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Abstract—Control flow attacks exploit software vulnerabilities
to divert the flow of control into unintended paths to ultimately
execute attack code. This paper explores the use of instruc-
tion and data tagging as a general means of thwarting such
control flow attacks, including attacks that rely on violating
pointer integrity. Using specific types of narrow-width data
tags along with narrow-width instruction tags embedded within
the binary facilitates the security policies required to protect
against such attacks, leading to a practically viable solution.
Co-locating instruction tags close to their corresponding in-
structions within cache lines eliminates the need for separate
mechanisms for instruction tag accesses. Information gleaned
from the analysis phase of a compiler is augmented and used to
generate the instruction and data tags. A full-stack implemen-
tation that consists of a modified LLVM compiler, modified
Linux OS support for tags and a FPGA-implemented CPU
hardware prototype for enforcing CFI, data pointer and code
pointer integrity is demonstrated. With a modest hardware
enhancement, the execution time of benchmark applications
on the prototype system is shown to be limited to low, single-
digit percentages of a baseline system without tagging.

Index Terms—Control Flow Integrity, Hardware security,
Pointer Integrity, Security architectures, Security and privacy
policies.

1. Introduction

Recent years have seen significant growth in attacks
targeting inherent vulnerabilities in software. We focus on
control-flow attacks (CFA), which change the control flow
path from what was originally intended to other paths that
will ultimately execute malicious code. Examples of control
flow attacks range from stack smashing [47], format string
attacks [44] to the family of code reuse attacks that include
return-oriented programming [7], [53], [55], jump-oriented
programming [9], [13], return-to-libc programming [61], and
counterfeit object oriented programming [52].

Tagged architectures have been proposed as the basis
for many hardware-based security solutions against various

∗ The first two authors share equal credit for the authorship of the paper.

exploits such as control flow attacks and memory corruption
in general. The width of the tags in a tagged architecture
determines a tradeoff between the level of protection offered
and performance. Schemes that use 1-bit tags, such as
HDFI [56], where one bit data tag is used to identify a
single control flow related entity, incur small performance
overhead. However, distinguishing between forward and
backward control flow edges is not possible using a single
bit. The other extreme of the tag width is found in archi-
tectures such as PUMP [26], [51] and DOVER [24], where
metadata tag widths are identical to the data or instructions
that they are associated with. Such wide metadata tags
enable a rich and sophisticated set of security mechanisms
but discourage the deployment of the tagged system due
to the associated performance and storage overhead. Tag
widths between these two extremes are much more useful
for practical systems as they provide the right balance be-
tween the hardware-supported security mechanisms and per-
formance. The processor architecture and system proposed
in this paper shows how such a balance can be maintained to
realize a practical system for ensuring the integrity of control
flow and pointers by reducing performance, hardware and
power overhead and yet provide a wide range of hardware-
supported security mechanisms.

We introduce a Secure Tagged Architecture (STAR)
that strikes a balance between performance and richness of
tag-based security functions in order to provide protection
against control flow attacks in a practical manner. STAR
is a full-stack solution comprised of a FPGA (Field Pro-
grammable Gate Array) hardware prototype of the open-
source Flute [10] 64-bit RISC-V ISA implementation, a
modified LLVM compiler toolchain that generates the in-
struction and data tags, and a modified Linux kernel pro-
viding support for tagging. STAR provides the required
security functions without imposing significant performance
and storage overhead using:

• Narrow tags for both instructions and data to support
coarse-grained type-enforcement and to avoid illegal
operations related to control flow, code and data point-
ers.

• Directly-interpretable instruction tags to enforce legal,
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context-specific behavior of existing individual instruc-
tions, specifically for control flow and pointer integrity
enforcement and to mark legitimate control flow tar-
gets in code. The direct interpretability of tags imply
that instruction opcode decoding and tag decoding can
be overlapped. Specifically, no table lookup using the
(metadata) tag, as in [24], [26], [51], or special instruc-
tions with embedded instruction tags are required, as
in [64]. The tagging of existing instructions in STAR
also eliminates the need to add a number of usage-
specific instructions to the ISA, reducing the design
complexity.

• Novel instruction tag embedding within execution bi-
naries to simplify instruction tag access.

Although the current paper focuses on control flow and
pointer integrity applications, the basic tagging scheme of
STAR can be adapted to encode various security-sensitive
policies such as code checksum, statically determinable
runtime invariants (e.g., last read/write of a variable) that
target different threat models. These alternative uses are
being investigated in our ongoing work.

STAR leverages the compiler as a rich source of infor-
mation for providing the integrity of control flow as well
as the integrity of data and code pointers in a general
manner. Rich program semantics (e.g., pointer types) that
are typically lost during compilation are captured by the
STAR compiler and persisted into the binary in the form
of instruction and data tags. These tags are processed and
checked in the hardware to enforce the integrity of control
flow, data pointers and code pointers to address vulnerabil-
ities that stem from the inherent flaws in the software. This
paper makes the following contributions:

• We present the design of a new hardware-based so-
lution, which generalizes the use of narrow, directly-
interpretable instruction tags and their use with data
tags, in order to enforce control flow integrity and
the integrity of code and data pointers. This is done
by enforcing legal, context dependent behaviour of
instructions.

• We introduce a novel instruction tagging scheme called
inline tagging to eliminate the need for an additional
cache for instruction tags, to co-access an instruction
along with its associated instruction tag and thus main-
tain the locality of reference in accessing instructions.

• A full stack implementation of the proposed hardware,
its compiler and OS support is presented, along with
the security policies tied to the instruction and data
tags.

• We demonstrate by running representative SPEC
benchmarks that the average performance overhead
against the baseline system is limited to low single digit
percentages with a modest increase in the hardware
resources.

The rest of this paper is organized as follows: In Sec-
tion 2, we describe the threat model and assumptions. The
instruction tags, data tags, security primitives and protection
mechanisms of STAR are presented in Section 3. The hard-

ware implementation details, compiler and OS changes are
detailed in Section 4. In Section 5, evaluation of the scheme
in terms of hardware design and software performance is
presented. In Section 6, we present the related work and
compare STAR against similar tagged hardware as well as
other recent and relevant hardware mechanisms. Concluding
remarks and future work are provided in Section 7.

2. Threat Model and Assumptions

We focus on preserving control flow and pointer in-
tegrity. We assume that the application may contain one
or more software vulnerabilities that adversaries can exploit
to launch a wide variety of attacks including control flow
attacks. Specifically, these vulnerabilities can let an attacker
gain control of the program stack to rewrite return addresses,
code/function pointers, initiate buffer overflow attacks and
bypass ASLR-protected memory using knowledge of the
memory layout of the program. We assume the presence
of Data Execution Prevention (DEP) in the hardware and
that the code along with tags introduced by STAR can not
be modified by the attacker.

This work addresses vulnerabilities that are limited to
user-space, encompassing user applications and libraries.
However, the solution can be extended to all software in
a system, including the kernel.

The following additional assumptions are made:

• The hardware is free of inherent vulnerabilities. There-
fore, we consider micro-architectural and side-channel
attacks to be out of scope.

• The hardware platform enforces protection against code
injection (e.g., NX-Bit). Many contemporary platforms
deploy such a protection scheme by default.

• We assume that kernel, compiler, linker and loader are
trusted components.

• We assume that the adversary has full knowledge of
STAR’s design details and the security protections do
not depend on the secrecy of such information.

• While we do not explicitly rely on the presence of
orthogonal defenses such as ASLR, it would only
compliment and strengthen the protections offered by
STAR.

• While our design is not fundamentally limited by ABI
restrictions, in the current STAR system, legal pointers
in memory are assumed to be 64-bit aligned.

