
Less is more: refinement proofs for probabilistic proofs

Kunming Jiang,∗ Devora Chait-Roth, Zachary DeStefano, Michael Walfish, and Thomas Wies

NYU Department of Computer Science, Courant Institute ∗Now at Carnegie Mellon

Abstract. There has been intense interest over the last decade

in implementations of probabilistic proofs (IPs, SNARKs, PCPs,

and so on): protocols in which an untrusted party proves to a

verifier that a given computation was executed properly, possibly

in zero knowledge. Nevertheless, implementations still do not

scale beyond small computations. A central source of overhead is

the front-end: translating from the abstract computation to a set of

equivalent arithmetic constraints. This paper introduces a general-

purpose framework, called Distiller, in which a user translates

to constraints not the original computation but an abstracted

specification of it. Distiller is the first in this area to perform such

transformations in a way that is provably safe. Furthermore, by

taking the idea of “encode a check in the constraints” to its literal

logical extreme, Distiller exposes many new opportunities for

constraint reduction, resulting in cost reductions for benchmark

computations of 1.3–50×, and in some cases, better asymptotics.

1 Introduction

Probabilistic proofs [7–9, 43–45]—PCPs, IPs, NIZKs, SNARKs,

SNARGs, and so on—are fundamental in complexity theory and

cryptography. They enable an untrusted prover to convince a

verifier of some statement (for example, that a given computation

Ψ, on specific input x, produces an alleged output y). In these

protocols, the verifier does not inspect a classical witness to the

truth of the statement (or re-execute Ψ) but instead checks an

encoded proof probabilistically. Zero-knowledge variants allow

the prover to keep some of the input to the computation—and the

proof itself—hidden from the verifier. Astonishingly, the veri-

fier’s checks are (in some protocols) constant-time, regardless of

the size of the computation [7, 8, 42]. The appeal of these prop-

erties in emerging application areas (most notably, outsourced

computation, blockchains, and their intersection) has fueled in-

tense interest in implementations over the last 13 years. The

results have included 20 orders of magnitude reduction in costs,

deployment of SNARKs in cryptocurrencies [35, 61, 78, 96], and

an explosion of frameworks [87, 90, 93].

Yet, probabilistic proofs are heavily limited in scalability, mak-

ing them impractical for general-purpose use (the hype notwith-

standing). One source of costs is the back-end, which is the

complexity-theoretic and cryptographic proving machinery. The

other source of costs is the front-end, which translates high-level

computations into the format that the back-end works over. In

most probabilistic proof implementations, that format is some

variant of arithmetic constraints: equations over a finite field.

Unfortunately, not only must the prover perform cryptographic

operations proportional to the number of constraints (often with

memory requirements that scale similarly), but also constraints

are a verbose way to represent computations (§2). For example,

every iteration of a loop requires separate constraints—likewise

with all branches of conditional statements. Inequality tests, when

translated into constraints, are expensive. So is RAM.

The question that we ask and answer in this paper is: if back-end
costs are here to stay and we are stuck translating computations to
constraints, what can we do to mitigate costs? Any such technique

should achieve:

• Conciseness. Compared to a naive translation of a computation

Ψ, we want to produce a smaller set of constraints.

• Coupling. There should be a way for the prover to actually

satisfy the alternate constraints, which is non-trivial, since

they may not correspond to the individual program steps that

the prover takes to execute Ψ.

These two requirements have been addressed, at least partially.

The authors of almost all front-ends observe that translation from

a high-level computation Ψ need not result in constraints that

simulate execution [26, 27, 30, 31, 51, 62, 71, 73, 75, 80, 82, 88,

91, 104] (§2). Rather, it suffices if the constraints are satisfiable iff

the execution is valid. For example, consider a computation that

invokes a quicksort subroutine. The naive approach is to compile

quicksort into constraints. As an alternative [51, Appx. C], the

prover can sort “outside the constraints”, with the constraints

enforcing that (a) the output is a permutation of the input [20, 92],

and (b) this permutation is sorted. The naive approach requires

O(n logn) inequality tests while the alternative requires only O(n)
inequality tests (for adjacent elements in part (b)). As inequality

tests dominate this computation, the improvement is substantial.

We call such a checker of required properties a widget. This gen-

eralizes “gadget” [62], which refers to constraints that have been

written by hand; widgets can additionally be encoded in a higher-

level language and then compiled to constraints. Widgets have

been proposed for arithmetic and bitwise operations [80], multi-

precision operations [51], storage [27, 70], concurrent access to

state [82], cryptographic operations [15, 25, 27, 31, 61, 70, 78], re-

cursive composition [25, 31, 53], and optimization problems [5].

Yet, to the extent that these works make arguments about the

correctness of substituting a computation with a widget, none

of them provides formal justification: it is entirely possible that

there are wrong widgets out there! Note that any such bug, even in

an application that satisfies the other two requirements, destroys

soundness of the end-to-end application. Thus, we add a third

requirement:

• Correctness. This is not about correctness of the translation

to constraints, which is crucial and complementary, and has

been studied [38]. Our focus on correctness in this paper is

on substitutions (of computations by a widget) that happen

“upstream” of compilation-to-constraints.

1112

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Kunming Jiang. Under license to IEEE.
DOI 10.1109/SP46215.2023.00142

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

39
3

There is work addressing this third requirement [88] but at the

expense of the first two (§7).

This paper contributes a framework, Distiller, that addresses

all three of these desiderata (§4). Distiller takes the goals in

reverse order: it starts with Correctness. For each class of compu-

tations, the user writes down a specification of the computation,

and proves a formal relationship between the implementation

and the specification. This justifies compiling the specification

(rather than the implementation) to constraints. This relationship

is ensured by representing both the implementation and the spec-

ification as transition systems and adapting ideas from the theory

of refinement [32, 56, 57, 63, 97]. A refinement relates the exter-

nally observable behaviors of two transition systems, formalizing

the notion of correct substitution. A proof of refinement then

yields a blueprint for the prover to satisfy the abstract constraints

(Coupling). For Conciseness, a consequence of Distiller and its

generality is to expose new opportunities for constraint reduc-

tion: Distiller lets us take the idea of widgets to its literal logical

extreme.

We apply Distiller to a series of examples (§5), including bi-

nary search, convex hull, maximal strongly connected compo-

nents (MSC), and minimum spanning tree (MST). In particular,

the solutions we obtain for the latter two problems may be of

independent interest. Our widget for MSC bears some resem-

blance to the checker for Tarjan’s algorithm [85] proposed in

prior work [24]. However, our solution builds on Dijkstra’s MSC

algorithm [33] and is specifically designed to obtain an efficient

representation in constraints. For MST, we introduce the idea of

encoding operations on an amortized data structure as a kind of

special-purpose memory; our widget exploits this encoding to

check the execution of Kruskal’s algorithm [54] in a way that

avoids the overhead of translating certain general-purpose com-

puting structures (conditionals, loads, stores, loops with dynamic

bounds) to constraints.

We implement and evaluate Distiller (§6). The system takes

as input a program representing the implementation and specifi-

cation transition systems, and generates outputs using two com-

ponents. The first component partially automates the generation

of refinement proofs relating the input transition systems. This

component relies on additional user input in the form of proof

annotations. The proofs can then be checked using the program

verifier Viper [69]. Successful verification guarantees Correct-

ness. The verification of our examples unveiled bugs that would

have compromised Correctness in initial versions of two widgets.

Once Correctness has been established, the second component

enables Coupling by building on the Pequin toolchain [75]. This

component produces two C programs that are provided as input

to Pequin. One program expresses the part of the widget to be

translated to constraints. The other program expresses the part to

be computed outside the constraints. Pequin then translates the

first program, executes the second program, and uses the obtained

outputs to drive a probabilistic proof backend.

Finally, Conciseness: replacing an implementation by its spec-

ification does not guarantee more concise constraints. However,

as we explain (§4–§5), we can often use Distiller to find, and

establish the correctness of, an intermediate point between spec-

ification and implementation that does yield a substantial im-

provement (our work on MSC and MST, mentioned above, are

examples of this). Concretely, in our examples, Distiller achieves

reductions in constraint size ranging from small constant fac-

tors to asymptotic improvements for some problems, which for

small problem instances already result in double-digit factors.

Qualitatively, the more complex a computation, the more im-

provement Distiller generally yields. Computations with many

memory accesses or searches of memory see particular benefit

under Distiller.

Distiller is not perfect (§8). As a built system, its trusted com-

puting base includes Pequin, Viper, and our own new translation

front-end. However, this restriction is not fundamental.

The bottom line is that Distiller has taken a crucial step in

improving front-ends: it has exhibited the logically most general

way to exploit nondeterminism in arithmetic constraints, while

doing so soundly, with performance improvements that range

from good constants to orders of magnitude.

2 Background: applied probabilistic proofs

This section is intended to give just enough context for the rest

of the paper. For a full, rigorous treatment of probabilistic proof

implementations, see Thaler [87].

Back-end. In these setups, a back-end is a cryptographic or

complexity-theoretic protocol between an untrusted prover P
and a verifier V in which P convinces V that a given set of

equations C has a solution.

In more detail, V and P (which are possibly probabilistic)

agree on C , as defined by a protocol, or defined by a user who

invokes V and P . The variables in C are elements in a finite

field, typically Fp (the integers mod p), where p is a large prime

(128 bits or more). For many back-ends, C is required to be in

R1CS format [17, 18, 42, 73, 81]. R1CS generalizes arithmetic

circuits, which generalize Boolean circuits. We refer to such a

set of equations as constraints.
V does not trust anything P says; P can follow an arbitrarily

malicious strategy (though some protocols presume a computa-

tional bound on P and cryptographic hardness assumptions of

one kind or another).

P wants to prove to V that P holds a solution, or satisfying
assignment, z to C—but V does not want to receive z, and P may

wish to keep z hidden. Instead, P gives V a certificate, possibly

revealed interactively, which V checks. The guarantees are:

• Completeness: If C is satisfiable, then a correct P makes V
accept, always (regardless of random choices made by P , V ,

or by the user in an offline phase).

• Soundness: If C is not satisfiable, the probability that V ’s

checks pass is negligible (the probability is over random

choices made by the verifier or by the user in an offline phase).

Some applications require a more general property, Proof of
Knowledge (PoK): if P does not have access to a satisfying

z (even if C is satisfiable), then V accepts with negligible

probability. Note that these properties hold regardless of P ’s

strategy.

1113

• Zero knowledge: V gets no information about z other than

what can be deduced from the fact that C can be satisfied.

Examples of recent back-ends are [22, 28, 29, 40, 41, 52, 53,

59, 64, 79, 94, 95, 100, 101]. These trade off different properties,

including the nature of the cryptographic assumptions, noninter-

activity, whether there is an offline phase, whether that phase has

to be repeated each time the structure of C changes, and so on.

However, in all of these works, the costs have a major dependence

on the number of constraints, |C |, and thus all of these works will

benefit from improvements to front-ends.

Pipeline. Posit a user who cares about verifying the execution

of some high-level computation Ψ, on some input x. P supplies y
that is purportedly Ψ(x), and wants to convince some V , which

is trusted by the user, that y=Ψ(x). As a generalization, Ψ can

be a relation, so the goal is to prove that y ∈ Ψ(x). Existing

implementations have the following pipeline:

Offline (one-time for Ψ):
0. The user writes down the computation Ψ.

1. The user compiles Ψ to constraints, C , over variables X ,Y,Z,

where X andY are vectors of variables that represent the inputs

and outputs. This compilation needs to respect Translation
Fidelity: for any x and y, C (X=x,Y=y) is satisfiable (by some

Z=z) if and only if y=Ψ(x) (or y∈Ψ(x)). Here, C (X=x,Y=y)
means C with X bound to x (V ’s requested input) and Y bound

to y (the purported output). As a small example, consider a

computation that takes two inputs, computes their quotient

(over a finite field, Fp), and outputs that quotient plus 5. The

corresponding constraints are: C = {X1 = Z1 ·X2, Y = Z1+5}.

