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Abstract—Modern Industrial Control Systems (ICS) attacks
evade existing tools by using knowledge of ICS processes to
blend their activities with benign Supervisory Control and Data
Acquisition (SCADA) operation, causing physical world dam-
ages. We present SCAPHY to detect ICS attacks in SCADA by
leveraging the unique execution phases of SCADA to identify
the limited set of legitimate behaviors to control the physical
world in different phases, which differentiates from attacker’s
activities. For example, it is typical for SCADA to setup ICS
device objects during initialization, but anomalous during process-
control. To extract unique behaviors of SCADA execution phases,
SCAPHY first leverages open ICS conventions to generate a novel
physical process dependency and impact graph (PDIG) to identify
disruptive physical states. SCAPHY then uses PDIG to inform
a physical process-aware dynamic analysis, whereby code paths
of SCADA process-control execution is induced to reveal API
call behaviors unique to legitimate process-control phases. Using
this established behavior, SCAPHY selectively monitors attacker’s
physical world-targeted activities that violates legitimate process-
control behaviors. We evaluated SCAPHY at a U.S. national lab
ICS testbed environment. Using diverse ICS deployment scenarios
and attacks across 4 ICS industries, SCAPHY achieved 95% ac-
curacy & 3.5% false positives (FP), compared to 47.5% accuracy
and 25% FP of existing work. We analyze SCAPHY’s resilience
to futuristic attacks where attacker knows our approach.

I. INTRODUCTION

Unlike Information Technology (IT) attacks, Industrial Control
System (ICS) attacks cause physical damages to life-dependent
physical processes such as power and water supply. ICS
processes are controlled by Supervisory Control and Data
Acquisition (SCADA) hosts, which run special programs to
control the physical world [1–3]. Modern ICS attacks [4–7]
are launched from SCADA, where attackers utilize legitimate
ICS resources to blend their activities with benign SCADA
operations and send malicious signal to disrupt processes.

To detect ICS attacks, statistical analysis of ICS traffic [3,
8–15] are effective against noisy behaviors (e.g., network scans
and malformed protocols), but are evaded by modern attacks
which use legitimate protocols and knowledge of ICS parame-
ters to cause targeted (not noisy) disruptions [1, 2, 5]. In addi-
tion, physical models monitor sensors to know when observed
physical states deviate from expected, by fitting historical sen-
sor data into linear models [16–18]. However, [19, 20] show
that in practice, such models may require experts to build, and
a detailed process model may be unavailable. Further, physical
models trigger false alarms when deployed in production due
to noise and configuration changes, such that benign states
appear outside the model [17, 19]. In general, existing ICS
tools are evaded by modern attacks and prone to false alarms

due to analyzing traffic/sensor data in isolation, and therefore
they cannot tie their analysis to attack-execution context in
SCADA. Detecting ICS attacks in SCADA is hard because
attackers use the same API call behavior as benign SCADA
programs. For example, Industroyer malware, which shutdown
Ukraine power grid [1, 5], performed malicious actions that are
part of normal SCADA activity such as accessing ICS device
objects. Similarly, 2021 Florida water poisoning attack [4] used
normal Human Machine Interface (HMI) commands to dump
toxic chemicals into the water supply. Hence, existing host
agents that looks for "non-SCADA" APIs will not detect them.

We found that while these attack behaviors are normal
SCADA activities, they are anomalous when performed in
atypical execution phases in SCADA. Therefore, in this work,
instead of treating SCADA as one monolithic execution, we
specialize its behaviors in unique execution phases, which
are initialization and process-control. We observe that for
Industroyer attack to work, the attacker had to execute API
calls that are atypical of process-control but needed for the
attack. For example, to hijack ICS device handles, Industroyer
executed Registry Setup APIs in process-control, which is
typical for initialization, hence anomalous. After infecting
SCADA, attackers must "setup/connect" their tools to attack
the physical world. These attack behaviors do not align with
SCADA’s phase-based behavior and leads to atypical APIs in
wrong phases. Hence if we identify the limited set of legitimate
process-control behaviors, we can selectively monitor and
detect attacker’s physical-targeted activities that violate them.

Further, because SCADA responds to physical world
changes, we can induce SCADA to reveal process-control be-
haviors by stimulating relevant changes. However, this requires
a physical model of ICS processes and their elements’ states.
Interestingly, we found that we can leverage ICS open platform
communications (OPC) conventions [21–23] to characterize
processes via ICS element configurations. We can then toggle
each element state to induce SCADA to exhibit its process-
control behaviors, enabling us to identify them. Further, we can
derive the impact of these state changes to identify disruptive
process states. This can allow us to detect disruptive physical
world effects caused by (state-changing) control signals.

We present SCAPHY, a new hybrid technique to detect
ICS attacks by correlating SCADA execution phase-specific
behaviors with physical world impact. SCAPHY identifies the
limited set of API calls unique to each SCADA execution
phase, which differentiates from attacker’s activities in these
phases, allowing SCAPHY to detect them. To characterize the
"required" internal host channels SCADA uses to control the
physical world, we introduce a new reference model, SCADA
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Software Stack (S3), which SCAPHY leverages to selectively
monitor steps along attacker’s physical world-bound activities
in each execution phases. Through S3, SCAPHY can detect at-
tacks that circumvent proper S3 layers (e.g., SCADA rootkits)
but sends disruptive control signals to the physical world.

SCAPHY uses a physical model to identify disruptive
control signals sent to the physical world. SCAPHY generates
this model by leveraging OPC conventions (tags and alarms)
to extract and map ICS elements to their processes based
on a novel process dependency and impact graph (PDIG)
model. PDIG enables SCAPHY to assign each element state an
impact coefficient (IC(s)) based on how they impact (decrease
or increase) process outcomes. Further, SCAPHY leverages
PDIG to help induce and extract legitimate process-control
behaviors. To do this, SCAPHY performs a physical process-
aware dynamic analysis, whereby a SCADA engine [24] is
induced to execute process-control code paths by iteratively
switching ICS element states connected to the process. During
this, SCAPHY records executed API calls to establish a set
of PHYSical world Impact Call Specialization (PHYSICS)
constraints to identify legitimate process-control behaviors.

SCAPHY detects modern ICS attacks that are missed by
existing tools. By correlating behaviors in SCADA and phys-
ical, SCAPHY provides contextual alerts for ICS operators to
respond to attacks at both SCADA and physical plant. Via
PHYSICS constraints, SCAPHY limits the operations an attacker
can execute to disrupt a physical process by detecting at-
tacker’s anomalous API behavior in atypical execution phases.
SCAPHY’s physical model detects when control signals cause a
physical process to have inconsistent state or driven outside its
setpoint ranges. SCAPHY’s use of open OPC convention makes
it device agnostic and not based on any device/controller,
making it work for any OPC-supported ICS deployment.
We evaluated SCAPHY at a U.S. national lab state-of-the-
art ICS testbed. We launched 40 attacks on 24 diverse ICS
scenarios across 4 industries, including an open-source Texas
Pan Handle power grid [25]. SCAPHY detected 95% of all
attacks with only 3.5% false positives, including real world
ICS malware attacks. We make the following contributions:

1) We propose a hybrid technique to detect ICS attacks by
correlating SCADA behaviors with physical world effects.

2) We present an ICS physical model via OPC conventions
to both identify disruptive physical states and extract
legitimate process-control phase behaviors in SCADA.

3) We introduce a new reference model in ICS, SCADA
Software Stack (S3), to characterize internal software &
hardware layers of SCADA operation. Through S3, host
agents can selectively monitor S3 layers to detect attacks.

4) Using diverse ICS scenarios & attacks, SCAPHY achieved
95% accuracy and 3.5% false positives (FP), compared
to 47.5% accuracy and 25% FP of existing work [3, 16].

5) Due to limited resources and datasets for diverse ICS
security research [26–29], we make available diverse
ICS experiment scenarios1 and datasets derived from
them, both at the physical sensor layer and from the
SCADA components. These experiments can be run in
the FactoryIO ICS Engine [24] and Siemens Step7-based
development suite, WinSPS [30].

1https://github.com/lordmoses/SCAPHY

Fig. 1: Showing SCADA process-control operation: A physical-domain func-
tion compute a control variable CV to effect change on the physical world

II. BACKGROUND AND MOTIVATION

We present a background on ICS and use recent attacks as
running examples to motivate our problem; 2021 Florida (FL)
water poisoning attack [4], and 2016 Industroyer malware
power grid attack [1]. In Section IV, we detail SCAPHY’s
approach in real world settings using the Industroyer example.

A. Real-World Motivating Examples

Florida Water Poisoning Attack. An attacker raised dosing
rate of Sodium Hydroxide (NaOH) in FL water treatment plant
to toxic levels, endangering citizens. NaOH is used to balance
water PH but is toxic in high amounts. After gaining access
to SCADA, the attacker started an HMI program to issue
attack signals to disrupt the level control and dosing processes,
increasing NaOH from normal 100 ppm to 11,100ppm [4, 31].
Industroyer Power Grid Attack. Industroyer shutdown a
Ukranian power station by sending malicious signals from a
SCADA host to a Siemens SPIROTEC device that runs circuit
breaker Remote Terminal Units (RTUs). To perform the attack,
Industroyer hijacked host serial COM ports, stole the breaker’s
tag from OPC to address its payload, and opened the breakers.
This caused power imbalance that shutdown the station [1, 5].

