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Abstract—Federated Learning (FL), the de-facto distributed
machine learning paradigm that locally trains datasets at indi-
vidual devices, is vulnerable to backdoor model poisoning attacks.
By compromising or impersonating those devices, an attacker can
upload crafted malicious model updates to manipulate the global
model with backdoor behavior upon attacker-specified triggers.
However, existing backdoor attacks require more information
on the victim FL system beyond a practical black-box setting.
Furthermore, they are often specialized to optimize for a single
objective, which becomes ineffective as modern FL systems
tend to adopt in-depth defense that detects backdoor models
from different perspectives. Motivated by these concerns, in this
paper, we propose 3DFed, an adaptive, extensible, and multi-
layered framework to launch covert FL backdoor attacks in
a black-box setting. 3DFed sports three evasion modules that
camouflage backdoor models: backdoor training with constrained
loss, noise mask, and decoy model. By implanting indicators
into a backdoor model, 3DFed can obtain the attack feedback
in the previous epoch from the global model and dynamically
adjust the hyper-parameters of these backdoor evasion modules.
Through extensive experimental results, we show that when all
its components work together, 3DFed can evade the detection of
all state-of-the-art FL backdoor defenses, including Deepsight,
Foolsgold, FLAME, FL-Detector, and RFLBAT. New evasion
modules can also be incorporated in 3DFed in the future as
it is an extensible framework.

I. INTRODUCTION

Thanks to its privacy protection and resource efficiency,

Federated Learning (FL) has become the de-facto distributed

machine learning paradigm in AI research and industry [21],

[24], [26], [45], [48]. However, the vulnerability of partici-

pating devices, especially those end devices such as smart-

phones, IoT, and edge devices, opens the door for attackers

to compromise or impersonate them and attack FL systems.

As illustrated in Figure 1, such devices can upload poisoned

gradient updates to manipulate the resulting global model to

satisfy malicious intents, a.k.a., model poisoning attacks [4],

[6], [15]. Based on their intents, model poisoning attacks can

be classified into targeted and untargeted attacks [26]. Unlike

untargeted attacks, which aim to impede the convergence of

global models [3], [6], targeted attacks cause these models to

perform abnormally on attacker-specified tasks [4].
As a special targeted model poisoning attack, the backdoor

attack manipulates the global model to activate a backdoor

behavior when test examples contain attacker-specified trig-

gers [1], [2], [26]. Since the poisoned global model behaves
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Fig. 1: Model Poisoning Attacks in Federated Learning
normally for test examples without triggers, most defense

mechanisms focus on identifying backdoor attacks during the

FL training phase [17], [28], [51], [53]. Recently, there has

been a trend for FL systems to adopt multi-layered defense that

incorporates multiple backdoor detection mechanisms from

different perspectives [31], [33]. This has been very effective

because most backdoor attacks attempt to optimize a single

objective in the training phase, e.g., by adding a supplementary

term to the loss function or projecting gradients to satisfy a

single constraint [2], [4], [40], [52], [57]. As such, it is difficult

or even impossible to design a backdoor attack that satisfies

multiple objectives or constraints simultaneously to evade a

multi-layered defense.

Besides, existing backdoor attacks often require informa-
tion about the FL system beyond a black-box setting.

For example, the model replacement attack in [2] needs the

global learning rate, the total number of participants, and

even the clipping bound of the central aggregator to calculate

the scaling factor. Although the black-box versions of some

untargeted poisoning attacks exist, they often suffer from

significant degradation in terms of attack success rates [6],

[35].

Motivated by these challenges in FL backdoor attacks, in

this paper, we introduce 3DFed, an adaptive and extensible

framework to launch covert FL backdoor attacks in the black-
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box scenario. “3D” stands for both a multi-layered evasion

structure and the three key components in this framework,

namely indicator, adaptive tuning, and decoy models. To begin

with, 3DFed boasts an indicator mechanism, which helps the

attacker to obtain feedback from the global model on the attack

in the preceding epoch, so that various camouflage modules

of 3DFed can estimate those hyper-parameters in the FL sys-

tem and adaptively adjust their strategies accordingly. 3DFed

also sports three orthogonal evasion modules that camouflage

a backdoor model from different perspectives. Specifically,

backdoor training has been enhanced with a constraining term

to counteract the norm clipping defense; noise masks alleviate

the over-concentrated neuron updates and high pairwise cosine

similarities in backdoor models; decoy models, which are

uploaded together with backdoor models, can confuse the

dimension reduction defense. Furthermore, 3DFed is an exten-

sible framework as it can incorporate new backdoor evasion

modules in the future by extending its process flow.

To summarize, our contributions in this paper are as follows:

• To the best of our knowledge, 3DFed is the first back-

door attack framework that integrates multiple evasion

strategies to launch covert, adaptive, and extensible FL

backdoor attacks in a black-box setting.

• We propose the indicator mechanism, which empowers

the attacker to obtain essential feedback from his attack

in the preceding epoch. Based on indicators, all evasive

strategies can support adaptive tuning to work in black-

box FL systems.

• We propose noise masks that extenuate neuron updates’

concentration and sparsify backdoor models’ distribution.

• We introduce the notion of decoy model and demonstrate

that by uploading additional decoy models, the attacker

can easily fool the dimension reduction defense in FL

systems.

• We conduct extensive experiments and verify that

3DFed successfully evades the detection of state-of-the-

art FL backdoor defenses, including Deepsight [33],

Foolsgold [9], FLAME [31], FL-Detector [51], and

RFLBAT [41].

The rest of this paper is organized as follows. In Sec-

tion II and Section III, we review existing FL backdoor

attacks and defenses and formulate the problem. Then 3DFed

is overviewed in Section IV, followed by four sections to

describe its core components elaborately. Specifically, Sec-

tion V introduces indicators and presents mechanisms to

implant them in a model and obtain the attack feedback in

the preceding epoch. Section VI analyzes the constraining

term for backdoor training against norm clipping. Section VII

introduces noise masks for backdoor models after the backdoor

training. In Section VIII, we show how the attacker can

fool some detection methods by uploading decoy models.

In Section IX, we conduct extensive experiments on several

popular datasets to verify that 3DFed defeats state-of-the-art

FL backdoor defenses. Ablation study is also carried out to

demonstrate the robustness and effectiveness of various 3DFed

evasion modules. In Section X, we discuss several potential

adaptive defenses against 3DFed, followed by the conclusion

in Section XI.

II. RELATED WORK

A. FL Backdoor Attacks

It is well known that a close-to-convergence global model

has few significant gradient updates, so an attacker can scale

the backdoor update with a scaling factor γ to replace the

global model with an attacker-trained backdoor model in one

epoch, a.k.a. the Model Replacement Attack [2]. Exploiting

the distributed nature of FL, Distributed Backdoor Attack

(DBA) decomposes the global trigger pattern to multiple local

triggers and assigns each compromised device with a unique

local trigger [47]. Based on DBA, Gong et al. [11] propose

a coordinate backdoor attack with local triggers being model

dependent. Semantic backdoor is a variant of FL backdoor

attack, where the trigger in the semantic backdoor can be some

inherent features in the target images, such as the color of a

car [2]. Bagdasaryan et al. [2] point out that the success and

persistence of a semantic backdoor depend on whether the

trigger’s features frequently occur in other clients’ datasets.

