sacrifice its reusability for public verification purposes. It
can be represented by the following tuple of algorithms:

• Prove(sk, x) → (Fsk(x), πsk(x)) generates the pseudo-
random output Fsk(x) and its proof of correctness πsk(x)
given input x and secret key sk.

• Verify(pk, x, y, π)→ {0, 1} outputs 1 if it is verified that
y = Fsk(x) using the proof π and 0 otherwise.

E. DDH-DVRF

DDH-DVRF (from the decisional Diffie-Hellman assump-
tion) is described by the following DVRF algorithms.

• DKG(1λ, t, n) runs a typical DKG.
• PartialEval(ski, x) outputs (yi, πi) where yi = H(x)ski

and πi = DLEQ(g, gski , H(x), H(x)ski) denoting
the non-interactive Chaum-Pedersen protocol (see Ap-
pendix H3).

• PartialVerify(pki, x, yi, πi) is equivalent to
DLEQ-Verify(g, pki, H(x), yi, πi) (Appendix H3)
and verifies the correctness of the PartialEval algorithm
using πi.

• Combine(A, {(yi, πi)}i∈A) outputs (y, π) where y =∏
i∈A y

λ0,i,A

i and π = {(yi, πi)}i∈A. Details related
to Lagrange coefficients λ0,i,A are included in Ap-
pendix H1.

• Verify(pk, {pki}, x, y, π) verifies all partial proofs via
PartialVerify for all i ∈ A from π and checks y =∏

i∈A y
λ0,i,A

i .

F. GLOW-DVRF

Providing a compact proof π, GLOW-DVRF uses a bilinear
pairing e : G1×G2 → GT similar to BLS (Appendix H2) such
that the setup includes hash functions H1 : {0, 1}∗ → G1 and
H2 : G1 → {0, 1}y(λ). While resembling DDH-DVRF, the
following algebraic modifications are made due to pairings.

• DKG(1λ, t, n) is adapted so that pki resides in G1 while
pk resides in G2. This is achieved by letting (pki, pk) =
(gski

1 , gsk2 ) for g1 ∈ G1 and g2 ∈ G2. The purpose of this
is to facilitate a compact proof in the final Verify step.

• PartialEval(ski, x) outputs (yi, πi) where yi = H1(x)
ski

and πi = DLEQ(g1, g
ski
1 , H1(x), H1(x)

ski).
• PartialVerify(pki, x, yi, πi) is equivalent to
DLEQ-Verify(g1, pki, H1(x), yi, πi) and verifies the
correctness of the PartialEval algorithm using πi.

• Combine(A, {(yi, πi)}i∈A) outputs (y, π) where π =∏
i∈A y

λ0,i,A

i and y = H2(π). Note that π is a group
element.

• Verify(pk, {pki}, x, y, π) verifies y = H2(π) and a pair-
ing equation e(π, g2) = e(H1(x), pk).

G. Dfinity-DVRF

Dfinity-DVRF is given by the following DVRF algorithms.
• DKG(1λ, t, n) is adapted so that both pki and pk reside

in G2. This is achieved by letting (pki, pk) = (gski
2 , gsk2 )

for g2 ∈ G2. The purpose of this is to facilitate the check
of some pairing equation in both PartialVerify and Verify.

• PartialEval(ski, x) outputs (yi, πi) where yi = H1(x)
ski

and πi = ⊥. The reason for a null proof is that a
pairing equation check is used in PartialVerify (i.e. the
differentiator from GLOW-DVRF) with no need for any
auxiliary information.

• PartialVerify(pki, x, yi, πi) checks a pairing equation
e(yi, g2) = e(H1(x), pki).

• Combine(A, {(yi, πi)}i∈A) equals that in GLOW-DVRF.
• Verify(pk, {pki}, x, y, π) equals that in GLOW-DVRF.

H. Other Cryptographic Primitives

1) Lagrange Interpolation: Given a non-empty reconstruc-
tion set A ⊂ Zq , the Lagrange basis polynomials are given by
λj,A(x) =

∏
k∈A\{j}

x−k
j−k ∈ Zq[X] such that the Lagrange

coefficients λi,j,A = λj,A(i) ∈ Zq enable the equality
p(i) =

∑
j∈A p(j)λi,j,A for any polynomial p ∈ Zq[X] of

degree at most |A|−1. The process of computing this equality
is called Lagrange interpolation.

2) BLS Signature: Introduced by Boneh, Lynn, and
Shacham in 2003, the BLS signature scheme [26] consists
of the following tuple of algorithms given a key pair (sk, pk).

• Signsk(m) → H1(m)sk outputs a digital signature σ =
H1(m)sk given secret key sk and message m where H1

is a hash function such that H1 : {0, 1}∗ → G1.
• Verifypk(m,σ) → {0, 1} verifies σ given signature
σ, message m, and public key pk via e(σ, g2) =
e(H1(m), pk).

Note that BLS uses a bilinear pairing e : G1×G2 → GT with
G1 = ⟨g1⟩, G2 = ⟨g2⟩, GT denoting a cyclic group of prime
order q, and the following requirements.

