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Abstract—Attacks like Spectre abuse speculative execution,
one of the key performance optimizations of modern CPUs. Re-
cently, several testing tools have emerged to automatically detect
speculative leaks in commercial (black-box) CPUs. However, the
testing process is still slow, which has hindered in-depth testing
campaigns, and so far prevented the discovery of new classes of
leakage.

In this paper, we identify the root causes of the performance
limitations in existing approaches, and propose techniques to
overcome these limitations. With these techniques, we improve
the testing speed over the state-of-the-art by up to two orders of
magnitude.

These improvements enable us to run a testing campaign of
unprecedented depth on Intel and AMD CPUs. As a highlight,
we discover two types of previously unknown speculative leaks
(affecting string comparison and division) that have escaped
previous manual and automatic analyses.

Index Terms—Spectre, side-channel-attack, speculative-
execution, random testing, constrained random verification

I. INTRODUCTION

Attacks like Spectre [1] exploit speculative information

leaks, which are a side-effect of performance optimizations in

modern CPUs. These attacks can “trick” a CPU into leaving

traces of secret information that make it accessible to an

adversary, bypassing program-level security checks.

So far, most of the speculative leaks (e.g., those underlying

Spectre [1], Meltdown [2], MDS [3], [4]) have been discovered

in a manual effort, by analysing public documentation, patents,

and by laborious experimentation.

Recently, several tools have emerged to automate this slow

and costly process: White-box approaches [5]–[7] analyse the

processor specification and detect leaks early in the design

process. They have so far been successfully applied to smaller

open-source CPUs. In contrast, black-box approaches [8]–[11]

analyze fabricated chips. They have already been applied to

full-scale x86 CPUs, and are the focus of this paper.

In the absence of a specification, black-box approaches rely

on two kinds of random testing, with different scope:

(i) Template-based tools [8], [9] mutate code-templates

known to trigger speculation. They can detect variants of

known leaks rather than finding new ones.

(ii) Model-based relational tools [10], [11] generate fully

random test cases (instruction sequences and inputs), and

compare the leakage observed on the CPU with that specified

by the leakage model (typically: an ISA-level specification of

the permitted leaks).

Black-box approaches have successfully detected all known

classes of speculative leaks, as well as previously unknown

variants. However, so far they have not discovered any funda-

mentally new kind of speculative leakage. For template-based

tools, this is explained by the scope of the approach. For

model-based tools, this is due to the performance limitations of

the existing approaches, which have been preventing in-depth

testing—until now.

Our approach. In this paper, we present a model-based

approach for detecting speculative leaks in black-box CPUs,

which overcomes the performance limitations of state-of-the-

art tools. We improve the speed of testing by two orders

of magnitude, which enables us to significantly increase the

breadth and depth of our testing campaigns. In our experiments

on Intel and AMD CPUs, we detected two new classes of leaks

that have escaped prior manual and automatic analysis.

Our key observation is that the vast majority of randomly-

generated test cases are ineffective in that they have no chance

of surfacing a speculative leak—yet existing tools [10], [11]

still include them in the expensive leakage analysis, e.g., based

on symbolic execution.

This observation motivated us to (i) identify the characteris-

tics of effective test cases; (ii) enforce generation of such test

cases where possible; and (iii) design lightweight methods for

filtering ineffective test cases. Thus, we are able to dramati-

cally speed up the testing campaigns by either generating test

cases that are effective by design, or pruning ineffective test

cases before they undergo any expensive leakage analysis.

Characteristics of effective test cases. Our goal is to identify

programs that speculatively leak more information than what

the CPU leakage model prescribes. Technically, this requires

executing a program with two different inputs so that both ex-

ecutions agree on the leakage according to the leakage model

(which we call model trace), but differ on the measurements

made on the actual CPU (which we call hardware trace). The

following conditions are necessary for this to happen:

1) The program misspeculates, i.e., there are transient in-

structions that are issued but never retire;

2) The transient instructions affect the hardware trace, i.e.,

transient leakage becomes observable;

3) The program inputs result in identical model traces, which

makes it possible to compare hardware traces that witness

transient leakage.

Our preliminary measurements show the potential of lever-
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aging these conditions: with randomly generated programs

and inputs, condition 1 is satisfied in only 13% of the cases,

condition 2 is satisfied in only 7% of the cases, and less than

6% of the inputs satisfy condition 3. It means that, overall,

less than 0.5% of program-input combinations are effective.

Improving test case effectiveness. We next explain how we

check conditions 1 and 2, and how we ensure condition 3 by

design, with the following techniques:

1) Speculation filtering: To check for misspeculation (con-

dition 1) during execution of a test case, we leverage signals

from the CPU’s internal state by monitoring speculation-

related performance counters. This technique is inspired

by [12] where it was used for manual analysis; here we

leverage it for automated test case pruning.

2) Observation filtering: To check for visibility in the

hardware trace (condition 2), we modify the program by

inserting a serialization fence after every instruction, and

then compare the execution of the original program with the

serialized version. A discrepancy between the hardware traces

indicates that the original test case encountered speculation

that is visible in the trace.

3) Contract-driven input generation: To generate input

pairs with identical model traces (condition 3), existing tools

rely on accidental matches during random sampling [11] or

on symbolic execution [10], which are wasteful and slow,

respectively. We propose a technique based on dependency

tracking to identify registers and memory locations that can

be varied while keeping the leakage model traces identical.

Compared to prior work, this technique turns out to be

effective and fast.

Implementation and experiments. We implement these tech-

niques on top a model-based tool called Revizor [11]. Our

implementation targets x86-64 CPUs.

To showcase the techniques, we run a testing campaign with

130 million test case executions, over 13 subsets of the x86

ISA. The highlights are:

• The techniques speed up testing by two orders of mag-

nitude. With the current state-of-the-art [11], this campaign

would have required over 2 months. With the techniques we

describe in this paper, the campaign took only 16 hours.

• During this campaign we discovered two new speculative

leaks based on undocumented kinds of speculation in 64-bit

division and string comparison operations. We describe them

in Section II.

We further perform an in-depth analysis of how our tech-

niques contribute to this result:

• Speculation and observation filters consistently improve

the testing speed. The largest speedups of an order of mag-

nitude are achieved for programs generated from ISA subsets

that never experience speculation, because virtually all test

cases are filtered out. The smallest speed-ups are found in

the instruction sets where speculation is ubiquitous (e.g.,

conditional branches that trigger Spectre V1), where a large

portion of the test cases passes the filters.

• Contract-driven input generation reliably increases the

number of detected leaks compared to random testing. This is

Information Leakage Detected?
x86-64 Subset Intel AMD

Core6 Core8 Xeon Epyc

cond: Conditional branches X X X X

strn: String operations X X X X

dmul: Division and multiplication X X X ×
flag: Operations on flags × × × ×
lock: Atomics w/ LOCK prefix × × × ×
atom: Atomics w/o LOCK prefix × × × ×
dxfr: Data transfer (load/store) × × × ×
setc: Conditional byte set × × × ×
nop : NOP instructions × × × ×
logi: Logical operations × × × ×
conv: Data type conversion × × × ×
cmov: Conditional moves × × × ×
bit : Bit test and bit scan × × × ×

All except cond, dmul, strn × × × ×

Fig. 1. Summary of the main testing campaign. The testing targets are: Intel
i5-6500 (Core6); Intel i7-8650U (Core8); Intel E-2288G (Xeon); AMD EPYC
7543P (Epyc). All microcode patches were enabled. The campaign analyzed
13 subsets of the x86-64 ISA (details in Appendix A). Each subset was tested
with 100’000 randomly generated programs, and each program executed with
100 inputs, amounting to 130 million test case executions per target.

because it increases the number of inputs satisfying condition

3 to over 99%, and achieves that with about 100x less

performance overhead compared to symbolic execution-based

input generation.