Notice that for all pairs (x,y), C (X=x,Y=y) is satisfiable (by

some Z1 = z1) iff y = x1/x2 +5.

2. The user runs any setup procedure required by the back-end.

Online (for each x,y):
3. Given a specific input x, P identifies a satisfying assignment

z to C (X=x,Y=y). In the simplest case, P does so by directly

executing Ψ.1

4. P convinces V that it has, or knows, a satisfying assignment

to C (X=x,Y=y).
One property that we need from a pipeline is End-to-end Com-

pleteness: if y = Ψ(x), then a correct P makes V accept with

probability 1. This property relies on Translation Fidelity and (the

back-end’s) Completeness, together with the mechanics of Step 3.

Another essential property is End-to-end Soundness: if y �= Ψ(x),
then V rejects with overwhelming probability. This property

relies on Translation Fidelity and (the back-end’s) Soundness.

Front-end. The front-end is Steps 1 and 3. We detail these steps

below, incurring some textual debts to Buffet [91]. We focus on

a compilation approach that we call the “ASIC approach”. The

alternative is the “CPU approach”, which represents the execution

of a CPU in constraints [15, 17–19, 103]. This results in much

higher overhead [91].

1Alternatively, P could possess auxiliary information that allows it to derive a

satisfying assignment. A simple example is: Ψ requires P to supply the pre-image

of a given CRHF H for a given digest, d. Then the input to Ψ is d, the output is M;

P is then establishing that M ∈ H−1(d), but we do not think of P as “executing”

H−1; indeed, H−1 is presumed not to be efficiently computable.

Given a program, the compiler unrolls loops (each iteration

gets its own variables), and converts the code to an intermediate

form, for example static single assignment. The compiler then

translates each line into one or more constraints [26, 27, 30, 31,

55, 71, 73, 75, 80, 91, 104]. Arithmetic and logical operations are

concise. For example, the line of code z3 = z2 + z1 becomes

{Z3 = Z2 + Z1}. By contrast, each inequality test and bitwise

operation costs ≈w constraints, where w is the bit width of the

relevant variables (these operations work by separating a finite

field element into bits [80, Appx.C]; see also [17, 73, 81, 91]).

The combined set of constraints resulting from the line-by-line

translation, and including RAM (see below), constitutes C .

RAM operations (which we refer to as LOAD and STORE but

which encompass any situation where an array index is not known

at compile time) translate into variables that feed into a sepa-

rate RAM-checking computation. This computation can take

several forms. One is based on permutation networks and coher-

ence checks [16, 18, 77, 91]. Loosely speaking, the computation

(a) converts a time-ordered transcript of RAM operations into an

address-ordered transcript of RAM operations with ties broken

by execution order, and (b) uses pairwise checks in the address-

ordered transcript to ensure that every LOAD delivers the value

from the most recent STORE. Other techniques include Merkle

trees and memory checking [15, 23, 27], polynomial identity

testing [103], set accumulators [70], or even a brute force switch

statement that considers every possible index (this works at small

scales, as for some blockchain statements). Regardless of the rep-

resentation, each LOAD and STORE is costly, as the RAM-checking

computation has a number of constraints proportional to Ω(n · r),
where n is the number of operations, and r is the address width

(log of memory size).

Solving. To produce a satisfying assignment, P in most

pipelines (but not all [71]; see §7) goes constraint by constraint.

The solution to some constraints is immediate; for example, given

the constraint Z3 = Z2 +Z1, if Z1 and Z2 are already determined

then the setting to Z3 is mechanically derived. Other constraints

require nondeterministic input from the prover. Recall our ear-

lier example: C = {X1 = Z1 · X2, Y = Z1 + 5}. Looking only

at the constraint X1 = Z1 ·X2, P knows X1 and X2 (they are in-

puts) but does not derive the setting of Z1 by filling in other

constraints. Rather, P computes X−1
2 “outside” the constraints

(for example, using repeated squaring to compute X p−2
2 , which

is X−1
2 in Fp) and then sets Z1 as X1 ·X−1

2 . Other examples are

inequality tests, where P supplies the values of each bit, and

RAM-checking, where P supplies the settings for switches in a

permutation network. In these cases, the process of translation

from Ψ to constraints has to decorate certain constraints, to tell

P how to solve them. (Decoration is known elsewhere as “anno-

tation” [27, 71, 91], but later in this paper, we use “annotation”

to mean something else.)

Widgets. Instead of representing certain operations directly

in constraints, one can sometimes substitute a validity check, as

with the sorting example in the Introduction; we call this validity

check a widget. The Pipeline handles such substitution. Assume

for simplicity that only one operation in the computation Ψ has

a widget, for example a single invocation of a sort() subroutine.

Then Step 1 compiles the computation Ψ, but with the widget

1114

substituted for the direct operation. Meanwhile, Step 3 runs Ψ,

with the direct operation. For this to work, the compiler must

produce, and P must rely on, decorations. That is because P
needs a way to connect the computation to the constraints, which

no longer correspond to each other line-by-line.

When widgets enter the picture, achieving End-to-end Sound-

ness and End-to-end Completeness requires an additional condi-

tion beyond the three that we have mentioned, namely Transla-

tion Fidelity, and (back-end) Completeness and Soundness. That

additional condition is Correctness, from Section 1. Section 3

describes this condition informally; a precise definition requires

machinery that we will build up in Section 4.

Costs and accounting. This paper’s primary metric is |C |. That

is for two reasons. First, all back-ends in the literature impose

costs on P (and, depending on the protocol, on V) that are at

least linear in the number of constraints, |C |. Second, these costs

typically dominate the cost to P of executing and solving (Step 3);

thus, even though P executes the underlying computation, doing

so contributes only negligibly to costs.

For concreteness, we sometimes assume the widely-used

Groth16 backend [47, 62]. In Groth16, certificate size is con-

stant (128 bytes) and V runs in constant time. However, the

running time for P and for the setup phase are O(|C | · log |C |).
Because of this and memory bottlenecks from the access pattern,

single-machine Groth16 provers are highly limited in the size of

the computation that they can handle. There are works that take

advantage of multiple machines [98] and heterogeneous hard-

ware [102] to try to overcome these bottlenecks, but they too are

limited. The bottom line is that every work in this research area

will benefit from constraint sets with fewer constraints.

3 Motivating example: merging sorted lists

As noted in the introduction, an application of probabilistic proofs,

at least in principle, is outsourcing computation. Those compu-

tations need not be “cryptographic”. In fact, the mere act of

outsourcing invites probabilistic proof machinery: a proof gives

assurance that another entity executed correctly. Accordingly,

our examples throughout this paper will have an algorithmic

flavor, rather than employing cryptography. In particular, zero-

knowledge guarantees provided by the back-end will be irrelevant.

However, this is not fundamental, as zero-knowledge properties

typically come for free in the back-end, and the Distiller frame-

work applies just the same to cryptographic computations.

As an example algorithmic computation, consider merge,

which takes as input multiple sorted lists with unique elements

(unique across all lists) and outputs a sorted union of the ele-

ments. An example implementation of merge, which we denote

TI , is in Figure 1. When translated, merge comprises a number of

constraints proportional to L · (∑k Ak.len), because of the nested

loops on lines 9 and 11.

Observe that merge is computing its result. But in the setup of

probabilistic proofs, the goal is to provide a proof about some al-

leged, exogenously-computed output. Thus, the set of constraints

could instead check that a specification is met. We are interested

in how to perform such a substitution systematically, meaning

1 void merge(L,A0,..,AL-1,B) {
2 �0 : int[L] curr = {0};
3 int len, running_min, kstar; bool found;
4 len = 0;
5 �1 : for (int k = 0; k < L; k++) {
6 len += Ak.len;
7 }
8 B.len = len;
9 �2 : for (int i = 0; i < len; i++) {

10 found = false
11 �3 : for (int k = 0; k < L; k++) {
12 if (curr[k] < Ak.len && (!found ||
13 Ak[curr[k]] < running_min)) {
14 running_min = Ak[curr[k]];
15 // running_min is the current min element
16 kstar = k;
17 // kstar indexes the list that contains
18 // running_min
19 found = true;
20 // indicates that branch has been taken
21 }
22 }
23 B[i] = running_min;
24 curr[kstar]++;
25 }
26 �4 : return;
27 }

Figure 1: Pseudocode for the computation merge(L,A0, . . . ,AL−1,B)
(TI). The precondition of merge requires that the Ak are strictly sorted

and their elements pairwise distinct. Also, there must be enough physical

space in B to store the elements of all Ak.

that the requirements in Section 1 are met.

A natural starting point is to translate the weakest logical spec-

ification (WLS) of merge that still expresses functional correct-

ness: intuitively, one expects that logically weaker specifications

“enforce less” and thus should yield smaller constraints when

translated. Informally, the WLS is: “merge(L,A0, . . . ,AL−1,B)
terminates and, upon termination, B is monotonically increasing

and holds just each element from {Ak} exactly once.” Pseudocode

to check this specification, which we denote TS, is depicted in

Figure 2. Its complexity is 2 ·(∑k Ak.len), which is an asymptotic

improvement over L · (∑k Ak.len) from earlier.

To read the pseudocode, note that the keyword havoc denotes

a nondeterministic choice, while assume constrains choices. Con-

cretely, when this pseudocode is compiled to CTS (§2), havoc state-

ments become free variables that the prover supplies while assume

statements become constraints that enforce the given statement.

The specification uses for, which (logically) means bounded uni-

versal quantification, and (mechanically) unrolls and repeats the

enclosed requirements.

In Figure 2, lines 4–12 constrain B to be sorted (in increasing

order), and enforce that B ⊆⋃
k Ak. In particular, for each position

i in B, the prover nondeterministically supplies which list (k_i)

contributes to the ith position, and which index in that list (j_i)

holds the contributed element. For the other direction, lines 13–20

specify that
⋃

k Ak ⊆ B.

1115

1 void merge_spec_naive(L,A0,..,AL-1,B) {
2 int k_i, j_i, i_kj;
3 havoc B.len;
4 for (int i = 0; i < B.len; i++) {
5 havoc B[i];
6 assume i == 0 || B[i-1] < B[i];
7 havoc k_i;
8 assume 0 <= k_i && k_i < L;
9 havoc j_i;

10 assume 0 <= j_i && j_i < Ak_i.len;
11 assume B[i] == Ak_i[j_i];
12 }
13 for (int k = 0; k < L; k++) {
14 for (int j = 0; j < Ak.len; j++) {
15 havoc i_kj;
16 // each element in some A_k is in B
17 assume 0 <= i_kj && i_kj < B.len;
18 assume Ak[j] == B[i_kj];
19 }
20 }
21 return;
22 }

Figure 2: Pseudocode for the weakest logical specification (TS) of the

merge computation. The precondition only requires that B has enough

physical space for the elements of all Ak.

But how does the prover supply these values? Ideally they

would result from simply executing the original computation.

This brings us to the Correctness and Coupling require-

ments (§1). We must prove a relationship between TS and

the actual code executed by the prover (TI). The basic tech-

nique is to capture this relationship formally in terms of refine-
ment [56, 57, 63]. A refinement proof coupling TI and TS not only

establishes the correctness of the substitution, it also tells us how

to augment TI . The prover then executes the augmented imple-

mentation, which yields the values for the nondeterministically

assigned variables in the specification.