3. Secure Tagged Architecture - STAR

We present the design of STAR using a proof-of-concept
RISC-V implementation and describe the data tags, instruc-
tion tags, and security policies. Afterwards, we describe how
these mechanisms work in conjunction to provide control
flow and pointer integrity. Specifically, the goal of these
mechanisms is to provide the following assurances, which
constitute the foundational pillars of the STAR security
framework:
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1) Control transfers only take place between instructions
specified in the software. These include function calls,
jumps, branches and their respective targets.

2) Control flow targets are reached by the specific types
of control transfer instructions designated for them.
For example, function return instructions only transfer
control to instructions identified as return targets.

3) All indirect control transfer instructions use valid code
pointers.

4) Return addresses stored in memory are tamper-evident
and cannot be used for control transfer if their integrity
is violated.

5) Return addresses are created only by executing a func-
tion call instruction and cannot be forged by any other
means.

6) Malicious overwrites to pointers (code & data) by non-
pointer data, to code pointers by data pointers and vice
versa are detected at the time of misuse.

7) Memory addresses used by load and store instructions
are always valid data pointers.

8) Instructions not intended by the compiler to involve
pointers cannot use, modify, or generate pointers.

Assurances 1 and 2 are provided by points-to analysis
performed by the compiler in conjunction with instruction
tags. Data type analysis along with instruction and data tags
are used to provide Assurances 3 through 8. For the Assur-
ance 6, the detection is delayed until the corrupted pointer
is used to initiate an exploit. However, unlike silent errors
where the source of the error is often unknown, because the
precise violation is known during policy enforcement, the
instruction that resulted in invalidation of the pointer can be
identified, thereby aiding in diagnosis and triage efforts.

3.1. Data Tags

STAR tags each machine-word (32 bits aligned at 32-bit
boundary) in memory with one of the 2-bit data tag values
listed in Table 1. The data tags are symbolically represented
using two capital letters surrounded by square brackets. Data
tags enable code pointers, data pointers, and return addresses
to be distinguished from one another and from other non-
pointer data not only in memory but in registers as well. Data
tags propagate from memory to register, register to memory,
and register to register in accordance with the STAR security
policies (see Section 3.3).

Tag Description
[DT] Non-Pointer Data
[DP] Data Pointer
[CP] Code Pointer
[RA] Return Address

TABLE 1: Data Tags

3.2. Instruction Tags

STAR enforces legal, context dependent behavior of
instructions through instruction tags. Each 32-bit instruction

is associated with a 6-bit tag. An instruction’s tag, in com-
bination with the instruction’s opcode, informs the hardware
of the instruction’s semantic context, and consequently the
security policies to enforce.

The instruction tags used in STAR are presented in
Table 2. The instruction tags are symbolically represented
using three capital letters surrounded by square brackets.
For showing the various possible instructions that can be
associated with a particular tag value in a compact manner
in Table 2, instructions are grouped into three categories.
These categories are: control transfer instructions (function
calls, function returns, indirect jumps, branches), memory
instructions (load and store) and arithmetic instructions (ad-
dition, bit shifting, logical operations). In practice, the exact
effect of an instruction tag depends on the instruction it
is associated with. Thus, the same tag applied to a load
instruction may produce a different behavior when applied
to a store instruction.

Multiple instruction tags may simultaneously apply to
a single instruction and are combined as a separate, single
tag that combines the function of the constituent tags. For
example, an arithmetic instruction that operates on a data
pointer (tag [DPO]) may also be the target of a function call
(tag [TFC]), as it is typically the case for the instruction that
adjusts the stack pointer in function prologues. In this case,
the single combined tag is represented as [TFC+DPO] and
encoded to have the same width as each of the constituent
tags.

Tag Description Applicable Instruction Group
Control Memory Arithmetic

[GEN] Generic Instruction � � �
[DPO] Data Pointer Operation � �
[CPO] Code Pointer Operation � �
[RAP] Return Address Push/Pop �
[CLR] Clear Instruction Source �
[EQR] Equal Rank Matching �
[CAL] Function Call �
[RET] Function Return �
[TFC] Target of a Function Call � � �
[TFR] Target of a Function Return � � �
[TIJ] Target of an Indirect Jump � � �
[LBL] CFI Label Encoded as a no-op

TABLE 2: Instruction Tags

3.3. Security Policies

We describe the security policies enforced by STAR for
each instruction group separately.

3.3.1. Control Transfer Instructions. Every function call
instruction is tagged [CAL]. The instruction that immedi-
ately follows the call is tagged [TFR]. The instruction at the
target of the call is tagged [TFC]. Additionally, if the target
function is unreachable within the compilation unit (i.e. its
address is unknown at compile time), a CFI-label is inserted
before the call in the form of a no-op instruction with the
tag [LBL]. Likewise, each global function reachable by other
compilation units has a matching CFI label at function entry
points.
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The CFI label is encoded as a no-op lui instruction that
provides 20 bits of unused space, as shown in Figure 1.
One bit is dedicated for the label type, which states whether
the label is at the source of a control transfer or at the
destination. Even though source labels are always followed
by a call instruction, checking whether that is the case upon
encountering a CFI label in the hardware would require a
complex lookahead logic for reading the next instruction
ahead of time. Since the hardware pipeline naturally fetches
the instruction following the label in the next cycle, this
check can be delayed until then without sacrificing security.
Thus, the hardware uses the label type field to internally
activate the check for the call instruction in the next cycle.
The remaining 19 bits are used to implement a function-
signature based CFI-scheme comprised of the function re-
turn type, first five argument types, and a flag to denote if the
function is variadic. The CFI label itself is tagged [LBL], so
that it can be distinguished from other no-op instructions.

Figure 1: CFI label Format

When a call instruction executes, the register that stores
the return address receives the data tag [RA]. From then on,
only the memory instructions tagged [RAP] may load/store
the return address. Furthermore, every return instruction
is tagged [RET], which enforces that the register holding
the return address is tagged [RA]. A return instruction can
transfer control only to an instruction tagged [TFR].

Program counter relative (PC-Relative) jumps and
branches have their targets verified at compile time and are
not subject to additional security checks. On the other hand,
every indirect jump instruction is required by the hardware
at runtime to use a code pointer in its source register with the
data tag [CP]. There is no instruction tag that identifies an
indirect jump: any computed jump that is not a function call
or a return, which are tagged [CAL] and [RET] respectively,
is an indirect jump. For this reason, indirect jumps are
tagged [GEN]. However, the instructions targeted by indirect
jumps are tagged [TIJ] and the hardware enforces that the
instruction following an indirect jump must be tagged [TIJ].
Note that direct jumps targeting an instruction tagged [TIJ]
are still allowed; the target check is activated only upon
encountering an indirect jump instruction.

In summary, the following protection mechanisms are
provided to support control flow integrity:

• Forward Edge Integrity: Provided by pairing func-
tion calls tagged [CAL] and instructions at the target
tagged [TFC] for functions resolved at compile time;
by pairing compile-time unresolved functions using
source and destination CFI labels tagged [LBL]; and
by pairing indirect jumps tagged [GEN] with their
potential targets tagged [TIJ]. Additionally, all control

transfer instructions must use a source register tagged
[CP] to ensure that the control transfer always happens
using a code pointer.

• Backward Edge Integrity: Provided by pairing func-
tion return instructions tagged [RET] with their targets
tagged [TFR]. All return instructions must use a source
register tagged as [RA]. Morever, only the execution of
an instruction with tag [CAL] will lead to tagging of
the return address register [RA]. The data tag makes
the return address tamper-evident. Only the memory
instructions tagged [RAP] may operate on it. Any other
instruction invalidates the [RA] tag and replaces it with
[DT].