• For leaks that are already detected by the random base-

line, our techniques reduce the detection time by a factor of

10–50. For the new speculative leaks, our techniques were

instrumental for detecting them during our testing campaign.

The source code is publicly available under:

https://github.com/microsoft/sca-fuzzer

Responsible disclosure. We disclosed our findings to Intel

and AMD. Both vendors acknowledged and confirmed the

findings.

II. DISCOVERED SPECULATIVE LEAKS

In this section, we describe two new speculative leaks that

we discovered with the techniques presented in this paper.

The discoveries became possible due to the improved testing

speed, which enabled us to dramatically increase the depth and

breadth with which we scrutinize the ISA, and made feasible

the testing campaign in Figure 1.

This section describes only the leaks themselves; a reader

interested in the process of their discovery can find a detailed

walk-through in Appendix B.

A. SCO: String Comparison Overrun

The first new speculative leak we found affects all four

CPUs we tested (both Intel and AMD). It is caused by string

instructions prefixed by REPE (repeat while equal) and REPNE

(repeat while not equal)1. With these prefixes, the following

instruction is repeated the number of times indicated in the

count register, or until the termination condition is met.

Our testing campaign revealed that the CPUs can specu-

latively compare (CMPS) or scan strings (SCAS) beyond the

1REP also speculates, but we found no information leaks caused by it.
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Fig. 2. Illustration of leakage with String Comparison Overrun.

termination condition and leak the outcome into the cache

state. This new leak, which we call String Comparison Over-

run (SCO), has two notable features:

(i) It does not require training: The CPU always goes

beyond the bounds if the counter value is not available;

(ii) It does not require a software leakage gadget: A single

instruction contains both the speculation trigger and the

leaking memory access.

For illustration, consider the following snippet, which

compares two strings word-by-word for inequality, starting

from the addresses in rdi (String 1) and rsi (String 2). The

comparison terminates when it either finds a matching word

or reaches the bounds specified in the count register rcx.

1 rcx = slow_computation()

2 REPNE CMPSW

In the example, the value of rcx is not available, which

triggers speculation, and the CPU compares memory beyond

the specified bounds. Assuming the adversary controls String

1, it can perform equality checks on the memory following

String 2 (see Figure 2). The outcome affects the number of

evicted cache lines: If the strings disagree on all words (Fig-

ure 2a), comparison continues until the speculation window

expires, and if the window is large enough, at least two cache

lines will be evicted. If not (Figure 2b), comparison terminates

with the earliest matching word, and if the match is within the

first cache line, only one line gets evicted. The attacker can

distinguish these two cases via a cache side-channel attack,

thus learning the outcome of out-of-bounds comparison.

This leak enables an adversary to determine the memory

content following String 2 as far as speculation lasts. The

complexity of determining memory content depends on the

granularity: Word-level checks (CMPSW) require only up to

216 attempts to produce a match whereas quad-word checks

(CMPSQ) require up to 264 attempts. The lower complexity,

however, comes with smaller reach, as the number of compar-

isons is bounded by the speculation window: In our prototype

implementation, we managed to leak 22 out-of-bounds bytes

with CMPSW compared to 88 bytes with CMPSQ.

B. ZDI: Zero Dividend Injection

The second speculative leak was discovered only in Intel

CPUs, and it is triggered by division instructions. Specifically,

we found that 64-bit division can speculate on the value of

one of its source operands. We call it Zero Dividend Injection

(ZDI), and to the best of our knowledge, this is the first

documented case of value prediction in a commercial CPU.

For illustration, consider the following snippet, where DIV

in line 2 divides a 128-bit operand in rdx:rax by a 64-bit

operand in rcx.

1 rdx = slow_computation()

2 DIV rcx // means rdx:rax/ rcx

3 MOV rsi, [array_base + rax]

4 // or MOV rsi, [array_base + rdx]

If values of registers rcx and rax are available but that of

rdx is not, the CPU bypasses this dependency by speculatively

assuming that rdx (i.e., the upper 64 bits of the dividend) is

zero. That is, the CPU effectively computes 0:rax/rcx, and

the result is exposed through the memory access at line 3.

For example, without speculation, 264/4 and 263/2 yield

the same result. With ZDI, the former speculatively yields

0 while the latter yields 262. An attacker can observe the

result from line 3, and thus learn more information about the

division operands than would be possible without speculation.

Furthermore, line 3 speculatively executes an unexpected

memory ready, which causes additional information leakage.

In our experiments, the predicted value was always zero,

regardless of the processor state. Moreover, even though we

tested several multi-register instructions (such as MUL), we

only observed value speculation in DIV and IDIV.

In the next sections, we first discuss the basic mechanism

of leakage detection, and then describe the techniques used to

discover speculative leaks automatically.

III. BACKGROUND: TESTING FOR SPECULATIVE LEAKS

This section provides the background on model-based test-

ing for speculative leaks. We start by introducing speculation

contracts [13], a form of a leakage model that captures

speculative microarchitectural leaks at the ISA level. Next,

we describe how contracts can be used to detect unknown

speculative leaks. We conclude by presenting an overview of

Revizor [11], a black-box random testing tool for detecting

speculative leaks, which is the basis of our implementation.

A. Microarchitectural Leakage and Contracts

When a CPU executes a program, its execution changes the

CPU’s microarchitectural state. An attacker can observe some

of these changes via side channels [14]–[16]. We call such

observable changes a hardware trace.
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The process of collecting a hardware trace can be described

as a function Measure that takes a program p, a program’s

input i, and a microarchitectural context µ, and returns a

hardware trace:

HTrace = Measure(p, i, µ)

A program leaks information when its hardware traces

depend on the input i, as the attacker can distinguish different

inputs (potentially containing secrets) by comparing traces.

The leak could be caused not just by the normal program

execution but also by the instructions executed transiently;

that is, by those instructions that the CPU executes but never

retires. We call such leaks speculative leaks. For example,

the hardware trace may expose secrets accessed after a branch

misprediction, as demonstrated in Spectre [1].

To aid the development of defences against speculative

leaks, speculation contracts [13] have been proposed as an

abstract ISA-level specification of the expected microarchi-

tectural leaks (i.e., a speculative leakage model). A contract

describes the information expected to leak on a CPU while

executing a victim program p with an input i.
A contract abstracts away the microarchitectural details of

the function Measure, and provides a high-level (i.e., ISA-

level) function Contract that returns a trace of expected

observations (contract trace):

CTrace = Contract(p, i)

A speculation contract annotates ISA instructions with

(a) an observation clause that describes the information dis-

closed by the instruction, and (b) an execution clause that

describes whether (and how) instructions trigger speculation.

Example 1. CT-SEQ is a contract that describes the leakage

expected on a CPU with cache side channels and without

speculative execution. To this end, the observation clause of

CT-SEQ exposes the addresses of all memory accesses (loads

and stores) and of all control-flow operations (jumps, calls,

etc). Its execution clause is empty for all instructions, which

means that no instruction is expected to trigger speculation.

Example 2. CT-COND is another contract, which describes

the leakage expected on a CPU with a branch predictor. Its

observation clause is identical to CT-SEQ; its execution clause

prescribes that all conditional branches always speculatively

take a wrong target. Thus, CT-COND exposes the information

leaked by the transient instructions that were executed due to

branch prediction.

B. Detecting Leaks via Relational Analysis

Speculation contracts have been applied to detect infor-

mation leaks in CPUs [11]. A contract violation (i.e., an

unexpected leakage) is discovered by comparing the leakage

according to contract traces (i.e., the expected leakage) with

the leakage in hardware traces (i.e., the observed leakage on

the CPU under test).

1 CMP rax, 10 // compare rax with 10

2 JNE .END // jump if not equal

3 MOV rax, [rbx] // load from address in rbx

Fig. 3. A program that produces a counterexample to CT-SEQ.