B. ICS/SCADA Operations Background

Fig 1 describes ICS operation based on Purdue model [32].
SCADA hosts at Purdue Level 2 control physical processes,
which run at Level 0 and 1 via ICS elements (comprising
of actuators, sensors, and parameters in programmable logic
controllers or PLC). SCADA constantly monitor running pro-
cesses and when change is needed, they execute physical-
domain logic such as proportional integral derivative (PID)
to compute a control variable (CV) to modify element’s states
and effect the change (Fig 1). For example, the level control
process in the FL water plant controls chemical level in a
tank via a PID logic that control how much fluid enters and
leaves the tank [29]. This is known as process-control and is
the main function of SCADA. Unfortunately, ICS attacks are
launched from SCADA due to direct access to the physical
world as in Industroyer and FL attacks. Attacker gain access to
SCADA via IT means such as phishing. Then he can leverage
ICS resources such as OPC, HMIs, and SCADA channels to
"address" and send malicious signals to ICS elements.

OPC is a functional part of SCADA and used for interop-
erability to exchange data about plant information in standard-
ized convention [21–23]. OPC is used in widely deployed ICS
platforms such as Siemens Tia Portal & Scheider OASYS. For
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Fig. 2: Cycles of Process-Monitoring and Process-Altering phases based on the Step7-based WinSPS [30] control of Water Treatment Plant operation

example, Industroyer malware accessed the Ukrainian power
grid’s OPC server to extract the circuit breaker’s OPC tag to
address its attack payload. In our example, this OPC tag is
BRK.0.BOOL, which specifies element BRK id=0 with BOOL
parameter — a heuristic about its possible states: 0 or 1 [33].

Limitations of Existing Work. Existing work to detect
ICS attacks focus on analyzing traffic and/or sensor data in
isolation, without SCADA execution context, which limits their
ability to tie their analysis to SCADA for better accuracy and
less false alarms. PLC techniques [34, 35] to detect malicious
ladder logic on PLCs do not analyze SCADA control signals
as in ladder logic but forwards signals to device. Lee [36] only
monitors for host DLL injection, which may not happen in ICS
attacks. Table I is a taxonomy of leading recent works in ICS
attack detection, categorized by their technique and data point.
We highlight their limitations such as not having ICS diversity
in their evaluation and testing in-the-wild (adapted) attacks.
We found that this is due to limited resources to emulate end-
to-end and diverse ICS security research [26–29].

ICS Traffic approaches [8, 10, 11, 37] analyze abnormal
traffic flows and protocols. However, modern attacks such as
Industroyer and FL water plant attacks uses legitimate ICS
protocols to emit traffic flows that blends with benign traffic.
Traffic timing analysis [3, 9, 38] are effective for analyzing
round trip time delays and inter-arrival times but are only
effective against attack behaviors that are chatty [9] such as
network scans, but not modern attacks which are targeted.

Physical Models detects deviation from expected phys-
ical behavior by training sensor data using linear and auto
regressive models [16–18]. However, [19, 20] show that in
practice, such models may require experts to build, and a
detailed process model may be unavailable. Further they trigger
false alarms in production due to noise and configuration
changes such that benign states are outside the model. Re-
inforcement and Deep Learning [39–42] which uses game-
theory to learn normal and attack behaviors, requires a high-
interaction environment, known attacks, and expert reward
function, which may limit its use in diverse ICS practice.
Process-aware approaches [43–47] focus on specific physical
functions, which reduces ambiguity in detection, but requires
experts to specify process-specific violations (e.g., [43, 45]
uses BRO rules for safety thresholds).

C. SCADA Host Attacks and Security Challenges

Due to physical ramifications of SCADA executions, existing
host analysis techniques cannot be directly applied to secure
SCADA hosts [5, 33]. Due to complex safety constraints in
physical tasks, SCADA runs many proprietary and physical
domain-specific programs such as ICS drivers and hardware
tools. As such, unlike IT programs, using existing concolic
analysis tools [48–50] will be intractable due to hardware-
constrained code paths and environment need [48, 50]. Due
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PLC Logic
Logic execution • •
Logic verification •
Physical State
State Deviation • • •
Physical Impact •
RL Models
Online POMDP •
Reward weights •
Multi-agent game • •
Process-Aware
Predefined rules • • •
Power-flow specs • •
Power prediction •
SCADA Context
DLL inject-based •
PHYSICS constr. •
Evaluation
In-the-wild attacks • •
ICS diversity 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 4

TABLE I: Taxonomy of Recent Related works in ICS Attack detection

to legacy and third-party components, code-signing cannot be
strictly enforced to whitelist programs, enabling attackers to
modify benign programs. For example, Industroyer executed
custom APIs, and Stuxnet [6] injected into Siemens programs.

Our Insight. We found that the nature of physi-
cal tasks, which occur in cycles of repeated steps, re-
quires SCADA to exhibit two distinct execution phases: ini-
tialization and process-control. Process-control comprise of
process-monitoring and process-altering sub-phases. After in-
fecting SCADA, attackers must “setup” and “connect” their
tools to attack the physical world. These attack activities do
not align with SCADA phase-specific operation, hence results
in API calls executed in inappropriate SCADA phases. For
example, to access target device tags, Industroyer made OPC
calls in the process-monitoring phase, but OPC calls are used
in initialization. To hijack SCADA physical channels (from
benign program), Industroyer and Havex malware [51] created
ICS device objects while in the process-altering phase, but
that was a process-monitoring behavior, hence indicative of an
attack. Therefore, SCAPHY deems API calls as “anomalous”
when executed in atypical SCADA execution phase.

SCADA Execution Phases. SCADA starts with initialization
which is performed once to setup environment such as loading
ICS drivers. After initialization, process-monitoring starts. It
involves updating process states in memory and operator
HMIs. When physical change is needed, process-monitoring
transitions to process-altering to perform the change and
return until change is needed again. Process-altering invokes
physical-domain logic on a setpoint variable SV to output a CV
which is sent to the process (Fig 1). Fig 2 shows the unique
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Fig. 3: SCAPHY Architecture: ICS scenario file is parsed. Extracted ICS elements are analyzed to identify processes and dependency elements. Element states
are toggled to derive impact on process output over scan cycles, during which SCADA process-control PHYSICS constraints are identified for each process.

execution patterns of process monitoring and process-altering
phases of a water treatment operation based on Siemens S7
WinSPS SCADA platform [30]. This pattern is based on API
call stack behavior, which identifies these SCADA phases.

To identify behaviors unique to each process-control phase,
SCAPHY first leverages domain-knowledge in OPC to build a
physical model of ICS processes, which enables it to detect
physical anomalies of process state changes such as when a
process has inconsistent state. SCAPHY then uses the model to
inform a physical process-aware dynamic analysis to induce
and extract the limited set of legitimate API calls unique to
each process-control phase behaviors. Through the API calls,
SCAPHY establishes a PHYSical world Impact Call Specializa-
tion (PHYSICS) constraints, which attackers must violate (i.e,
execute atypical APIs) to attack the physical world. Further,
SCAPHY develops a new reference model, SCADA Software
Stack (S3) to characterize the "required" internal SCADA
channels to access the physical based on the execution phases.
For example, calling ReadFile indicates process-monitoring
and WriteFile indicates process-altering. Both APIs access ICS
device objects (e.g, COM Ports) in 3rd layer of S3, to send
signals to physical devices. Through S3, SCAPHY can detect
attacks that circumvent or bypasses required S3 layers (e.g.,
SCADA rootkits) but sends disruptive signals to devices.

Resilience Against Evasion in SCADA. To attack the
physical world, an attacker must communicate over SCADA’s
physical interface, through (only) which the physical can be
accessed. SCAPHY monitors all network communication in
the SCADA host via a hypervisor, which runs at a higher
privilege than the SCADA system. SCAPHY enforces that all
access to the physical world go through the expected physical
world-bound API calls by monitoring accesses to the S3

layers at runtime from the hypervisor using virtual machine
introspection (VMI). If an attacker bypasses these expected
APIs and sends signal to the physical world, SCAPHY will see
that the emitted signal does not have the expected provenance
(i.e., no matching API call occurred), and consequently detect
the attacker’s influence on the system.

III. THREAT MODEL AND ASSUMPTIONS

We assume a threat model similar to existing work for
SCADA-originated ICS attacks [3, 9, 15, 16], whereby attacker
has infected SCADA and can use available tools to send attack
signals to devices. We developed SCAPHY for the Windows-
based SCADA systems, which has unmatched dominance in
ICS. We make the following practical assumptions: We do not
consider attacks that do not originate from SCADA such as
side-channel [55, 56]. Majority of in-the-wild ICS attacks are

SCADA-originated [57]. Notional malware that originates/runs
only on PLC such as in [58] are rarely seen in the wild
due to attacker’s cost of developing reusable malware for
non-traditional CPUs [2, 59]. We note that PLC Man-In-The-
Middle (MITM) has been addressed by existing work [60–62]
and in practice via non-PLC diode gateways [63], and hence
is outside the scope of this work. SCAPHY assumes the
hypervisor as Trusted Computing Base (TCB) that cannot be
compromised. In the hypervisor, SCAPHY sees all physical-
bound API calls on SCADA virtual machine (VM). Further,
SCAPHY relies on the Windows Kernel Patch Protection (KPP)
to detect when rootkits inject into the ICS Device Stack (2nd
layer of S3) to MITM legitimate SCADA programs. KPP
ensures that third-party kernel drivers (e.g., rootkits) cannot
modify the kernel subsystem, which mediates hardware-access
(i.e., rootkits cannot hide hardware-bound API calls). Relying
on KPP is practical because it is widely used in Windows.

IV. SCAPHY APPROACH

Input and Output. SCAPHY’s takes as input, an ICS sce-
nario’s OPC element data and function block diagram (FBD)
and outputs (i) a physical model and (ii) PHYSICS constraints.
The physical model assigns an impact score to each element
state in a process, based on how the state impacts the process
output. SCAPHY uses impact scores to detect signals that
are disruptive to a process. PHYSICS constraints are a set of
API calls of legitimate process-control phase behaviors, which
differentiates from attacker’s activities, such that he must inject
into or circumvent them to attack processes, allowing SCAPHY
to detect it as a violation of PHYSICS constraints.