As such, Wang et al. [40] propose an edge-case backdoor,

which is similar to the semantic backdoor but ensures that

the backdoor datasets are at the tail of the global datasets’

distribution, so that the attacker’s datasets are unlikely to

appear on other clients’ devices.

B. FL Backdoor Defenses

In the literature, there are various outlier detection tech-

niques against backdoor attacks. Deepsight performs deep

model inspection for each model by checking its Normal-

ized Update Energies (NEUPs) and Division Differences

(DDifs) [33]. Foolsgold examines the historical updates for

each client and punishes those with high pairwise cosine

similarities by a low learning rate [9]. FL-Detector predicts

the global model by model update consistency and detects

the outlier based on the distance to the predicted model [51].

RFLBAT applies Principal Component Analysis (PCA) to

reduce the dimension of gradient updates so that malicious

models are separated from benign models in the low dimen-

sional projection space [41]. There is another line of research

on robust defense to mitigate FL backdoor attacks by applying

weak Differential Privacy (DP) [56] to the global model [55].

Through norm clipping and adding Gaussian noise to each

gradient update, weak DP is shown to mitigate FL backdoor

attacks effectively [46]. As Gaussian noise may deteriorate the

global model’s main task accuracy and norm clipping requires

a clipping bound, FLAME adapts the weak DP method by

noise boundary proof and a dynamic clipping bound, which is

shown to alleviate the backdoor attack while still retaining a

high main task accuracy [31].

III. PROBLEM FORMULATION

This paper adopts a classic FL paradigm, where a central

server broadcasts the global model and receives gradient
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Notation Meaning

Parameters defined by the central aggregator

η, lr Global and local learning rate

n,L,D # of participants, loss function, and local dataset for SGD

Gt,Wi,t Global model and client i’s local model at epoch t

Parameters used by the attacker

m, kt # of backdoor models and decoy models at epoch t
ωadv, ωb Attacker’s trained backdoor and benign reference model

Δ̂ = {Δ1,Δ2, ...,Δm}, λ A set of noise masks and Lagrange multiplier

X,X
′
, S, S

′
Noise-masked backdoor models and decoy models without and with indicators

β, α̂ = {αt,i} Hyper-parameters for backdoor training and noise masks

It, A An index set and acceptance status

θω,Ii The parameter of model ω at index Ii

TABLE I: Table of Notations

updates trained by n clients using their local datasets. The

notations in this paper are summarized in Table I.

Federated Learning. Each user i who holds a batch of

private training data Di iteratively optimizes the global model

Gt according to the protocol (e.g., FedAvg) specified by the

central server. For example, when Stochastic Gradient Descent

(SGD) is the optimization method, each participant i at t-th
epoch first generates a local model Wi,t as follows:

Wi,t = Gt − lr · ∇Ltask(Gt,Di) (1)

∇Ltask(Gt,Di) denotes the gradient of cross-entropy loss

for the learning task of model Gt and dataset Di. lr is the

local learning rate. After each user uploads Wi,t, the central

aggregator will aggregate them by an aggregation rule (e.g.,

FedAvg) and obtain the global model Gt+1 for the next epoch

t+1. Without loss of generality, we adopt FedAvg with global

learning rate η in this paper:

Gt+1 = Gt +
η

n

n∑

i=1

(Wi,t −Gt) (2)

Backdoor Attack. An attacker with backdoor datasets can

participate in FL by either compromising existing devices

or stealing the credentials of benign users. Through vio-

lating the FL protocol, the attacker can train a backdoor

model ωadv,t with both backdoor and benign datasets D =
{Dnormal,Dbackdoor}:

Wadv,t = Gt − lr · ∇((1− β) ·Ltask(Gt,D)

+β ·Lconstrain)
(3)

ωadv,t = Gt + γ · (Wadv,t −Gt), (4)

where Lconstrain refers to the constraining term that limits the

loss optimization, β is the weight parameter of Lconstrain, and

γ is a scaling factor of backdoor update Wadv,t −Gt.

Backdoor Defense. An advanced central server aware of

the potential backdoor attack will deploy a certain defense

algorithm, noted as Aggr(), in its central aggregator to detect

backdoor models in every epoch. After receiving all the local

models Ŵt = {ωadv,t,W1,t,W2,t, ...,Wn−1,t}, the central

aggregator will obtain the aggregated global model Gt+1

through replacing the Equation 2 by Gt+1 = Aggr(Ŵt), so

that the backdoor models in Ŵt will be detected and removed.

Problem Definition. In this paper, we aim to design covert

backdoor attacks that can adaptively adjust their strategies

without having white-box knowledge of the server’s defense

strategy. In every epoch, the attacker trains a set of malicious

models Ŵadv,t = {X1, ..., Xm, S1, ..., Sk} as the solution for

the following optimization problem:

min
Ŵadv,t

Lbackdoor(Aggr(Ŵadv,t, Ŵb,t),D
′
), (5)

where Aggr(Ŵadv,t, Ŵb,t) denotes the aggregated global

model using Ŵadv,t and other benign updates Ŵb,t

by unknown server-side defense mechanism Aggr().
Lbackdoor(Wi,t,D

′
) is the cross-entropy loss of model Wi,t

and the test datasets D
′
, which measures the misclassification

degree to the target label. In this paper, we assume the

attacker does not have additional power, i.e., does not know

anything other than his local datasets. In other words, Aggr()
and Ŵb,t are agnostic to the attacker.

IV. 3DFED OVERVIEW

Figure 2 illustrates 3DFed framework for covert backdoor

attacks against three example defenses, namely, norm clipping,

deep model inspection, and dimension reduction. To evade

these defenses, it consists of one adaptive mechanism (indi-

cator) and three camouflage modules (backdoor training with

constraints, noise masks, and decoy model). The details of

3DFed are shown in Algorithm 1. Taking the global model Gt,

attacker’s datasets D, and the preceding-epoch attack settings

αt−1, kt−1, It−1 as input, 3DFed first reads the indicator of the

global model and determines the attack strategy in this epoch

through adaptive tuning (Lines 1 and 2). After that, the attacker

performs three camouflage modules in sequence (Lines 3-

5). Finally, all the generated backdoor and decoy models are

implanted with indicators so the attacker can receive feedback

again in the next epoch of poisoning (Line 6).

The details of adaptive mechanism and camouflage modules

will be elaborated in the following four sections. Specifically,
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Begin with the
clean model
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Fig. 2: Overview of 3DFed Framework against Three Example Backdoor Defenses

the implantation and feedback of indicator will be discussed

in Section V. Section VI studies the selection of constrain-

ing term for backdoor training. In Section VII, we design

noise masks to alleviate the over-concentrated neuron updates

and high pairwise cosine similarities in backdoor models. In

Section VIII, we propose decoy models to evade backdoor

detection by dimension reduction.