Definition 1 (Violation). A CPU violates [13] a contract

Contract if there exists a program p, a pair of inputs (i, i′),
and a microarchitectural state µ, such that Contract(p, i) =
Contract(p, i′), and Measure(p, i, µ) 6= Measure(p, i′, µ).

An evidence to a contract violation is called a counterexam-

ple, and it consists of a program p, a pair of inputs i, i′, and a

microarchitectural state µ that match Def 1. A counterexample

is an evidence to an unexpected leakage because the attacker

can distinguish Measure(p, i, µ) from Measure(p, i′, µ), while

these executions are supposed to be indistinguishable accord-

ing to the contract.

C. Model-based Relational Testing with Revizor

Model-based tools [11], [17], [18] apply the above approach

to detect unexpected leaks in CPUs. In this paper, we base our

work on one such tool, called Revizor [11].

Revizor searches for contract counterexamples by generat-

ing random test cases. A test case consists of a random pro-

gram p and a sequence of random inputs [i0, i1, ...]. For each

program-input combination Revizor collects the corresponding

contract and hardware traces:

• Contract traces are collected by the contract model,

an executable version of the contract implemented with

an ISA emulator (QEMU). The emulator is modified to

record observations according to the contract observation

clause, and to implement speculation according to its

execution clause. The model collects traces by executing

the program p with each of the inputs i on this emulator,

and then retrieving the recorded observations.

• Hardware traces are collected by the executor. It imple-

ments Measure by executing the program p with each

of the inputs i on the target CPU. The microarchitectural

state µ is set indirectly, as it is not directly accessible

on black-box CPUs: Each program execution inherently

modifies the microarchitectural state, which sets µ for

the following executions. Hardware traces are collected

by monitoring the microarchitectural changes caused by

each execution; specifically, Revizor collects traces by

monitoring L1D cache state with performance counters.

After collecting the traces, Revizor checks if any of them

satisfies the definition of violation (Def 1). For this, it groups

the inputs that produce the same contract trace into equiva-

lence classes, and checks if all hardware traces corresponding

to inputs in the same class match. If there is at least one

pair of different traces (i.e., leakage according to Def 1),

these constitute a counterexample to the contract, and Revizor

reports the unexpected leakage to the user.

Example 3. Consider a round of a testing campaign where

a CPU with branch prediction is tested against CT-SEQ.
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The round begins by generating a random program shown

in Figure 3, and a sequence of random inputs2:

i1={rax=10,rbx=5 }, i2={rax=10,rbx=20}
i3={rax=40,rbx=10}, i4={rax=20,rbx=70}

Revizor executes this test case on the contract model for CT-

SEQ, which collects the jump targets (line 2) and the load

addresses (line 3), producing the following traces:

ctrace1={load *5 }, ctrace2={load *20 }

ctrace3={jump .END}, ctrace4={jump .END}

Note that ctrace3 and ctrace4 do not include the load

because it is skipped when rax==10.

Next, Revizor executes the test case on the target CPU

while monitoring cache evictions with a side-channel attack,

resulting in the following traces (CL stands for cache line):

htrace1={evict CL *5 }, htrace2={evict CL *20}

htrace3={evict CL *10}, htrace4={evict CL *70}

In the first two traces, the branch is not taken, and the

loads from addresses 5 and 20 evict the corresponding cache

lines (if the cache line size is 64 bytes, they evict from the

same cache set). In addition, the first two executions train

the branch predictor, so the next two executions experience

mispredictions. For input i3, the CPU speculatively executes

a load from address 10, and for i4, a load from address 70.

With 64-byte cache lines, i3 and i4 evict different cache lines,

which results in different hardware traces.

Accordingly, the last two inputs form a counterexample:

ctrace3 =ctrace4 and htrace3 6=htrace4. Revizor detects

it and reports to the user.

Handling microarchitectural states. We now provide addi-

tional details on how Revizor handles the microarchitectural

state µ when testing a program p with inputs [i0, i1, . . .].
Before executing an input, Revizor partially resets the mi-

croarchitectural state µ by flushing caches, invalidating TLB,

flushing microarchitectural buffers with VERW, and pushing

memory fences into the pipeline. The rest of µ (e.g., the state

of branch predictors and of other internal buffers) is set by the

execution of the test case itself: Since the program is executed

with each of the inputs in a sequence, without interruptions,

the executions of [i0...in−1] indirectly set µn for in. Note that

this mechanism is imperfect and parts of the state may not be

randomized; see [11] for further discussion of this point.

Input Effectiveness. To form a counterexample, we need two

inputs with the same contract trace but different hardware

traces; we call such inputs effective. In other words, given a

program p and inputs I = [i0, i1, ...], an input i ∈ I can surface

leakage only if there is another input i′ ∈ I (different from i)
such that Contract(p, i) = Contract(p, i′). Otherwise, if I
contains no input with a contract trace identical to i, then this

inputs becomes a wasted effort as it cannot, by definition, be

used for leakage detection; we call it an ineffective input.

Example 4. Consider the program in Figure 3, ex-

ecuted with the following inputs: i1={rax=0,rbx=1},

2In practice, an input assigns values to multiple registers and to several
pages of memory. This example is simplified for clarity.

i2={rax=1,rbx=1}, i3={rax=0,rbx=2}. If the target con-

tract is CT-SEQ, the first two inputs are effective: They

produce the same contract trace {load *1}. The input i3,

however, produces the trace {load *2}, and since it is the

only input to produce this trace, i3 is ineffective.

IV. DESIGN AND IMPLEMENTATION

This section presents an approach to increase the speed of

testing for speculative leaks and its implementation for Intel

and AMD CPUs.

Our key observations is that random testing tools produce

very few effective test cases; that is, few test cases have

potential for surfacing a speculative leak. Yet the existing

tools spend just as much time on the effective cases as on

the ineffective ones. Changing this balance can significantly

increase the testing speed.

We identify the following conditions that make a test case

effective:

1) Misspeculation: The test case must trigger speculation,

and the speculation must be based on an incorrect pre-

diction. This will lead to transient instruction that are

issued but never retire.

2) Trace of misspeculation: When the misspeculation is

triggered, some of the transient instructions must affect

the hardware trace to make a leakage observable.

3) Effective Inputs: To detect leakage with relational anal-

ysis, the inputs that triggers misspeculation must be

effective, as described in §III-C.

Next, we illustrate conditions 1 and 2 using examples (con-

dition 3 is illustrated above in Example 4). In the following, we

assume a CPU that only speculates over conditional branches

and the traces are obtained via L1D cache side-channel.

Example 5. The following program is ineffective because it

does not meet condition 1:

1 CMP rax, 10

2 MOV rax, rbx

The program has no instructions that would trigger specula-

tion, thus it cannot produce a speculative leak.

Example 6. The following program is ineffective because it

does not meet condition 2:

1 CMP rax, 10

2 JNE .END

3 ADD rax, rbx

Even if the branch (line 2) is mispredicted, the speculation

will not affect the hardware trace, because the program has

no memory accesses.

Example 7. The following program is ineffective because it

does not meet condition 2:

1 CMP rax, 10

2 JNE .l1

3 MOV rax, [rbx]

4 .l1: MOV rax, [rbx]
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Fig. 4. Main testing algorithm.

Even though it has a conditional branch and a memory

access after it, the program also has a non-speculative load

(line 4), which uses the same address as the speculative one

(line 3). Accordingly, whenever the program evicts a cache

line speculatively, the eviction is hidden by the non-speculative

access to the same address.

A. High-level Algorithm

With the above conditions, we optimize the testing process

to focus primarily on the effective test cases. We identify

that the most time-consuming stage of relational testing is the

collection of contract traces, because it involves execution of

test cases on an ISA-level emulator. Thus, our goal is to prune

the test cases before reaching this stage.