Deployment. SCAPHY runs in hypervisors of SCADA
VMs. Specifically, we deployed SCAPHY in Dom 0 of Xen
hypervisor. This approach is practical because ICS plants
are increasingly adopting virtualization to provide redundancy
in SCADA such as in Enel power plants [64] and recent
surveys [65, 66]. For example, Nozomi Networks, an ICS
leader, provides several security solutions (e.g., Vantage and
Guardian) that relies on virtualized end points [67–69]. In Xen,
SCAPHY leverages LibVMI to trace API calls in SCADA VMs.
At the network interface, SCAPHY monitor for control signals
that changes element states. ICS protocols such as Modbus and
DNP3 specifies function code for control signals (e.g., DNP3
0x02/Modbus 0x05). Many traffic analyzers exist to identify
function codes in ICS protocols [10, 11, 70].

A. End-to-End Operation

SCAPHY works in four phases as shown in Fig 3. 1 SCAPHY
parses ICS scenario files to analyze and partition ICS elements
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(a) Industroyer’s IEC Attack Traffic

(b) IEC APCI Session START

(c) Industroyer Payload to Circuit
Breaker IOA 4 OPC tag

(d) IEC APCI TEST if device is alive

(e) Part FBD for Power Load Balancing
(f) SCAPHY’s Industroyer Detection Output

Fig. 4: Delineation of Industroyer’s power grid attack signals based on the IEC 60870-5-104 ICS Protocol and SCAPHY’s SCADA and physical anomaly output

into terminal and non-terminal sets based on heuristics from
OPC. Terminal elements identifies processes. 2 SCAPHY
then traces each element’s connections to map dependent
element to their process. SCAPHY then loads the scenario
in an ICS engine [24, 30] and performs a physical process-
aware dynamic analysis 3 , whereby the engine is induced to
execute code paths of process-control operations by iteratively
switching element states. During this, SCAPHY records the API
calls executed during process-altering and process-monitoring
phases, to establish PHYSical world Impact Call Specialization
(PHYSICS) constraints. Further, the change in process output
caused by each state switching is averaged over several scan
cycles to derive an impact score for each state relative to
others. For states with oscillating impact (i.e., process output
may increase or decrease), SCAPHY derives a setpoint range,
which defines a minimum and maximum impact score for the
process. 4 SCAPHY raises alarms when executed APIs in each
process-control phase are not in the PHYSICS constraints, when
control signals causes inconsistent state or outside setpoint
anomalies, and when missing, extraneous, and out-of-order
signals are seen. SCAPHY then computes an anomaly score.

B. Detecting Industroyer Attack Behavior with SCAPHY

Industroyer shutdown Ukranian power grid by opening circuit
breakers connected to load lines [1]. This attack disrupted load
balancing of power demand & supply, a weakness in power
systems, leading to outages [71]. To replicate the attack, we
adapted an open-source Texas Pan Handle grid [25] setup in
PowerWorld [72] at a U.S. National Lab. Our lab setup is
detailed in Section VII. We ran Industroyer in its "intended"
environment; a SCADA host with COM ports and OPC,
connected to IEC 608070 device with simulated circuit breaker
RTUs. SCAPHY raised detection alarm in under 9 seconds for a
PHYSICS injection violation and an inconsistent state anomaly.

Industroyer PHYSICS Violation Industroyer made sev-
eral LoadLibrary calls, although a normal SCADA API, was
performed after the process-altering phase indicated by a prior
CreateFile(Write) call. We found that LoadLibray is normal for
process-monitoring and initialization but not process-altering,
per the PHYSICS constraints established from the power sce-
nario. We found that Industoryer used LoadLibrary to load
OPCClientDemo.dll, to gain OPC capability. Thereafter, In-
dustroyer transitioned to process-monitoring indicated by a
ReadFile call. It then invoked IOPCBrowseServerAddressS-
pace OPC call to extract circuit breaker Information Object
Address (IOA tag) to send its payload as shown in Fig 4c. OPC
calls are typical of initialization, but not process-monitoring.
In addition, Industroyer created new ICS device handles while
already in the process-altering phase (to highjack COM Ports)

which is malicious in process-altering.
Industroyer’s Physical Anomalies The Industroyer attack

generated 8 IEC 608070 signals as shown in Fig 4a; two
IEC 60870 Application Protocol Control Information (ACPI)
START frames to begin communication, two ACPI TEST
frames to check controller status, and one Application Ser-
vice Data Unit (ASDU) payload sent to the circuit breaker
RTU. Industroyer also issued 3 last TEST signals to verify
controller’s post attack status as shown in Fig 4d. Based on the
physical model mapping of the element IOA in the payload,
SCAPHY identified the target process as load balancing (LB).
LB’s dependency elements are load lines LOADS.0-5, breaker
BRK.0, and Branch.0 as shown in Fig 4d. SCAPHY output
(Fig 4f) show that Industroyer issued a control signal to BRK.0
(i.e., indicated by SIGNAL*), with none for other elements
(i.e., missing). However, BRK.0’s new open state has an
opposing impact vector to load lines’s OFF state per SCAPHY
physical model, allowing SCAPHY to detect an inconsistent
state anomaly (detailed in Section V-C). Using BRK.0’s impact
vector of 65%, SCAPHY derived a high anomaly score.

V. SYSTEM DESIGN

The goal of SCAPHY is to (I) identify the limited set of legit-
mate API calls of SCADA process-control execution phases
that differentiates from attacker activities, and (II) build a
physical model of ICS processes to identity disruptive physical
impact of control signals. To achieve (I), we leverage the
process dependency mappings in (II) to inform a physical
process-aware dynamic analysis. To achieve (II), we leverage
ICS OPC domain knowledge and impact scores derived during
(I) to build a process dependency and impact graph (PDIG).

A. Automated Physical Process Comprehension

OPC Tag Analysis. SCAPHY parse OPC tags of ICS scenarios
to discover ICS elements and their parameters. OPC naming
conventions allows SCAPHY to extract element’s possible
states, which allows SCAPHY to automatically switch element’s
states during impact modelling. For example, the extracted
OPC tag in Industroyer example BRK.0.BOOL=1 specifies
element BRK, ID of 0, and boolean parameter, which tells
SCAPHY to switch its state 1↪→0, as opposed to an integer.

ICS Element Partitioning and Process Identification. A
process comprises of elements that work together to achieve a
physical goal specified by the plant. This goal is determined
by the state of a terminal element (a heuristic SCAPHY uses
to identify unique processes). For example, the Tank in the
Level Control (LC) process of the FL attack example is
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the terminal element because the LC goal depends on the
Tank’s level. This level is monitored by a level Meter sensor.
When Tank’s level reaches the plant’s specified SV for LC,
the process concludes. OPC captures this information via
OPC Alarms&Event, a data structure that specifies monitored
process parameters [73, 74]. To identify terminal elements,
SCAPHY analyzes Alarms&Event and extracts process pa-
rameter tuples, which corresponds to a sensor and terminal
element pair, e.g., the Meter and Tank. SCAPHY then partitions
ICS elements into two sets; terminal and non-terminal sets
(ETerm, ENTerm). SCAPHY represents a process in the form
of Pj = (Sj , ETermj ); where Sj is the process sensor that
monitors the terminal element ETermj , which corresponds to
process Pj’s output goal. For example, SCAPHY represents LC
process as LC=(Meter,Tank). Other elements in the plant such
as Pumps and Valves are in ENTerm. Based on identifying all
processes, SCAPHY partitions the set of elements E such that:

(E = ETerm ∪ ENTerm) (1)

{∀i, j ∈ (ETerm, ENTerm); i ̸= j; i ∩ j = ∅} (2)

|ETerm| := |P | (3)

|ETerm| equals the number of processes, |P |
Process Dependency Mapping. After identifying processes,
SCAPHY traces element’s connections to identify dependency
elements of a process. To do this, SCAPHY converts the
ICS scenario’s function block diagram (FBD) into Statement
Lists (STL), a textual representation of FBD logic. STL are
network-like statements which connects elements via logic
arithmetic. An example STL is shown in (Section A). FBD
are automatically generated by SCADA programs. From each
ETerm node in STL, SCAPHY traces its connection paths until
all connected elements are identified. Each process (identified
by its terminal element) now has a list of paths, PATHS, which
contain their dependency paths, DepPath. DepPath is a set of
ENTerm nodes arranged in sequential order from the ETerm
node identifying process p, and given as follows:

DepPath(p) := {ENTerm0 , ..., ENTermn} (4)

PATHS(p) := {DepPathi(p), ..., DepPathn(p)} (5)

SCAPHY then aggregates all elements in all DepPath of a
process into a dependency element set DEP (p) such that:

{∀i ∈ PATHS(p) : DEP (p) :=
⋃n
j=0 i(p)} (6)

DEP (P ) is the union of all elements in the dependency paths
of P ’s pathlist. SCAPHY keeps tracks of the internal ordering
among these elements as developed from Equation 4. SCAPHY
uses this ordering constraints to detect out-of-order signals.

Functional Inter-Process Relationships SCAPHY identi-
fies functional relationship between processes with common
elements among them. If an element is in ETerm of P1

and in ENTerm in P2, then P1 depends on P2. SCAPHY
models such element as inter-process transfer points (PTP),
and P1 and P2 as PTP sink and PTP source respectively.
PTP instances is common among Boolean elements such as
valves and switches. SCAPHY leverages PTP to detect attacks
spanning multiple processes, such as in the FL water attack
(detailed in Section VII-B). PTP events occur when a control
signal causes a PTP element to change state, which causes
the PTP sink to assume the value of the PTP source’s ETerm.