Algorithm 1 3DFed

Input: Global model Gt, Local dataset D, Previous attack

settings αt−1,kt−1,It−1

Output: Backdoor models X
′
= {X1, X2, ..., Xm}, decoy

models S
′
= {S1, S2, ..., Sk}

1: A ← ReadIndicator(Gt, It−1)
2: αt, kt ← AdaptiveTuning(αt−1, kt−1, A)
3: ωadv ← BackdoorTraining(Gt,D)
4: X ← NoiseMaskDesign(ωadv, A, αt)
5: S ← DecoyModelDesign(D, X,A, St−1, kt−1)
6: X

′
, S

′
, It ← IndicatorDesign(X,S,D)

7: return X
′
, S

′

V. INDICATOR

The main limitation of existing backdoor and other model

poisoning attacks in FL is that they either assume a white-

box defense mechanism that they can clearly evade [1], [2]

or accept a compromise for the black-box scenario with an

attack performance drop [6], [35]. To eliminate this limitation

and be more practical, in 3DFed we propose the indicator

mechanism that can track the acceptance status of a malicious

model by the central aggregator. The key idea of the indicator

is that some neurons in the global model do not change

much especially when the global model is already close to

convergence [57]. We call them redundant neurons, as they are

insensitive to most benign and malicious gradient updates. By

changing the parameters of redundant neurons in a backdoor

model to unique values, the attacker can infer whether this

model has been successfully accepted by checking the global

model’s changes on those neurons. Besides, these neurons

should be invariant to the classification tasks, so variations

in their parameters have little impact on model’s performance.

Indicator is essential in 3DFed, which provides the critical

information about whether the last-epoch’s attack is successful

and boasts adaptive tuning of hyper-parameters in the later

attack algorithms. The details of adaptive turning for each

camouflage modules are discussed in their respective sections.

A. Finding Indicators

There are two necessary conditions for a redundant neuron:

C1. The gradient update in this neuron is much smaller in

magnitude than those in other neurons.

C2. A small change in the parameters of this neuron does not

significantly increase the tasks’ loss.

Algorithm 2 illustrates the procedures of finding such neu-

rons as indicators. Taking backdoor and decoy models {X,S},

attacker’s local datasets D, and the global model Gt as input,

it first searches parameters with the smallest absolute value in

the gradient update for global model Gt. However, since we do

not assume the attacker has any information about the datasets

from benign participants, the true gradient update of the global

model in this epoch is invisible to the attacker. As such,

the attacker uses his local datasets to obtain an approximate

gradient ω̂G for Gt by cross-entropy loss function Ltask with

the input of D = {Dnormal,Dbackdoor} (Line 1). Afterwards,

the attacker finds a set of parameters θω̂G,Îi
whose absolute

gradient updates in ω̂G are the smallest and stores their indexes

Îi in a candidate set Î for further refinement (Line 2). In this

paper, we use index to denote a parameter’s position in the

model and θω,I to denote the parameter in model ω at index

I .

Algorithm 2 Finding Redundant Neurons as Indicators

Input: Backdoor models X , Decoy models S, Local dataset

D, Global model Gt

Output: Indicator-implanted backdoor and decoy models

X
′
, S

′
, Index set of indicator It

1: ω̂G ← |∂Ltask(D)
∂Gt

|
2: Î = {Î1, Î2, ..., Îj} ← argminÎi θω̂G,Îi

3: HG ← |∂2Ltask(D)
∂G2

t
|

4: It = {I1, I2, ..., Im+k} ← argminIi∈Î θHG,Ii

5: for each model ωi ∈ X ∪ S do
6: θ

′
ωi−Gt,Ii

← κ · θωi−Gt,Ii

7: return X
′
, S

′
, It
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The refinement is to guarantee condition C2 that the param-

eters in these neurons are not critical for the tasks. To this end,

the algorithm adopts curvature, the second derivative of cross-

entropy loss Ltask. The main idea is that a parameter with a

curvature close to zero is more durable for minor changes

without deteriorating the loss, because the curvature measures

how relevant each neuron parameter is to the performance of

Gt [18], [49]. Besides, as Zhou et al. [57] point out, the loss

function’s Hessian implies the changing direction of gradient

updates. Thus, in Line 3, the algorithm again utilizes the

local datasets D to compute the second derivative of the loss

function, noted as HG, by Gt and D. Then it selects an index

set I of parameters θHG,Ii with the minimum curvature in HG

from candidate set Î (Line 4).

To implant the indicators into backdoor and decoy models,

the attacker assigns each model ωi ∈ X ∪S with an indicator

index Ii. In Line 6, θωi−Gt,Ii denotes the parameter of ωi’s

gradient update at index Ii. The attacker then multiplies

θωi−Gt,Ii with κ, where κ is a scaling factor for the parameter

update, and the resulting θ
′
ωi−Gt,Ii

is recorded to read the

indicator feedback from the returned global model. Finally, the

algorithm will output those models implanted with indicators

X
′
, S

′
and the index set of indicators It for this epoch.

B. Read Indicator Feedback

Algorithm 3 Read Indicator

Input: Current and previous global model Gt, Gt−1, Previous

index set of indicators It−1, Previous backdoor and decoy

models X
′
t−1, S

′
t−1

Output: Acceptance status A
1: for Ii ∈ It−1&ωi ∈ X

′
t−1 ∪ S

′
t−1 do

2: feedbacki ← θGt−Gt−1,Ii

θωi−Gt−1,Ii

3: if |feedbacki| > 1 then
4: early stop and return

5: if feedbacki ≤ 1
κ then Ai ← Rejected

6: else if feedbacki < max(feedback)
2 then

7: Ai ← Clipped
8: else Ai ← Accepted

9: return A

Algorithm 3 describes the procedures to retrieve an in-

dicator’s feedback on whether a malicious model ωi was

accepted in the previous (t − 1)-th epoch through the global

model update Gt − Gt−1, the index set of preceding-epoch

indicator It−1, and the recorded indicator value θωi−Gt−1,It−1 .

Specifically, let feedbacki denote the parameter change of

global model at index Ii over that of the attacker’s model

at the same index (Line 2). The algorithm then determines

the acceptance status Ai (i.e., “Accepted”, “Clipped”1, or

“Rejected”) based on feedbacki for each model. If the corre-

sponding feedbacki is less than 1
κ , the attacker will label the

1In this paper, we reserve “Clipped” for future use and now 3DFed
treats it the same as “Rejected” in the following Adaptive Tuning parts of
Section VII-B and VIII-A.

model ωi with an acceptance status of “Rejected” (Line 5).

Theorem 1 and the proof demonstrate its correctness. For

those feedbacki >
1
κ , the model ωi will be labeled with an

acceptance status of “Clipped’ if its feedbacki is significantly

less than the maximum feedback (e.g., less than half of the

maximum feedback), or “Accepted” otherwise (Lines 6-8).

Theorem 1: The attacker’s model ωadv,t−1 is “Rejected” if

its corresponding feedback ≤ 1
κ .

Proof of Theorem 1: The actual change of a global model

parameter corresponding to an indicator during epoch t − 1,

noted as θGt−Gt−1,I , is mainly caused by the weighted average

of the indicator value of the attacker’s model ωadv,t−1 and the

values of other models {W1,t−1, ...,Wn−1,t−1}.

θGt−Gt−1,I =
η

n
(κ · θωadv,t−1−Gt−1,I +

n−1∑

1

θWi,t−1−Gt−1,I)

(6)

If the attacker-submitted model ωadv,t−1 has been discarded

by the central aggregator, then the contribution of this param-

eter change will only come from the other n − 1 models.