We use the algorithm in Figure 4. A testing round begins

by generating a random test case. First, the speculation filter

(§IV-B) checks condition 1 by monitoring performance coun-

ters. Next, the observation filter (§IV-C) checks condition 2

by performing a serialization experiment. If the test case fails

any of these filters, it is discarded. Otherwise, the test case is

passed to the contract-driven input generator (§IV-D), which

ensures condition 3 by creating additional inputs such that

every input gets at least one other input in its equivalence

class. Only then, when all three conditions are met, the test

case is passed to the time-consuming relational analysis to

check for contract violations.

Notably, the speculation and observation filters check the

conditions conservatively, and they err on the side of permit-

ting the test cases that produce uncertain results (§IV-E).

We next describe the ideas behind each of the techniques,

as well as technical details of their implementation. Our

implementation is based on Revizor (described in §III-C).

B. Speculation Filter

The task of the speculation filter is to find the test cases

that trigger misspeculation. Given a test case (i.e., a program p
and multiple inputs [i1, i2, . . .]), the filter executes the program

on the target CPU with each input and monitors speculation-

related performance counters in the process. If at least one of

the executions produces misspeculation (reflected in a change

to the selected performance counters), then the test case is

passed down to the next stages; otherwise, it is discarded.

Implementation. On Intel CPUs, the natural candidates

for detecting misspeculations are the counters called

MACHINE_CLEARS.COUNT (the number of issued machine

clears) and BR_MISP_RETIRED.ALL_BRANCHES (the number

of branch mispredictions). As noted by Ragab et al. [12], these

counters are sufficient to detect all types of speculation.

In our experiments, however, we observed that

MACHINE_CLEARS.COUNT occasionally misses a machine

clear and thus, it cannot be used as a reliable signal. Instead,

our implementation relies on INT_MISC.RECOVERY_CYCLES,

which counts recovery cycles from both machine clears and

branch mispredictions, and which in practice provides

more reliable results. To double check its readings,

we use another pair of counters—UOPS_ISSUED.ANY

and UOPS_RETIRED.SLOTS—whose difference gives the

number of transient (i.e., never retired) micro-operations.

Concretely, the speculation filter detects a misspeculation

if either the number of recovery cycles is non-zero (i.e.,

INT_MISC.RECOVERY_CYCLES is incremented during the

execution), or the number of transient micro-operations is non-

zero (UOPS_ISSUED.ANY-UOPS_RETIRED.SLOTS > 0).

Similarly, on AMD CPUs, we used the counters PMCx0C1

(retired micro-operations) and PMCx0AB (micro-operations dis-

patched from the decoder).

C. Observation Filter

The task of the observation filter is to find the test cases

that produce observable speculation traces. Given a program p,

the observation filter first creates a serialized version of the

program pser by injecting a serialization fence—lfence—

after every instruction. Then, the filter executes both p and

pser over all inputs [i1, i2, . . .] in the test case, and collects the

hardware traces. Since lfences stop speculative execution,

differences in the hardware traces of p and pser over an input

i are the result of transiently executed instructions. The filter

admits a test case if p and pser produce different traces over

at least one of the inputs; otherwise, the test case is discarded.

Implementation. Our implementation relies on Revizor’s

mechanism for collecting hardware traces (see §III-C). This

mechanism relies on a side-channel attack to observe changes

in the L1D cache state. Accordingly, the observation filter

looks for differences in the L1D cache state between p and

pser . These differences are caused by transient memory

accesses during p’s execution that evict a cache line that is

not evicted by the (non-speculative) memory accesses in pser .

D. Contract-driven Input Generator

The task of the contract-driven input generator (CIG) is

to ensure that all inputs are effective. Random generation is

rarely successful in this task, as the likelihood of two random

inputs producing the same contract trace can be extremely

low (e.g., in the experiment §V-D, only 6% of random inputs

were effective). CIG solves this problem by creating additional

inputs based on the feedback from the contract model.
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Given a program p and an input i, CIG generates additional

(and different) inputs [i1, i2 . . .] such that Contract(p, i) =
Contract(p, ij):

1) CIG tracks contract-level dependencies to compute the

set DepContract(p, i), which contains all dependen-

cies of the contract trace Contract(p, i). Concretely,

DepContract(p, i) contains all parts of i (registers and

memory locations) that may affect the trace.

2) CIG generates new inputs [i1, i2 . . .] by mutating all

the values in i that do not belong to DepContract(p, i).
Since parts of the input not in DepContract(p, i) do not

affect the contract trace, all generated inputs are contract-

equivalent.

Correctness of effective input generation. Contract-level de-

pendency tracking guarantees that DepContract(p, i) contains

all dependencies that may influence the contract trace. As a

result, for all inputs i, i′, if i and i′ agree on the values of

all dependencies in DepContract(p, i), then Contract(p, i) =
Contract(p, i′). Contract-driven input generation leverages

this guarantee to produce contract-equivalent inputs by mu-

tating the parts of i that are not in DepContract(p, i).

Implementation. We instrumented the Revizor’s contract

model to track dependencies between memory locations and

registers at each step of program execution. The instrumen-

tation keeps track of a dependency map DMap that assigns

to each location (a register, a memory address, or a flag) its

set of dependencies, i.e., the set of initial values that might

have contributed to the location’s current value. The map also

tracks dependencies for the program counter pc. The map is

updated throughout the execution as follows:

• The initial dependency map DMap0 is such that

DMap0(l) = {l} for each location l, where a location

can be a register, a memory address, or a flag.

• For each instruction instr, we compute the read set

read(instr) (containing all locations read by instr)

and the write set write(instr) (containing all locations

that instr writes to). Note that for control-flow instruc-

tions, the program counter pc is a part of the write set

write(instr).
• Whenever we execute an instruction instr, we update

the dependency map DMap to DMap′ by tracking the

new dependencies from instr’s read set and from the

program counter to instr’s write set. That is, for each

l ∈ write(instr), the new dependency set DMap′(l) is

DMap(pc) ∪
⋃

l∈read(instr) DMap(l).
• Whenever the contract model explores a speculative path,

we create a copy of the dependency map which is

used (and updated) throughout the speculative transaction

(similarly to how the contract model tracks the specu-

lative program state). When the speculative transaction

terminates, the speculative dependency map is discarded

and the old dependency map is restored.

We compute the set DepContract(p, i) of dependencies asso-

ciated with the trace Contract(p, i) as follows. Whenever the

contract produces an observation o and the current dependency

map is DMap, we compute the locations L that influence o’s

values and we update DepContract(p, i) by adding the program

counter’s dependencies DMap(pc) and the dependencies of

L’s locations
⋃

l∈L DMap(l). For instance, if the observation

exposes the accessed memory address, then the set L contains

the operands determining the address.

Example 8. Consider the following program:

1 CMP rax, 10

2 JNE .l1

3 MOV rax, [rbx]

4 .l1: MOV rbx, [rax]

It is executed with the input i={rax=20,rbx=5}, and the

target contract is CT-SEQ. During dependency tracking, the

dependency map is updated as follows (here, DMapj denotes

the map after executing line j):

Initially, the map DMap0 is such that each location l is

mapped to DMap0 = {l}: e.g.,

DMap0(rax) = {rax}
At line 1: The comparison sets the dependencies of all flags

to those of rax and of pc, since all instruction read pc by

default. For example, the resulting dependencies of ZF are:

DMap1(ZF) = {pc,rax}
At line 2: Jump propagates the dependencies of ZF to pc:

DMap2(pc) = {pc,rax}.

(Line 3 is not executed for this input.)

At line 4: The dependency set DepCT-SEQ(p, i) is updated,

because loads are exposed in CT-SEQ. Specifically, the load

address depends on rax and on pc (by default), therefore:

DepCT-SEQ(p, i1) =
= DMap2(pc) ∪DMap2(rax) = {pc,rax}

After line 4, the execution finishes, and the resulting depen-

dency set is passed down to the input generator.