Through this, SCAPHY detects disruptive impact on the PTP
sink process stemming from the PTP source.

B. Modelling Process Dependency and Impact

SCAPHY models how each dependency element state of a
process impacts (decrease or increase) the process output using
a novel process dependency and impact graph (PDIG) model.

Sketching PDIG Gragh. PDIG is a set of nodes which repre-
sents elements, and edges which connects element nodes based
on their relationship. Example PDIG is shown in Section A
for the LC process. Undirected process edges connect ETerm
elements to each ENTerm element in the same DEP (P ).
Undirected element edges connect ENTerm elements without
any ordering constraint. Directed element edges connect two
ENTerm elements with ordering constraints among them in the
direction of the ordering. Each E node is annotated with its
possible states and impact score (derived later). In the PDIG,
SCAPHY identifies and annotates PTP instances when there is
an undirected element edge from a terminal element (of the
PTP source) to a non-terminal element (i.e., the PTP element).

Deriving Impact to Model Physical Effects. SCAPHY
assigns each element state s an impact score IC(s) based
on how they impact a process relative to other states. When
a control signal changes an element state, IC(s) is used to
compute the anomaly score to quantify impact. SCAPHY also
uses IC(s) to prune out non-impactful states, which reduces
the number of elements to monitor. Note that SCAPHY
aims to derive “relative” impact score of an element state,
not actual score, or score for state combinations. As such,
SCAPHY does not consider other elements’ state when deriving
IC(s), which avoids combinatoral state explosion [10, 75, 76].
To make the scoring robust/fair, all score derivation starts
from the same initial process configuration and is driven until
the process reaches steady state. To derive IC(s), SCAPHY
leverages an ICS environment; Siemens S7 WinSPS [30] and
FactoryIO [24] to load and drive the ICS scenarios’ processes.
SCAPHY then iteratively switches each state in the process and
analyze the moving average of process outputs via reading the
process sensor element. SCAPHY stops evaluating the change
in output when successive changes become negligible (less
than 1%). We normalize IC(s) with respect to scan cycles ran,
which bounds its value between 0.0 and 1.0. This succinctly
describes the impact of each state relative to other states.

Formulation of IC(s). We define a process outcome
transition set τn, which is a set of ordered outcomes o for a
process from scan cycle cj to cn:

τn := {o(cj), o(cj+1), o(cj+2), ..., o(cn)} (7)

where cj is the first scan cycle following SCAPHY switching
of an elemetary state and cn is the last or current scan cycle
observed where 0 ≤ j ≤ n, n ∈ Z. SCAPHY keeps track of
the highest or lowest recorded outcome ψ (i.e., the boundary
outcome). For any scan cycle cj , we define the IC(s) of the
element state under analysis as follows:

IC(s) =

n∑
i=j

o(ci)−o(ci−1)

ab(ψ−o(ci−1))

|τn|
(8)

where o(ci)− o(ci−1) is change in process outcome, ab(ψ −
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(a) Process operation scan cycles

(b) Computation of Impact Coefficient

(c) A plot of IC(s) to scan cycles (d) Plot of Aggregate Slices to scan cycles

Fig. 5: SCAPHY Impact Coefficient IC(s) Derivation for Each Element State

o(ci)) is the absolute difference between the highest or lowest
outcome and the preceding value at the scan cycle i − 1.
Further, |τn| is cardinality of the scan cycles from cj to cn.

We see that o(ci)−o(ci−1)
ab(ψ−o(ci−1))

is the ratio of the current
process change (i.e., o(ci) − o(ci−1)) to maximum change
(ψ − o(ci−1)). If we aggregate this ratio for each scan cycle,
we can compute IC(s) instantaneously at any scan cycles we
chose without having to always compute IC(s) through all
previous scan cycles. Using the aggregate ratio to compute the
instantaneous derivation of IC(s) is given as follows:

IC(s) =
δ

δT
Aggregate_Slice(o(cn)) (9)

where, for all scan cycles T , Aggregate_Slice(o(cn)) is sum
of current change to Max change from cj to cn, defined as:

{∀ci ∈ T : Aggregate_Slice(o(cn)) :=
∑n
i=j

o(ci)−o(ci−1)
ψ−o(ci−1)

}
(10)

Fig 5b illustrates a derivation of IC(s) through scan cycles
c1 to c4. At each scan cycle transition, the generated process
outcomes, 9.19 through 2.15 were inputted into the IC(s)
formula to compute the IC(s) scores. Notice that at scan
cycle c4, the difference in the subsequent IC(s) (i.e., from
c3) was negligible (i.e., 0). SCAPHY uses this observation
as a heuristic to detect steady states. Otherwise, SCAPHY
sets a maximum bound to stop the simulation. Fig 5d shows
IC(s) for the end scan cycle cn (n = 4) using the iter-
ative form and the instantaneous IC(s) form (green dotted
line). The Aggregate_Slice(o(cn)) function is a straight line
(Aggregate_Slice(cn) = mT ) drawn from origin to the point
cn ∈ T , where m is the slope. Taking the derivative of
Aggregate_Slice(cn) = mT gives the instantaneous IC(s).
Algorithm 1 shows SCAPHY algorithmic approach to derive
to IC(s). Aggregate_Slice is the aggregate ratio of measured
impact to maximum possible impact, and Cycles is the total
cycle batches in terms of scan cycles.

Algorithm 1 DeriveImpactCoefficient(IC(s))

Input: ElementState s, Process p
Output: IC(s): ▷ Initialization

Cycle, CycleMAX ← GetCycleBatchAndMax
ψ ← GetOutcomeBoundCalib
OPREV ← GetProcessInitOutcome(p)
SteadyState← GetSteadyState(p)
Aggregate_Slice← 0
while CycleMAX > 0 do
SDK_RunSim(s, p)
Oci
← GetProcessOutcome(p)

ODIFF ← Oci
−OPREV

Aggregate_Slice← (Aggregate_Slice+ODIFF )
Aggregate_Slice← Aggregate_Slice/ABS(OPREV )− ψ)
IC(s) ← Aggregate_Slice/Cycle ▷ check if steady state is reached, if so

return IC(s)
if ODIFF < SteadyState then

Return IC(s)
else
Cycle+ +
CycleMAX −−
ψ ← UpdateOutcomeBound(ψ,Oci

) ▷ update ψ if neccesary

Return IC(s)

C. Characterizing Physical and Signal Anomalies

Inconsistent State. SCAPHY detects when a process has
inconsistent state if two dependency element states have op-
posing impact vectors. To explain, recall that state’s IC(s)
in the PDIG drives process output in one direction towards
its goal (i.e, not opposing goals). For example, Industroyer
attacked LB process aims for a LB factor of 1.0 between
power supply and demand. Although LB is affected by other
factors, load lines and circuit breaker state play a role. If
load decreases/disconnect (e.g., low demand), process-control
responds by opening circuit breakers to bring back the balance.
Hence, load disconnecting is consistent with breaker opening
and drives the process towards its goal. However, opening
circuit breakers and connecting load lines are inconsistent
and disruptive to LB and should never occur in any legiti-
mate setting. SCAPHY’s IC(s) model captures this element
state relationships and detects such inconsistent state physical
anomalies. Through this, SCAPHY detected the Industroyer
attack based on physical impact of the attack (Section IV).

Outside Setpoint. SCAPHY detects when control signals
drive a process to exceed what it is operationally caliberated
for based on learning the highest and lowest bounds of the
process output recovered during the IC(s) derivation.

Signal Anomalies. SCAPHY detects (i) missing signals
when a process’ control traffic has incomplete signals based on
number of its dependency elements. This is useful for targeted
attack signals (ii) Extraneous signals is when control traffic
contains signals for elements not associated with the process.
(iii) Out-of-Order signals occur signals sequences in control
traffic are not in the expected ordered flow based on PDIG.

Scoring Anomalies. SCAPHY computes anomaly scores
based on element’s IC(s). Let m be number of affected ele-
ments, and si is the state transitioned by the control signal. Let
n be number of process dependency elements and ICMAX

(j)
be the Max IC(s) for an element. Anomaly score is given by:

{∀j ∈ DEP (p) : Anomaly_Score =

m∑
i=0

IC(si)

n∑
j=0

ICMAX (j)

} (11)

Using ICMAX
in the denominator normalizes and bounds

the scores between 0,1 which succinctly captures the deviation
relative to other elements. We then calibrated a detection
threshold boundary for low, medium, high anomalies as 0.0-
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Fig. 6: SCADA Software Stack (S3) and SCADA Execution Phases: Showing SCADA Host Interactions with S3 Layers to access the Physical World

0.25, 0.26-0.60, and 0.61-1.0 respectfully. These gave the best
accuracy for all scenarios tested. However, operators can fine
tune these detection thresholds as needed.

D. Analyzing Physical World-Targeted Executions in SCADA

Given an ICS scenario, SCAPHY aims to generate the limited
set of API calls unique to legitimate SCADA process-control
operations, referred to as PHYSical world Impact Call Special-
ization (PHYSICS) constraints. To do this, SCAPHY leverages
its physical model to inform a physical process-aware dynamic
analysis, whereby a SCADA engine is induced to execute code
paths of process-monitoring and altering behaviors. However,
this requires first knowing each phase identifier and boundary.

Leveraging SCADA Software Stack (S3) to Characterize
Process-Control Behaviors. Through in-depth analysis of
process-control in diverse ICS settings, we introduce a new
reference model, SCADA Software Stack (S3). S3 does not
replace Purdue Levels [32]. Rather, it breakdown Purdue Level
2 (i.e., control systems) into 5 layers to characterize the internal
host layers involved in SCADA process-control, shown in
Fig 6. We hope that via S3, Antivirus companies can develop
SCADA-specific host agents to monitor accesses to specific
S3 layers to detect attacks.