• Bilinearity. e(gx1 , g
y
2 ) = e(g1, g2)

xy for all x, y ∈ Z∗
q .

• Non-degeneracy. e(g1, g2) ̸= 1.
• Computability. e(g1, g2) can be efficiently computed.
The threshold variant [22] of BLS (i.e. threshold BLS)

requires Signsk(m) to be computed by t+ 1 out of n nodes.
This is achieved via DKG such that sk denotes the implicit
group secret key whereas each node broadcasts its partial
signature H1(m)ski , t+ 1 of which from the set A of honest
nodes are combined to generate

H1(m)sk =
∏
i∈A

(
H1(m)ski

)λ0,i,A

via Lagrange interpolation in the exponent.
3) NIZK of Discrete Logarithm Equality (DLEQ):

Also known as the Chaum-Pedersen protocol [38], the Σ
protocol [45] for proving that the two discrete logarithms are
equal without revealing the discrete logarithm value itself
can be turned into a NIZK by applying the Fiat-Shamir
heuristic [55]. Namely, the prover can non-interactively
prove the knowledge of α such that (h1, h2) = (gα1 , g

α
2 ) via

πDLEQ = DLEQ(g1, h1, g2, h2) with group elements in Gq .

DLEQ(g1, h1, g2, h2)
Input: g1, h1, g2, h2 ∈ Gq , α ∈ Zq

Output: π = (e, s)
1) A1 = gw1 , A2 = gw2 for w $←− Zq
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TABLE II: Committee-Based DRB

Step 2: Beacon Output Generation
Fresh per-node entropy Ωτ−1 & precommitted per-node entropy

St
ep

1:
C

om
m

itt
ee

Se
le

ct
io

n

Public

RR
BRandPiper
Step 1: Node i ≡ τ (mod n)

Step 2: Share-aggregate-reconstruct

RS
Ouroboros
Step 1: Follow-the-satoshi [18], [72]
Step 2: Share-reconstruct-aggregate

HydRand
Step 1: Node i ≡ Ωτ−1 (mod ñ)

Step 2: Ωτ = H(Ωτ−1 ∥ heτ̃ )

GRandPiper
Step 1: Node i ≡ Ωτ−1 (mod ñ)

Step 2: Ωτ = H(heτ̃ ,Ωτ−1, ...,Ωτ−t)

LS

RandHound
Step 1: Node argmini H(C ∥ pki)
Step 2: Share-reconstruct-aggregate

SPURT, OptRand
Step 1: Node i ≡ τ (mod n)

Step 2: Share-aggregate-reconstruct

Private

VRF
NV++
Step 1: V RFsk(Ωτ−1 ∥ nonce) < target

Step 2: Threshold ElGamal

Algorand
Step 1: V RFsk(Ωτ−1 ∥ role) < target

Step 2: Ωτ = V RFsk(Ωτ−1 ∥ τ)

Ouroboros Praos1

Step 1: V RFsk(Ωτ−1 ∥ slot ∥ TEST) < target

Step 2: Ωτ = H(Ωτ−1 ∥ epoch ∥ ρ1 ∥ ... ∥ ρK)

Hash chain
Caucus2

Step 1: H(hτ ⊕ Ωτ−1) < target

Step 2: Ωτ = hτ ⊕ Ωτ−1

Note that public committee selection mechanisms (Section VI-A1) include RR (round-robin), RS (random selection), and LS (leader-based selection) while
details regarding private committee selection can be found in Section VI-A2. For details on beacon output generation, see Sections VI-B1 and VI-B2.
1 The protocol is a variant of Algorand. While |Cτ | is expected to be one in Algorand (with 1 final winner per lottery and 1 lottery per epoch), that in
Ouroboros Praos is expected to be K where each epoch consists of K slots and thus K per-slot lotteries. Parameters slot and epoch denote the slot and
epoch numbers, respectively, and ρi = V RFski

(Ωτ−1 ∥ sloti ∥ NONCE) is returned by the slot leader of sloti. TEST and NONCE are strings.
2 In Caucus, a VRF is replaced by a hash function combined with a hash chain, i.e. a list (h1, ..., hm) with hτ = H(hτ+1) for all τ = 1, ...,m− 1 where
hm = s for some random seed. A hash chain provides the functionality of provably committing to private inputs as one publicizes one hτ at a time (i.e. hτ

in epoch τ ). Each node independently generates a private hash chain. One downside is that the hash chain needs to be periodically regenerated, as m is finite.

2) e = H(h1, h2, A1, A2)
3) s = w − α · e (mod q)
4) π = (e, s)

DLEQ-Verify(g1, h1, g2, h2, π)
Input: g1, h1, g2, h2 ∈ Gq , π = (e, s)
Output: b ∈ {0, 1}

1) A′
1 = gs1h

e
1, A

′
2 = gs2h

e
2

2) e′ = H(h1, h2, A
′
1, A

′
2)

3) b =

{
1 if e′ = e

0 otherwise
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