A further improvement is possible. Notice that the implemen-

tation TI (Fig. 1) uses the facts that the input lists are unique

and sorted, whereas TS (Fig. 2) uses neither fact. In the frame-

work that we lay out in the sections ahead, we will have the

freedom to choose a specification that refines the WLS yet still

abstracts the computation. For example, by taking advantage of

the uniqueness of the input lists, we obtain a less general but more

concise specification than TS. Specifically, we discard the lines

in Figure 2 (13–20) that enforce
⋃

k Ak ⊆ B, resulting in Figure 3,

which we call TE . When translated, TE now yields a number of

constraints proportional to ∑k Ak.len, which saves a factor of two

compared to TS.

4 Framework

We formalize our framework in terms of transition systems, which

provide a uniform formalism for representing both implemen-

tations and their specifications. From a semantic perspective, a

transition system T defines a language L(T), which contains

for each execution trace σ of T , a sequence of observations o(σ)

1 void merge_spec_efficient(L,A0,..,AL-1, B) {
2 �′0 : int k_i, j_i;
3 �′1 : havoc B.len;

4 assume B.len == ∑L−1
k=0 Ak.len;

5 �′2 : for (int i = 0; i < B.len; i++) {
6 havoc B[i];
7 assume i == 0 || B[i-1] < B[i];
8 havoc k_i;
9 assume 0 <= k_i && k_i < L;

10 havoc j_i;
11 assume 0 <= j_i && j_i < Ak_i.len;
12 assume B[i] == Ak_i[j_i];
13 }
14 �′4: return;
15 }

Figure 3: Pseudocode for the efficient specification (TE) of the merge
computation. The precondition is the same as for merge itself.

made about how T interacts with its environment during the ex-

ecution. These observations may for instance encompass I/O,

network traffic, etc.

We relate transition systems in terms of their languages. This

allows us to formally capture when the execution of one transition

system behaves like the execution of another, from the perspective

of an external observer.

4.1 Transition systems and refinement
In our formalization, we adapt the classical setup of Abadi and

Lamport [1]. A transition system T = 〈Σ,θ,Δ,O,α〉 consists of

a set of states Σ, a nonempty set of initial states θ ⊆ Σ, a set of

transitions Δ⊆ Σ×Σ, a set of observations O, and an observation
function α : Σ → O. Intuitively, the function α formalizes which

aspects of a given state are observable. When T is known, we

denote a transition (s,s′) ∈ Δ by s → s′ and say s steps to s′. We

also call s′ a successor of s.

Example 4.1. We illustrate with our motivating example (§3).

We can regard TI (Fig. 1) as defining a transition system

(Σ,θ,Δ,O,α), as follows. The states Σ of TI are mappings from

program variables to values. For s ∈ Σ, we denote by s.x the

value of program variable x in s. We sometimes write x for a

value of the program variable x when the state s is unspecified.

We write s[x �→ v] to denote the new state obtained from s by

updating the value of x to v and keeping the values of all other

program variables unchanged. The program variables include a

dedicated variable pc storing the value of the program counter,

which ranges over the control locations �0, . . . , �4. (For simplicity

of exposition, we are treating the execution of a basic block, such

as one iteration of a non-nested loop, as a single transition.)

The observations O of TI are the values of the input arrays and

output array at the program start and return. Intuitively, these are

the values that an external user can observe from the program.

All intermediate program states of the computations are unob-

servable, which we denote by the special observation τ. Formally,

we define O using the following grammar:

O ::= in(L, A0, . . . ,AL−1,B) | out(L, A0, . . . ,AL−1,B) | τ .

1116

The observation function α : Σ → O is then defined as follows:

α(s) =

⎧⎪⎨
⎪⎩

in(s.L,s.A0, . . . ,s.A(s.L−1),s.B) if s.pc= �0

out(s.L,s.A0, . . . ,s.A(s.L−1),s.B) if s.pc= �4

τ otherwise .

The transitions Δ of TI are obtained from the program description

in the expected way. For instance, the body of the for loop at

control location �1 yields all transitions s→ s′ such that s.pc= �1,

s.k< s.L, and

s′ = s[len �→ s.len+ s.A(s.k).len][k �→ s.k+1] .

The set of initial states θ consists of all states s that satisfy the

precondition of TI (Figure 1). We assume that this precondition

is specified by a formula ϕpre. That is, ϕpre states that pc = �0,

and that the arrays Ak are sorted in strictly increasing order and

its elements pairwise distinct. We write s |= ϕpre to indicate that

s satisfies ϕpre.

An infinite sequence of states σ is called an (execution) trace of

T if it starts in an initial state and respects T ’s transition relation:

formally, σ0 ∈ θ and for all i ≥ 0, either σi steps to σi+1 or σi =
σi+1 and σi has no successors in Δ. If σi = σi+1, we say that σ
stutters in step i. A terminating execution of T corresponds to a

trace that stutters forever in its final state. By abuse of notation,

we write α(σ) to denote the sequence of observations obtained

by applying α pointwise to the states in σ. We denote the set of

all traces of T by traces(T).
Let � be the function that maps a sequence σ to the sequence ob-

tained from σ by replacing all repeated consecutive copies of ele-

ments by a single copy, for example, �(〈0,0,1,1,1,2,3,3,3,3〉) =
〈0,1,2,3〉.

The language of T , denoted L(T), is defined by applying α
pointwise to each trace in traces(T) and then removing stut-

ters. The intuition for removing stuttering is that we want to

capture only the observable behavior: stuttering steps correspond

to unobservable internal computation steps. Formally, we de-

fine the sequence of observations o(σ) made from a trace σ as

o(σ) def
= �(α(σ)) and then let

L(T) def
= {o(σ) | σ ∈ traces(T)} .

Example 4.2. In the motivating example (§3), the language of

the transition system TI is simply

L(TI) =
{〈α(s),τ,α(s′)〉 ∣∣ s |= ϕpre ∧ s′ |= ϕpost

}
.

Here, the precondition ϕpre is as defined above. The postcondition

ϕpost states that pc= �4,B is sorted in strictly increasing order, and

the set of elements of B is equal to the union of the set of elements

of the arrays Ak. The single τ in each observation sequence in

L(TI) summarizes all intermediate states of the computation.

A transition system TI refines another transition system TS
iff L(TI) ⊆ L(TS). This definition captures the idea that from

the perspective of an external observer, every execution of TI
behaves like some execution of TS. Typically, we think of TS

as the specification and TI as the implementation. We denote a

refinement relationship by TI ≤ TS.

A classical approach to proving refinement relationships is to

construct a refinement mapping. Formally, a refinement mapping

between TI and TS is a function r : ΣI → ΣS such that

1. r(θI)⊆ θS,

2. ∀s ∈ ΣI , αI(s) = αS(r(s)), and

3. ∀s,s′ ∈ ΣI , if s →I s′, then r(s)→S r(s′) or r(s) = r(s′).

The first property states that r maps the initial states of TI to

those of TS. The second property states that the observations

computed from states are preserved by r. The third property

states that every transition in ΔI is matched by a corresponding

transition in ΔS under r or by a stuttering step. Together, these

properties capture the intuition that the relationship between a

refinement and its specification is that the specification abstracts

steps that are “internal” to the implementation.

Once it has been established that r : ΣI → ΣS is a refinement

mapping, TI ≤ TS follows: given a trace σI of TI , the sequence

r(σI) is a trace of TS (modulo stuttering). Moreover, r(σI) makes

the same observations as σI , i.e., �(αI(σI)) = �(αS(r(σI))).
Hence, the existence of r establishes that TI refines TS.

We write TI ≤r TS to indicate that r is a refinement mapping

between TI and TS. An important property that we will use freely

later is that refinement mappings compose: T1 ≤r T2 and T2 ≤q T3
implies T1 ≤q◦r T3.

4.2 Refinement-based widgets
We can now use the language of transition systems to recast

Steps 0, 1, and 3 in Section 2 and explain how widgets are con-

ventionally used to modify these steps. We start from a given

transition system TI and a property φ ⊆ Oω specifying the ob-

servation sequences of interest (Step 0). The problem is for the

prover P to convince the verifier V that L(TI)∩φ is nonempty.

Here, the property φ will, in particular, ensure that the consid-

ered observations are restricted to those that are bound to the

specific input x and alleged output y. However, φ may impose

additional requirements on the observation sequences that are of

interest to V . The conventional approach is then to first translate

TI into constraints CTI (φ) = CTI ∧Co−1
I (φ). We elide the definition

of Co−1
I (φ). In the context of the steps in Section 2, it is simply

X = x∧Y = y. The translation guarantees that CTI (φ) is satisfi-

able iff o(σI) ∈ L(TI)∩φ for some σI (Step 1). The prover then

executes TI on the specified input x to obtain such a σI and derives

from it the desired satisfying assignment (Step 3).

The conventional use of a widget is then to replace the con-

straints CTI by a smaller set of constraints CTW . The prover still

executes TI to yield σI , but uses σI to compute a satisfying assign-

ment for CTW (φ). A crucial shortcoming of this approach is that

replacing TI by TW is not formally justified. In particular, there

is no guarantee that the existence of a satisfying assignment for

CTW (φ) implies the nonemptiness of L(TI)∩φ, potentially com-

promising the soundness of the proof system. Moreover, there is

no systematic approach to compute a satisfying assignment for

1117

CTW (φ) from σI . We use the notion of refinement to address both

of these shortcomings.

First, we change the problem setup as follows. The new Step 0

is to write down transition systems TS, TE , and TI , as well as

refinement mappings r and q such that TI ≤r TE ≤q TS. This is

our formal definition of Correctness (§1): a widget represented

as TE is Correct if it satisfies the refinement chain TI ≤r TE ≤q TS.

Now, the problem is for the prover P to convince the verifier V
that L(TS)∩φ is nonempty. That is, V is only interested in TS,

the weakest specification; the transition systems TE and TI are

merely a means to an end to solve the problem. TE then plays the

role of TW above. The new Step 1 is to translate TE and φ into

constraints CTE (φ). The new Step 3 is for P to execute TI on x
(obtaining o(σI) ∈ L(TI)∩φ), to use r to compute a trace r(σI),
and finally to use r(σI) to compute a satisfying assignment for

CTE (φ).
Observe that TE ≤q TS implies that if o(σE) ∈ L(TE)∩φ for

some σE , then o(q(σE)) ∈ L(TS)∩φ. Hence, assuming Transla-

tion Fidelity, if CTE (φ) is satisfiable, then L(TS)∩φ is nonempty.

This ensures the soundness of the approach. Similarly, TI ≤r TE
means that if o(σI) ∈ L(TI)∩φ, then o(r(σI)) ∈ L(TE)∩φ and,

hence, CTE (φ) is satisfiable. This ensures the completeness of

the approach.

A difference between proving TI ≤r TE and TE ≤q TS is that

q need not be explicit. That is, although End-to-end Soundness

requires that if CTE (φ) is satisfiable then so is CTS(φ), the ac-

tual satisfying assignment to CTS(φ) is not used explicitly. Con-

sequently, TE ≤ TS can be established by means other than re-

finement mappings, for example a proof based on simulation

relations [66, 72, 89].

We note that the approach also applies in the special case where

TS = TE . Though, generally, the crux is to find a suitable TE in
between TS and TI that yields a reduction in the constraint size

relative to both TS and TI .

Constructing refinement mappings. It remains to show how

to construct refinement mappings. We demonstrate this with the

merge computation as a guiding example, using general princi-

ples inspired by refinement calculi such as [65, 67, 68]. These

principles apply broadly (Section 5 contains further examples).

Our first step is to construct a refinement mapping r between

the transition system TI of the merge computation (Fig. 1) and

its intermediate specification TE (Fig. 3). As we will explain

below, r can then be used to obtain a satisfying assignment for

the constraints CTE from a given execution of TI , enabling more

efficient verification of that execution. In a second step, we then

show that the intermediate specification TE refines the naive

specification TS.