SCADA programs (S4) do not access ICS devices directly
but do so using device objects (S2), which are software handles
that enable the OS to mediate access to physical I/O (S0). To
support diverse ICS devices, Windows provides a Driver Model
(WDM) to allow device vendors to run ICS drivers (S1) in the
kernel. In WDM, driver objects of an ICS driver represent
instances of ICS devices the driver supports. For example,
Windows supports 16550 UART devices via Windows Serial
Driver, which allows SCADA programs to declare device
objects, called COM ports, to communicate with devices.

ICS Callback Functions. To access devices, SCADA pro-
grams invoke ICS callback functions (S3) registered during
ICS driver load. Callback functions invoke CreateFile which
returns the device object handle as shown in Fig 6. Parameters
lpFileName specifies device object name (e.g., COM1); dwDe-
siredAccess specifies Read/Write access mode; dwShareMode
enables SCADA programs to deny other programs (e.g., mal-
ware) access to devices. Unfortunately, attackers (e.g., Havex,
Industroyer, Oldrea) subvert this access control by killing
SCADA processes to release their handles. For example,
Industroyer killed D2MultiCommService.exe to hijack all COM
ports to Siemens SPIROTEC device. Havex [51] scanned COM

Ports to discover connected devices. After obtaining device
handles, SCADA programs (and attackers) invoke ReadFile to
read device states or WriteFile to send signals to them. Based
on this behavior of S3 layers, SCAPHY can monitor CreateFile,
[WriteFile | ReadFile] on device objects as identifiers of
process-altering and process-monitoring, respectively.

Identifying Process-Control Phase Windows. Existing work
for web servers [77] rely on developer-supplied boundaries to
identify phase transitions. This manual approach will not work
if boundaries are not available such as in proprietary settings
like ICS. However, SCAPHY leverages S3 layers to analyze
the cyclical nature of SCADA process-control to identify its
transitions from process-monitoring to process-altering. Recall
that accessing device objects (S2) using CreateFile in "Write"
mode identifies process-altering, and in "Read" mode identifies
process-monitoring, but we need to know when they begin
and end (i.e., phase window) to specialize the extracted API
calls. Based on their cyclical API call stack behavior such as
shown in Fig 2, we found that process-altering follows process-
monitoring. We also found that SCADA performs memory
freeing operations thereafter to free up memory buffers used in
physical-domain computations and then returns to monitoring.

We analyze process-monitoring to know its phase window.
Process-Monitoring comprise of two sub-phases; process state
representation (reads element states), and event handling,
which checks if change is needed, otherwise it repeats as
shown in Fig 2. SCAPHY analyzes the changing EIP register
and call stack depth of the repeating loop to know the end of
event handling the first time it returns to the EIP it started.
When event handling ends but EIP returns to a different loca-
tion and call stack depth, SCAPHY identifies this as the start of
process-altering. Finally, SCAPHY performs a check to confirm
the expected S3 identifiers in each phase, which are [Create-
File, ReadFile || WriteFile], CloseHandle call sequences for
process-monitoring & process-altering respectfully.

Physical Process-Aware Dynamic Analysis. SCAPHY lever-
ages an ICS emulation engine (FactoryIO [24]) and a SCADA
platform (Siemens S7 WinSPS [30]) to perform a physical-
process-aware dynamic analysis of process-control behavior to
generate PHYSICS constraints. FactoryIO (which also provides
a SCADA tool) provides an environment to setup and drive
physical processes. Its emulation engine supports hardware-
in-the-loop PLCs using real protocols such as Modbus and
allows loading of generic ICS scenario FBDs. On starting each
process, we monitor the SCADA API executions to know when
each process-control phase start based on the phase windows.
For each process, we induce the SCADA execution to re-
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Physical World Dependency & Impact Model PHYSICS Constraints ICS program files
ICS Industry physical OPC PDIG IC behavior verify time OPC points and tags
scenarios Domain processes ID ETerm nodes avg/max calls stack TP FP (min) size element wires

load balancing 1.1 c-breaker 6 .71/.76 6 7 6 0 9.3 9K 19 35power grid Power Plant pwr distribution 1.2 load lines 4 .59/.66 4 6 4 0 10.4 9K 19 35
level control 2.1 holding tank 4 .56/.86 10 12 10 0 8.2 11.5K 13 23water treatment Water Plant dosing 2.2 dose valve 2 .66/.86 4 11 4 0 8.9 11.5K 4 23
pallet alignment 3.2 Axes X,Z 6 .47/.62 8 13 8 0 5.9 9K 10 11auto warehouse manufacture throughput 3.2 entry conveyor 2 .7/.84 4 11 3 1 5.5 9K 6 11
product quality 4.1 clamp lid/base 2 .67/.77 4 7 4 0 7.5 9.5K 8 19assembler manufacture load balancing 4.2 conveyor2 5 .8/.84 6 14 6 0 7.3 9.5K 11 19
load alignment 5.1 push clamp 3 .47/.71 7 13 7 0 5.9 7.8K 7 13palletizer Shipping prod protection 5.2 entry conveyor 6 .32/.69 4 17 4 0 5.7 7.8K 9 13
heat setpoint 6.1 room space 3 .46/.79 8 12 7 1 6.1 6K 8 14hvac system manufacture heat flow 6.2 vent 3 .6/.82 6 19 6 0 6 6K 7 14
path throughput 7.1 load/unload 2 .47/.6 7 13 7 0 6.9 6.2K 9 15converge station Shipping alt throughput 7.2 transfer 3 .67/.88 6 12 5 1 6.9 6.2K 9 15
alignment 8.1 control arm 2 .8/.8 6 15 5 1 8.6 8.5K 11 17production line manufacture throughput 8.2 conveyors 4 .6/.72 6 16 6 0 8.1 8.5K 11 17
sort accuracy 9.1 unloader 2 .54/.85 4 13 4 0 5.7 9K 6 14sort station Shipping throughput 9.2 conveyor 7 .5/.9 6 17 6 0 5 9K 16 14
accuracy 10.1 pusher1-2 6 .53/.72 5 12 4 1 5.9 4.9K 17 19separator Shipping throughput 10.2 conveyors 7 .69/.81 4 8 4 0 4.8 4.9K 15 19
prod safety 11.1 conveyor1-3 5 .77/.83 6 13 6 0 10.2 11K 13 24elevator manufacture throughput 11.2 entry conveyor 5 .33/.68 4 19 4 0 10 11K 12 24
spacing 12.1 buffer conveyor 6 .63/.71 6 13 6 0 6.7 9K 17 13queue processor manufacture throughput 12.2 entry conveyor 2 .67/.8 5 11 4 1 6.5 9K 14 13

TABLE II: ICS Scenarios: SCAPHY’s physical world modelling results and generated SCADA PHYSICS constraints with Diverse ICS Industry Applications

compute the process control variable (CV) (i.e., to send to
the physical) by iteratively switching each element state in the
process. This drives execution down the process-monitoring
and process-altering code paths to effect change on the process,
enabling SCAPHY to record the API calls of each phase.

Process-Aware PHYSICS Constraints. SCAPHY’s phys-
ical model makes generated PHYSICS constraints process-
aware, i.e., captures process functions. Although many code
paths exist in SCADA, our PHYSICS constraints cover only
process-control paths by inducing the benign SCADA process-
control logic to react to each element state change, ensuring
that relevant "state-changing" logic paths are dynamically
covered. Because element states are derived from the plant’s
deployed OPC, SCAPHY’s PHYSICS constraints succinctly
represent the limited legitimate APIs to control the physical.

PHYSICS Violations by Injection. SCAPHY detects
anomalous APIs not in PHYSICS constraints as injection vi-
olations. As such, SCAPHY can detect attack code injected
into SCADA programs (as done by Stuxnet [6]) and redirected
API calls via Import Address Table hooking. Stuxnet-type
attacks will evade existing tools that whitelists benign SCADA
programs. However, because SCAPHY focuses on executed
APIs, not the executor, injected APIs will be detected.

PHYSICS Violations by Bypass. Rootkits can bypass S3

layers and directly send malicious signals to physical I/O using
kernel calls such as 0x6b DeviceIOControl. However, because
SCAPHY sees all WRITE traffic on the physical interface (S0),
it detects the attack as Bypass violation because no S2 activity
was seen, allowing SCAPHY to know that a kernel-space entity
bypassed proper process-altering S3 channels to send signals.

VI. IMPLEMENTATION

We leveraged domain knowledge in OPC convention [21–23]
to automatically extract and analyze ICS process information
from input ICS scenarios files (OPC element data and FBD).

Accessing ICS Scenario Files in plants. We developed
an OPC client [78] to perform ReadRequest on OPC server
(port 48031) using OPC UA protocol, which specifies a

nodesToRead field [79] to return elements and parameter in
JSON. Further, we read OPC Alarms&Event data from the
UaServer_Event structure [73, 74] also in JSON. Lastly, we
exported FBD’s STL using SCADA software’s provided API.

Process Identification and Element Tracing. We parse
the OPC Alarm&Event data using python to extract the mon-
itored (i.e., terminal) element and the sensor element. The
terminal element is a fitting heuristic to identify processes
because it represents a process goal. Next, to identify the
OPC tags in the STL and trace element’s connection, we
first parsed the STL and matched its tags to tags from OPC.
Then, we traced the STL statements from the terminal element
tag to other (non-terminal) elements. Next, our python script
“partitions” terminal and non-terminal elements in two sets.