Therefore, feedback, which is the ratio of the change on

global model to the change made by the attacker, becomes:

feedback =
θGt−Gt−1,I

θ
′
ωadv,t−1−Gt−1,I

=
η
n

∑n−1
1 θWi,t−1−Gt−1,I

κ · θωadv,t−1−Gt−1,I

=
η ·ΔθWt−1,I

κ · θωadv,t−1−Gt−1,I

(7)

The ΔθWt−1,I represents the average update on this parameter

by other n − 1 clients. We assume that usually the global

learning rate η ≤ 1 and parameter changes on redundant

neurons between ωadv,t−1 and {W1,t−1, ...,Wn−1,t−1} are

close, i.e., ΔθWt−1,I ≈ θωadv,t−1−Gt−1,I , then,

η ·ΔθWt−1,I

κ · θωadv,t−1−Gt−1,I
≈ η

κ
≤ 1

κ
(8)

Figure 3 illustrates the linear relationship between the aver-

age feedback of 20 backdoor models in the same epoch and

the global learning rate η for CIFAR10 dataset and ResNet18

model. The solid line shows that feedback can reflect the

backdoor model’s amplitude of being clipped by the central

aggregator. Furthermore, the dash line denotes the condition

for feedback = 1
κ and its intersection with the solid line is

close to the origin, illustrating that 1
κ is a reliable criterion to

decide whether the model is accepted or not.

It is worth noting that the indicator is inapplicable against

defense algorithms that apply weak DP methods, such as

FLAME. By adding Gaussian noise to the global model,

weak DP methods make each parameter in the model perturb

randomly [29], [31], [36], [46]. This dramatically reduces

the accuracy of the indicator’s feedback because redundant

neurons are no longer modified by the attacker only. In Line 3

of Algorithm 3, if any feedbacki is greater than 1, the

algorithm will stop reading the indicator, disable the adaptive
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Fig. 3: Feedback to different η for CIFAR10 and ResNet18

tuning, and resume the attack with fixed hyper-parameters.

This is because as FedAvg dilutes the contribution of each

model with η
n , and η

n < 1. As such, when any feedbacki > 1,

there must be an external force other than the backdoor models

modifying the redundant neurons.
However, in the defender’s perspective, using DP to mitigate

indicator is challenging because DP noise will degrade the

main task accuracy [16], [31], [34], [36], [42]. As such, if

future defenses aim to exploit DP noise on redundant neurons

to mitigate the effect of indicators, there are just too many

neurons requiring perturbations: over 9 million redundant neu-

ron parameters whose update values < 10−9 for a ResNet18

model trained on CIFAR10 for 200 epochs (Table II).

Magnitude 0
[
10−12, 10−9

) [
10−9, 10−5

) [
10−5, 10−3

]

Count 2.18M 6.94M 1.96M 81.2K

TABLE II: Distribution of parameter updates from a
ResNet18 model trained on CIFAR10 for 200 epochs.

Besides, one may doubt that ω̂G and HG might be unreliable

for approximation when other clients’ local datasets are highly

non-Independent and Identically Distributed (non-IID). As the

higher the non-IID degree, the more diverse other models

are [22], the selected redundant neurons might be esstential for

other benign models. In fact, the chance of indicators being

significantly modified by other models is negligible because

the indicator’s selection range is wide. Furthermore, even if

some indicators are affected, since adaptive tuning makes

accept/reject decisions on a group level (e.g., Algorithm 4

Line 3), individual failure can be tolerated.

VI. BACKDOOR TRAINING AGAINST NORM CLIPPING

Although various FL backdoor attacks have been proposed,

such attacks require scaled gradients (as in Equation 4) to

counteract the benign gradients from other users [2], [4], [47]

and are fragile when the central aggregator performs norm

clipping [31], [33], [36]. In Section IX, we experimentally

demonstrate that an aggregator who applies norm clipping

with a dynamic clipping bound for every gradient update can

significantly mitigate state-of-the-art backdoor attacks that rely

on gradient scaling, whether or not the attacks are single-shot

or multi-shot.
To illustrate the rationale behind norm clipping against

backdoor attacks, we visualize the effect of scaled backdoor

gradients on a neural network model in a complex parameter

space (Figures 4-6). Figures 4 and 5 illustrate the change

of the global model’s parameters by the backdoor attack at

epoch t without and with norm clipping. In Figure 4, through

gradient scaling, the attacker successfully guides the global

model from the original optimum to another local optimum.

Such attack can sustain benign users’ gradient updates in

subsequent epochs, which can only help the model to converge

at the current sub-optimum. As such, after the attack the model

achieves sub-optimum for the main task and the optimum for

the backdoor task.

Malicious
update at t

Benign update
at t+1

Backdoor
objective

True
objective

Fig. 4: Backdoor Attack Without Norm Clipping

However, if the aggregator performs norm clipping for each

gradient update as in Figure 5, the parameters of the global

model will no longer be replaced by the scaled gradient within

one epoch. Instead, the attacker can only make the global

model halfway between these two optimums. As long as it

is still closer to the original optimum than the new local

optimum, gradient updates of subsequent epochs will pull the

global model back to the original optimum, which significantly

offsets the impact of the backdoor attack in the previous epoch.

Malicious
update at t

Benign update
at t+1

Backdoor
objective

True
objective

Fig. 5: Backdoor Attack With Norm Clipping

Therefore, we propose to add a constraining term to the

loss function when training a backdoor model (Equation 9).

Proportional to the Euclidean distance between the backdoor

ωadv and the global model Gt, this term encourages the

optimizer to find a backdoor objective not faraway from Gt

in the l2-norm as in Figure 6 and thus easier to achieve for

the attacker.

L = (1− β) ·Ltask + β · ||ωadv −Gt||2, (9)

where β is the weight of this constraining term.
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Fig. 6: Our Attack against Norm Clipping
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Fig. 7: Comparison between EU Constraint and CS Con-
straint

According to [2], the cosine similarity (CS) between the

backdoor model and Gt can also serve as the constraining

term. However, we argue that the constraining term of Eu-

clidean distance (EU) can achieve a more covert backdoor

model, which is supported by the comparison in Figure 7. We

can observe that under various β, EU constraint (EUnorm)

generates updates with lower l2-norm than CS constraint

(CSnorm), and EU constraint (EUcos) also generates updates

with less cosine similarity than CS constraint (CScos).

As a final note, in the literature, Projected Gradient Descent

(PGD) [36] constrains the l2-norm in a similar manner.

However, we argue that it cannot be applied in practical

backdoor training against norm clipping because PGD requires

the exact projection radius, and thus both the clipping bound

and η
n must be known [40]. Even with the help of our

proposed indicator mechanism, obtaining the clipping bound

has two challenges. First, it might be dynamic. For instance,

in FLAME the clipping bound is the median of the l2-norm

among all gradient updates in this epoch [31]. As such, an

estimated clipping bound in the previous epoch does not

help to predict the projection radius in the current epoch.

Second, if the aggregator enforces a very strict clipping bound,

PGD might fail to train a backdoor model in such extreme

conditions.

VII. NOISE MASKS

The intuition of noise mask is to add each backdoor model’s

parameters some noise so that these models no longer exhibit

those features that can be detected by the central aggregator.

Furthermore, the sum of these noise is zero, so if the ag-

gregator accepts all these noise-masked models to the global

model, these noise will cancel each other and these models can

restore the original poisoning effect. Noise mask has a unique

advantage that it is compatible with other evasion methods

because it does not modify the training process of the backdoor

model.

In this paper, we aim to hide two high-profile features

in backdoor models that are commonly detected — over-

concentrated neuron updates and high pairwise cosine simi-

larities. For over-concentrated neuron updates, since there is

a large proportion of backdoor data mislabeled as the target

class in the attacker’s training dataset, the backdoor gradient

update tends to over-concentrate on a few neurons related to

the target class [33]. We adopt the degree of each neuron’s

update, denoted by Update Energies (UPs) as in Deepsight

[33]. Noise masks can increase the UPs, making a backdoor

model appear to be trained on a diverse dataset. Besides, high

pairwise cosine similarities in backdoor models are mainly

because gradient updates submitted by the attacker all have the

same malicious objective [9], [41], while gradient updates of

benign users with non-IID data do not have a unique objective.