The generator takes the input i1, and randomly mutates

those parts of it that are not included into DepCT-SEQ(p, i).
In this (simplified) example, the input consists of only two

registers rax and rbx, and only rbx is not included in

DepCT-SEQ(p, i). Accordingly, the generator mutates rbx and

leaves rax unchanged. The resulting input i′ is:

i′={rax=10,rbx=70}
The input pair i, i′ is effective because they produce the

same contract trace. Should speculation occur during the

measurement on the target CPU, the (speculative) load at line 3

will access different addresses for inputs i and i′, thereby

surfacing a speculative leak.

E. Practical Issues

The filtering techniques described in §IV-B and §IV-C rely

on empirical measurements, which are inherently imprecise on

a black-box CPU. Such imprecision occasionally leads to false

negatives and false positives.

False negatives. Both speculation and observation filters

implicitly assume that speculative execution is deterministic.

This assumption is not always true on a black-box CPU, where

we cannot directly control the microarchitectural state. Even

if the test case contains the necessary instructions and data to
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Fig. 5. Detection Time: The average amount of time required to detect a leak. The numbers above the bars are the ratio between the given bar and the one
left from it, which corresponds to the relative speedup between the measurements.

trigger speculation, the microarchitectural state may prevent

a misspeculation (e.g., if a branch predictor is not trained).

Accordingly, the speculation filter may discard an effective

test case because a predictor did not produce a misprediction,

or the observation filter may discard the test case because the

speculation was not long enough to leave a trace.

Fortunately, such cases are rare. We tested both filters on

several instances of known leaks, and they produced correct

results. We further evaluate false negatives in detail in §V-C.

False positives. The observation filter occasionally produces

false positives that are caused by external noise. When the

filter executes p and pser with the same input and collects

the corresponding hardware traces, one of the traces could

get corrupted by the measurement noise. This will lead to an

apparent mismatch between the traces, even though it is not

caused by transient instructions. These false positives result

in some ineffective test cases not being discarded early on.

The impact is minor, however, since we observed a corrupted

measurement on average only once in a million executions.

V. EVALUATION

This section evaluates the impact of the speculation and the

observation filters, and of the contract-driven input generator.

We evaluate the impact across three metrics: Detection time

is the time required to detect a leak; we consider it the key

metric for our leakage-detection tool. Testing speed is the

amount of time required to test N test cases. Detection rate

is the number of contract violations detected within N test

cases. Detection time is a compound metric, as it depends on

both the testing speed and the detection rate.

In §V-B, we measure the impact of our techniques on the

detection time. Then, we break it down into its components.

In §V-C we measure the changes in the testing speed and the

detection rate caused by speculation and observation filters;

and in §V-D, we evaluate the changes caused by CIG.

A. Experimental Setup

We perform the experiments on an Intel Xeon E-2288G

CPU3 with all microcode patches against speculative leaks

3We also performed the measurements on the other machines from Figure 1,
but the results were very close to Intel Xeon, hence we do not present them.
The only notable difference was in Figure 6 where the AMD CPU did not
show any signs of speculation in dmul and flag.

enabled; the only exception was the V4 target in §V-B, where

the corresponding patch was disabled.

All the experiments used the same configuration of the test

case generator (unless mentioned otherwise): program size—

32 instructions; number of memory accesses per program—8;

input generation entropy—16 bits.

B. Detection Time

Our first research question is: Do our techniques reduce the

leak detection time?

The answer is affirmative, yet the extent of the reduction

depends on the leak. To evaluate it, we consider Spectre V1,

V4, and LVI, a variant of V1 (called V1-Var), as well as

the new speculative leaks—ZDI and SCO—described in §II.

We perform the evaluation on several testing configurations

(described in detail in Appendix C), which we specifically

pick such that our tool detects only one type of leaks in each

configuration, and any other leaks are unlikely to surface.

For example, in the configuration “Spectre V1”, we test

a combination of subsets nop, bit, cond, cmov, conv,

dxfr, flag, setc, logi (see Appendix A) against the CT-

SEQ contract. This configuration can surface V1 because the

instruction set contains conditional branches, but it cannot

surface the other leaks because the firmware patch is enabled

(prevents V4), microcode assists are not permitted (prevents

LVI), the subsets do not include divisions (prevents ZDI) and

string operations (prevents SCO).

For each of these configurations, we perform an experiment

where we execute 100’000 test cases with 100 inputs each; for

ZDI and SCO, we execute 500’000 test cases (these leaks are

harder to detect, so we need more test cases). We measure the

overall execution time, count the number of detected contract

violations, and hence calculate the average time to violation.

Each experiment is performed with each of our techniques:

(i) fully random testing (baseline), (ii) with contract-driven

input generation, (iii) with speculation filtering, and (iv) with

observation filtering. We fix the seed for random generation to

ensure that the different techniques are evaluated on the exact

same sequence of test cases.

Results. Figure 5 shows the results. Note that the vertical axis

is in log-scale. We highlight the following findings:

• In isolation, speculation filtering, observation filtering,

and contract-driven generation already lead to significantly
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Fig. 6. Share of random test cases with misspeculation and speculative memory accesses in different x86 subsets. The subsets are described in Appendix A.
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Fig. 7. Change of the testing speed caused by speculation and observation filtering, for subsets of x86 ISA. The subsets are described in Appendix A.

faster detection of almost all leaks. In combination, they can

reduce the detection time by a factor of 10–50.

• An exception is the configuration LVI-Null, where the

speculation filter had almost no impact on the detection time.

This is because this speculation type is easy to trigger: any

access to a page with an unset Dirty bit suffices. Thus, most of

the test cases experienced a machine clear, and the speculation

filter was not useful.

• Without the techniques presented in this paper (i.e. in the

baseline experiment), only V1 and LVI-Null are detected. V4

and ZDI are not detected because the effectiveness of random

inputs is particularly low and speculation is hard to trigger,

which is why contract-driven generation is instrumental for

detection. Detection of SCO requires a pair of inputs such

that in one of the inputs the strings match and in the other do

not; finding a randomly-generated pair that both matches this

description and is effective, is very unlikely. V1-Var requires

a microarchitectural race condition, which is hard to trigger

with random programs.

Sources of lower detection time. To investigate the source

of such a drastic improvement in the detection time, we break

it down into its components. Detection time is effectively a

ratio between testing speed and detection rate. Our techniques

impact these parameters differently: Speculation and observa-

tion filters improve the testing speed (because they discard

ineffective test cases), but they also decrease the detection

rate (because of false negatives, see §IV-E). On the other

hand, contract-driven generation increases the detection rate

(because all inputs can be used for leakage detection), but

decreases the testing speed (because dependency tracking takes

additional time). We evaluate these effects in §V-C and §V-D.

C. Impact of Speculation and Observation Filters

Testing speed: How much does speculation and observation

filtering change the testing speed?

The answer to this question depends on the instructions

from which test cases are randomly generated: they govern

the likelihood of triggering speculation and hence the effect

of filtering out test cases that neither speculate nor perform

speculative memory accesses.

We perform experiments on the subsets of the x86 ISA

from Figure 1. For each subset, we generate 1000 test cases

with 100 inputs each, and we measure (i) the fraction of

test cases that passes each filter, and (ii) the time required

for processing all test cases with none, one, or both filters

enabled. The measurement is repeated 10 times with different

seed values of the test case generator. We report the mean

values and the standard deviations.

Results. The results for (i) are given in Figure 6, for (ii)

in Figure 7. We highlight the following findings:

• Speculation and observation filtering consistently improve

the testing speed for all subsets of the x86 ISA we considered

(Figure 7). The reason for this improvement is that most of

the test cases experience no speculation, and neither do they

trigger speculative memory accesses (Figure 6), which is why

pruning them early is beneficial.