To prove TI ≤ TE , we divide the construction of the refinement

mapping into three steps by deriving two auxiliary transition

systems TIE and T̂IE that yield a refinement sequence TI ≤ TIE ≤
T̂IE ≤ TE . Intuitively, the auxiliary transition systems couple TI
and TE so that they are executed together.

A transition system TE refined by an implementation TI will

typically involve nondeterministic (havoc, see §3) assignments to

program variables that do not appear in the implementation. In

our example of the merge computation, these are the assignments

to k_i and j_i in Figure 3 (lines 8 and 10). The execution of TE

1 void merge (L,A0,..,AL-1,B) {
2 �0 : int[L] curr = {0};
3 int len, running_min, kstar, k_i, j_i;
4 bool found;
5 len = 0;
6 �1 : for (int k = 0; k < L; k++) { len += Ak.len; }
7 B.len = len;

8 assume B.len == ∑L−1
k=0 Ak.len;

9 �2 : for (int i = 0; i < B.len; i++) {
10 found = false;
11 �3 : for (int k = 0; k < L; k++) {
12 if (curr[k] < Ak.len && (!found ||
13 Ak[curr[k]] < running_min)) {
14 running_min = Ak[curr[k]];
15 kstar = k;
16 found = true;
17 }
18 }
19 B[i] = running_min;
20 assume i == 0 || B[i-1] < B[i];
21 k_i = kstar;
22 assume 0 <= k_i && k_i < L;
23 j_i = curr[kstar];
24 assume 0 <= j_i && j_i < Ak_i.len &&
25 B[i] == Ak_i[j_i];
26 curr[kstar]++;
27 }
28 �4: return;
29 }

Figure 4: Pseudocode for the transition system T̂IE . The prover will

execute the black and blue code (TIE) instead of TI . The values in blue are

used to create an assignment to the nondeterministic variables occurring

in the constraints obtained from TE (the red assume statements).

can proceed only if the value chosen by each nondeterministic

assignment satisfies the constraints imposed by the subsequent

assume statements. A key step in the refinement proof is therefore

to show that such values can be obtained from the trace σI . We

make this step explicit in the construction of the intermediate tran-

sition system TIE . This transition system augments TI with those

variables unique to TE as well as assignments to these variables

that determine the desired values to be chosen for the nondeter-

ministic assignments in TE . In our example, this augmentation

can be seen in lines 3, 21, and 23 shown in blue in Figure 4.

Observe that the assignments to k_i and j_i in TIE of our

example depend only on the original program variables of TI .

Moreover, the variables do not interfere with the other parts of

the transition system in any way. Such auxiliary variables that

are used only for the purpose of proving a refinement relation

are sometimes referred to as ghost variables. Conveniently, if

adding ghost variables to a transition system T results in T ′, then

T ≤ T ′ [65]; thus TI ≤ TIE .

In the context of program translation for probabilistic proofs,

augmenting an implementation with ghost variables is not only

useful for proving the refinement between TI and TE . The system

TIE also instructs the prover how to obtain the satisfying assign-

ment for the constraints CTE . That is, the prover will actually

1118

execute TIE instead of TI .

The next step in our construction is to augment TIE with the

assume statements in TE that constrain the values chosen for the

nondeterministic assignments. We call the resulting transition

system T̂IE . In our merge example, T̂IE is shown in Figure 4 with

the added assume statements highlighted in red (lines 8, 20, 22,

and 24).

Establishing the refinement TIE ≤ T̂IE follows a generic con-

struction. We first show that the added assume statements express

invariants of TIE . That is, the assumed expressions must always

evaluate to true in TIE , at the appropriate program points. In Ap-

pendix A [48], we discuss this step of the proof in more detail

with regards to the merge computation. Once the invariants have

been established, TIE ≤ T̂IE follows, by simply using the identity

function on the states of TIE as the refinement mapping.

Finally, we observe that TE can be obtained from T̂IE by ab-

stracting all program variables that appear in TI but not in TE .

For our merge example, this amounts to removing the loops at

locations �1 and �3 in T̂IE , and replacing the assignments on lines

7, 19, 21, and 23 that depend on the abstracted program variables

by havoc commands.

Abstracting program variables in this systematic manner again

yields a refinement by construction. The refinement mapping

changes the value of the program counter in the expected way.

For instance, the refinement mapping in our example coalesces

locations �2 and �3 to �′3 and maps all other locations �i to �′i.
The values of the remaining program variables that are common

to T̂IE and TE are preserved by the refinement mapping. This

concludes the proof of TI ≤ TE .

It remains to argue that TE refines TS. One can generally apply

the above technique again, to construct an appropriate refinement

mapping. In particular, one can show that the following property

is an invariant at the end of the for loop in TE (Fig. 3):

∀ k,j :: 0 <= k && k < L && 0 <= j && j < Ak.len ==>
∃ i :: 0 <= i && i < B.len && Ak[j] == B[i]

The second for loop at lines 13 to 20 of TS (Fig. 2) establishes

exactly the same property.

Systems view. An end-to-end system view of Distiller is as fol-

lows. At compile-time the user provides a weakest specification

TS, an effective specification TE , and a computation TI (the new

Step 0 in Section 2). One must then show that the refinement

relationships TI ≤ TE and TE ≤ TS hold. These proofs can be done

by the user outside of the system or the system aids the user by

(partially) automating the proofs.

Such a refinement proof (say, TI ≤ TE) can be constructed

generically in the following way. First, one augments TI with

the necessary ghost variables (yielding TIE) to obtain TI ≤ TIE .

Then one adds the invariants needed to properly constrain the

nondeterministic assignments in TE (yielding T̂IE) to obtain TIE ≤
T̂IE . To take the final step to TE , one abstracts away all variables

that are found in TIE but not TE to obtain T̂IE ≤ TE . One proceeds

similarly for TE ≤ TS.

T̂IE is a coupling of TI and TE that makes explicit how the

havoced ghost variables in TE are computed from TI . T̂IE is then

the input to an augmented front-end that splits T̂IE into TE and TIE .

It then compiles TE to constraints CTE (the new Step 1). For each

Example Improvement
Merging (Ch. 16) Θ(L)
Find Min (Ch. 12) 1.4×
Binary Search (Ch. 12) Θ(log(n) log(log(n)))
Pattern Matching (Ch. 18) 3×
Next Permutation (Ch. 13) 1.4×
Dutch Flag (Ch. 14) 1.5×
RR Sequence (Ch. 17) 2×
Sum of Powers (Ch. 19) 1.66×
2D Convex Hull (Ch. 24) 5×
2D Convex Hull∗ (Ch. 24) Θ(log(n))
MSC (Ch. 25) 17.5×
MST (Ch. 22) 52.2×

Figure 5: Improvement for all examples based on theoretical analysis

on large inputs. For improvements where TE has asymptotically fewer

constraints than TI , we provide the complexity of the improvement;

otherwise we provide a constant factor. L in Merging is the number of

lists. n in Binary Search is the length of the array. n in 2D Convex Hull

is the total number of nodes, and 2D Convex Hull∗ is the case where the

nodes in the convex hull are marked instead of returned in a list.

invocation of the probabilistic proof protocol (the new Steps 3

and 4), the prover runs TIE and feeds its values back in to get a

satisfying assignment to CTE .

Note that TE ≤ TS is needed for End-to-end Soundness (every

satisfying assignment to CTE encodes an element of L(TS)) while

TI ≤ TE is needed for End-to-end Completeness (a satisfying

assignment to CTE can be obtained from TI).

5 Examples

We have applied the Distiller framework to the problems in Dijk-

stra’s classic book A Discipline of Programming [33]. We chose

this source for two reasons. First, it discusses algorithms for a

diverse set of problems. Second, Dijkstra develops his algorithms

iteratively, starting from a formal problem specification. This ap-

proach helps to identify suitable intermediate transition systems

TE that yield an efficient translation to constraints.

Our evaluation considers 11 of the 14 problems discussed in

Dijkstra’s book. The three problems we have omitted are “Updat-

ing a sequential file” (Chapter 15), “The problem of the smallest

prime factor of a large number” (Chapter 20), and “The prob-

lem of the most isolated villages” (Chapter 21). We also have

simplified the problem of computing the convex hull in three

dimensions (Chapter 24) to the two-dimensional case.

For all the problems that we have considered, we are able to

obtain significant reductions in the size of the generated con-

straints (Fig. 5). In some cases, the scale factor of the reduction

grows asymptotically with the problem instance size.

In the following, we discuss a selected subset of the considered

problems in detail. We explain TS, TE , and TI for these problems,

provide a qualitative analysis that explains the expected reduc-

tion in constraint size, and explain the key insights behind the

refinement proofs.

1119

1 int find_min(n, A, B) {
2 int min = A[0]; int p = 0;
3 �0 : for (int i = 0; i < n; i++) {
4 if (A[i] < min) {
5 min = A[i]; p = i;
6 }
7 }
8 bool found = false;
9 �1 : for (int i = 0; i < n; i++) {

10 assume min <= A[i];
11 if (A[i] == min) {
12 B[i] = 1; assume B[i] == 1;
13 found = true;
14 } else {
15 B[i] = 0; assume B[i] == 0;
16 }
17 }
18 assume found;
19 return min;
20 }

Figure 6: Pseudocode for TI of Find Min. The code in red is the augmen-

tation needed for proving TI ≤ TE .

5.1 Find Min
Given a non-empty array A of length n, the problem is to find its

smallest element, min, and mark all occurrences of the minimum

using another array B. More precisely, there must exist an index

p such that the following conditions hold:

1. 0 ≤ p < n and min= A[p],
2. for each i ∈ [0,n), min≤ A[i],
3. for each i ∈ [0,n], B[i] = (A[i] = min?1: 0).

TS encodes this specification by nondeterministically choosing

min, each B[i], and p. It uses two loops that iterate over A to enforce

conditions 2 and 3.

TI is shown in Fig. 6 (without the code in red, which we will

discuss later). It also requires two loops: �0 to compute min, and

�1 to compute the B[i]. Comparing TI and TS, we note that the

two loops in TI and TS have exactly the same costs. However, TS
performs an additional dynamic LOAD, namely A[p], to enforce

Condition 1. Hence, CTS incurs the extra cost of RAM initializa-

tion, which performs n STOREs to write A into the memory, and

is therefore larger than CTI .

However, we can do better than either TS or TI . First, observe

that unlike in TI , we can merge the two loops in TS for conditions 2

and 3 into a single loop because min can be chosen nondeter-

ministically upfront. Compared to TI , this saves one of the two

inequality tests i < n that CTI would otherwise include for each it-

eration of the two loops. Furthermore, we can eliminate the LOAD
A[p] in Condition 1 of TS by introducing an auxiliary variable

found that indicates whether min has been encountered at least

once in the loop that checks conditions 2 and 3. The pseudocode

of the resulting TE is shown in Fig. 7 (excluding the blue code,

which we will use later to establish that TE refines TS).

Thus, CTE needs only 2 · n inequality tests, saving 1/3 over

CTI . Since the encoding of inequality tests dominates the size of

the generated constraints, we observe a similar constant factor

1 int find_min_efficient(n, A, B) {
2 int min, p;
3 �′0 : havoc min;
4 bool found = false;
5 �′1 : for (int i = 0; i < n; i++) {
6 assume min <= A[i];
7 if (min == A[i]) {
8 havoc B[i]; assume B[i] == 1;
9 found = true; p = i;

10 } else {
11 havoc B[i]; assume B[i] == 0;
12 }
13 }
14 assume found;
15 assume 0 <= p < n && A[p] == min;
16 return min;
17 }

Figure 7: Pseudocode for TE of Find Min. The code in blue is the aug-

mentation needed for proving TE ≤ TS.

improvement in the overall constraint size.