Tracing SCADA APIs with LibVMI. Our testbed
SCADA runs in a Windows Dom U VM in Xen Hypervisor,
installed in a bare-metal intel machine, with a Linux Dom 0
VM, where SCAPHY runs. In Dom 0, SCAPHY’s monitoring
tool is implemented in C++ (77 lines) which calls LibVMI’s
altp2m module to initialize VM introspection on our SCADA
VM via create_view method. To trace SCADA execution, our
C++ code invokes LibVMI’s SETUP_INTERRUPT_EVENT to
"trap" and forward executed APIs to a SCAPHY’s analysis tool
(232 lines of python) via a Linux Pipe. We run SCAPHY as
follows: scaphy_monitor | scaphy_analysis.py

VII. EVALUATION

We evaluate SCAPHY’s ability to (i) detect a variety of ICS
attacks across diverse ICS scenarios, and (ii) outperform ex-
isting tools in detection accuracy. We launched 40 ICS attacks
on 24 diverse ICS scenarios across 4 ICS industries to show
SCAPHY versatility, as shown in Table II. SCAPHY detected
95% of all attacks, including real ICS malware (Havex2 and
Industroyer3), with only 3.5% false positives. Due to lack of
resources to support diverse ICS security research [26–29],
we make available over 200GB of new ICS experiments and

27f249736efc0c31c44e96fb72c1efcc028857ac7
32cb8230281b86fa944d3043ae906016c8b5984d9
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MITRE ICS Attack In-the-wild MITRE Physical Process PHYSICS Physical Anom. Signal Anom. Metrics detect
Attack ID Description ICS Reference ICS TTP IDs (in Table II)) bypass inject incons setpoint miss extran ooo TP FP time(s)

T872 wipe host/registers Killdisk Evasion 1.1, 1.2, 4.1 ✓ ✓ ✓ 3 0 9.9
T836 modify parameter Stuxnet Impair proc contrl 4.1, 4.2, 8.1, 8.2 ✓ ✓ ✓ 3 0 9.0
T831 contrl manipulation Stuxnet Impact control 2.1, 2.2, 6.2 ✓ ✓ ✓ 3 1 10.2
T889 kernel driver attack Blaster Modify Program fxn 5.1, 5.2, 10.2 ✓ ✓ 2 0 9.8
T855 unauthorised cmd msg Industroyer Impair proc contrl 3.1, 3.2, 11.1 ✓ ✓ ✓ 3 1 7.8Pr

oc
es
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lte
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ng

M1.2 corrupt registers Triton Impair proc ctl 7.1, 10.2, 11.2 ✓ ✓ ✓ ✓ 4 0 8.8
T874 library hooking Triton Execution 5.1, 5.2, 10.1, 10.2 ✓ 1 0 5.4
T801 monitor proc state Industroyer Collection 6.1,6.2, 8.1 ✓ 1 0 4.1
T861 points/tags identifica. Backdoor.Oldrea Collection (OPC) 6.1, 6.2, 8.2 ✓ 1 0 4.1
T816 device shutdown Industroyer Inhibit Resp fxn 7.1, 9.1, 9.2, 7.2 ✓ 1 0 5.4
T888 network Enumeration Havex(as is) Discovery fxn 4.1, 4.2, 8.1, 8.2 ✓ 1 0 4.8

N
on

-P
ro

ce
ss

A
lte

ri
ng

T805 block serial COM Industroyer(as is) Inhibit Resp fxn 1.1, 1.2, 9.1 ✓ 1 0 5.1

TABLE III: Deployed Attacks and Detection Metrics. We leverage the MITRE ICS Attack Framework [80] to categorize the attack TTPs

attacks in both SCADA and physical aspects, developed for
FactoryIO Engine [24] and Siemens S7 platform [30].

Experimental Setup. We leveraged a U.S. national lab
testbed, which supports fast deployment of ICS topologies,
OPC, HMIs, and SCADA VMs, prepared with ICS tools
to control physical processes such as UART interfaces and
Windows Serial Driver. We used 3 SCADA platforms: S7
WinSPS, MyScada [81], and FactoryIO SDK. This makes
our testbed suited to evaluate SCAPHY against ICS attacks in
realistic settings. To support diverse processes, we leveraged
Simulink [82], PowerWorld [72], and FactoryIO Engine to
emulate physical processes in Remote Terminal Units (RTUs).

ICS Attacks Performed. We performed diverse modern
ICS attacks from 4 categories: attacks that (I) maliciously
alter element states in running processes, (II) blocks SCADA
access to the physical, (III) collects attack-relevant data from
SCADA, and (IV) exploit bugs in ICS devices. We leveraged
Mitre ICS Attack Framework and ICSSploit [83] to develop
realistic attacks, indicated in "In-the-wild" column of Table III
and Table IV, each tailored against their pertinent ICS target.

Physical World Model and PHYSICS Constraints. Table II
shows our ICS scenarios details and SCAPHY’s derived phys-
ical world models and PHYSICS constraints. To verify ac-
curacy of generated PHYSICS constraints (API calls), we
produced forensic execution traces of our SCADA program
using the Time-Travel debugging feature of Windows Debug-
ger (WinDBG), which we manually stepped to see the APIs
of each process-control path. Table II column 8-11 shows the
number of unique process-altering APIs called on average
per path. As shown, we found that only few unique APIs
were seen (most times in loops) depicting that process-altering
is very specialized per physical domain, but the high stack
depth shows that process-altering is executed deep in SCADA
logic. We found that the FPs were due to rare element states
not parsed correctly from OPC. SCAPHY’s physical model
allowed it to prune non-impactful elements from the original
pool extracted from OPC, which is efficient. E.g., many ICS
elements such as repeaters do not have any impact on process
output, hence were pruned off during IC(s) derivation. As
such, we saw over 50% reduction (on avg) from extracted OPC
elements to PDIG nodes. This outperforms naively analyzing
all states regardless of impact as done in [16].

Further, the reduced element pool contributed to an IC(s)
(impact) average above 70% of their process output, showing
that SCAPHY modelled the relevant or impactful elements
whose malicious state change are more disruptive to the pro-
cess. SCAPHY physical-process-aware dynamic analysis takes
about 8 mins, which is reasonable per deployed scenarios sizes
(last 3 columns). Our ICS scenarios are adapted from real-

world models developed. For example, our power grid scenario
was adapted from an open-source Texas Pan Handle power
grid [25], simulated in PowerWorld RTUs. We use the power
grid example to explain Table II: SCAPHY accurately identified
the process terminal element (ETerm) as shown. SCAPHY’s
impact analysis pruned the OPC element pool of 19 nodes to
10 PDIG nodes, which is efficient. The average impact of all
PDG nodes was over 50% with Max at 0.76 and 0.66, meaning
that attack involving them are most disruptive.

A. ICS Attack Detection

Table III shows attack categories I, II, & III, and SCAPHY’s
results. Attack category I are shown in the first row-group,
"Process Altering". Category II & III are shown in the
second-row group, Non-Process Altering. SCAPHY detected
PHYSICS bypass and inject attacks for both categories. How-
ever, SCAPHY detected physical and signal anomalies for only
category I, because category II & III do not send control signals
but block SCADA access to the physical or collect data about
devices. For example, in T805, Industroyer issued CreateFile
on all COM ports to block our SCADA program from access-
ing the physical ("as is" mean we executed In-the-wild mal-
ware). Similarly, Havex in T888 enumerated all COM device
objects stored in Registry keys HKLMSYSTEMCurrentCon-
trolSetServices (registry value SERVICE_KERNEL_DRIVER
are device driver services) to identify connected devices by
issuing loops of OueryKey, OpenKey, QueryValueKey API
calls. These API calls were atypical of process-monitoring,
allowing SCAPHY to detect their PHYSICS inject violations.

SCAPHY detected two PHYSICS bypass violations in cate-
gory I, T872 & T889, which are kernel attacks that bypassed
SCAPHY monitored S3 layers. Specifically, T889 & T872 used
DeviceIOControl direct driver call to send signals out the serial
I/O. SCAPHY detected the attack because they sent out signals
without accessing S3 layers, allowing SCAPHY to know that a
kernel entity bypassed proper process-altering S3 channel to
attack the physical. Further, T872 used the same call to send
control code to the storage device driver to delete whole drives
(/DosDevices/C:). The Last 3 columns show results. Ground
truth was derived from open-source attack data [80, 84]. We
found that FPs were due to missed APIs during PHYSICS
analysis due to rare element states not parsed from OPC.

Evaluating SCADA Software Stack (S3) Activity. For attack
category IV, we demonstrate S3’s ability to pinpoint steps
along SCADA access to the physical, which shows that S3 lay-
ers are practical host monitoring taps for ICS attack detection.
To do this, SCAPHY tracked access to each S3 layer based on
the API call identifiers for each layer. E.g., ReadFile accesses
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ICSSPLOIT Attack Real-world In-the-Wild Exploit SCADA Software Stack (S3) Activity Metrics
Attack ID Description Device Targets CVEs/ICSAs Type S4.1 S4.2 S4.3 S3 S2 S1 S0 TP FP FN
SPLOIT1.1 stop controller/CPU Siemens Simatic-1200 ICSA-11-186-01 Unprotected Port - - ✓ ✓ ✓ ✓ ✓ 5 0 2
SPLOIT1.2 remote code execution QNX SDP 660 CVE-2006-062 Buffer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 4 0 1
SPLOIT1.3 remote device halt Schneider Quantum ICSA-13-077-01 I/O corruption - ✓ ✓ ✓ ✓ ✓ ✓ 5 0 1
SPLOIT1.4 crash RTOS service QNX INETDd CVE-2013-2687 Buffer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 5 0 1
SPLOIT1.5 RPC device crash WindRiver VXWorks CVE-2015-7599 Integer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 4 0 1
SPLOIT1.6 denial of service Siemens S7-300/400 CVE-2016-9158 Input Validation - - ✓ ✓ ✓ ✓ ✓ 4 0 2

TABLE IV: Deployed Attacks and Detection Metrics. We leverage Attack Modules ICSSPloit Attack Modules [83] to categorize the attack TTPs

S2, the ICS device object. We leveraged ICSSPLOIT [83] to
compile real-world exploits that were developed as proof-of-
concepts exploit code against real bugs in ICS devices. We
launched these attacks against their simulated ICS targets and
then check which S3 component was accessed in the SCADA
host. Table IV details the results. SCAPHY detected all five
layers of S3 in all attacks as shown. However, in layer S4,
SCAPHY did not detect initialization behavior (S4.1). This is
because the exploits where self-contained and did not issue
any API to setup environment. However, SCAPHY detected
their process-altering behavior (S4.3) when the WriteFile API
was called to send signal to the physical. We hope that via S3,
Antivirus companies can develop SCADA-specific host agents
to correlate accesses to specific S3 layers to detect attacks.