Foolsgold takes advantage of this by imposing a learning rate

penalty on a batch of gradient updates whose pairwise cosine

similarity is the highest among all updates in epoch t [9].

Adding noise masks will significantly decrease the pairwise

cosine similarities of backdoor models, making the gradient

distribution of backdoor models similar to those of benign

models.

A. Noise Mask Optimization

We treat noise mask as a conditional multi-variate opti-

mization problem, and adopt SGD to optimize it. First, to

increase the UPs of neurons, we set the first term of the loss

function, denoted by LUPs(Xi), to the sum of the reciprocal of

neurons’ UPs, where Xi is the noise-masked backdoor model

by adding noise mask Δi to the original backdoor model ωadv

(Equation 10). The reason for reciprocal is that the optimizer

will slow down some neurons’ updates when they already have

high UPs.

In each layer, the attacker randomly selects some neurons

with low UPs to add noise, while retaining the other neurons.

The main reason is to guard against future adaptive defense

by the aggregator who might identify noise-masked models as

malicious models. The indexes for those randomly sampled

neurons will be recorded as Inm. Then the attacker obtains

the UPs of those neurons by a function UPs(θXi,Ij ), which

is the sum of absolute weight and bias in the neuron θXi,Ij in

model Xi at Ij (Ij ∈ Inm). After that, the attacker builds the

first term of the loss function as follows.

LUPs(Xi) =
1

UPs(θXi,I1)
+

1

UPs(θXi,I2)
...+

1

UPs(θXi,Ij )
(10)

Furthermore, to prevent a very large l2-norm on noise

masks, we add Lnorm(Δi) = ||Δi||2 as the second term in

the loss function. Besides, since the sum of all noise masks

should have a zero l2-norm, we adopt Lagrange Relaxation

[7] to relax the constraint to the unconstrained optimization
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algorithm and add Lconstrain = ||∑m
1 Δi||2 as the third term

of the loss function, which is the l2-norm of the sum for all

noise masks. To sum up, the complete loss function for noise

mask optimization is:

L = α ·LUPs + (1− α) ·Lnorm + λ ·Lconstrain, (11)

where α and λ are two hyperparameters to control the impact

of the first and third terms. Section VII-B will introduce

an adaptive tuning mechanism to dynamically adjust α. In

Lagrange Relaxation, λ can be gradually increased by Dual

Ascent based on ||∑n
1 Δi||2, whose increment step is con-

trolled by ε in each Dual Ascent:

λ
′
= ε ·Lconstrain + λ (12)

Lines 11-18 in Algorithm 4 show the steps to solve the

noise mask optimization problem. In the optimization, each

noise mask obtains an individual optimizer, and all optimizers

share the same loss function for gradient update. After the

optimization, each noise mask will be added to the backdoor

model and the algorithm will output the noise-masked back-

door model set X .

Algorithm 4 Noise Mask Optimization

Input: Original backdoor model ωadv , Acceptance status A,

Previous-epoch parameters αt−1

Output: Noise-masked backdoor models X
1: get acceptance feedback from A
2: for each group Nadv,i ∈ N̂adv do
3: if Nadv,i is accepted at t− 1 then
4: append αi,t−1 to α̂

5: sort α̂ with ascending order

6: for each group Nadv,i ∈ N̂adv do
7: if length of α̂ > 1 then
8: sample αi,t from [α̂[0],α̂[1]]

9: else if length of α̂ > 0 then
10: sample αi,t from [α̂[0],α̂[0]+0.1]

11: initialize noise masks Δ̂ = {Δ1,Δ2, ...,Δm} and λ
12: for each group Nadv,i ∈ N̂adv in each local epoch do
13: LUPs ← LUPs(Δ1 + ωadv) + LUPs(Δ2 + ωadv) +

...+LUPs(Δm + ωadv)
14: Lnorm ← ||Δ1||2 + ||Δ2||2 + ...+ ||Δm||2
15: Lconstrain ← ||∑m

1 Δi||2
16: L = αi,t ·LUPs + (1−αi,t) ·Lnorm + λ ·Lconstrain

17: update all the noise masks Δi by SGD for L

18: λ
′ ← ε ·Lconstrain + λ

19: for Δi ∈ Δ̂ do
20: Xi ← Δi + ωadv

21: return X = {X1, X2, ..., Xm}

B. Adaptive Tuning For Noise Masks

Lines 2-10 in Algorithm 4 shows the adaptive tuning mech-

anism to determine α. The idea is for the attacker to divide

those malicious participants he controls into different groups

N̂adv , and each group Nadv,i carries out backdoor attacks

with a different α. In the next epoch, the attacker can know

the acceptance of each group’s models through indicators and

then decide which range of α can be accepted by the central

aggregator.

At the beginning, αi of each group is randomly sampled

from the interval [0, 1]. Then in each epoch t, the attacker adds

those accepted groups’ αi,t−1 in the previous epoch t−1 into

a candidate set α̂. Then αi,t of each group in this epoch is

sampled from the interval having the lower bound and upper

bound as the first and second minimum in α̂ (Line 8). Since

there are potential conflicts between different modules (e.g., a

strong noise might increase the l2-norm of backdoor updates,

thus conflicting with the constraining loss of Euclidean dis-

tance), our adaptive tuning minimizes possible conflicts among

them by always selecting the minimum applicable αi,t−1 as

the lower bound. If only one group is accepted in t−1, we set

the accepted αi,t−1 as the lower bound and the upper bound

of the interval to be slightly (e.g., 0.1) larger than its lower

bound (Line 10). Otherwise, if all groups’ models are rejected

in epoch t − 1, the attacker will increase each αt,i so that α
can get closer to the acceptable range.

VIII. DECOY MODELS

There is a new direction in FL defense to adopt dimen-

sionality reduction techniques, such as Principal Component

Analysis (PCA), and project gradient updates in every epoch

to a low-dimensional space to separate malicious models from

benign ones [14], [23], [38], [41]. However, we argue that

such defense does not guarantee the projected low-dimensional

space to be the determinant dimension to distinguish attack-

ers [35]. Instead, it only guarantees that specific data properties

(e.g., variance) in those principal components are maximized.

Furthermore, the attacker can fool the dimension reduction
algorithm to select garbage dimensions where backdoor mod-
els are not separated from benign ones. A toy example in

Figure 8 illustrates how the result of PCA can be easily

manipulated to garbage dimensions. First, we project a set of

two-dimensional data points to one-dimensional space through

PCA (Figure 8 (a)), where malicious points are located to

the right of the benign points. As such, PCA will select the

horizontal axis as the principal component as it maximizes

the data variance (Figure 8 (b)). So the horizontal axis is the

determinant dimension. Now suppose the attacker generates

another decoy point at the top of the benign points with a much

larger distance (Figure 8 (c)). As a result, PCA will select the

vertical axis as the principal component since the data variance

on the vertical axis becomes more significant than that on the

horizontal axis. As such, this vertical axis becomes a garbage

dimension because the true malicious points are still hidden in

the benign points after projection to this dimension (Figure 8

(d)).