Turning to the refinement proofs, if we add the red code in

Fig. 6 to TI , we obtain the augmented transition system T̂IE for

showing TI ≤ TE (see §4.2). Recall that the main part of the

refinement proof is to show that the added assume statements in

T̂IE coming from TE always succeed. We focus on the assume on

Line 18, which is the most interesting one. Observe that the loop

at �0 ensures 0≤ p< n∧A[p] = min after the loop has terminated.

Using this fact, we can then establish the loop invariant i < p∨
found for the second loop at �1. This then allows us to prove that

the assume statement on Line 18 is safe.

Next consider the refinement TE ≤ TS. Adding the blue code

in Fig. 7 to TE yields an augmented transition system T̂ES for the

refinement proof TE ≤ TS. We focus on showing that TE ensures

Condition 1. (The other two conditions follow immediately from

the loop in TE .) To this end, we can establish the loop invariant

found= 0∨(0 ≤ p < n∧A[p] = min) for the loop at �′1. Together

with Line 14, this implies that adding the assume on Line 15 is

safe. This line then establishes Condition 1.

We note that we would not be able to improve over TI if the

array A was guaranteed to have a single minimum, or if we were

satisfied with finding any of the minimums in A. The loops at �1
and �′1 would be unnecessary.

5.2 Binary Search
Given a sorted array A, the bounds l,r of a possibly empty seg-

ment in A, and a value x, the problem is to compute i such that

l ≤ i ≤ r and A[i] = x. If no such i exists, return i =−1.

TS for this problem checks i according to the specification

above. That is, if i �= −1, TS checks that l ≤ i < r and x = A[i],
otherwise it iterates over A[l . . .r] and checks that the segment

does not contain x. TI is based on standard binary search.

For our cost analysis we focus on the number of LOAD opera-

tions, which is the largest contributor to the size of the generated

constraints. In the worst case, TI performs log(n) LOAD opera-

tions to search through the segment A[l . . .r] where n = r− l. In

contrast, TS performs n+ 1 LOAD operations in the worst case.

1120

That is, TS is asymptotically worse than TI .

We can do better by exploiting that A is sorted. Introducing an

auxiliary value s, we divide the specification for the case when

x is not present (i =−1) into four subcases while retaining the

specification for the case when i �=−1. The refined specification

becomes:

1. If i = −1, then l = r or x < A[l] or x > A[r− 1] or (l ≤ s <
r−1 ∧ A[s]< x < A[s+1]),

2. else l ≤ i < r ∧ A[i] = x.

TE is the direct encoding of this case analysis. It performs a

constant number of LOAD operations, achieving an asymptotic

improvement over TI . We note that if the search is viewed as a

standalone program, then this improvement is overshadowed by

the cost of storing the array segment into RAM, which is linear

in n. However, if the search is executed many times or viewed as

a subroutine, then the RAM initialization can be amortized.

For proving TE ≤ TS, observe that each of the subcases of Con-

dition 1 implies that x cannot be present anywhere in the segment.

For the last three cases, the proof relies on the precondition that A
is sorted in strictly increasing order. For proving TI ≤ TE , recall

that binary search iteratively shrinks a subsegment A[l′ . . .r′] of

A[l . . .r] that may still contain x. This process continues until the

subsegment converges to a single point l′ = r′, which is the index

of the least element larger than x. In the nontrivial case where

l �= r and x is not present in the segment but within the range

of values defined by A[l] and A[r− 1], we define s = l′ − 1 for

the final point l′ = r′. Then s is the index that satisfies the last

disjunct in Condition 1.

5.3 2D Convex Hull
Given a set of points P= {p0, . . . , pn−1}⊆Z

2 with n> 1, assume

no three points are on the same line, the problem is to find all

points in P that lie on the convex hull of the set.

We additionally require P to satisfy the precondition of Graham

Search [46], a popular algorithm that solves the 2D Convex Hull

problem. Specifically, p0 has the smallest y coordinate among

all points in P, and the greatest x coordinate among all points in

p with the same y coordinate as p0. The remaining points are

sorted in counterclockwise order when using p0 as a reference

point. In other words, for each i ∈ (0,n), let Li be the line passing

through p0 and pi. Then intersect Li with a horizontal line at p0
and define ∠i to be the top-right angle of the intersection. P is

ordered so that ∠i < ∠i+1 for all i.
With these assumptions, C defines the convex hull of P iff the

following conditions hold:

1. C ⊆ P.

2. p0 ∈C and for all i ∈ (0,n), pi ∈C or the angle defined by

the points (prvi, pi,nxti) bends inwards, where prvi and

nxti are the first points before and after pi in P that are also

in C. If no such nxti exists, then nxti = p0.

Condition 1 ensures that C contains no points outside P. Since P
is sorted, Condition 2 guarantees that C contains all the points of

P that lie on the convex hull of P.

TS nondeterministically chooses C and then checks the above

conditions. The size of CTS is in O(n2). (In particular, for each

pi, TS needs to iterate through P again to find prvi and nxti.).

1 int X_PROD(p, q, r) {
2 return (q.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.x-p.x)
3 }
4 void 2d_convex_hull_efficient(n, P, C) {
5 int k;
6 havoc k;
7 point nxt, prv;
8 havoc nxt; // nxt0
9 prv = P[0]; // prv1

10 havoc C[0]; assume C[0] == prv;
11 int count = 1;
12 for (int i = 1; i < n; i++) {
13 point cur = P[i];
14 if (nxt == cur) { // P[i] in C
15 havoc C[count]; assume C[count] == cur;
16 // get nxti because nxti−1 �= nxti
17 havoc nxt; // nxti
18 // angle (prv, cur, nxt) must bend inwards
19 assume X_PROD(prv, cur, nxt) > 0;
20 prv = cur; // prvi+1
21 count++;
22 } else { // P[i] !in C
23 // nxti = nxti−1; prvi+1 = prvi
24 assume X_PROD(prv, cur, nxt) < 0;
25 }
26 }
27 assume nxt == P[0];
28 assume k == count;
29 }

Figure 8: Pseudocode of TE for 2D Convex Hull.

We use Graham Search as the TI for this problem. For each

of the n points, TI needs two STORE operations and two dynamic

LOAD operations.

TE is shown in Fig. 8. It nondeterministically chooses k, C,

and the points nxti, then it iterates over the pi and checks all

relevant conditions in constant time for each i. The refinement

proof showing TI ≤ TS uses the fact that TI computes the points

in C in the order in which they appear in P. Moreover, the nxti
can be computed by TIE using a simple linear scan of the final C.

To see that TE yields smaller constraints than TI , observe that

only the array access of C[count] on Line 15 is dynamic and

incurs the cost of two LOADs (one for each coordinate of the

point). Also, there are no STORE operations. (Recall that a havoc

command stands for augmented code in TIE . Hence, it does not

contribute to CTE .) So TE only performs two dynamic LOAD oper-

ations per iteration. The cost of a STORE depends on how deeply it

is nested in conditionals whereas the cost of a LOAD does not [91,

§3.1]. Specifically, each STORE in TI is four times more expensive

than a LOAD in TE . We therefore expect that the size of CTE is

about five times smaller than that of CTI .

If we consider the variant where the problem is not to enumer-

ate C but to compute its characteristic function on the indices of

P (that is, mark the points in P that belong to C), then we can

eliminate all dynamic LOAD operations from TE and achieve an

asymptotic log(n) factor improvement over TI .

1121

5.4 Maximal Strong Components
Given a directed graph G = (V,E) with nodes V and edges E ⊆
V ×V , the problem is to partition V into the maximal strongly

connected components C0, . . . ,Ck−1 of G. We represent the Ci
implicitly using an array rank that maps every node v ∈ V to

the index of its maximal strongly connected component. That

is, we define for all i ∈ [0,k), Ci = {v ∈V | rank[v] = i}. Given

this, the formal problem statement is to find k and rank such that

the following three conditions hold:

1. For all v ∈V , 0 ≤ rank[v]< k.

2. For all i ∈ [0,k), there exists a cycle ci in G that visits exactly

the nodes in Ci.

3. For all i ∈ [0,k) and all cycles c in G, if c visits some node

in Ci then c visits only nodes in Ci.

TS encodes the above specification by nondeterministically choos-

ing k, rank[v] for each node v ∈V , and the cycles ci for each com-

ponent i ∈ [0,k). Condition 3 quantifies over the set of all cycles

in G, which is in general an infinite set. However, it can be shown

that restricting the quantification to simple cycles in G yields

an equivalent condition. A simple cycle is a path where only

the first and last node are equal and all other nodes are distinct.

The condition that quantifies over simple cycles can be encoded

using a nested loop that iterates over all partial permutations p
of nodes in G and then checks that if p forms a simple cycle in

G and intersects with a Ci, then it is fully contained in Ci. As the

number of partial permutations grows exponentially with |V |, so

does |CTS |.
We use Dijkstra’s MSC algorithm [33, Chapter 25] as our TI .

The algorithm iterates over E and V . In each iteration, it performs

up to 13 LOAD and 8 STORE operations. These operations dominate

the size of the generated constraints.

However, we can again construct a TE that improves over both

TI and TS. The key idea for TE comes from Dijkstra’s correct-

ness argument for his algorithm. Dijkstra observed that a set

of connected components C0, . . . ,Ck−1 is maximal iff it can be

ordered so that all edges leaving a Ci target only nodes in compo-

nents preceding Ci. Given Dijkstra’s observation, we can replace

Condition 3 in TS with the following condition in TE :

3∗. For all (v,w) ∈ E, rank[w]≤ rank[v].

Replacing Condition 3 by 3∗ yields a refinement of TS.

Additionally, Condition 2 can be reformulated as a Condi-

tion 2∗ that no longer relies on the construction of explicit cycles

ci connecting the nodes in each component. We observe that the

nodes in each Ci can be arranged in a tree that implicitly wit-

nesses the existence of an appropriate ci (which we use in the

TE ≤ TS proof). The tree reflects the way TI traverses the nodes in

V and collapses candidate components whenever a node is revis-

ited. These trees can be obtained from TI using an augmentation

that does not increase TI’s asymptotic complexity. We use this

augmentation to establish Condition 2∗ when proving TI ≤ TE .

Further details, including how Condition 2∗ is expressed, are

described in Appendix B [48]. What is important is that the

combined size of these trees is linear in |V | and so is checking

their correctness. As a result, for dense graphs (|E| ≈ |V |2), the

cost to enforce Condition 2∗ is insignificant. A detailed cost

analysis yields an expected reduction in total constraint size for

dense graphs by a factor of 17.5 for sufficiently large |E|. For

shallow graphs (|E| ≈ |V |), we still obtain a reduction by a factor

of two. The principal savings come from the fact that conditions

3∗ and 2∗ can be checked by TE (in the sense of validated inside

an assume) with many fewer LOAD and STORE operations versus

TI .

Dijkstra’s MSC algorithm is similar to Tarjan’s algorithm [85].

We note that earlier work [24] already proposed an efficient

checker for certifying the output of Tarjan’s algorithm. Their

approach shares with ours that it constructs trees from the graph

to efficiently check whether the computed components are con-

nected. However, the details of how these trees guarantee the

existence of a cycle for each component differ from the trees used

by our TE . Moreover, their approach does not immediately yield

an efficient encoding into constraints.

5.5 Minimum Spanning Tree
Given a connected graph G= (V,E)where undirected edges have

unique positive weights, the problem is to find M, the unique

minimum weight connected spanning subgraph of G. M is called

the minimum spanning tree (MST) of G. A natural, yet crude,

specification is: M is a set of |V | − 1 edges that is connected

and spanning, and all other sets of |V |−1 edges are either not

connected, not spanning, or heavier than M. The TS that would

encode this specification is exponential in |V | because it needs

to consider all
(|E|
|V |−1

)
candidates for M.