• The largest speedups of an order of magnitude are

achieved in the ISA subsets that never experience speculation

(e.g., cmov, nop) because virtually all test cases are filtered

out. The smallest speed-ups are found in the instruction sets

that have a true violation (e.g., cond could trigger Spectre

V1). There speculation is ubiquitous, and a large portion of

the test cases passes the filter. (A similar behavior is observed

if the contract permits speculation, see §VI-C.)

• The impact of false positives on speculation filtering

(§IV-B) is noticeable in flag and lock, see Figure 6:

Many ineffective test cases pass the first filter, which is why

the speed-up from speculation filtering is less significant.

However, these cases do not pass through the observation

filter, so they have almost no effect on the testing speed when

both filters are enabled.

• Notably, the baseline testing speed was somewhat

different between the instruction sets, because certain

instructions take longer to execute on the contract model. For
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No Speculation + Observation
Filtering Filter Filter

Spectre V1 1577 1585 1537
Spectre V4 15 15 14
LVI-Null 167 168 159
V1-Var 3 3 3

ZDI 11 11 11
SCO 3 4 4

Fig. 8. Number of detected violations within a batch of test cases, tested with
different filtering levels. In the first 4 rows, the batch size is 100k cases; in
the last 2, the size is 500k.

example, string operations (strn) produce many memory

accesses, which slows down contract tracing.

Detection rate: How many contract violations are missed due

to false negatives of filtering?

The inherent limitation of speculation and observation filter-

ing is that some of the effective test case could be mistakenly

discarded (see §IV-E). We seek to estimate the amount of

such wrongly discarded cases by comparing the numbers of

violations detected in the first experiment §V-B.

Figure 8 presented the number of violations detected within

the same sequence of test cases, but with different filtering

levels. As we see, the number of violations changed very

little when we applied the filtering techniques. It implies

that the rate of false negatives was low and the techniques

had little impact on the detection rate. Curiously, in some

of the measurements, more violations were detected with

filtering rather than without. We attribute it to the instability

of speculation in some of the test cases, which introduces a

measure of randomness into this experiment.

D. Impact of Contract-driven Input Generation

Detection rate: How many more contract violations are found

due to contract-driven generation?

While random input generation may result in ineffective in-

puts, contract-driven input generation (CIG) produces effective

inputs by construction (§IV-D). Thus, each test case is tested

more thoroughly with CIG-produced inputs, and we expect to

detect more contract violations.

We check if this expectation by looking at the total number

of violations detected in §V-B, shown in Figure 9. The columns

Random Testing and CIG are the number of violations detected

with the corresponding input generation method, given the

same sequence of programs. With random generation, there

are only a few violations, and some leaks are not detected at

all. Meanwhile, with CIG, the number of violations increases

drastically, which indicates that CIG helps in finding leaks.

To illustrate the source of such a significant improvement,

we perform an additional experiment that shows just how in-

effective random generation is. For this, we randomly generate

1000 programs and for each of them we generate 100 random

inputs. For each program, we execute the inputs on the CT-

SEQ contract model, and we count the number of effective

inputs (i.e., those for which there is at least another input pro-

ducing the same contract trace). For CT-SEQ, the likelihood of

randomly generating an effective input depends on the number

Random Input Contract-driven Input
Generation Generation

Spectre V1 272 1577
Spectre V4 0 15
LVI-Null 4 167
V1-Var 0 3

ZDI 0 11
SCO 0 3

Fig. 9. Number of detected violations within a batch of programs, where
their inputs are generated either randomly or with CIG. In the first 4 rows,
the batch size is 100k programs; in the last 2, the size is 500k.

Configuration BB=1 BB=1 BB=4 BB=4
Mem=4 Mem=16 Mem=4 Mem=16

Effective inputs 4.5% 0% 5.7% 0%

Fig. 10. Share of effective inputs produced by random input generation,
for different program generator configurations. BB stands for the number of
basic blocks in a program; Mem stands for the number of memory accesses.

of memory accesses and of control-flow paths. Thus, we repeat

the experiment in four configurations: with 1 and 4 conditional

branches, and with 4 and 16 memory accesses.

The results are in Figure 10. The share of effective inputs

produced by the random generator is very low (less than

6% in our results). Moreover, the number of effective inputs

decreases with the increase of memory accesses in the program

(so, when the contract trace exposes more information). These

results indicate the key limitation of random generation for

relational testing, which CIG overcomes.

Testing speed: How much does CIG cost in terms of the testing

speed?

Contract-driven generation, with its contract-level depen-

dency tracking, is considerably more time-consuming than

random generation, as the following experiment shows.

For each of the configurations from the previous experiment

(Figure 10), we execute 1000 test cases, each with 100

inputs, and we measure the execution time. We repeat the

measurement with random input generation and with CIG.

The results are in Figure 11. As we can see, CIG has a

noticeable cost: It increases the execution time (i.e., reduces

the testing speed) by over 2x. Nevertheless, this cost is

acceptable, because CIG allows us to detect many more

contract violations. As we saw in Figure 5, even with this

high cost, CIG produces a net benefit w.r.t. the detection time.

BB=1, Mem=4 BB=1, Mem=16 BB=4, Mem=4 BB=4, Mem=16
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Fig. 11. Performance impact of contract-driven input generation, in different
program generator configurations. BB stands for the number of basic blocks
in a program; Mem stands for the number of memory accesses.
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Fig. 12. Execution time of different input-generation techniques—contract-
driven input generation (§IV-D, in blue) and symbolic execution (in green)—
for the CT-SEQ and CT-COND contracts.

E. Dependency Tracking vs Symbolic Execution

Effective inputs can be generated using different techniques.

For instance, our contract-driven input generator (§IV-D) relies

on dependency tracking whereas Scam-V [17] (another model-

based testing tool) uses symbolic execution. Here, we compare

these two techniques.

Generating contract-equivalent inputs with symbolic ex-

ecution. Directly comparing the input generator from §IV-D

with Scam-V symbolic execution approach is impossible be-

cause Revizor targets x86 whereas Scam-V targets ARM.

Instead, we implemented a contract-driven input generator

based on symbolic execution by extending SPECTECTOR [19],

[20]. This is a state-of-the-art symbolic analysis tool for

verifying the absence of leaks in x86 programs with respect to

the CT-SEQ and CT-COND contracts. Given a program p and

concrete input i, we generate the fresh j-th contract-equivalent

input by keeping track of the inputs [i1, . . . , ij−1] already

generated and executing a symbolic query asking a new input

i′ such that (a) i and i′ produce the same contract traces (i.e.,

Contract(p, i) = Contract(p, i′)) and (b) i′ is different from

i and from all previously generated inputs [i1, . . . , ij−1]. If the

symbolic query is satisfiable, SPECTECTOR generates a fresh

contract-equivalent input. We use SPECTECTOR’s symbolic

relational reasoning capabilities, which support expressing

symbolic constraints over pairs of executions, to encode the

aforementioned symbolic query.

Experiment. To compare the cost of CIG and symbolic

execution, we measure the time needed to compute n
contract-equivalent inputs [i1, . . . , in], with n taking values

in {2, 5, 10, 20, 50, 100}, given a program p and a concrete

initial input i0. For each value of n, we generate 100 random

programs with 10 concrete initial inputs each and we measure

the average input generation time for both approaches. We

repeat these experiments for two different contracts: CT-

SEQ and CT-COND. The generated programs consist of 24

instructions with 1 basic block and 12 memory accesses.

In all experiments, the symbolic memory initially allocated

for SPECTECTOR’s inputs is limited to 20 bytes (rather than

the full memory pages used by CIG). This was necessary to

limit the symbolic analysis’ execution time.

Results. Figure 12 depicts the average input generation time

for CIG (with dependency tracking) and symbolic execution.