We formally define the security policies enforced by
each instruction tag that applies to control transfer instruc-
tions using the pseudocode below. Each policy starts with
the tag of the instruction, followed by the associated opcode
and operands in RISC-V assembly notation. The TAG()
operator returns the tag of a given entity, either a register or
a memory location. The MEM| | operator denotes a memory
location. When the MEM| | operator targets an instruction
address, the expression TAG(MEM| |) denotes the tag for
that instruction; otherwise it denotes the data tag. The ←
operator denotes assignment.

• Function Call Policy:
[CAL] j a l r ra , r s1 , imm :

i f TAG ( r s 1 ) != [CP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r s 1 +imm | ) != [TFC]
S e c u r i t y V i o l a t i o n

TAG ( r a ) ← [RA]

• Function Return Policy:
[RET] j a l r ze ro , ra , 0 :

i f TAG ( r a ) != [RA]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r a | ) != [TFR]
S e c u r i t y V i o l a t i o n

TAG ( r a ) ← [RA]

• Indirect Jump Policy:
[GEN] j a l r ze ro , r s1 , imm :

i f TAG ( r s 1 ) != [CP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r s 1 +imm | ) != [ TIJ ]
S e c u r i t y V i o l a t i o n

Note that checking of the control transfer tags [TFC],
[TFR], [TIJ], are done slightly differently in the hardware
to improve performance. Instead of performing a memory
operation to check the target instruction tag, a latch is set
in the hardware that triggers the check while executing
the target instruction in the pipeline. This latch is pre-
served across context switches as part of a process’ context.
Moreover, control transfer target checks are not triggered
for fall-through code; only a control transfer instruction
or a CFI label at the source activates the checks for the
target. Additionally, a label based CFI check makes [TFC]
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redundant for functions that have a CFI label at their entry
points, since it is more fine-grained. In such cases, the STAR
compiler doesn’t tag the instruction at the entry point [TFC],
and the hardware skips the check for the corresponding call
instructions tagged [CAL].

3.3.2. Memory Instructions. The security policies for
memory instructions focus on providing return address pro-
tection, pointer integrity, and information leakage mitigation
between registers and memory. Generic load and store op-
erations that don’t require extra security checks are tagged
[GEN]. The associated data tags propagate between registers
and memory with the exception of the data tag [RA]: generic
memory operations are not allowed to operate on return
addresses. This is to say that a generic load cannot read
from a memory location tagged [RA] and a generic store
cannot store a register tagged [RA]. However, a generic
store can overwrite a memory location tagged [RA] with
a register tagged anything but [RA]. The [GEN] tag also
enables helpers such as memcpy() to function properly
without additional special handling.

When the STAR compiler determines that a memory
operation loads or stores a data pointer or code pointer, it
tags the instruction [DPO] or [CPO] respectively. The return
address push and pop memory operations must be tagged
[RAP]. When applied to a store instruction, it enforces that
the source register must have the data tag [RA]. Similarly,
a load instruction tagged [RAP] ensures that the tag of the
memory location is [RA], before moving it into the register.

Additionally, memory instructions can be associated
with the tag [CLR], which clears the source register and
sets its data tag to [DT] for stores; and clears the contents
of the memory location and sets its data tag to [DT] for
loads. When used in combination with [RAP], it ensures
that there is always only one copy of the return address at
any given time either in a register or memory, preventing
any potential abuse based on reusing the return address.

Support for setjmp/longjmp: Return address push/pop
instructions without the additional [CLR] tag are used to
support setjmp () /longjmp(), such that the same setjmp
buffer can be reused by multiple longjmp() calls without
invalidating the return address saved as part of the context.

Defense against use after free: The [CLR] tag can be used
in a similar fashion on pointers before they are freed to
limit the attack surface for use-after-free attacks. This is
accomplished by tagging the pointer load instruction that
precedes the free with [CLR], effectively invalidating the
pointer in memory. We’d like to reiterate that no extra
instructions need to be inserted to utilize this feature thanks
to the STAR instruction tagging. However, coverage depends
on the availability and the compiler’s ability to identify
applicable instructions where this feature can be leveraged.

In summary, the following protection mechanisms are
provided by the memory-related security policies:

• Return Address Integrity: Provided by only allowing
designated instructions tagged [RAP] to access the
return address; by detecting any tampering of a return

address through the data tag [RA]; by ensuring that
the return address push/pop operations don’t leave a
copy behind in a register or memory for potential abuse
through the use of [CLR].

• Data Pointer Integrity: Provided by ensuring that the
memory instructions tagged [DPO] exclusively load/s-
tore data pointers tagged [DP]; by detecting tampering
of data pointers through the data tag [DP].

• Code Pointer Integrity: Provided by ensuring that the
memory instructions tagged [CPO] exclusively load/s-
tore code pointers tagged [CP]; by detecting tampering
of code pointers through the data tag [CP].

Below is a summary of the security policies enforced by
each tag that applies to memory operations:

• Load Policies:

[GEN] l o a d rd , r s1 , imm :

i f TAG ( r s 1 ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r s 1 +imm | ) = [RA]
S e c u r i t y V i o l a t i o n

TAG ( rd ) ← TAG (MEM | r s 1 +imm | )

[DPO] l o a d rd , r s1 , imm :

i f TAG ( r s 1 ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r s 1 +imm | ) != [DP]
S e c u r i t y V i o l a t i o n

TAG ( rd ) ← [DP]

[CPO] l o a d rd , r s1 , imm :

i f TAG ( r s 1 ) != [CP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | r s 1 +imm | ) != [CP]
S e c u r i t y V i o l a t i o n

TAG ( rd ) ← [CP]

[RAP] l o a d ra , sp , imm :

i f TAG ( sp ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG (MEM | sp+imm | ) != [RA]
S e c u r i t y V i o l a t i o n

TAG ( r a ) ← [RA]

[CLR] l o a d rd , r s1 , imm :

TAG (MEM | r s 1 +imm | ) ← [DT]
MEM | r s 1 +imm | ← 0

• Store Policies:
[GEN] s t o r e r s1 , r s2 , imm :

i f TAG ( r s 1 ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG ( r s 2 ) = [RA]
S e c u r i t y V i o l a t i o n

TAG (MEM | r s 1 +imm | ) ← TAG ( r s 2 )

[DPO] s t o r e r s1 , r s2 , imm :
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i f TAG ( r s 1 ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG ( r s 2 ) != [DP]
S e c u r i t y V i o l a t i o n

TAG (MEM | r s 1 +imm | ) ← [DP]

[CPO] s t o r e r s1 , r s2 , imm :

i f TAG ( r s 1 ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG ( r s 2 ) != [CP]
S e c u r i t y V i o l a t i o n

TAG (MEM | r s 1 +imm | ) ← [CP]

[RAP] s t o r e sp , ra , imm :

i f TAG ( sp ) != [DP]
S e c u r i t y V i o l a t i o n

i f TAG ( r a ) != [RA]
S e c u r i t y V i o l a t i o n

TAG (MEM | sp+imm | ) ← [RA]

[CLR] s t o r e r s1 , r s2 , imm :

TAG ( r s 2 ) ← [DT]
r s 2 ← 0

3.3.3. Arithmetic Instructions. The STAR security policies
for arithmetic instructions provide protections for pointer
integrity and limited type safety. As data of a certain type in
a register interacts with other registers, the type information
must propagate appropriately. For example, an add instruc-
tion with the sole intention of adding two numeric values
in separate registers must never operate on a pointer value,
or output data of pointer type. A system that would prevent
such vulnerabilities must also be flexible enough to allow
an add instruction to either operate on two numeric values
or a pointer and a numeric value (e.g. pointer increment).
While doing so, it must accurately deduce at runtime that the
former produces a numeric value while the latter a pointer
value.