B. Case Study: 2021 Florida Water Plant Poisoning Attack

We replicated the FL incident with realistic water treatment
scenario using FactoryIO and open-source data [26, 27]. The
attacker targeted the chemical dosing operation by manipulat-
ing a proportional P parameter to raise toxic levels of NaOH
in the water outside the setpoint (SV) [4]. Chemical dosing
involves two processes: Level control (LC) and Dosing. The
HMI is shown in Fig 7a. LC aims to fill a holding tank,
TANK.O with chemical based on SV, after which Dosing
will open a valve, VALVE.2 to let chemical into the water
supply [26, 27]. LC is controlled by a physical domain logic,
Proportional Integral Derivative (PID). Because SV cannot be
reached in one shot, PID operation involves several "intake"
and "discharge" cycles, (shown in Fig 7d) whereby an intake
pump fills chemical into TANK.O, and a discharge valve
remove accesses. P controls how aggressive the intake and
discharge cycles are driven. E.g, a high P pumps an initial
excessive volume into TANK.O. Fig 7c shows how different P
values affect how SV is reached. SV is set via a hardware dial
on the PID controller, so attacker cannot modify it via cyber.
Attack and Detection. The attacker issued 2 control signals
to raise P (dumps excess chemical into TANK.O) and open
VALVE.2. We launched the attack using a Modbus payload,
but made the attack code self-contained, without triggering any
PHYSICS violation. At the SCADA side, the attack triggered all
S3 layers to send out signal, which was not malicious by itself.
We now focus on the physical aspects. SCAPHY’s detected a
high outside set point physical anomaly and a low Extraneous
signal anomaly. Fig 7b shows SCAPHY’s outputs.
Explanation SCAPHY detection is based on the functional
process relationship captured in the physical model between
LC and Dosing. Recall Section V-A, VALVE.2 is a PTP ele-
ment between LC (PTP source) and Dosing (PTP sink). When
VALVE.2’s state changes from CLOSE to OPEN, the Dosing
process output assumes TANK.O’s value (i.e., the ETerm of
the PTP Source) which is measured by the meter sensor
LMETER.0. This Dosing process outcome (LMETER.0’s value)

(a) Chemical Dosing Operation HMI

(b) SCAPHY Output

(c) Effects of different P’s

(d) Intake/discharge cycles

was outside the setpoint for Dosing derived during IC(s)
derivation, which allow SCAPHY to detect it. Finally, a high
anomaly score is calculated based on VALVE.2’s IC(s) of 0.87,
allowing SCAPHY to detect an outside setpoint anomaly. Fur-
ther, SCAPHY detects an extraneous signal anomaly because
the signal to open VALVE.2 was "extraneous" in LC.

C. Case Study: Reliability of SCAPHY against Modern Rootk-
its that knows SCAPHY Approach

To test SCAPHY’s reliability against rootkits, we selected two
modern rootkit techniques based on recent works [85–87]: (i)
direct kernel object manipulation (DKOM), which tampers
kernel objects, and (ii) Hypervisor-level DKOM. We show
that SCAPHY can be reliable against DKOM rootkits, but
not hypervisor-level DKOM. We leveraged Metasploit [84] to
develop these rootkits. We note that SCAPHY only applies
to rootkits that attack the physical world from SCADA (i.e.,
SCADA rootkits). That is, SCAPHY is not aimed to detect
traditional IT-only rootkits (e.g., exploit attacks or backdoors).
SCAPHY’s ability to detect evasion in SCADA is because any
SCADA entity must ultimately send out traffic via the physical
interface to access the physical. To do that legitimately, they
must traverse proper SCADA’s S3 channels (monitored by
SCAPHY). If a rootkit naively circumvents these channels, but
sends signals via the physical interface, SCAPHY detects the
evasion because no S3 API calls was seen, which means a
kernel entity (e.g., rootkits) bypassed proper S3 channels. This
was the case in Section VII-A, where rootkits T872 & T889
used kernel call DeviceIOControl to send signals, without S3

activities. Hence the goal of a SCADA rootkit in evading
SCAPHY is to deceptively "present" SCAPHY with proper S3

API behavior, while sending commands to the physical.

DKOM Rootkit. This rootkit installs as a kernel driver
and uses DKOM to obtain (and execute on) the userspace
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ICS device object (S2 layer). Unlike naive rootkits T872 &
T889, this rootkit exploits ZwCreateFile native API which
handles parameters differently in kernel than the userspace
CreateFile [88]. Calling ZwCreateFile with the driver name
returns the driver base object address (a kernel object) which
is traversed to locate ICS device objects in driver data structure.
With this object, the rootkit (i) inserts itself on the ICS Device
Stack of the physical interface, from which it can send signals,
and (ii) invokes ZwWriteFile to complete fake S3 behavior.

Detection. Executing the rootkit emitted S2 process-altering

Fig. 8: API sequence for ICS Driver Loading and Registration.

APIs with no PHYSICS violations based on ZwCreateFile &
ZwWriteFile calls. This evades SCAPHY. However, SCAPHY
can detect this rootkit by simply monitoring for ICS driver
attachment to the Device Stack, a protected kernel object.
Explanation For the attack to work, the rootkit had to attach
itself on the ICS Device Stack of the physical interface. This is
done using IoAttachDeviceToDeviceStack during driver loading
as shown in Fig 8, which shows the steps ICS drivers (and
rootkit) must follow to attach themselves to a Device Stack.
Device Stack is a kernel structure that tells the kernel which
drivers can access I/O of a physical device. Hence SCAPHY can
track when new drivers are added to a Device Stack, allowing
it to catch when additional or unknown drivers are introduced.

We note that rootkits cannot modify the kernel subsys-
tem (NTOSKRNL.EXE) per Windows Kernel Patch Protection
(KPP) [89], which prevents third-party code (e.g., drivers)
from "patching" the kernel subsystem, which includes Device
Stack. KPP prevents unauthorized access of device I/O. Hence
ICS drivers (and rootkits) must follow the API steps in Fig 8,
which SCAPHY can monitor with high-fidelity. To test this,
we added this API behavior to SCAPHY model and ran the
rootkit. On observing a repeat of IoAttachDeviceToDeviceStack
(i.e., after the benign ICS driver has already been attached),
SCAPHY detects this malicious Device Stack tampering. Mak-
ing this addition to SCAPHY was seemless because the API
sequence in Fig 8 follows SCAPHY’s proposed S3 layers,
which shows the ubiquitousness of the S3 reference model. For
example, the argument dwServiceType=0x01 in CreateService
registers an ICS driver service, which returns a handle used
by ICS callback functions (S3) to access device objects (S2).

Hypervisor-Level DKOM. This second attack requires the
rootkit to escape the VM and launch DKOM in Xen hypervisor
(Dom 0 Linux) where SCAPHY runs. Although this is outside
our threat model, as the hypervisor is our TCB (Section III),
we wanted to show a concrete way to evade SCAPHY. Recall
in Section VI that SCAPHY’s LibVMI-based monitoring tool
uses a Linux Pipe to feed API traces to SCAPHY analysis tool.
This DKOM works by redirecting this Pipe’s memory buffer
in kernel to another pipe the rootkit controls. Specifically, our

Attack Detection Metrics
Techniques Approach Attacks/ SCADA Physical CTRL Signals

Normal TP FP FN TP FP FN TP FP FN
Sensor [16] Linear 40/146 - - - 19 37 21 - - -
Analysis Regressive M.
Traffic [3] Decision Tree 40/146 - - - - - - 11 18 29
Analysis Classifier
Hybrid SCADA Corr. 40/146 36 5 4 21 14 19 18 21 22
SCAPHY with Physical

TABLE V: Comparison with Existing Techniques

rootkit modified the Page Pointer, PAGE *, the first argument
of pipe_buffer, a struct member of pipe_inode_info kernel
object, which manages Pipe operations in Linux kernel. Since
Linux Pipes are mounted in file-system "pipe:/" it was easy
to find SCAPHY’s pipe via ls. Then, the rootkit modified
SCAPHY’s Pipe’s PAGE * in kernel to a malicious Pipe buffer
address created with dcom_write | dcom_read, which allowed
attacker to control what the SCAPHY analysis sees, without
SCAPHY knowing. In our attack, we killed the LibVMI side
of SCAPHY after the pipe manipulation for the attack to work.