We will use an alternate definition for MST that leads to a

more efficient TS. Specifically, an MST, M, is the unique set of all

edges that are not the heaviest in any cycle [76]. There are exactly

|V |−1 edges with this property. Thus, for all edges e∈ E \M, e is

the heaviest in at least one cycle. Our TS encodes this specification

by nondeterministically picking an alleged MST M̃ and then for

each e ∈ E \ M̃ (there are |E|− |V |+1 such edges), providing a

cycle where e is heaviest. Notice that there is no need to explicitly

consider edges e ∈ M̃: after eliminating all |E|− |V |+1 edges

that are heaviest in some cycle, the remaining |V |−1 edges (M̃)

are the unique MST. Cycles are O(|V |) edges in the worst case,

and there are O(|E|) edges outside of M, so the complexity of

this TS is dominated by O(|V | · |E|) edge lookups.

We use Kruskal’s algorithm [54] as our TI . It starts with M
empty, sorts edges by weight, and iteratively adds edges to M if

they don’t form a cycle. This algorithm uses a Disjoint Set data

structure to keep track of components of M and detect cycles.

This data structure forms a partition of V into equivalence classes

where two vertices are in the same class if they are connected

by edges that have already been considered by the algorithm.

Thus, when considering whether an edge e does or doesn’t form a

cycle with previous edges, Kruskal’s algorithm need only check

whether both endpoints of e are in the same equivalence class; if

so, e is not added to M, and if not, e is added and the equivalence

classes are merged.

The specific operations supported by a Disjoint Set data struc-

ture are:

• MAKE-SET(v): turn vertex v into a singleton set.

1122

• FIND-SET(v): return a unique identifier (root vertex) for the

set containing v; also, re-parent all vertices on the path from v
to the root to point directly to the root.

• UNION(u, v): take two different set identifiers (vertices u and v)

and join the two sets together. Some bookkeeping happens to

minimize the depth of the union, which keeps FIND-SET calls

cheap.

MAKE-SET and UNION both use O(1) memory operations. We

use an implementation [86] of this data structure in which

FIND-SET(v) has an average-case complexity of O(α(|V |)) mem-

ory operations (where α is the inverse Ackermann function) and

a worst-case complexity of O(log |V |) memory operations.

Given the amortized complexity of FIND-SET(v), there are

two ways to compile TI to constraints. One option is to unroll all

FIND-SET(v) operations to their worst case O(log |V |) bounds.

An alternative is to collect all nested loops into a state machine (as

described in Buffet [91, §4]). The former results in O(|E| · log |V |)
RAM operations (§2) with a small constant. The latter has better

asymptotics, only requiring O(|E| ·α(|V |)) RAM operations, but

the overhead of the state machine introduces a large constant.

Our TE achieves both good asymptotics and a small constant.

It builds on the idea behind widgets—checking FIND-SET rather

than actually executing its logic—and introduces other techniques.

The techniques are more fully described in Appendix C [48]. At a

high level, our TE nondeterministically receives the MST M and

the history H of the Disjoint Set operations; its constraints check

the validity of M and H with respect to the input, the algorithm,

and the data structure specification. This approach can be under-

stood as directly encoding a special-purpose memory, namely

the Disjoint Set data structure, as opposed to implementing that

data structure on a general-purpose RAM (§2).

TE represents the history of H as a table of tuples, where each

tuple contains: the operation being performed (FIND-SET, UNION,

and UPDATE, which is a new operation that abstracts steps of the

implementation of FIND-SET, described further below), a vertex,

its old parent, its new parent, and the weight of the edge being

examined by this operation.

To check H and M, TE needs to:

1. Check that M is a (|V |−1)-sized subset of E;

2. Check H is consistent by verifying consistency between the

old and new parent in consecutive operations on the same

vertex;

3. Check that the data structure is consistent by ensuring

MAKE-SET, FIND-SET, and UNION behave correctly and pre-

serve the invariants of the Disjoint Set;

4. Check that for each edge e not in M, H reports that the

endpoints of e are in the same set; and

5. Check that for all edges in M, H reports that the endpoints

of each edge are in different sets and that the history merges

those sets.

As an example, we elaborate on how to check that all FIND-SET
operations are consistent (one component of the third check). Re-

call from earlier that a FIND-SET involves a sequence of re-parent

operations. TE encodes that sequence using the aforementioned

UPDATE. We now define UPDATE by way of an example. Consider

a tuple with (UPDATE,u,v,w,23). The meaning of this tuple ap-

pearing in H is that the prover is claiming that at the moment that

the edge e with weight 23 was considered, one of e’s endpoints

was u, which had parent v in the Disjoint Set data structure; the

parent of u was then immediately rewritten to be w.

Now, for a given FIND-SET operation to be validated, one re-

quires the following. First, the corresponding FIND-SET tuple in

H is followed by a sequence of consecutive UPDATE tuples. Sec-

ond, in those tuples, the old parent must be the vertex of the next

tuple in the sequence (informally: the algorithm is progressing

toward the root). Third, in those tuples, the new parent must be the

vertex of the last tuple in the sequence (informally: the algorithm

re-parents consistently). Fourth, the last UPDATE must have the

vertex, old parent, and new parent all equal to each other (infor-

mally: the sequence ends at a root). To be clear, these properties

are necessary but not sufficient to validate FIND-SET; another

requirement is that the other numbered steps above hold (not just

step 3), for example, H must be consistent. Of course, constraints

that encode TE enforce all of these properties and conditions.

Qualitatively, this approach discards what would either be

nested loops (from worst-case unrolling of FIND-SET) or a state

machine (whereby nested loops are flattened) in TI . Note that TE
still pays for each FIND-SET, but crucially, the cost shows up only

in H and only in terms of the number of UPDATE operations actu-
ally required for that particular FIND-SET call. The underlying

idea is that because TE semantically understands “update on the

Disjoint Set”, TE translates that operation directly to constraints

instead of encoding the program logic (conditional statements,

LOADs, STOREs) that would be acting on the Disjoint Set.

Quantitatively, we make this point by comparing the core ap-

proach in TE—encoding the Disjoint Set as its own primitive—

to encoding the history of Disjoint Set on top of RAM (§2),

specifically Buffet-style RAM [91, §3]. Individual Disjoint Set

operations in TE are 2.5× more expensive than RAM operations

because they use 5-tuples instead of 4-tuples (a 1.25× increase)

and require 2 full transcript sorts instead of just 1 (a 2× increase).

However, these increases are swamped by savings from removing

the need for nested loop unrolling or a state machine. On all input

sizes, TE outperforms both versions of TI . On large inputs, TI
with a state machine outperforms TI with loop unrolling; on such

inputs, TE requires 52.2× fewer constraints than the better TI . TE
also sees additive improvements when |E| � |V |; these are due

to further techniques described in Appendix C [48].

Although we have focused on the specific example of the Dis-

joint Set data structure, as used by Kruskal’s algorithm, the tech-

nique introduced here is much more general: it applies to any

amortized data structure.

6 Experimental evaluation

This section answers the following questions:

(1) How difficult is it to build an end-to-end system for proba-

bilistic proof checking based on Distiller?

(2) Does Distiller increase confidence in the correctness of wid-

gets?

(3) Can we empirically achieve a constraint size reduction when

using Distiller with existing front-ends?

1123

Figure 9: Relative |C | for TS (orange) and TE (blue) compared to the baseline TI (red). The graph shows the problems where CTE improves over CTI by

a constant factor (in the limit). The columns show the measurements obtained for the largest problem instances for which Pequin is able to compile TI
without timing out. In many benchmarks, the run time of TS of the largest problem instance exceeds the timeout threshold. We use “T/O” to denote

these cases. The error bars indicate the spread of the measurements obtained for smaller problem instances. For the Pattern Matching problem (KMP)

we have TS = TE .

(a) Merge (b) Binary Search (w/o RAM init.) (c) 2D Convex Hull (marking nodes)

Figure 10: Relative |C | for TS (orange) and TE (blue) compared to the baseline TI (red) for the problems where CTE improves asymptotically over CTI

with increasing input size. TI is omitted for the variant of the 2D Convex Hull problem considered here because the improvement is so vast.

End-to-end system. To answer the first question, we implement

our framework (§4) in a system also called Distiller. The system

takes TS, TE , and TI as input. The system partially automates the

refinement proofs and implements the new probabilistic proof

pipeline proposed in Section 4.2. The input transition systems are

expressed in a simple imperative programming language. Dis-

tiller’s input format enables the user to augment these transition

systems with ghost code to be used in the refinement proofs, for

Correctness and for Coupling.

To check Correctness, the system generates skeletons of the

refinement proofs TI ≤ TE and TE ≤ TS from its input. The proof

skeletons are expressed in the Viper intermediate verification

language [69]. The user can augment these proof skeletons with

proof annotations (e.g. loop invariants) and then check them

using the Viper verification tool. For the proof of TI ≤ TE , the

system computes the transition system T̂IE by replacing all assume

statements coming from TE by assert statements. Viper checks

that these assert statements are safe. The tool also checks that

the proof annotations are correct. In particular, it checks that

all user-provided loop invariants are indeed inductive. Distiller

proceeds similarly for the proof of TE ≤ TS.

To enable Coupling, Distiller takes TE from its input and trans-

lates it to the language accepted by the Pequin toolchain [75],

which is a subset of C, extended with domain-specific constructs.

Distiller also takes T̂IE from the previous step and extracts the

program TIE , which it translates to a standard C program. The

two generated programs are then fed into Pequin. Pequin in turn

compiles TE to constraints CTE , runs TIE , and feeds the values

into CTE .

One of the constructs that Pequin supports is assertions. Each

assertion translates to R1CS constraints checking that the asser-

tion holds. Distiller uses this construct to compile the assume

statements in TE . Another Pequin construct is exo_compute, a

hook allowing the prover to execute a program that produces

values for arbitrary nondeterministic inputs to the generated con-

straints. This feature enables the prover to run TIE and supply the

auxiliary inputs to CTE when solving the constraints.

We perform an end-to-end evaluation of the resulting prob-

abilistic proof pipeline composed of Distiller and Pequin for a

select subset of our benchmarks. As a basic test of End-to-end

Completeness, we apply the pipeline to the encoded benchmarks

and successfully run it on a range of inputs. We note that the

1124

overhead of executing TIE versus TI in the solving step is neg-

ligible compared to the rest of the pipeline (recall that Step 3

contributes negligibly to costs in the first place; §2). As a basic

test of End-to-end Soundness, we also run Distiller with buggy

versions of the TIE . In these cases, the back-end correctly rejects

the computation.

Improved Reliability. To answer Question (2) we check the TI ≤
TE and TE ≤ TS proofs for 10 of our 11 benchmark problems (§5)

using Viper. We omit the MST benchmark in this experiment

because, here, TS also encompasses the specification of a refined

RAM, making the proof mechanization more elaborate.

Viper verifies all proofs. However, for two of the benchmarks

we discovered bugs in the initial version of TE . These bugs would

have compromised End-to-end Soundness (§2). One bug was a

missing array bounds check in TE of the merge computation (§3).

The other one was a subtle omission of a check in TE for the Sum

of Powers problem [33, Chapter 19]. We discovered these bugs

when trying to annotate the respective TE to prove TE ≤ TS.

Constraint size reduction. Recall that our primary perfor-

mance metric is |C | (§2). Our final experiment assesses Distiller

against this metric. For all of our benchmarks, we generate TI , TE ,

and TS as input programs for Pequin to be compiled to constraints.

Then, with the exception of MST, we run Pequin’s front-end on

all three programs for a range of values for the loop unrolling

bound that determines the maximal input size for each bench-

mark problem. As MST relies on a refined RAM construct that

is not available in Pequin, we calculate the size of the constraints

generated by all RAM operations by hand and run Pequin on

the rest of the program. We then combine the result of the two

parts to obtain the final constraint size. We enforce a timeout

threshold of 240s per run, with the exception of MSC and MST,

where a 2000s threshold is chosen to enable computations on

larger problem instance sizes that demonstrate the exponential

behavior of TS. For each successful run, we measure the size of

the generated R1CS constraints and compute the relative sizes of

CTS and CTE compared to CTI .