Data tag resolution in arithmetic instructions: STAR
combines the instruction and data tags in a novel way to
decide the tag of the output data and attempts to bridge
the semantic gap between source code and binary. On the
one hand, since the compiler has access to richer semantic
information, it can identify the types of data that arithmetic
instructions will operate on. On the other hand, the hardware
has access to the type information in real time and can
decide the target type effectively. Determining the data tag
of an arithmetic instruction’s output involves assigning a
numeric rank to each instruction and data tag, calculating
the rank of the output tag through a simple formula, and
assigning the calculated rank to the output, as follows:

1) Determine the ranks for the instruction and data tags for
each available source register using Table 3. Register
x0 in RISC-V is a read-only register, therefore its rank
for any given instruction is the rank of the instruction
tag itself from Table 3, ignoring the data tag column.

2) Calculate the RANK of the arithmetic output as fol-
lows:

RANK(output) = MIN(RANK(instruction),

MAX(RANK(source register1),

RANK(source register2)))

The RISC-V arithmetic instructions only allow up to
2 source registers. For arithmetic instructions with less
than two source registers, omit the missing register(s)
from the formula. When there are no source registers,
omit MAX() entirely.

3) Look up the tag that corresponds to the calculated
rank from Table 3 and associate it with the destination
register.

Instruction Tag Data Tag Rank
[GEN] [DT] 0
[DPO] [DP] 1
[CPO] [CP] 2

— [RA] 3

TABLE 3: Ranks for Instruction and Data Tags

The immediate observation from Table 3 is that there
are no instruction tags with the rank 3, even though there
is a corresponding data tag that is [RA]. The implication of
this is that no arithmetic instruction may output a legitimate
return address even if one of its sources is a return address.
This makes intuitive sense as return addresses must remain
immutable to maintain control flow integrity. On the other
hand, if an arithmetic instruction tagged [CPO] adds an
immediate value to the return address register tagged [RA]
(i.e. [CPO] addi ra, ra, 4), the result by design is going
to be tagged [CP]. First, benign code does not perform
arithmetic operations on return address. Second, even if
such an instruction is encountered, the [CP] tag can not
be abused unless the target of the code pointer is tagged
as [TFC] or [TIJ]. Generalizing from this, one can observe
that by being in charge of deciding the instruction tag, the
compiler determines the maximum possible rank for the
output while the hardware efficiently decides the precise data
tag at runtime within the boundary set by the compiler.

This mechanism contributes to pointer integrity by en-
suring that an arithmetic instruction not intended for pointer
arithmetic cannot produce a pointer, while also ensuring
that an arithmetic instruction intending to output a pointer
may do so only if at least one of its inputs is a pointer.
A stricter enforcement, where the instruction must have
at least one input with the rank equal to the rank of the
instruction, can be achieved with the tag [EQR]. This serves
as an early detection mechanism for cases where an arith-
metic instruction must operate strictly on a single data type
and any deviation from that is illegal. Examples include:
instructions that adjust the stack pointer (tagged [DP]) in
function epilogue and prologue exclusively operate on data
pointer type; instructions that increment/decrement integer
loop variants exclusively operate on numeric values (tagged
[DT]). Since the [EQR] tag can be toggled individually
for each instruction, it provides the compiler with greater
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flexibility in communicating the semantic information to the
hardware.

In summary, the following protection mechanisms are
provided by the arithmetic-related security policies:

• Safe Pointer Arithmetic: Provided by restricting the
set of arithmetic instructions that can operate on point-
ers through the use of [DPO], [CPO] tags; by ensuring
that instructions never intended to output pointers are
not able to do so as per rank system and the [EQR]
tag.

3.4. STAR Security Tagging in Use and Security
Evaluations

Code reuse attacks like ROP, JOP and return-to-libc
all rely on illegal pointer modification through the use of
buffer overflows and other mechanisms. STAR’s security
tagging marks the pointers with the tag [DT] on such mod-
ifications and the original pointer tags are lost, so control
flow instructions are unable to launch these attacks. Return
addresses used to resume after a call can only be used if they
remain tagged with [RA] in the register that holds them after
retrieval from the stack. Gadget formation, relying on string-
ing together existing instructions, is further discouraged by
allowing control flows into arbitrary instructions that are not
marked as a target (using the tags [TFC], [TFR], [TIJ]) or to
ones preceded by a label. Labeling indirect jump targets as
described also ensures proper control flow into the intended
targets from legal source instructions that do the control
transfer.

The power of instruction tagging for defending against
COOPLUS [14] attacks exemplifies how STAR is able to
detect such attacks, even though the control flow does not
violate the derived control flow graph. COOP [52] is a form
of code reuse attack that does not require return address
corruption in order to be initiated. Instead, COOP attacks
hijack C++ objects and their vptrs in memory, and execute
their existing virtual functions repeatedly in a carefully
arranged manner. The hijacking is generally accomplished
by exploiting a memory corruption vulnerability that enables
the attacker to overwrite the memory area of an object. More
advanced forms such as COOPLUS [14] can exploit poly-
morphism to invoke type-conformant, out-of-context, virtual
functions wherever multiple transfer targets at virtual call
sites are allowed. COOPLUS attacks are more sophisticated
because the invoked virtual functions are part of the control
flow graph as per C++ semantics, making detection more
challenging for C++ semantic aware CFI solutions.

A typical COOPLUS attack works by corrupting a vptr
of an object. The vptr of an object is a pointer to a table
of code pointers (vtable) that are, possibly a subset of, the
methods of a particular instance of a class. This dynamic
indirect dispatch mechanism allows an inheriting class to
override some of its base class’ methods such that the vptr
corresponding to those methods point to the derived class’
implementation.

STAR can prevent such attacks thanks to its unique abil-
ity to combine instruction and data tags in a context-aware

manner. As a motivating example, Figure 2 presents a C++
code sample, where a base class (called Base) declares a
pure virtual method called func() and the two derived classes
(S1 and S2) provide separate implementations according to
C++ semantics. Consequently, two separate vtables for S1
and S2 exist, to which vptrs in the instances of these classes
point to, respectively. The function dispatch() is an example
of a virtual call site where transfers to both S1::func() and
S2::func() are allowed due to polymorphism. The func-
tion vulnerable() contains a buffer overflow vulnerability
in line 28 that overwrites the vptr of the object s1. The
attacker’s aim is to increment the value of the variable data.
The COOPLUS attack overwrites this vptr with the vtable
value of the class S2. Thus when obj→func() is invoked
(line 19), S2::func() will be executed instead of S1::func().
The method S2::func() increments a member that does not
exist in the class S1. Due to the layout of the stack in
vulnerable(), the variable data gets treated as though it is
S2::memberM and is incremented illegally.

The STAR compiler treats vptr as a data pointer and tags
it [DP]. This is demonstrated in the assembly code for the
constructor S1::S1() in Figure 2. Note that instructions are
prefixed with their respective tags, and the inline instruction
tags themselves are omitted in the output. The first three
instructions calculate the vtable address in the hardware
register a0. The very first instruction auipc is tagged [DPO],
which tags the destination register [DT] based on the RANK
resolution shown in Table 3. The last instruction sd in
the code snippet stores the calculated vptr value in the
object and is tagged [DPO], which ensures that the source
register a0 has the data tag [DT]. Overwriting vptr through
buffer overflow changes its tag to [DT] (non-pointer data),
similarly to overwrites to return addresses. When vptr is
to be de-referenced to access the vtable, the corresponding
load instruction requires the register containing the value
of vptr (the address of vtable) to be tagged [DP]. This is
demonstrated in the assembly code for the function dis-
patch() in Figure 2. The sequence of ld instructions perform
the following: Dereference the object pointer to obtain the
vptr; Dereference the vptr to obtain the base address of the
vtable; Load the first entry in the vtable, which corresponds
to the method func() of the corresponding object. STAR
stops this attack at the first load instruction tagged [DPO],
which requires that the loaded value from the memory has
the data tag [DP]. Since the buffer overflow overwrites the
data tag of the vptr with [DT], the check fails and a security
violation is triggered.