Generalizing the above example to FL, in this section we

investigate how the attacker can upload additional decoy mod-

els to the central aggregator, each of which manipulates one

principal component towards a garbage dimension. A unique

challenge is the number of decoy models to upload. If the
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(a) (b) (c) (d)

Fig. 8: A toy example of manipulating PCA. (a): drawing of two-dimensional malicious and benign data; (b): PCA results

of (a), with (a)’s horizontal axis as the principal component; (c): drawing of two-dimensional malicious, benign and decoy

data; (d): PCA results of (c), with (c)’s vertical axis as the principal component.

central aggregator applies PCA with n principal components,

the attacker must upload no fewer than n decoy models to

successfully fool the PCA. Otherwise, if the attacker only

uploads k (k < n) models, although the first k dimensions in

the PCA result will be garbage dimensions, the remaining n−k
dimensions may still be determinant dimensions. As such, in

the next subsection we exploit the indicator to speculate on n
and adaptively determine the number of decoy models k.

A. Adaptive Tuning For Decoy Models

Let kt denote the number of decoy models for the t-th
epoch. Lines 2-8 in Algorithm 5 show the adaptive tuning

of kt. Specifically, if kt−1 decoy models are insufficient at

(t−1)-th epoch, all the decoy and backdoor models would be

discarded, so all acceptance status A from reading indicators

in Section V-B are “Rejected” (Lines 2 and 4). Therefore,

in this t-th epoch, the attacker will adaptively increase kt by

1 (Line 5). On the other hand, if kt−1 > n or there is no

dimension reduction at the central aggregator, some excessive

decoy models are accepted into the global model in (t− 1)-th
epoch. Our adaptive tuning will reduce kt by the number of

decoy models accepted in the previous epoch (Line 7). For the

same reason behind Alrogithm 4 Line 8, adaptive tuning will

alleviate decoy model’s potential conflicts with other parts by

choosing the smallest kt and will skip optimizing this module

if kt = 0.

Furthermore, we also devise an “exit plan” for this decoy

model module. In case these decoy models would be detected

by the aggregator in the future, the attacker will fail to fool

the dimension reduction. Therefore, in Line 4 we set a timeout

to prevent from endless increment of kt. It is based on the

Cumulative Variance Contribution Rate (CVCR), which is the

proportion of data variance on the principal components to the

variance in the original data in PCA [54]. If the CVCR on the

first n principal components is already huge (e.g., > 0.99 as

in Line 4), it will be unnecessary for the central aggregator to

use the (n+1)-th principal component. Therefore, the attacker

can disable the decoy model module for the above situation.

CVCR can be approximated by the attacker (Line 3) using the

existing kt−1 decoy models St−1, the backdoor models X ,

and a benign reference model ωb trained at the initial stage

(Line 1).

Algorithm 5 Decoy Model Design

Input: Local dataset D, Backdoor models X , Acceptance

status A, Previous decoy models St−1, Previous number

of decoy models kt−1

Output: Decoy models S
1: train a benign reference model ωb by local benign datasets

Dnormal

2: count the number of accepted backdoor models and decoy

models as Abackdoor and Adecoy

3: CV CR
′ ← approximate CVCR by X,ωb, St−1

4: if Abackdoor, Adecoy = 0 & CV CR < 0.99 then
5: kt ← kt−1 + 1
6: else if Adecoy > 0 then
7: kt ← kt−1 −Adecoy

8: else kt ← kt−1

9: Idec = {I1, I2, ..., Ik} ← argminIi(θ|ωb−X|,Ii)
10: for each Si ∈ S do
11: L1 ← −θ|Si−ωb|,Ii
12: L2 ← ReLU(Ltask(Si,D)− Ltask(ωb,D))
13: L ← L1 + L2

14: perform SGD on Si by L

15: return S = {S1, S2, ..., Sk}

B. Optimizing Decoy Models

To prevent accepted decoy models from excessively de-

teriorating the global model’s performance, in 3DFed we

further apply training to optimize decoy models. Lines 9-

14 of Algorithm 5 show the procedures for decoy model

optimization. The attacker first searches an index set Idec of

parameters θ|ωb−X|,Ii where the difference between benign

reference model ωb and the average backdoor model X is

minimum (Line 9). Each decoy model, denoted as Si, is

then assigned with one index Ii, and the first loss L1 is the

negative of parameter difference θ|Si−ωb|,Ii between Si and

ωb at index Ii (Line 11). It will invoke dimension reduction

in the central aggregator to select the Ii-th parameter as one

of its principal components, which is a garbage dimension.

After that, the second loss term L2 is constructed to con-

strain the accuracy of Si. In Line 12, the attacker calculates

Ltask(Si,D)− Ltask(ωb,D), the difference of cross-entropy

loss between Si and ωb using D, and then encloses it in
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an ReLU function. This will make the constraint of L2 less

important when the main task performance of Si is better than

ωb. Finally, the attacker perform SGD training on these decoy

models in Line 14.

IX. EVALUATIONS

A. Experimental Setup

Our code is open-source2. We set up a standard FL task

to train a neural network model for image classification with

three popular datasets, CIFAR10, MNIST, and Tiny-Imagenet

[20], [27]. Following [19], in Tiny-Imagenet, we reshape

the training images from 64x64 to 224x224, and the central

aggregator starts with a pre-trained model with image size of

64x64. We adopt the same FL settings in [2] for CIFAR10

and those in [47] for MNIST and Tiny-Imagenet. Table III

summarizes these system settings. For CIFAR10 and Tiny-

Imagenet, Resnet18 [12] is used as the model, and a simple

2-conv-2-fully-connected model is used for MNIST dataset.

To simulate the non-IID dataset, we sample each participant’s

local dataset with Dirichlet distribution [30].

There are 100 FL participants for CIFAR10 and Tiny-

Imagenet, and 20 for MNIST. They all participate in all epochs

in terms of local training and gradient updates. After receiving

gradient updates, the central aggregator applies FedAvg with

or without backdoor defense to aggregate those updates. We

implement five state-of-the-art FL backdoor defense algo-

rithms introduced in Section II-B, namely, Deepsight [33],

Foolsgold [9], FLAME [31], FL-Detector [51], and RFLBAT

[41].3

B. Adversary’s Setting

We assume that the attacker compromises 20% of the

devices and performs the pixel-pattern backdoor attack for 20

epochs. We assume the attacker will construct the backdoor

dataset by adding a pixel pattern to the corner of normal

pictures and mislabeling them as the 8th target class. The

attacker holds 20 compromised devices4 for CIFAR10 and

Tiny-Imagenet, and four for MNIST.

We consider the Model Replacement Attack [2] as our

baseline with the same attack setting as 3DFed. In 3DFed, the

SGD setting for training the backdoor models, noise masks and

decoy models are same as the baseline. For κ in the indicator,

we set it as a constant 105 for all the experiments.

The experiment is in the black-box: the attacker cannot

know any external information beyond his compromised de-

vices and is agnostic to the central aggregator’s aggregation

2https://github.com/haoyangliASTAPLE/3DFed
3Since RFLBAT does not provide a method to determine the number of

clusters required by its KMeans clustering, we adapt the Gap Statistics [37] in
FL-Detector to RFLBAT for unsupervised learning on the number of clusters
in the PCA results.