Figure 9 shows the results for the benchmarks where our theo-

retical analysis yields an improvement of TE over TI that converges

to a constant factor with increasing problem instance size (Fig. 5).

The results closely match our analysis. We note that for the MSC

problem (§5.4), the relative improvement between TE and TI
increases with the problem instance size. The maximal MSC

instance size for which the translation of TI does not time out

is n = 20,m = 400. This is still too small to observe the 17.5×
theoretical improvement that we predict for dense graphs. Con-

versely, for the MST problem TI has a large constant overhead

that causes the improvement achieved with TE to be 3× larger on

small instances than the predicted 52.5× improvement for large

problem instances. Finally, for binary search (BinS) we observe

that the cost of storing the input array A into RAM, which is linear

in the size of the array, dwarfs the log(n) improvement achieved

for a single invocation of the binary search (§5.2).

Figure 10 shows the results obtained for the three problems

where our theoretical analysis predicts that TE performs asymp-

totically better than TI with increasing problem instance size. The

experiment again confirms our predictions. In particular, for the

merge problem discussed in §3, Figure 10a shows that |CTE |/|CTI |
is approximately hyperbolic, which we expect because the pre-

dicted improvement for each point is L×, where L is the number

of merged arrays. Also, if we discount the RAM initialization

cost for binary search, then we see the expected log(n) factor

improvement (Fig. 10b).

7 Other related work

Probabilistic proofs. Section 2 gave an overview of probabilis-

tic proof implementations, covering back-ends and front-ends;

see also [87, 90, 93]. Unlike Distiller, none of the front-ends

achieves all three requirements stated in the Introduction; in fact,

none creates a framework for proving the correctness of widgets.

Distiller combines formal methods and probabilistic proofs.

Very few works live at this intersection. Some notable exceptions

are as follows. CirC [71] is a toolkit for building compilers to a

family of constraint formalisms, including R1CS and SMT in-

stances. Its architecture takes advantage of the rich SMT toolbox,

allowing users to build powerful analyses and optimizations. The

two works are complementary: one could compile a Distiller-

verified widget in CirC, to get further reductions.

The Orbis Specification Language (OSL) [88] has a similar

ideology to ours: replace a computation with its formal specifica-

tion, and compile the latter to constraints, in the hope of gaining

more concise constraints. However, as our examples (§5) make

clear, the cost of a naive specification is often exorbitant. So one

has to identify an “in-between” specification, and (a) relate it to

the abstract specification, and (b) derive an implementation that

knows how to satisfy the in-between specification or the origi-

nal. Neither of these problems is addressed by OSL. The authors

mention that they want to synthesize implementations from speci-

fications. Though, for the rich specification language we consider

(general transition systems), whether a specification even has an

implementation is undecidable. Thus, to instantiate the ideology

that OSL and we share, one needs human input (to write down

TE , and relate it to the specification and the implementation).

In an under-appreciated work, Fournet et al. [38] develop a

compiler, based on CompCert [60], that formally connects the

semantics of a higher-level program to the constraint formalism

(specifically R1CS constraints). This work is complementary to

Distiller—it provides Translation Fidelity (§2).

Leo [30] also has the goal of formally verified translations to

constraints. Leo develops a compiler and uses the ACL2 [50]

theorem prover to validate each stage of translation. However, this

falls short of a verified compiler, as in Fournet et al. Moreover,

the authors of Leo want to validate hand-crafted gadgets. It is not

clear how to do this, since ACL2 cannot easily “reverse” R1CS

instances to lift them to higher-level semantics. As a consequence,

crucial pieces of verification are works in progress [30, §6.4]. By

contrast, Distiller incorporates widgets soundly and completely,

by treating them at the source code level and using refinement.

Another orthogonal work that combines formal methods and

probabilistic proofs is zero knowledge abstract interpretation [36].

Here, the problem is to devise a scheme that enables a prover to

convince a verifier of the result of a static program analysis run

without revealing the analyzed program.

1125

Refinement. The idea of developing a program from a specifi-

cation in a step-wise refinement process goes back to early work

by Dijkstra [32, 33] and Wirth [97]. The formal concept of refine-

ment relations and mappings to relate the observable behaviors of

transition systems was first explored in the 1980s [56, 57, 63]. It

is a cornerstone of modern Formal Methods; applications include

reasoning about concurrent and distributed systems, establishing

program equivalence, and verifying security properties.

Abadi and Lamport [1] showed that refinement mappings yield

a complete proof technique for establishing refinement. Though,

in general, the technique requires the transition systems to be

augmented with history variables (recording information about

past states) and prophecy variables (predicting information about

future states). Other related proof techniques for establishing

refinement, for instance, based on (weak) simulation relations [66,

72, 89] are less suited for our purposes as they do not immediately

provide a blueprint for computing satisfying assignments.

The notion of refinement considered in Distiller takes a mono-

lithic view of transition systems, which makes it difficult to reason

compositionally about subroutines. Contextual refinement [37] re-

lates the observable behavior of subroutines subject to all possible

client programs that may use them, thereby enabling composi-

tional reasoning. For the relatively simple programming models

supported by most existing probabilistic proof front-ends (no

concurrency, object-oriented features, or higher-order functions),

considering contextual refinement instead of global refinement
does not add substantial complexity to the verification effort.

Distiller uses mechanized proofs (§6). Specifically, it uses a

lightweight encoding of refinement proofs in the language of the

deductive program verifier Viper [69]. The proofs are partially

automated using SMT solvers. However, this is a choice. Nothing

in our approach precludes or necessitates particular approaches

to mechanization. In particular, there is a large body of work on

refinement calculi that mechanize the correct step-wise refine-

ment of programs and system models [2, 10, 65, 67, 68]. More

recently, the many applications of proofs concerning products and

couplings of two or more programs have fueled the development

of relational program logics that provide frameworks for proof

mechanization [11–13, 21, 39, 84, 99]. Several of these formal

reasoning systems have been implemented in tools, including for

instance TLA+ [58], Rodin [3], EasyCrypt [14], and ReLoC [39].

8 Discussion and conclusion

Distiller improves a key metric in implementations of probabilis-

tic proofs, namely the number of arithmetic constraints required

to encode the validity of the execution of a computation. The

improvements typically range from small integer factors to or-

ders of magnitude, depending on the computation. Distiller also

introduces, for the first time, a framework for widgets that are

correct by construction. This framework radically expands the

space of potential widgets, thereby allowing probabilistic proofs

to do much more, by paying much less.

The primary remaining verification gap is that we do not ver-

ify our tools, including the translator to the two targets, Pequin

and Viper itself. This is not a fundamental limitation. In fact,

we are encouraged by certified compiler work in this research

area [38] to guarantee Translation Fidelity (§2). The TCB can

be further reduced by using a verification toolchain with a small

trusted core [6] (at the expense of reduced proof automation), or

by deploying validation techniques that produce certificates for

automatically generated proofs [34, 74].

Another limitation is that widgets are constructed manually.

Identifying a TE that slashes constraint size relative to TS and

TE , and then proving its correctness can take significant time

and effort. A promising direction for future work is to adapt

techniques from program synthesis [4] and superoptimizing com-

pilers [49, 83] to automate these steps.

The code for Distiller is available at: https://github.com/
PepperSieve/vprexocompiler

Acknowledgments
We thank Sebastian Angel, Jacob Salzberg, Justin Thaler, and

Riad Wahby for helpful conversations. This research was sup-

ported by DARPA under Agreement No. HR00112020022, NSF

under grant CNS-1514422, and AFOSR under grant FA9550-18-

1-0421. Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the authors and do

not necessarily reflect the views of the United States Government,

DARPA, NSF, or AFOSR.

References
[1] Martín Abadi and Leslie Lamport. The existence of refinement

mappings. Theor. Comput. Sci., 82(2):253–284, 1991.

[2] Jean-Raymond Abrial. The B-book - assigning programs to
meanings. Cambridge University Press, 1996.

[3] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede,

Thai Son Hoang, Farhad Mehta, and Laurent Voisin. Rodin:

an open toolset for modelling and reasoning in Event-B. Int. J.
Softw. Tools Technol. Transf., 12(6):447–466, 2010.

[4] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-

Lezama. Search-based program synthesis. Commun. ACM, 61

(12):84–93, 2018.

[5] Sebastian Angel, Andrew J. Blumberg, Eleftherios Ioannidis, and

Jess Woods. Efficient representation of numerical optimization

problems for SNARKs. In USENIX Security, 2022.

[6] Andrew W. Appel. Program Logics - for Certified Compilers.
Cambridge University Press, 2014.

[7] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs:

A new characterization of NP. J. ACM, 45(1), 1998.

[8] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,

and Mario Szegedy. Proof verification and the hardness of ap-

proximation problems. J. ACM, 45(3), 1998.

[9] László Babai, Lance Fortnow, Leonid A Levin, and Mario

Szegedy. Checking computations in polylogarithmic time. In

ACM STOC, 1991.

[10] Ralph-Johan Back and Joakim von Wright. Refinement Calculus
- A Systematic Introduction. Graduate Texts in Computer Science.

Springer, 1998.

1126

[11] Anindya Banerjee, Ramana Nagasamudram, David A. Naumann,

and Mohammad Nikouei. A relational program logic with data

abstraction and dynamic framing. ACM TOPLAS, jul 2022.

[12] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin.

Formal certification of code-based cryptographic proofs. In

POPL, pages 90–101. ACM, 2009.

[13] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Beyond 2-

safety: Asymmetric product programs for relational program ver-

ification. In LFCS, volume 7734 of LNCS, pages 29–43. Springer,

2013.

[14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César

Kunz, Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A

tutorial. In FOSAD, volume 8604 of LNCS, pages 146–166.

Springer, 2013.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable

zero knowledge via cycles of elliptic curves. In CRYPTO, August

2014.

[16] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran

Tromer. Fast reductions from RAMs to delegatable succinct

constraint satisfaction problems. In ITCS, January 2013.

[17] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,

and Madars Virza. SNARKs for C: Verifying program executions

succinctly and in zero knowledge. In IACR CRYPTO, 2013.

[18] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars

Virza. Succinct non-interactive zero knowledge for a von Neu-

mann architecture. In USENIX Security, 2014.

[19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.

Scalable, transparent, and post-quantum secure computational

integrity, 2019. URL https://ia.cr/2018/046.

[20] Václav E. Beněs. Mathematical Theory of Connecting Networks
and Telephone Traffic. Academic Press, 1965.

[21] Nick Benton. Simple relational correctness proofs for static

analyses and program transformations. In POPL, pages 14–25.

ACM, 2004.

[22] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakr-

ishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang.

Ligero++: A new optimized sublinear IOP. In ACM CCS, 2020.

[23] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Check-

ing the correctness of memories. In Proceedings 32nd Annual
Symposium of Foundations of Computer Science, pages 90–99,

1991.

[24] Tadej Borovšak and Jurij Mihelič. Certifying algorithm for

strongly connected components. In International Electrotechni-
cal and Computer Science Conference, 09 2016.

[25] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,

Pratyush Mishra, and Howard Wu. Zexe: Enabling decentral-

ized private computation. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 947–964, 2020.

[26] Benjamin Braun. Compiling computations to constraints for veri-

fied computation. UT Austin Honors thesis HR-12-10, December

2012.

[27] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,

Andrew J. Blumberg, and Michael Walfish. Verifying computa-

tions with state. In ACM SOSP, 2013.

[28] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and

Nicholas Spooner. Proof-carrying data from accumulation

schemes. In IACR TCC, 2020. URL https://ia.cr/2020/499.