STAR’s security mechanisms were also tested against
several microbenchmarks developed for evaluation, then
with applicable RIPE benchmarks [2] and a subset of C-
Bench [1] comprising of attacks involving indirect calls,
return addresses and a COOP attack. In all cases, STAR’s
security mechanisms were able to successfully detect and
prevent the attacks. The detected attacks were also identified
by unique exception codes produced by the hardware and
reported by the exception handler.
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C++ Source Code
1 c l a s s Base {
2 p u b l i c :
3 long memberN ;
4 Base ( ) : memberN ( 0 ) { } ;
5 v i r t u a l vo id func ( void ) = 0 ;
6 } ;
7 c l a s s S1 : p u b l i c Base {
8 p u b l i c :
9 void func ( void ) o v e r r i d e { memberN++; } ;

10 } ;
11 c l a s s S2 : p u b l i c Base {
12 p u b l i c :
13 long memberM ;
14 S2 ( ) : memberM ( 0 ) { } ;
15 void func ( void ) o v e r r i d e { memberM++; } ;
16 } ;
17
18 / / C a l l t h e d e r i v e d o b j e c t ’ s f u n c ( ) method
19 void d i s p a t c h ( Base * o b j ) { obj −>func ( ) ; }
20
21 void v u l n e r a b l e ( ) {
22 long d a t a = 4 2 ;
23 S1 s1 ;
24 char buf [ 8 ] = { 0 } ;
25
26 / / B u f f e r o v e r f l o w i n t o t h e v p t r o f s1
27 / / w i t h t h e v t a b l e v a l u e o f t h e c l a s s S2
28 s t d : : c i n >> buf ;
29 / / C a l l s S2 : : f u n c ( ) , which i n c r e m e n t s t h e
30 / / v a l u e o f t h e s t a c k − l o c a l v a r i a b l e da ta
31 d i s p a t c h (& s1 ) ;
32 . . .
33 }

Tagged RISC-V Assembly - dispatch()
00000000000444 f0 Z 6 d i s p a t c h P 4 B a s e :
. . .
44514 : [DPO] ld a0 , −24( s0 )
44518 : [DPO] ld a1 , 0 ( a0 )
4451 c : [CPO] ld a1 , 0 ( a1 )

Tagged RISC-V Assembly - Constructor S1::S1()
00000000000446 a0 ZN2S1C2Ev :
. . .
446 dc : [DPO] auipc a0 , 333
446 e4 : [DPO] addi a0 , a0 , 1324
446 e8 : [DPO] addi a0 , a0 , 16
446 ec : [GEN] ld a1 , −32( s0 )
446 f4 : [DPO] sd a0 , 0 ( a1 )

Figure 2: A COOPLUS attack in C++, assembly snippets

4. Implementation of the STAR Architecture

4.1. Inline Instruction Tags

Instruction tagging requires extra storage to hold the
tags. The current STAR implementation relies on the use
of a 6-bit tag for regular 32-bit instructions in the RISC-
V ISA. Instruction tags are co-located with instructions
in the program executable, close to the instructions they
correspond to. This is called Inline Tagging and eliminates
extra memory accesses needed for locating and retrieving

instruction tags had they been placed in a memory area
separate and distinct from the memory area holding the
executable. This particular choice of the tag width was made
to enable instruction tagging to support security functions
that go well beyond what is needed for enforcing the con-
trol flow and pointer integrity. Alternative choices exist for
using wider instruction tags for more security measures or
narrower instruction tags for restricted security applications
- these are not discussed here for brevity.

The inline tagging scheme of the current implementation
uses a single 4-byte tag field encoded as a no-op instruction
within a cache line to cover three regular RISC-V instruc-
tions that follow the tag field. The tag field is aligned to
start at a 16-byte boundary, making it simple for the tag to
be located quickly within a cache line (Figure 3 (a)). The
PC counter update logic is aware of the presence of the tag
field within a cache line and automatically increments when
it points to a tag field to point to the next instruction to be
fetched. The compiler analysis phase generates the proper
information to appropriately adjust offsets used for con-
trol transfers and instructions, in general. The performance
penalty that comes from inlining instruction tags within the
executable can be easily mitigated to acceptable levels (low
single digit percentages) through the use of modest increase
in the cache size and/or through the selection of cache pa-
rameters (Section 5.2). As shown in Figure 3(b), instruction
tag and instruction opcode decoding proceed concurrently,
without introducing any critical path that forces the use of
a slower clock.

4.1.1. Generalized Instruction Tagging. The technique of
inlining instruction tags within the binary is generalized and
not restricted to a particular tag size or a particular I-cache
line size. The general principle calls for placing the tags
within a cache line in fields (called tag fields) of fixed sizes
with pre-determined alignments. For instance, in a 32-byte
cache line, the tags may be placed within a single 4 byte
line, aligned at 32-byte boundaries. If the cache line is 64
bytes, two such fields can appear in a single cache line, or, in
an alternative implementation, a single 8-byte field, aligned
at 64-byte boundary can be used. Although the tag inlining
is particularly suited for RISC ISAs that have uniform sized
instructions, it can also be adopted for CISC ISAs.

The number of tags appearing in the tag field within an
I-Cache line can also change based on the size of the tags
assigned. With a fixed size for all instructions, the tags can
have a fixed size and correspond to the instructions one-to-
one that follow the tag field to the commencement of the
next tag field. This is the approach we have taken in the
STAR implementation described here, which is restricted to
only the regular 32-bit instruction subset of the RISC-V ISA.
To accommodate 16-bit compressed instructions, mixed in
with 32-bit regular instructions, the tags for the former are
kept at half the size of the regular 32-bit instructions to facil-
itate tag identification and placement within tag containers.

4.1.2. Narrower Instruction Tags. The tag assignment in
the present STAR hardware prototype uses a flat namespace;
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(b) Instruction tag access in a 2-way I-Cache

Figure 3: Inlined Instruction Tags

bit patterns in this namespace are allocated irrespective of
the instructions they apply to. Functionally, the use of a
particular tag is restricted to a few classes of instructions.
Given this, one possibility is to interpret the tag depending
on the opcode of the instruction. In the RISC-V imple-
mentations, opcode decoding proceeds in two steps – the
first is the decoding to an instruction class (load, store,
operation, control flow etc.), followed by the decoding of the
opcode within the class. Opcode dependent tag interpretation
introduces a short delay preceding tag decoding but uses tag
namespace effectively.

4.2. Hardware Implementation Details

STAR is currently realized for a 64-bit RISC-V in-
order pipeline on a Xilinx FPGA (Field Programmable
Gate Array) development board (VCU-118). The baseline
hardware, a Bluespec Flute pipeline [10], including caches,
DRAM, I/O etc. are all realized on the VCU 118 board. The
modifications needed to the baseline hardware enforcing CFI
and pointer integrity are as follows.

The security checks for the tagging are realized using a
set of separate stages that make up parallel pipeline (“Tag
Processing Pipeline”, TPP) with TPP stages adjacent to
the corresponding baseline instruction pipeline’s stages. The
TPP logic for its stages include the necessary tag checks
where needed. The hardware for the fetch stage is modified

to skip the tag field in the I-Cache. The parallel pipeline
approach somewhat eases the effort needed to port over the
design to other RISC ISAs and out-of-order implementa-
tions.

A separate data tag cache (DT-Cache) is added to serve
the L1-Cache for holding data tags. The L1 data cache
(L1-DCache), the L1 instruction cache (L1-ICache) and the
DT-Cache are all backed up by common level two cache
(L2-Cache). A separate TLB (DT-TLB) is also added to
accommodate the DT-Cache. The page table walking logic
for handling TLB misses is replicated to handle DT-TLB
misses. Memory accesses to serve a DT-Cache miss takes
priority over handling a D-Cache miss, if any, that happens
at the same clock cycle. The instruction cache (I-Cache) has
been modified by adding an extra read port that reads the
tag field in parallel to the instruction.