D. Comparing SCAPHY with Existing Techniques

We compared SCAPHY to existing ICS techniques that use
physical models [16] and traffic classifier [3]. [16] is based
on [17] and analyzes sensor data’s cumulative sum of residuals,
and raises alarm if the difference between sensor and expected
behavior is higher than a threshold. [3] analyzes spatial-
temporal properties of ICS signals such as packet arrival times
and size, using a REBTree classifier. [3] raises alarm when
traffic features are outside a running average. To do this com-
parison, we use sensor and traffic data from the experiments
in Table II, which we parsed into @.ARFF format (sample
shown in Section A), and make available via this work We
leveraged open-source tools to setup these techniques. For [16],
we leveraged Scikit-Learn to generate a linear regressive model
to fit the sensors values of the physical elements in the
normal running mode. For [3], we leveraged WEKA [90] to
generates a REPTree classifier that builds a decision tree using
information gain and variance in the extracted traffic fields.

To launch attacks, we follow the format in Table III,
which produced 40 attacks and 146 normal instances. Table V
shows the results. Existing tools did not detect any SCADA
attacks due to no SCADA context. However, this is where
SCAPHY detected most attacks (90%, and 95% overall). We
note that diverse ICS experiments (such as ours) may affect the
performance of tools designed for specific ICS domains. [16]
detected 19 attacks (47.5%), with a high FP of 37 (25%).
Its FP is due to flagging high sensor deviations that are part
of benign behaviors. One instance is the FL water attack
where a high P variable causes a high but temporary sensor
deviation. Although it deviates greatly from the setpoint, it is
benign in Level Control (LC), but anomalous in the Dosing
process if dosing valve is open. Unlike SCAPHY’s physical
model, existing linear models [16–19] do not capture inter-
process operations (e.g., between Dosing and LC), hence
are prone to false alarms due to high but temporary benign
deviations. SCAPHY’s physical model lower TP is due to
approximating analog states such as switching 0-10v with only
3 levels 0v,5v,10v, which saves space but is less precise. [3]
detected 11 attacks (27.5%), but with low FP (12.3%) because
most modern attack is similar to benign. SCAPHY’s signal-

12
31



SCAPHY Pipeline Where Manual Avg. Times
Requirement Used Step time repeated

Exporting FBD Element Several Clicks in under 1 1 per
to STL JSON Tracing SCADA GUI minutes scenario
Matching STL Element Seeding a Regex script under 10 1 per
to OPC tags Tracing with match parameter minutes scenario

Setting up SCADA Impact Configuring testbed under 1 1 per
Modelling ENV Derivation networking & devices hour scenario

TABLE VI: Quantifying amount of manual work to apply SCAPHY in practice

based detection had more FPs because it flagged many benign
missing signals, showing that missing signals are not effective,
which we can mitigate by raising its detection threshold.

E. Quantifying Manual Work to use SCAPHY in Practice

We quantify the amount of manual work that may be required
to apply SCAPHY’s pipeline in practice. For example, although
our SCADA platform provides interfaces to automatically ex-
port FBDs to STL, other platforms may require manual export
via the GUI. In addition, automatically matching and tracing
OPC tags in the STL require SCADA and OPC to use the same
namespace (e.g., "BRK" in OPC is also "BRK" in STL). This
was the case in our testbed and in integrated platforms such
as Siemen’s TIA. However, in plants using third-party tools
such that STL and OPC have different namespace (e.g., "BRK"
v. "BR"), an STL-to-OPC element matching can be achieved
semi-automatically by manually seeding a regular expression
script to perform the matching. Table VI summaries the time
to perform each step and repetitions needed.

VIII. DISCUSSIONS: SCAPHY’S PRACTICALITY

Runtime Overhead. SCAPHY leverages LibVMI state-of-
the-art VM analysis tool in Xen Baremetal hypervisor, which
enables detection of malicious APIs in SCADA VMs around
9 seconds, as shown in Section VII-A. LibVMI achieves near-
native speed access of guest VM memory pages when run on
Baremetal Hypervisors, and now used in production [91–96].
This makes SCAPHY a practical detection technique. In con-
trast, existing work based on sensor data [16, 17], must observe
several sensor deviations before making a sound decision,
which pushes their time-to-detect to the minute range [16, 17].

Real vs. Emulated State Switching. As switching real
processes can be dangerous, we used emulated processes.
However, the switched states were informed by deployed OPC
server in the plant. Real-world gaps exist if poor emulation is
used. To reduce this practicality gap, SCAPHY leveraged state-
of-the-art Simulink and PowerWorld ICS emulation.

ICS Attack Dev. Difficulty. Unlike IT, developing ICS
attacks is hard due to finding their SCADA and physical target.
As such, we spent months developing many modern attack
scenarios, and tested more attacks than existing work.

Robustness of PHYSICS Constraints. PHYSICS con-
straints are generated per ICS scenario and SCADA. This is
practical because plants rarely update physical domain logic,
since they are based on immutable laws of physics.

Limitations and Future Work. SCAPHY cannot detect
attacks that originate outside of SCADA such as side channels
and device hardware. We will investigate similar execution
phase-based analysis these ICS threat models. Further, al-
though SCAPHY can rely on Window’s KPP to detect rootkits
evasion, with time new rootkits may bypass KPP. We will

investigate SCADA-specific defenses for rootkit such as in-
tegrating Call Stack analysis. This shows promise given that
SCADA process-control have well-defined Call Stack behavior
(Fig 2) which can be robust (but expensive) than API calls.

IX. RELATED WORKS

What differentiates ICS from IT is that physical tasks follow
immutable laws of physics [16, 17], which can be learned
to build prediction models [97]. Existing work build sensor
behavior models [16–19] to predict when behaviors deviate
from expected. However, in practice, such models are not
always available [19, 20], and raise false alarms due to noise
and config changes [19]. Offensive ways such as Harvey [58]
can MITM sensors and present "false" data. [60–62] proposed
ways to address MITM. [63] uses non-PLC diode gateways to
avoid MITM. Reinforcement and Deep Learning [39–42] uses
game-theory to learn normal and attack behaviors, but requires
a high-interaction system, known attacks, and expert reward
function, which may limit its use in diverse ICS practice.

Statistical analysis of ICS traffic [3, 8–15] are effective for
noisy and abnormal traffic such as illegal protocols and scans.
However, modern attacks evade them using benign protocols
and knowledge of parameters to cause specific (not noisy)
attacks [1, 2, 5]. Flow-based approaches [8, 10, 11, 37] analyze
abnormal function codes/channels, such as shown in [98, 99],
but are evaded by attacks such as Industroyer, which uses
legitimate HMIs. Timing analysis [3, 9, 38] analyze anomalous
round trip time delays and inter-arrival times. However, they
are effective for signals that are chatty [9] such as attacker
scans, not modern attacks that are targeted. Lee [36] only
monitors for host DLL injection, which may not happen in ICS
attacks. In contrast, SCAPHY deems API calls as anomalous
when executed in the wrong SCADA execution phase. Side
channel defenses such as EMF and power [55, 56] may require
close proximity (motherboard-level) to controllers.

Pattern-based analysis [10, 76, 100] detects anomalous sig-
nals such as isolated signals but suffers from model’s high sen-
sitivity, which causes false alarms due to slight config changes
(e.g., addition of new devices) [10, 76]. State-based tools [76]
detects critical states in ICS but requires manual rules, which
do not scale. Further, because they analyze all state transitions,
can suffer from state explosion when parameters increase.
SCAPHY is stateless and only analyze current and impactful
element states. Process-aware tools [18, 19, 43–47] analyze
sensor data unique to specific process functions, which may
reduce ambiguity in detection, but requires experts to specify
safety threshold violations per ICS-domain. This results in a
tradeoff of being manual or domain specific. For example,
[43, 45] uses manual BRO rules (e.g., heat level must not
exceed 20). [44] uses expert-software to predict power flows.
[46] uses pre-defined power flow rules to analyze deviations in
measurements. In contrast, SCAPHY’s process-aware physical
model automatically detects physical anomalies by analyzing
the disruptive "impact" of control signals. Further, unlike the
above techniques, SCAPHY correlates physical "impact" with
behaviors in SCADA (i.e., anomalous API calls in atypical
execution phase) for contextual "end-to-end" attack detection.
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X. CONCLUSION

We present SCAPHY to detect ICS attacks by leveraging unique
execution phases of SCADA to identify the limited set of
benign behaviors to control the physical world in different
phases, which differentiates from attacker’s activities. To do
this, SCAPHY first leverages OPC to build a physical model,
which enables it to detect physical anomalies. SCAPHY then
uses this model to inform a physical process-aware dynamic
analysis, whereby SCADA is induced to reveal API calls
unique to process-control. Through this, SCAPHY detects at-
tack behaviors that violates process-control phase. SCAPHY
achieved high accuracy and outperformed existing work.
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APPENDIX

Fig. 9: Our Example Statement List (STL) TEXT FILE Exported from
WinSPS-S7 Function Block Diagram. Annotated to show the different parts

Fig. 10: Our Example ARFF Header showing fields (Element states) we used
for specific element in the Sorting Station Scenario

Fig. 11: Sample ARFF-formatted Element State reporting every 100 scan
cycles

(a) Example PDIG Model for the Level Control Process of the FL Attack Incident

Fig. 13: Complete water treatment plant based on [26, 27]: Showing the
chemical dosing operation in reference to the FL water poisoning attack
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(a) HMI for Elevator (Advanced) Scene

(b) HMI for Queue Processor Scene

(c) HMI for Converge Station Scene

(d) HMI for Sorting Station Scene

(e) HMI of Power Scenario

(f) HMI for Production Line Scene

(g) HMI for Automated Warehouse Scene

(h) HMI for Chemical Dosing Scene

(i) Example 2-wire or FBD for Sorting Station Scenario

(j) HMI for Assembler Scene

(k) HMI for Buffer Station Scene

(l) HMI for Palletizer Scene

(m) HMI for Separating Station Scene

(n) Example Element Parameter Tags for Sorting Station Sce-
nario
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