4For a good effect of equally partitioning the devices into multiple groups
and estimating the hyper-parameters in adaptive tuning, we set compromised
devices to 20 by default. In Figure 11 (a) of Ablation Study, we will show
that 3DFed still works well even when this number is 4. Furthermore, 20
compromised devices would represent a much smaller proportion of devices
overall in real FL systems with thousands of devices.

rule and other benign participants’ datasets. Furthermore,

we assume that the central aggregator will not block some

devices detected as potential attackers so that the attacker can

participate in each epoch of FL and adaptively adjust its attack

strategy.

C. Experimental Results

Figures 9, 10 and 13 show the experimental results for

CIFAR10, Tiny-Imagenet and MNIST respectively without

and with the defense (Figure 13 is in the Appendix). When

there is no defense in the central aggregator, the baseline

attack outperforms 3DFed in terms of efficiency and backdoor

accuracy. However, the baseline never succeeds once the

central aggregator applies any single defense method. On the

contrary, 3DFed can still successfully poison the global model

to exhibit backdoor behavior against all backdoor defense

algorithms within similar number of epochs as the no-defense

case.

The result details are as follows. In Deepsight (Figure 10

(a), (f) and Figure 13 (a)), since the noise mask increases

the UPs of neurons, our model’s NEUPs are significantly

higher than those of backdoor models without noise masks,

so Deepsight cannot detect our backdoor models. Another

effect of noise mask is alleviating the dense distribution among

backdoor models, which lowers the learning rate punishment

to our backdoor models by Foolsgold (Figure 10 (b), (g) and

Figure 13 (b)). It should be noted that Foolsgold calculates

the similarities based on each client’s accumulated historical

gradient updates, so when the attacker continuously performs

poisoning attacks using the same set of compromised devices,

their similarities of historical updates increase slightly. Our

adaptive tuning is aware of this and adaptively adjusts α to

improve the intensity of noise masks. For FLAME and FL-

Detector, our constraining loss on Euclidean distance generates

backdoor updates with low l2-norm, thereby mitigating the

inhibition from FLAME (Figure 10 (c), (h) and Figure 13

(c)) and getting closer to the predicted model of FL-Detector

(Figure 10 (d), (i) and Figure 13 (d)). Even though the

DP noise in FLAME mitigates 3DFed’s indicator, evading

FLAME does not require the attacker to apply adaptive

tuning on noise mask and decoy model. For FL-Detector in

CIFAR10 and Tiny-Imagenet (Figure 10 (d) and (i)), although

the baseline can poison the global model at the beginning,

its malicious score continuously increases and is detected as

outliers at 10-th epochs after the attack. Since FL-Detector

will restart the training by excluding all the attacker’s devices

after the restart, the backdoor accuracy of the global model

in baseline restores to a low level and no longer increases.

For FL-Detector in MNIST (Figure 13 (d)), the baseline

attack is immediately detected at the start so that its backdoor

accuracy never increases. For RFLBAT (Figure 10 (e), (j) and

Figure 13 (e)), our attack adaptively increases the number of

decoy models kt until kt equals to the number of principal

components in the central aggregator. As such, our decoy

models successfully distract RFLBAT and make the global

model accept the backdoor models.
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Size (Train/Test) # of features # of classes Model Learning Rate

CIFAR10 50k/10k 32×32 10 ResNet18 0.1

MNIST 60k/10k 28×28 10 2 conv and 2 fc 0.1

Tiny-Imagenet 100k/10k 224×224 200 ResNet18 0.001

TABLE III: Dataset and FL Settings
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Fig. 9: Results for CIFAR10, Tiny-Imagenet and MNIST Without Defense
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(a). CIFAR10 Deepsight

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Ba
ck
do
or
Ac
cu
ra
cy

Epochs Since The Attack

Baseline
3DFed

(b). CIFAR10 foolsgold
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(c). CIFAR10 FLAME
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(d). CIFAR10 FL-Detector
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(e). CIFAR10 RFLBAT
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(f). Tiny-Imagenet Deepsight
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(g). Tiny-Imagenet foolsgold
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(h). Tiny-Imagenet FLAME
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(i). Tiny-Imagenet FL-Detector
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(j). Tiny-Imagenet RFLBAT

Fig. 10: Results for CIFAR10 and Tiny-Imagenet against Five Backdoor Defenses

There are two side observations from the results. First,

compared to other defenses, FLAME, which applies HDB-

SCAN to gradient updates, has high false positive rate [33].

In our experiment, even without any attackers, HDBSCAN

in FLAME still considers 48.9% of benign updates as outliers

when datasets are sampled with Dirichlet distribution of hyper-

parameter 0.9. It is because in each epoch, there are always

some benign gradient updates with higher density than other

benign gradient updates. According to [5], the density-based

HDBSCAN treats the highest density one as the cluster (whose

minimum size is the half of the total participants) and others

as outliers. This shows that a density-based clustering method

like HDBSCAN might not be suitable for FL systems where

gradient updates are unevenly distributed.

Another side observation is that the baseline’s main task

accuracy is always lower than 3DFed in the no-defense case.

For example, in Figure 9 (b), the baseline’s main task accuracy

for Tiny-Imagenet at the end of the attack is 3.25% lower than

that of 3DFed. We attribute this to the inherent limitation of

model replacement attacks. FL essentially obtains a consensus

solution for all the participants with diverse data distributions.

Due to such non-IID conditions, every local model trained

on the local dataset is sub-optimum for the global main task

[32]. Therefore, an attacker who replaces the global model

with his local models inevitably deteriorate the global model

from the global optimum to a sub-optimum. As a result, the

model replacement attack leads to a slightly lower main task

accuracy. On the other hand, in 3DFed, the global model is

not replaced in one single epoch. Instead, through multiple

epochs of contributions from the attacker and other benign

participants, all the participants together find a solution in

which the global model remains in the global optimum but

exhibits backdoor behavior.

D. Ablation study

In this subsection, we vary the parameters of 3DFed to

evaluate their impact on the success of the attack. Due to space

limitation, we only show the results of CIFAR10 dataset. The

ablation study consists of two parts. First, in Section IX-D1,

we alternate some parameters in the attacker’s settings and

evaluate the attack performance. Second, in Section IX-D2

we disable some modules in 3DFed and restrict the attacker to

use only one of the three evasion components in Sections VI,
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VII-A, and VIII to evaluate each module’s contribution to

3DFed.

1) Varying Attacker’s Settings: We evaluate on the follow-

ing parameters — number of compromised devices, β for

backdoor training, η for central aggregator, and starting epoch

for attack. Figure 11 plots all the results.

Number of Compromised Devices. Figure 11 (a) illustrates

the backdoor accuracy with the number of compromised

devices, noted as Nadv , varying from 20 to 2 against FLAME.

Although decreasing the proportion of compromised devices

makes the poisoning less efficient, the global model can still

have a high backdoor accuracy at the end of the attack in most

cases. For example, even when the number of compromised

devices is only 4, the backdoor accuracy of the global model

still reaches 73.76% in the end.

β for Backdoor Training. The hyper-parameter β controls

the weight of constraining term in Section VI. The smaller

the β, the more heavily the backdoor models are clipped.

But meanwhile a larger β might have adverse impact on

the backdoor performance. Figure 11 (b) plots the backdoor

accuracy with backdoor attacks when β decreases from 0.6

to 0.1. When β is 0.6, the weight of the constraining term

is too large, making it difficult for the optimizer to find a

backdoor objective. When β is 0.1, the backdoor model still

has a high Euclidean distance from the global model, making

it less effective against norm clipping. The attack performance

reaches a decent plateau when β is ranges from 0.5 to 0.1. As

such, 3DFed is robust against β.