Each register in the baseline integer register file holds
the data tag associated with its contents in a separate 2-
bit tag register. All these data tag registers are held in a
separate tag register file (TRF) within the TPP. A separate
register file, the TSRF (TPP State Register File) holds the
state of the TPP and any ongoing security checks, to support
context switches. The TSRF also has registers that contain
the addresses of the offending instruction that caused a
security violation, along with a unique security violation
code (SVC) for use by the security exception handler. The
TRF and TSRF are also saved on any context switch and
restored on return. Access to the TRF and TSRF are granted
to special instructions that can only run in the S-mode
(supervisor mode) of the RISC-V (where context saving
and restoring takes place). These special instructions are
implemented as metadata instructions, which are specially-
tagged 32-bit inlined entities that appear as NOPS to the
instruction pipeline. Other hardware changes used include
the ability to update a data tag field in parallel with the nor-
mal data update part of the D-cache access. Together, these
additions/modifications increase the hardware investments
modestly (Section 5.2).

4.3. Operating System Support

The operating system is responsible for extending and
enforcing the tagging support. The upper sixteenth of the
userspace virtual memory area (VMA) is dedicated to hold
the data tags that correspond to every machine word in
the remaining lower address space. As a consequence, ev-
erything that used to be located in the upper sixteenth of
the user VMA (stack, environment etc.) are slid down. The
hardware locates the data tags for a given data item based
on this modified memory layout. When setting up the initial
execution environment for a process (for example as a result
of an exec system call), the tags belonging to the data in the
executable are mapped to their corresponding locations in
the virtual address space. This step takes into account the
address space layout randomization (ASLR).

Whenever a stack allocation causes a page fault that
requires kernel to allocate more stack pages to the process,
it also allocates the corresponding data tag pages if needed
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and initializes them. Likewise, heap allocations that require
more pages to be allocated to the process also trigger
page allocations for the corresponding data tag pages when
necessary and such newly-allocated tag pages are initialized
by the kernel.

The hardware context of a process is extended to include
the STAR-related registers. The saving and restoring of the
STAR context is handled via accessing specific RISC-V
CSR registers that map to the various STAR registers. These
CSRs are only accessible in Supervisor Mode.

The virtual dynamic shared object (vDSO) is a mecha-
nism that lets the kernel map specific system calls to the
user space directly. The user program can invoke these
routines within User Mode and avoid context switches,
reducing the overhead of repeatedly calling frequently used
system calls such gettimeofday and rt sigreturn. Since the
exported kernel code runs in the user space, it must be
tagged appropriately. To generate the tagged vDSO library,
we modified the Linux kernel build system to leverage the
STAR compiler to build the vDSO. Currently, the STAR
compiler does not support code written in RISC-V assembly.
Thus, such assembly code was hand-tagged.

4.4. Handling Self-Modifying and JIT Code

In STAR, binaries cannot be overwritten, as embedded
instruction tags can be overwritten to enable exploits. To
support self-modifying and JIT code, the functions perform-
ing the modifications will have to be trusted and designed
to insert the correct instruction tags. The self modifying
code has to be tagged itself and access to it will have to be
secured through control flow labels. To enable tagged code
modifications in memory, a special handler will have to be
supported, with the address of the self-modifying function
pre-registered with it to enable the binary overwrites to
proceed without a security exception. Software sandboxing
can be used additionally to limit the range of memory
locations affected by the self-modifying functions.

4.5. The STAR Compiler

We provide compiler support for STAR through a cus-
tomized version of the LLVM 10.0.0 compiler due to its
modular, reusable, and open architecture. The modifications
build on a generic tagging compiler backend for RISC-V
binaries [25] and can be broken down into three parts: the
intermediate representation (IR) analysis within the LLVM
common optimizer, the LLVM RISC-V backend, and the
LLD linker. Figure 4 shows an overview of the toolchain.

Broadly, the static analysis for STAR is done at the
IR level by a series of compiler passes. Data tags are
assigned to global data, and instruction tags to individual
IR instructions. These tags are then propagated through the
lowering phase to the target specific backend. For both data
and instruction tags, we rely on LLVM’s usage, type, and ad-
dress taken analyses. The latter is particularly important for
tagging all possible basic block targets of indirect branches
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Figure 4: STAR compiler toolchain. Black arrows show the
toolchain’s data flow from source code to a tagged binary,
blue and red arrows show data flow through the LLVM Pass
Manager and the compilation unit’s context.

with [TIJ] for supporting our CFI scheme. Note that tar-
get tagging is needed for destinations of indirect jumps;
destinations of direct control flow transfers are not tagged.
The inherent limitations of static analysis apply. Finally, the
backend writes the instruction tags, cache-aligned, into the
instruction stream during object file construction. For data
tagging, global data objects are fully analyzed at compile
time and their data tags are initialized by the data tagging
pass. Data tags for local objects are set by instructions
that create them consistent with their automatic, run-time
allocation and de-allocation.

Global data tags are written into their own section in the
object file, with a second section providing an index into that
data tag section for each individual global symbol. Together
these sections allow a modified LLD linker to resolve the
proper tag to use with strong and weak symbols, and to
write the unified tag section into the final binary.

5. Assessment: STAR FPGA Prototype and
System

5.1. Prototype System Performance

The baseline processor used for the implementation
described here is an in-order implementation of the 64-bit
RISC-V ISA and follows the Flute design [10] very faith-
fully. This baseline processor has no special security fea-
tures. The STAR processor is realized by adding a hardware
subsystem to support and process instruction and data tags
to the baseline design. A variety of STAR configurations
were explored to examine different ways of mitigating the
performance penalty that is imposed by the addition of the
instruction and data tags and the need to fetch them into
the processor for the security checks. Inlining instruction
tags within the binary reduces the effective capacity of the
I-Cache, which was used solely to hold instructions in the
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Figure 5: STAR performance overhead. The bars present the percentage increase in CPU cycles for SPEC-2017 rate
benchmarks for all hardware configurations described in Table 4 over Baseline.

Configuration Description
Baseline No tagging, I-Cache and D-Cache are 8KB/2-way
Baseline4way-
TLB

No tagging, I-Cache and D-Cache are 8KB/4-way,
ITLB and DTLB have twice the capacity

8K2way
All caches (I-Cache, D-Cache and DT-Cache) are
8KB/2-way

8K4way
All caches (I-Cache, D-Cache and DT-Cache) are
8KB/4-way

8K4way-TLB
All caches (I-Cache, D-Cache and DT-Cache) are
8KB/4-way, ITLB and DTLB have twice the capac-
ity

8K2way-
16K4way-
TLB

D-Cache and DT-Cache are 8KB/2-way, I-Cache
is 16KB/4-way, ITLB and DTLB have twice the
capacity

8K8way-
16K16way-
TLB

D-Cache and DT-Cache are 8KB/8-way, I-Cache
is 16KB/16-way, ITLB and DTLB have twice the
capacity

TABLE 4: Baseline and STAR Configurations

baseline processor. To reduce the performance impact from
the higher I-Cache misses that result, the capacity of the
I-Cache or its associativity (number of cache ways) can be
increased. To fetch the data tags along with the associated
data items for the security checks, a separate data tag cache
(DT-Cache), operated in tandem with the D-Cache is used.
Finally, to reduce the TLB pressure with inlined (instruction
tags) and with the need to access the data tags, larger TLBs
can be used for instruction, data and data tag accesses. The
various configurations evaluated for the STAR processor,
are shown in Table 4. The baseline processor supports a
clock frequency of 100MHz. Likewise, all the synthesized
hardware configurations run at the same clock frequency.