We highlight the following findings:

• The input generation time increases (for both techniques)

with the number of inputs to generate.

• Generating contract-equivalent inputs using dependency

tracking is significantly faster than with symbolic execution.

For CT-SEQ, for instance, CIG takes between 1.5 ms (n = 2)

and 14.6 ms (n = 100) on average, whereas symbolic

execution takes between about 142.7 ms (n = 2) and 22.15 s

(n = 100).

• Generating inputs for the CT-COND contract is slightly

more expensive than for the CT-SEQ contract, for both tech-

niques. This is due to the COND execution clause resulting in

the execution of more instructions than SEQ.

• Increasing the size of the generated programs by du-

plicating the number of instructions and memory accesses

(not shown in Figure 12), results in an increase in the input

generation time for both techniques. For CT-SEQ, CIG takes

between 2.3 ms (n = 2) and 15.6 ms (n = 100) on average,

whereas symbolic execution takes between about 183.4 ms

(n = 2) and 42.2 s (n = 100).

VI. DISCUSSION

A. Impact of New Speculative Leaks

To understand the potential security impact of SCO and

ZDI, we counted the corresponding instructions in three com-

mon applications: (i) In Linux kernel v5.14 we found 320

CMPS, 276 SCAS, and 28 64-bit divisions. (ii) In GLibC v2.27

we found 131 CMPS, 17 SCAS, and 4 64-bit divisions. (iii) In

OpenSSL v1.1.1 we found 18 CMPS, no SCAS, and 2 64-

bit divisions. Even though we do not know how many of

these instances are exploitable, the numbers show us that both

SCO and ZDI could potentially affect critical applications and

libraries. We leave the investigation of software vulnerabilities

caused by SCO and ZDI to future work, since the goal of this

paper is to present the techniques for finding speculative leaks

rather than ways to exploit them.

Mitigation. SCO can be (partially) patched at the software

level by adding an lfence before the string comparison,

which shortens the speculation window, although it does

not prevent the speculation entirely. ZDI can be patched by

inserting an lfence after 64-bit division operations, thereby

stopping the speculative execution. At the time of writing,

Intel and AMD have not announced any hardware/firmware

mitigations for SCO or ZDI.

B. Filtering vs Targeted Generation

Our strategy for improving the effectiveness of testing

relies on generating test cases randomly and then filtering out

the ineffective ones. Alternatively, one could target program

generation towards test cases that are effective by design. For

example, adding a load after every instruction in a test case

would trivially address Condition 2 in §IV.

We refrained from this approach because targeted generation

can have unintended consequences: Every speculative leak has

1747



its own unique set of requirements, and unknown leaks may

have unknown requirements (e.g., ZDI requires a division with

a dividend larger than 264). Targeted program generation that

satisfy Conditions 1 and 2 might violate these unknown re-

quirements, thereby making it less likely (or even impossible)

to detect unknown leaks. For example, by adding a load after

every instruction, we increase the probability that a speculative

value produced by LVI or by V4 will be overwritten, and it

can reduce the chances of detecting these leaks.

C. Limitations

Not detected leaks. There are known leaks that have not been

detected in our experiments (e.g., Meltdown [2], FPVI [12]).

The main reason is coverage: We tested a small subset of

the x86-64 ISA, and most of the non-detected leaks require

instructions/events outside of this subset. For example, FPVI

requires floating-point or SIMD instructions, and Meltdown

requires page faults that were intentionally avoided during our

experiments. To increase the coverage and to detect such leaks,

we would have to enhance the test case generator to produce

more complex instructions and to handle faults.

The only exceptions (that we known of) are Straight Line

Speculation (SLS) [21] and Phantom JMPs [22]. Our testing

campaign covered all the instructions necessary for these leaks,

yet they were not detected. The reason behind it is imperfect

randomization of the microarchitectural state: These leaks

require mistraining of the BTB by executing diverse (e.g.,

random) binaries. However, Revizor executes each test case

multiple times, which means that the BTB state is not random-

ized enough, resulting in not exploring such “mispredicting”

BTB states. We consider solving this issue as future work.

Detection of non-speculative leaks. Even though specula-

tion and observation filters are instrumental in increasing

test effectiveness for detecting speculative leaks, they reduce

the chances of detecting non-speculative leaks (e.g., those

described by Sanchez Vicarte et al. [23]). Indeed, a test case

that detects a non-speculative leak might be discarded because

it does not leave traces of misspeculation (i.e., it does not meet

conditions 1 or 2 from section IV).

Dependency tracking. Our dependency tracking is coarse-

grained: it only tracks which locations influence the trace, but

it does not track the relationships between locations and trace

observations. For instance, if an observation o depends on the

sum of registers rax and rbx being greater than 10, our

dependency tracking determines that rax and rbx influence

the trace. Hence, CIG will not mutate the values of rax

and rbx. However, any mutation satisfying rax+rbx>10

would not change the trace. Finer-grain (but more expensive)

dependency analyses might capture some of these relationships

and allow more input mutations.

Testing against contracts allowing speculation. The perfor-

mance improvement of speculation and observation filters can

be reduced by testing against contracts (like CT-COND) that

allow selected speculative leaks. Indeed, some of the tests that

pass our filters (i.e., they leave traces of misspecultion) might

simply represent leaks that are allowed at contract-level. In our

testing campaign, we avoided this issue by splitting the tested

instruction set into subsets, which we then tested against the

simple CT-SEQ contract (that forbids all speculative leak).

D. Generality

Speculation and observation filters. Our filtering techniques

can be applied to any testing approach for detecting speculative

leaks using randomly generated programs. The benefits of

filtering, however, depend on the specific testing approach:

As our results show, early filtering significantly improves

the effectiveness of model-based testing for black-box CPUs

by preventing ineffective test cases to be executed on the

contract model. In other settings (e.g., white-box testing of

RTL processor designs), the execution of the contract model

is unlikely to be the performance bottleneck, so the impact of

filtering might be reduced.

Implementing filters for other architectures. We imple-

mented the filtering techniques for Intel and AMD processors

using (a) performance counters for reliably detecting spec-

ulation (for the speculation filter), and (b) instructions that

reliably stop speculation (for the observation filter). Regarding

point (a), other architectures provide counters tracking the

effects of speculative execution. For instance, ARM provides

the BR_MIS_PRED counter tracking the number of retired

mispredicted branch instructions. Additionally, ARM also

supports the OP_RETIRED and OP_SPEC counters counting

respectively the number of retired and speculatively executed

microoperations. Regarding point (b), many other architectures

have instructions that act as speculation barrier, e.g., SB for

ARM.

Contract-driven Input Generation. CIG can be integrated

into relational testing approaches for detecting leaks with

respect to a given leakage contract. In this context, CIG can be

a lightweight, faster alternative to input generation techniques

based on symbolic execution (Section V-E). Note that CIG

is not restricted to the detection of speculative leaks. For

instance, applying CIG to the CT-SEQ contract can generate

inputs witnessing (architectural) leaks due to variable-timing

instructions.

Filters and hardware traces. Revizor obtains hardware traces

through cache side-channel attacks on the L1D cache, so this

is what we used in our evaluation (§V). While our filtering

techniques are largely agnostic of how hardware traces are

obtained, different kinds of hardware trace may influence the

outcome of the filters. For instance, if hardware traces only

expose whether a block is currently in the L1D cache (as

currently implemented in Revizor), then the observation filter

rejects the program in Example 7. In contrast, hardware traces

exposing information about cache metadata (like the age of

each block [24], [25]) may result in Example 7 being accepted

by the observation filter.

Distributed testing. Given that Revizor’s testing process is

random and the generated tests are independent, the perfor-

mance issues of contract modeling could be addressed by
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distributing the workload. Indeed, both the model and the

executor could be distributed to an arbitrary number of nodes

with a central node analyzing traces. The filters proposed in

this paper could be applied within such an architecture too.