η for Central Aggregator. The central aggregator’s global

learning rate η has a similar effect to norm clipping in limiting

backdoor attacks. The lower the η, the less impact from the

attacker in a single epoch. However, a low η also limits benign

gradient updates, taking the global model more epochs to

converge. In Figure 11 (c), we vary η from 1 to 0.2. When η
is 0.4, the global model still obtains a backdoor behavior with

an accuracy of 93.12% in the end. When η is 0.2, our attack

fails to achieve successful poisoning, but the global learning

rate is also too low to find a model to converge for the main

task.

Starting Epoch for Attack. Backdoor attacks are more

likely to occur when the global model is close to convergence.

In Figure 11 (d), we vary the starting epoch, noted as Estart,

for attack. We observe that when the attacker starts at epoch

50, the global model has not converged at this time, so it is

difficult for the attacker to stabilize the global model on a fixed

backdoor objective, which leads to only 73.35% backdoor

accuracy at the end of attack. When the attack starts after

epoch 100, a stable poisoning effect can be achieved, where

the backdoor accuracy is 98.97%. To avoid early launch of

backdoor attacks, one can use gradients and curvatures in

Section V as natural signs of convergence. If the majority of

gradients and curvatures are significantly larger than the rest,

the global model is considered far from convergence.

2) Single-Layered Attack: In this subsection, we evaluate

the performance of single-layered backdoor attacks, i.e., the

attacker adopts one of the three camouflage components in

3DFed, namely, Constraining Loss only (CL-only), Noise

Mask only (NM-only), and Decoy Model only (DM-only).

The results over epochs are plotted in Figure 12. The central

aggregator’s defense methods and attacker’s settings remain

the same as in Section IX-A and Section IX-B.

Table IV summarizes the end-of-attack results, where each

entry denotes the backdoor accuracy and the last column is

the result of original 3DFed with all three components (The

last row “Combined” will be discussed in Section X). We

observe that applying single-layered camouflage component

can only partially or even hardly evade defenses, especially

when the detection scheme matches the camouflage compo-

nent. For example, in Figure 12 (a), CL-only is successful

only when the defense is based on measuring the Euclidean

distance, where its backdoor accuracy is 99.94% for FLAME

and 99.54% for FL-Detector. Once the defense inspects any

other characteristics, CL-only completely fails with 9.58%

accuracy for Deepsight, 9.65% accuracy for Foolsgold and

9.49% accuracy for RFLBAT. On the other hand, when incor-

porating these camouflage components altogether, 3DFed can

effectively evade detection of all schemes, where the backdoor

accuracy reaches 96.17% for Deepsight, 98.51% for Foolsgold,

96.18% for RFLBAT, 99.89% for FLAME and 98.21% for FL-

Detector (Table IV).

CL-only NM-only DM-only 3DFed
Deepsight 9.58% 85.5% 10.39% 96.17%
Foolsgold 9.65% 9.37% 9.73% 98.51%
RFLBAT 9.49% 9.69% 99.98% 96.18%
FLAME 99.94% 57.31% 8.97% 99.89%
FL-Detector 99.54% 9.24% 9.62% 98.21%

Combined 9.72% 9.61% 9.68% 98.48%
TABLE IV: Comparison of Different Attack Modes. Back-

door accuracy above 80% is marked in bold

We also observe that no single-layered attack can evade

the detection of Foolsgold. In the NM-only case, backdoor

models are imposed with a significant learning rate punishment

by Foolsgold even when our adaptive tuning dynamically

increases α to 0.9. Although the noise masks can scatter

these backdoor models, without constraining the loss function,

the gradient updates trained in NM-only have very high l2-

norm, which cause high pairwise cosine similarities even for

those noise-masked backdoor models. This in turn justifies the

necessity of a multi-layered attack as 3DFed that combines all

these camouflage components.

X. ADAPTIVE DEFENSES

The central aggregator might be aware of 3DFed and take

countermeasures adaptively. In this section, we further dis-

cuss several potential research directions for adaptive defense

against 3DFed and how they may be further circumvented.

Clip the model with a stricter clipping bound. One may

apply a stricter clipping bound to further mitigate the effect

of constraining loss in Section VI from the 3DFed. However,

as pointed out by FLAME [31], this will significantly slow

down the convergence. In addition, 3DFed can adaptively
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Fig. 12: Varying Attacker’s Parameters Settings

change β to have a smaller l2-norm, which makes this defense

ineffective.

Detect noise-masked models with excessive high-UPs
neurons. A future defense might consider models having

excessive high-UPs neurons similar to noise-masked backdoor

models in Section VII. Nonetheless, this defense may not be

effective for two reasons. First, as described in Section VII-A,

3DFed randomly selects the number of neurons to perturb.

Second, the attacker can always use her benign model as a

reference to avoid extreme numbers.

PCA with a dynamic number of components. Another

adaptive defense using PCA might randomly decide the

number of components to mitigate 3DFed’s decoy model in

Section VIII. In addition to the side-effect that inappropriate

component numbers may lead to garbage dimensions and

degrade clustering accuracy [43], such defense has two issues

to address. First, 3DFed can simply decrease the sensitivity of

adaptive tuning as a countermeasure. Second, even if decoy

models are detected by this dynamic-number PCA, it is still

challenging to identify which cluster is malicious due to the

reinforcement of other two camouflage modules, constraining

loss and noise masks, which hide malicious features in back-

door models.

Add DP noise to redundant neurons to undermine
indicators in Section V. 3DFed can apply a larger κ and

leverage multiple redundant neurons as the indicator so that

their noises can be canceled.

Combine all defenses together. First, there are severe

conflicts among the five defenses. Therefore, we can only

combine four defenses that conflict less with each other,

namely, Deepsight, FL-Detector, Foolsgold, and RFLBAT. In

the last row named “Combined” of Table IV, we observe that

3DFed can still achieve 98.48% backdoor accuracy against

them.

Defenses using new techniques. 3DFed is designed to

address the flaws in backdoor attacks that these defenses can

exploit. It will remain working if future defenses, especially

those based on outlier detection, depend on the same flaws.

In case of new flaws, thanks to its high extensibility, we can

still add corresponding new camouflage modules to the 3DFed

framework. Nonetheless, there are some promising defenses

beyond outlier detections, such as model pruning [8], [39] and

federated unlearning [10], [44], [50], that may undermine the

effectiveness of 3DFed.

XI. CONCLUSION

In this paper, we address the two limitations of existing

FL backdoor attacks, namely, requiring information beyond

black-box setting, and unilateral objectives. The proposed

3DFed framework is adaptive and extensible to launch covert

backdoor attacks against in-depth FL defenses. 3DFed is multi-

layered and sports three orthogonal evasion modules that

camouflage a backdoor model to evade the detection of multi-

layered defense. By implanting indicators into a backdoor

model, 3DFed obtains attack feedback in a black-box scenario

and then leverages adaptive tuning to adjust the backdoor

evasion modules dynamically. Through extensive experiments,

we demonstrate the stealthiness and robustness of 3DFed

against multiple state-of-the-art FL backdoor defenses.

As for future work, we plan to extend 3DFed to support

other FL algorithms beyond FedAvg, such as FedAMP [13]

and FedBN [25]. We will also incorporate new evasion mod-

ules to 3DFed as it is an extensible framework.
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Fig. 13: Results for MNIST against Five Backdoor Defenses
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