Figure 5 shows the performance penalty of the STAR
configurations imposed by the use of tagging against the
baseline design for the configurations studied. A baseline
design with twice the TLB entries has also been included
for comparison. The performance penalty is expressed as the
percentage increase in the total number of CPU cycles spent
in completing the benchmark execution, from start to finish.
The data in Figure 5 were obtained from actual executions
of representative SPEC-2017 benchmarks on the prototype
FPGA implementation (on a Xilinx VCU-118 development
board) running the STAR version of Flute at 100MHz, with
1GB of RAM, 8KB, 2-way L1 I-Cache, D-Cache and DT-

Cache and a 1 MB shared L2 cache, using the modified
LLVM compiler for tagging benchmarks and musl-libc on
the modified Linux OS (5.4.10).

Based on monitored performance counters, I-Cache
misses increased from 0.89% in the Baseline to 2.0 % in
STAR’s 8K2way configuration, for compute-bound bench-
marks like xz and deepsjeng. Simultaneously, L2-Cache
misses increased from 0.98% to 3.91%, for applications
with larger memory footprints like mcf and lbm. This in-
crease in L2-Cache misses is due to the addition of the
DT-Cache and inline tag placement. Increasing the cache
associativity (8K4way configuration) improved the perfor-
mance due to a reduction in the I-Cache misses, with
a higher increase in the performance of memory-bound
applications (like mcf and x264) compared to compute-
bound applications (like xalancbmk, deepsjeng). Increasing
the I-Cache size (8K2Way-16K4Way configuration), on the
other hand, improved the performance of compute-bound
applications as expected. Generally, memory-bound appli-
cation like mcf, x264 and xz performed better with higher
cache associativity while compute-bound applications like
gcc, xalancbmk and deepsjeng performed better with I-
Cache size increases. Doubling the TLB capacity (8K4Way-
TLB, 8K2way-16K4way-TLB configurations) improved the
performance of all the benchmarks because TLB walks
were reduced. In the worst case, the hardware may have
to do three page walks on TLB misses as the D-TLB
performs the walks for both I-TLB and DT-TLB in the Flute
implementation. These page walks increase the overall cache
access latency. Another configuration (8k2way-2MB L2) was
also examined by increasing the size of the L2-Cache, which
improved the performance of all the benchmarks at the
expense of increased area overhead of 95% and 20% for
FPGA RAMB36 tiles and LUTRAM, respectively.

The results show that the overhead of instruction and
data tagging can be best mitigated by doubling the TLB ca-
pacities instead of increasing the cache size and maintaining
a modest 8KB data tag cache. This particular configuration
(8K4Way-TLB) provides an average performance penalty of
2.72% across all the benchmarks studied, with the worst
performance penalty at 10.25% for the gcc benchmark. To
reduce the worst case and average performance overheads
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Configuration Dynamic Power In-
crease(%)

Total Power In-
crease(%)

Baseline4way-TLB 0.56 0.14
8K2way 4.8 1.34
8K4way 5.41 1.5
8K4way-TLB 5.88 1.64
8K2way-16K4way-TLB 12.55 3.57
8K8way-16K16way-
TLB

14.6 4.13

TABLE 5: STAR: Relative power increase over Baseline

to 4% and 0.18%, respectively, the 8K8Way-16K16Way-TLB
configuration can be used.

5.2. Hardware Complexity and Power Assessment

The memory overhead for realizing STAR comes in the
form of additional memory requirements for the data and
instruction tags – this is inevitable. This overhead can be
reduced by tailoring the tags to particular security appli-
cations and by using opcode-dependent instruction tagging
(as described in Section 4.1.2). Within the STAR CPU,
the added hardware needs come mainly in the form of the
resources for implementing the DT-Cache, the additional
resources needed for a larger I-Cache and/or TLBs (if
used in the configuration) and the logic needed for the tag
processing/security checks. The key indicators for hardware
usage in the FPGA used for the STAR implementations are
the memory blocks in the form of RAMB36 Tiles, and the
LUT (look-up table logic) and the LUT RAMs - the latter
two being primarily used for latches and logic associated
with all components (including caches).

For the 8k4way-TLB configuration, the usage of
RAMB36 tiles go up to 298 from 269 for the Baseline
system (about a 10.7% increase) and the LUT usage goes
up to 123909 from the Baseline’s 109,634 usage (13%
increase), while the use of LUT RAM goes up from 2029 to
2265 (11.82% increase). For the 8k8Way-TLB configuration,
the usage of RAMB36 tiles go up to 357 from 259 for the
Baseline system (about a 37.8378% increase) and the LUT
usage goes up to 135,762 from the Baseline’s 109,634 usage
(23.832% increase), while the use of LUT RAM goes up
from 2029 to 2269 (11.82% increase).

The reported increase in the hardware resources is for an
in-order pipeline used in the Baseline and STAR. In a more
likely scenario, where an out-of-order processor is used,
hardware resource needs to support STAR’s security tagging
will be relatively much lower compared to the Baseline’s
for two reasons: (a) STAR’s security mechanism is largely
independent of whether the processor is pipelined or not, and
(b) an out-of-order implementation of the baseline processor
introduces several large hardware structures (like the reorder
buffer, load/store queue with bypassing support, issue queue
or reservation stations), larger branch predictors, separate
physical and architectural register files etc. Thus, the addi-
tional hardware needed to add the security checks in STAR
are fairly modest. As noted earlier, the storage overhead for
STAR’s tagging scheme can be reduced further to address

specific security applications and through the use of opcode-
dependent tag value assignment (Section 4.1.2). Certainly, if
a higher performance overhead can be tolerated, the STAR
hardware resource increases can be limited by using some
of the other STAR configurations in Table 4.

The increase in power consumption of different STAR
implementations over the (untagged) Baseline design are
shown in Table 5. Both dynamic (switching power) and
total power increases are obtained using the Xilinx power
estimation tools. The total power increase is limited to
slightly more than 4% in the most aggressive configuration.

6. Related Work

6.1. Control Flow Attacks and Software-Centric
Solutions

Widely used hardware and software-based defenses
against control flow attacks include Data Execution Pre-
vention (DEP) [6], Address-space layout randomization
(ASLR) [49]. However, these mechanisms are not adequate
- for example, code reuse attacks can be launched even in
the presence of DEP [61].

Matching the labels preceding a control transfer instruc-
tion with a counterpart at the legal target of the control
flow has been one of the earliest software defenses against
CFI attacks, as pioneered by Abadi [3], [4]. Traditionally,
such label matching has been implemented in a variety
of ways, including software-only mechanisms (compiler-
based) [8], binary rewriting [67], virtual-machine based [68],
and hardware assisted mechanisms. Usually, runtime checks
are added to ensure that all function calls, jumps and returns
are directed to valid locations that have been pre-determined
prior to execution. The security and performance of these
schemes depend on their implementations. Techniques that
tag all the call sites with unique IDs as labels by analyzing
all possible jumps are called fine-grained; these provide
better security as they narrow down the possible control flow
transfers. Unfortunately, such fine-grained techniques can
have a performance overhead of 100% or more, as seen for
stack protection [43] and other application scenarios [60],
making them impractical. Coarse-grained solutions using
control flow labels have lower performance overhead but
offer weaker protection [40], [67], [68], and are vulnerable
to attacks [12], [21], [29], [30].

In general, memory corruption can trigger control flow
attacks. Protecting pointers on stack is not new and has been
explored in many different ways. Low-overhead software-
only stack protection schemes such as StackGuard [16] and
shadow stacks [17] protect return addresses, but cannot pro-
tect other control flow structures. This makes them vulner-
able to attacks that leak information and do direct writes to
the memory. The overhead of software-implemented shadow
stack mechanisms can be substantial [17]. Low-overhead
memory safety techniques implemented in software have
been proposed for code pointers [37]. However, broad-
based, practical solutions for CFI and pointer integrity re-
main elusive.
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System Key Features CFI Assurances Comments
RAP IJTE OP RPU RAS

CHERI [63], [65] Capability-based addressing to enforce prin-
ciple of least privilege. 1-bit data tag distin-
guishes capabilities from other data. Mem-
ory safety is offered at coarse module gran-
ularity by protected calls across modules
using capability to module.

a a a a a Significant software and system-level modi-
fications required. Performance overhead of
protected calls often very high [34].