[29] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra,

Noah Vesely, and Nicholas P. Ward. Marlin: Preprocessing zk-

SNARKs with universal and updatable SRS. In IACR Eurocrypt,
2020.

[30] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio,

Eric McCarthy, and Eric Smith. Leo: A programming language

for formally verified, zero-knowledge applications. Cryptology

ePrint Archive, Report 2021/651, 2021. URL https://ia.cr/
2021/651.

[31] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,

Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee

Zahur. Geppetto: Versatile verifiable computation. In IEEE
Security & Privacy, 2015.

[32] E. W. Dijkstra. A constructive approach to the problem of pro-

gram correctness. BIT, 8(3):174–186, sep 1968.

[33] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,

1976.

[34] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy

Katz, Andrew Reynolds, and Clark W. Barrett. SMTCoq: A plug-

in for integrating SMT solvers into Coq. In CAV (2), volume

10427 of LNCS, pages 126–133. Springer, 2017.

[35] Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and

Mikhail Volkhov. Zswap: zk-SNARK based non-interactive multi-

asset swaps. Cryptology ePrint Archive, Paper 2022/1002, 2022.

URL https://ia.cr/2022/1002.

[36] Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang.

Zero knowledge static program analysis. In CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021, pages

2951–2967. ACM, 2021. doi: 10.1145/3460120.3484795. URL

https://doi.org/10.1145/3460120.3484795.

[37] Ivana Filipovic, Peter W. O’Hearn,Noam Rinetzky, and Hongseok

Yang. Abstraction for concurrent objects. In ESOP, volume 5502

of LNCS, pages 252–266. Springer, 2009.

[38] Cédric Fournet, Chantal Keller, and Vincent Laporte. A certi-

fied compiler for verifiable computing. In Computer Security
Foundations Symposium (CSF), pages 268–280, 2016.

[39] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: A

mechanised relational logic for fine-grained concurrency. In

LICS, pages 442–451. ACM, 2018.

[40] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.

Plonk: Permutations over Lagrange-bases for oecumenical non-

interactive arguments of knowledge. Cryptology ePrint Archive,

Report 2019/953, 2019. URL https://ia.cr/2019/953.

[41] Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack:

Practical SNARK aggregation. Cryptology ePrint Archive, Re-

port 2021/529, 2021. URL https://ia.cr/2021/529.

1127

[42] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana

Raykova. Quadratic span programs and succinct NIZKs without

PCPs. In EUROCRYPT, 2013.

[43] Oded Goldreich. Probabilistic proof systems – a primer. Founda-
tions and Trends in Theoretical Computer Science, 3(1), 2008.

[44] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-

edge complexity of interactive proof systems. SIAM Journal on
Computing, 18(1), 1989.

[45] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum.

Delegating computation: interactive proofs for muggles. J. ACM,

62(4), 2015.

[46] Ronald L. Graham. An efficient algorithm for determining the

convex hull of a finite planar set. Inf. Process. Lett., 1(4):132–133,

1972.

[47] Jens Groth. On the size of pairing-based non-interactive argu-

ments. In IACR Eurocrypt, 2016.

[48] Kunming Jiang, Devora Chait-Roth, Zachary DeStefano, Michael

Walfish, and Thomas Wies. Less is more: refinement

proofs for probabilistic proofs (extended version). Cryptol-

ogy ePrint Archive, Report 2022/1557, 2022. URL https:
//eprint.iacr.org/2022/1557.

[49] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Denali: A

goal-directed superoptimizer. In PLDI, pages 304–314. ACM,

2002.

[50] Matt Kaufmann and J. Strother Moore. An industrial strength

theorem prover for a logic based on Common Lisp. IEEE Trans.
Software Eng., 23(4):203–213, 1997.

[51] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xJs-

nark: a framework for efficient verifiable computation. In IEEE
S&P, 2018.

[52] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno.

Poppins: A direct construction for asymptotically optimal zk-

SNARKs. Cryptology ePrint Archive, Report 2020/1318, 2020.

URL https://ia.cr/2020/1318.

[53] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Re-

cursive zero-knowledge arguments from folding schemes. Cryp-

tology ePrint Archive, Report 2021/370, 2021. URL https:
//ia.cr/2021/370.

[54] Joseph B Kruskal. On the shortest spanning subtree of a graph

and the traveling salesman problem. Proceedings of the American
Mathematical society, 7(1):48–50, 1956.

[55] O(1) Labs. Snarky. https://github.com/o1-labs/snarky.

[56] Simon S. Lam and A. Udaya Shankar. Refinement and projection

of relational specifications. In REX Workshop, volume 430 of

LNCS, pages 454–486. Springer, 1989.

[57] Leslie Lamport. What it means for a concurrent program to

satisfy a specification: Why no one has specified priority. In

POPL, pages 78–83. ACM Press, 1985.

[58] Leslie Lamport, John Matthews, Mark R. Tuttle, and Yuan Yu.

Specifying and verifying systems with TLA+. In ACM SIGOPS
European Workshop, pages 45–48. ACM, 2002.

[59] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby.

Linear-time and post-quantum zero-knowledge SNARKs for

R1CS. Cryptology ePrint Archive, Report 2021/030, 2021. URL

https://ia.cr/2021/030.

[60] Xavier Leroy. Formal verification of a realistic compiler. Com-
mun. ACM, 52(7):107–115, 2009.

[61] Xing Li, Yi Zheng, Kunxian Xia, Tongcheng Sun, and John Beyler.

Phantom: An efficient privacy protocol using zk-SNARKs based

on smart contracts. Cryptology ePrint Archive, Paper 2020/156,

2020. URL https://ia.cr/2020/156.

[62] libsnark. libsnark. https://github.com/scipr-lab/
libsnark.

[63] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness

proofs for distributed algorithms. In PODC, pages 137–151.

ACM, 1987.

[64] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meikle-

john. Sonic: Zero-knowledge SNARKs from linear-size universal

and updatable structured reference strings. In ACM CCS, 2019.

[65] Monica Marcus and Amir Pnueli. Using ghost variables to prove

refinement. In AMAST, volume 1101 of LNCS, pages 226–240.

Springer, 1996.

[66] Robin Milner. An algebraic definition of simulation between

programs. In IJCAI, pages 481–489. William Kaufmann, 1971.

[67] Carroll Morgan. The specification statement. ACM Trans. Pro-
gram. Lang. Syst., 10(3):403–419, 1988.

[68] Joseph M. Morris. A theoretical basis for stepwise refinement

and the programming calculus. Sci. Comput. Program., 9(3):

287–306, 1987.

[69] Peter Müller, Malte Schwerhoff, and Alexander J. Summers.

Viper: A verification infrastructure for permission-based reason-

ing. In VMCAI, volume 9583 of LNCS, pages 41–62. Springer,

2016.

[70] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh.

Scaling verifiable computation using efficient set accumulators.

In USENIX Security, 2020.

[71] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: compiler

infrastructure for proof systems, software verification, and more.

In IEEE S&P, 2022.

[72] David Michael Ritchie Park. Concurrency and automata on

infinite sequences. In Theoretical Computer Science, volume 104

of LNCS, pages 167–183. Springer, 1981.

[73] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova.

Pinocchio: Nearly practical verifiable computation. In IEEE
Security & Privacy, 2013.

[74] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers.

Formally validating a practical verification condition generator.

In CAV (2), volume 12760 of LNCS, pages 704–727. Springer,

2021.

[75] Pequin. Pequin: A system for verifying outsourced computa-

tions, and applying SNARKs. https://github.com/pepper-
project/pequin.

1128

[76] Seth Pettie. Minimum spanning trees. In Encyclopedia of Algo-
rithms, pages 1322–1325. Springer, 2016.

[77] J.M. Robson. An O(T log T) reduction from RAM computations

to satisfiability. Theoretical Computer Science, 82(1):141–149,

1991.

[78] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew

Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: De-

centralized anonymous payments from Bitcoin. In IEEE Security
& Privacy, 2014.

[79] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs

without trusted setup. In CRYPTO, 2020.

[80] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, An-

drew J. Blumberg, and Michael Walfish. Taking proof-based

verified computation a few steps closer to practicality. In USENIX
Security, 2012.

[81] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg,

Bryan Parno, and Michael Walfish. Resolving the conflict between

generality and plausibility in verified computation. In EuroSys,
April 2013.

[82] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee.

Proving the correct execution of concurrent services in zero-

knowledge. In OSDI, 2018.

[83] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex

Aiken. Conditionally correct superoptimization. In OOPSLA,

pages 147–162. ACM, 2015.

[84] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying

k-safety properties. In PLDI, pages 57–69. ACM, 2016.

[85] Robert Endre Tarjan. Depth-first search and linear graph algo-

rithms. SIAM J. Comput., 1(2):146–160, 1972.

[86] Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis

of set union algorithms. J. ACM, 31(2):245–281, 1984.

[87] Justin Thaler. Proofs, arguments, and zero-knowledge.

https://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.html, 2022.

[88] Morgan Thomas. Orbis specification language: a type theory

for zk-SNARK programming. Cryptology ePrint Archive, Paper

2022/1003, 2022. URL https://ia.cr/2022/1003.

[89] Rob J. van Glabbeek. The linear time - branching time spectrum

I. In Handbook of Process Algebra, pages 3–99. North-Holland /

Elsevier, 2001.

[90] Riad Wahby. Practical proof systems: implementations, appli-

cations, and next steps. https://www.pepper-project.org/
simons-vc-survey.pdf, September 2019.

[91] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blum-

berg, and Michael Walfish. Efficient RAM and control flow in

verifiable outsourced computation. In ISOC NDSS, 2015.

[92] Abraham Waksman. A permutation network. J. ACM, 15(1):

159–163, jan 1968.

[93] Michael Walfish and Andrew J. Blumberg. Verifying computa-

tions without reexecuting them: from theoretical possibility to

near practicality. Communications of the ACM, 58(2), 2015.

[94] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.

Wolverine: fast, scalable, and communication-efficient zero-

knowledge proofs for boolean and arithmetic circuits. In IEEE
S&P, 2021.

[95] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao

Wang. Mystique: Efficient conversions for zero-knowledge proofs

with applications to machine learning. In USENIX Security, 2021.

[96] Martin Westerkamp and Jacob Eberhardt. zkRelay: Facilitat-

ing sidechains using zkSNARK-based chain-relays. Cryptology

ePrint Archive, Paper 2020/433, 2020. URL https://ia.cr/
2020/433.

[97] Niklaus Wirth. Program development by stepwise refinement.

Commun. ACM, 14(4):221–227, 1971.

[98] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada

Popa, and Ion Stoica. DIZK: A distributed zero knowledge proof

system. In USENIX Security, 2018.

[99] Hongseok Yang. Relational separation logic. Theor. Comput.
Sci., 375(1-3):308–334, 2007.

[100] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-

Silver: Efficient and affordable zero-knowledge proofs for cir-

cuits and polynomials over any field. In ACM CCS, 2021. URL

https://ia.cr/2021/076.

[101] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song.

Transparent polynomial delegation and its applications to zero

knowledge proof. In IEEE S&P, 2020.

[102] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong

Mao, Fan Long, Cong Wang, Dong Zhou, Mingyu Gao, and

Guangyu Sun. Pipezk: Accelerating zero-knowledge proof with

a pipelined architecture. In 48th IEEE/ACM International Sym-
posium on Computer Architecture (ISCA), June 2021.

[103] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Pa-

padopoulos, and Charalampos Papamanthou. vRAM: Faster

verifiable RAM with program-independent preprocessing. In

IEEE Security & Privacy, 2018.

[104] ZoKrates. ZoKrates: A toolbox for zkSNARKs on Ethereum.

https://github.com/Zokrates/ZoKrates.

1129