PUMP [26], [27],
DOVER [24], [59]

Wide metadata tags for both instruction and
data. Metadata tag width can be as wide as
the instruction or data they are associated
with. Metadata tags are not directly inter-
preted; requires PUMP cache lookup prior
to security micro-op activation.

Significant storange and performance over-
head discourage deployment. Negative im-
pact on clock cycle: 2-level PUMP cache
lookup can exceed a single cycle in Level 1
(see text); 2-level PUMP cache complicates
interrupt handling.

HDFI [56] 1-bit data-only tagging. Cannot distinguish
between different types of pointers and non-
pointers.

b b Only one specific pointer type can be pro-
tected at a time.

LowRISC [39], [57] 2-bit assignable data tag can implement
CFI-related memory corruption protection.

Support is primarily for pointer protection
and not all CFI attacks. New instructions
needed to access pointers in memory.

ARM Pointer
Authentication [41]

Sensitive pointers protected by crypto-
graphic signature, requiring ISA extension.

c c Too expensive to protect all pointers.

ZERØ [69] Memory protection for pointers with tag-
ging that varies between L1 and L2 cache,
requiring tag transformation. Load/store
queues require changes for forwarding.

Support is primarily for pointer protection
and not directed to all CFI attacks.

Intel x86 CET [54] Return addresses protected using hardware-
software shadow stack. Hardware-
interpreted control flow labels track
indirect control transfers.

Incomplete support for CFI. Shadow stack
spills handled in software, introduces per-
formance overhead.

Timber-V [64] Lightweight enclaves using memory and
metadata tags. New instructions for tag in-
spection (with expected tag encoded/em-
bedded in loads) and manipulation.

Significant software redesign needed to pro-
tect isolated pointers. CFI not tracked ex-
plicitly. Illegal pointer operations/use possi-
ble. Run-time overhead is significant.

STAR Fine grained CFI and pointer protection
through instruction and data tagging. In-
struction tags are directly interpreted in par-
allel with the opcode to microoperations

d Tagging hardware extensible to add other
hardware security features to avoid infor-
mation leakage and implement protection
domains (work in progress). Performance,
storage and power overhead added by tag-
ging is acceptably low.

TABLE 6: A comparison of tagged (and other recent) hardware protection features for CFI and pointer integrity.
Abbreviations used in the CFI Assurances columns are RAP: Return Address Protection/Corruption Detection, IJTE:
Indirect Jump Target Enforcement, OP: Other Pointers Protection/Corruption Detection, RPU: Restrict Pointer Usage to
Legal Instructions, RAS: Reduced Attack Surface for Illegal Control Flow Transfers.

: Supported, : Unsupported, : Partially supported, : not designed for CFI; too expensive to protect individual pointers
and return addresses with enclaves
a: Protections offered at coarse granularity. For full protection, all pointers must be converted to capabilities and all calls
must be protected.
b: Only one pointer type is protected, others are unprotected.
c: Too expensive to protect all return addresses and pointers; significant call/return overhead.
d: RAS through use of tags TFC, TFR, TIJ, when labels are not used.

6.2. Hardware-Centric Solutions

A plethora of hardware-assisted mechanisms have been
proposed to overcome the performance overhead of software
CFI and pointer integrity assurance techniques [15], [18]–
[20], [22], [28], [31], [33], [35], [36], [38], [45], [46], [50],
[56], [58], [66]. Hardware schemes include using shadow
stacks to protect sensitive data [33], [48], tracing the control
flow graph (CFG) of the program at runtime [5], [28],
[31], [35], [36], [62], and using tagged architecture [11],
[23], [24], [26], [51], [56], [64]. With addition of dedi-
cated register files, the use of an additional label cache

and hardware-supported label matching, the performance
overhead of CFI can be reduced dramatically compared
to software solutions. Hence, hardware support for shadow
stacks have been proposed in [33], [48]. Although hardware
stack protection is faster, providing memory safety for the
full application is extremely expensive [42].

The use of tagged memory is an attractive choice for pro-
viding safety for pointers. The idea behind tagged memory
is to extend each memory word with additional tag bits to
protect against pointer (or data) corruption. Recent tag-based
hardware systems and other recent mechanisms for CFI and
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pointer integrity are summarized and compared in Table 6.
CHERI [63], [65] uses capability-based addressing in

hardware to avoid illegal memory corruption and unintended
information leakage. Capabilities are distinguished from
other memory entities using a 1-bit tag. CHERI requires
significant changes in the software layers and protected calls
securing module boundaries have a significant performance
overhead [34], making it impractical for fine-grained pro-
tection.

PUMP and variants [24], [26], [27], [59] use word sized
metadata tags with individual instructions and data items,
significantly increasing storage needs. The added need to
look up a two-level PUMP cache using a wide key formed
with the metadata tags and other information before any
security micro-operations can be started introduces perfor-
mance bottlenecks that can translate to a slower clock speed.
Together, these drawbacks discourage any practical deploy-
ment. PUMP reports up to a 400% performance overhead
using a simulator and is therefore not a real full stack im-
plementation like STAR. We note that DOVER is a PUMP-
derivative hardware implementation and is susceptible to
similar performance bottlenecks as PUMP.

Data-only tagging as used in Hardware-Assisted Data-
flow Isolation (HDFI) [56] has limitations in providing
CFI, since non-control flow data can still be exploited to
mount control flow attacks [32]. HDFI implements only
one specific security mechanism at a time, while STAR
supports a comprehensive set of CFI and pointer integrity
checks. LowRISC [11] provides two bits of tagging in its
memory system that could be used to implement a variety
of memory safety mechanisms. ZERØ [69] is a pointer
integrity mechanism that prevents corruption of code and
data pointers in memory and relies on the use of new instruc-
tions for loading and storing these pointers. No protection
is provided against illegal function or code pointer use by
instructions, such as use of illegal indexing or use of illegal
instructions that perform arithmetic and/or logical operations
on these pointers and then use the modified pointers. In
contrast, STAR uses instruction tags to ensure that pointers
are accessed, modified and used only by instructions that
are deemed legitimate by the compiler.

7. Conclusions and Ongoing Work

Enforcement of the context-specific behavior of existing
instructions in an ISA can address many security vulnera-
bilities in software. The STAR architecture presented in this
paper does so by using narrow instruction and data tags, with
instruction tags embedded in the binary and colocated with
corresponding instructions within a cache line, to realize a
practically viable design. A set of instruction and data tags
and their associated hardware-implemented security policies
were proposed for STAR to mitigate control flow and pointer
integrity attacks. A proof-of-principle hardware-software
prototype of STAR was implemented on a Xilinx FPGA and
appropriate supporting functions were incorporated within a
modified Linux OS and a modified LLVM compiler. The
performance, power and hardware overhead of the resulting

system compared to an untagged baseline design are in the
low single digit percentages; this improves the viability of
deploying the system. STAR’s tagging scheme goes well
beyond the enforcement of control flow and pointer integrity
and other tag-based security extensions to the architecture
are being investigated as part of our ongoing work.

Instruction tagging, by itself, can implement other se-
curity functions without the use of data tagging and even
the use of a single-bit data tag. Instruction tagging can also
support applications beyond security, such as event-triggered
code instrumentation, debugging and many others. We be-
lieve, that low-overhead instruction tagging, as introduced
in this paper, will enable such applications.
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