We consider a distributed implementation as future work.

VII. RELATED WORK

For an overview and taxonomy of speculative attacks

see [26] and the references provided throughout the paper.

For an overview of software-based defenses, see [27]. Here

we focus on work related to automatic detection of speculative

leaks and side-channels in hardware.

Post-manufacture Detection of Speculative Leaks. We begin

with the tools targeting fabricated CPUs.

Revizor [11] provides the baseline for the techniques pre-

sented in this paper. Revizor is based on relational testing

against a leakage model, and it relies on random unguided

generation. In contrast, speculation and observation filters

use hardware signals to prune ineffective test cases, whereas

contract-driven input generation uses the contract feedback to

produce effective inputs.

Scam-V [17], [18] also relies on relational model-based

testing, which is implemented by instrumenting test cases to

record observations. It targets ARM ISA, and it uses symbolic

execution for generating inputs with identical leakage. In

contrast, we target x86, and we rely on a lightweight approach

for input generation based on dependency tracking (see §V-E).

Transynther [8] is a tool that can detect variants of microar-

chitectural data sampling (MDS) attacks. To this end, it fills

CPU buffers with buffer-specific nonces, mutates and executes

code-templates that are known to trigger speculation, and it

tries to detect leakage of the nonces. In contrast, our approach

searches for violations of an abstract leakage model, which

enables the discovery of entirely new classes of speculation.

SpeechMiner [9] is a framework to quantitatively evaluate

CPUs for their vulnerability to known kinds of speculative

attacks. The framework is scriptable and enables users to

combine different kinds of primitives used in known attacks.

In contrast, our tool generates fully random programs, which

enables discovery of new leaks.

Ragab et al. [12] and Li et al. [28] use counters of machine

clears to discover new types of speculative leakage, albeit in

a manual fashion. Speculation filtering is inspired by the idea

of using machine clear counters, and it uses the counters to

prune test cases during automatic analysis.

Pre-silicon Detection of Speculative Leaks. The methods

for white-box pre-silicon detection speculative leaks rely on

access to a detailed CPU design.

CheckMate [5] is a tool that synthesizes exploits against

microarchitectural leaks such as Spectre and Meltdown. It

relies on a specification of the microarchitecture in terms of

happens-before relations. In contrast, our approach relies only

on minimal signals from the hardware and can be applied to

commercial off-the-shelf CPUs.

IntroSpectre [6] is an RTL-based framework to detect

Meltdown-type leaks. It relies on inserting nonces into a secu-

rity domain, executing randomly mutated leakage templates,

and searching for the nonces in other security domains. In

contrast, our approach uses relational analysis and can identify

information flows beyond direct data transfer.

Fadiheh et al. [7] propose to detect covert channels by

model-checking an RTL model of a RISC-V CPU for vio-

lations of non-interference.

Detection of Side-channels. Several approaches automatically

detect side-channels, without considering speculation.

Osiris [29] discovers novel non-speculative side-channels.

For this, it generates random code snippets and measures

if their execution time is secret-dependent. In contrast, we

specifically focus on speculative leaks.

ABSynthe [30] creates leakage maps capturing interactions

between different x86 instructions with SMT enabled, which

it uses to synthesize attacks on a given target program.

In principle, the result of these tools could be used to refine

the hardware traces used by our proposed techniques.

Leakage models and information flow checking. The work

presented in this paper speeds up testing CPUs against leakage

models. Specifically, we rely on a model for speculative

leakage that is formalized as speculation contracts [13]. There

are alternative leakage models emerging, for example those

based on ideas from weak memory models [31], [32].

SecVerilog [33] is a hardware design language with

information-flow control built in. It uses static type checking

to ensure that a system complies with an information-flow

control policy by design. Connecting these policies to

ISA-level leakage model [13], [31], [32] and enforcing them

by design is a promising avenue for future work.

VIII. CONCLUSION

In this paper, we showed how to overcome the performance

limitations of model-based relational tools for speculative

leaks. This allowed us to drastically speed up black-box testing

for speculative leaks and to run a testing campaign of a

previously-infeasible depth (130 million test executions) on In-

tel and AMD CPUs. Our testing campaign discovered two new

leaks that have escaped previous analyses, which demonstrates

the potential for automated detection of speculative leaks.
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APPENDIX

A. Subsets of x86-64 Used in Evaluation

In the main testing campaign (§II) and in the evaluation

(§V), most of the experiments were performed on subsets of

the x86-64 ISA. These particular subsets were selected because

together they form a complete base x86-64 instruction set,

excluding those instructions that are not (yet) supported by

Revizor. Specifically, we excluded system instructions (e.g.,

SYSCALL), instructions incorrectly emulated by Unicorn (e.g.,

ROR), and control-flow instructions for which no contracts

are available (RET, CALL, and indirect jumps). We omitted

ISA extensions like AVX or x87 because they require more

complex test case generation algorithms to avoid faults, also

not yet supported by Revizor.

Each of the tested subsets constituted of several basic

arithmetic instructions (including their versions with memory

operands) and of several instructions that are unique to the

given subset. The exact instructions are as follows:

• cond (conditional branches): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, J*, LOOP*, JMP (uncondi-

tional direct jump).

• strn (string operations): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, CLC, CLD, CMC, LAHF,

LOCK, REPE, REPNE, SAHF, SCASB, SCASD,

SCASW, STC, STD.

• dmul (division and multiplication): ADC, ADD, CMP,

DEC, INC, NEG, SBB, SUB, DIV, IMUL, MUL.

• flag (operations on flags): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, CLC, CLD, CMC, LAHF,

SAHF, STC, STD.

• lock (atomics with LOCK prefix): ADC, ADD, CMP,

DEC, INC, NEG, SBB, SUB, LOCK ADC, LOCK

ADD, LOCK CMP, LOCK DEC, LOCK INC, LOCK

NEG, LOCK SBB, LOCK SUB, LOCK BSF, LOCK

BSR, LOCK BT, LOCK BTC, LOCK BTR, LOCK

BTS, LOCK NOT, LOCK OR, LOCK TEST, LOCK

XOR.
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• atom (atomics without LOCK prefix): ADC, ADD,

CMP, DEC, INC, NEG, SBB, SUB, CMPXCHG,

XADD, LOCK CMPXCHG, LOCK XADD.

• dxfr (data transfer): ADC, ADD, CMP, DEC, INC,

NEG, SBB, SUB, BSWAP, MOV, MOVSX, MOVZX,

XCHG.

• setc (conditional byte set): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, SET*.

• nop (NOP instructions): ADC, ADD, CMP, DEC, INC,

NEG, SBB, SUB, NOP.

• logi (logical operations): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, AND, NOT, OR, TEST,

XOR.

• conv (data type conversion): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, CBW, CDQ, CWD, CWDE.

• cmov (conditional moves): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, CMOV*.

• bit (bit test and bit scan): ADC, ADD, CMP, DEC,

INC, NEG, SBB, SUB, BSF, BSR, BT, BTC,

BTR, BTS.

B. Example: A walk through the discovery of SCO

In this example, we demonstrate the process of discovering

a speculative leak with our tool by showing how we found

SCO.

As a part of the main fuzzing campaign (Figure 1), we tested

the strn subset of x86-64 on Intel Xeon E-2288G against the

CT-SEQ contract. This contract permits side-channel informa-

tion leakage through caches, but only for non-speculatively

executed instructions. Accordingly, if Revizor finds an instance

of any speculative leakage while testing against this contract,

Revizor will report it as a violation.

To set this experiment up, we wrote the following configu-

ration file:

1 instruction_categories:

2 - BASE-BINARY

3 - BASE-STRINGOP

4 contract_observation_clause: ct

5 contract_execution_clause:

6 - seq

7 enable_speculation_filter: true

8 enable_observation_filter: true

9 inputs_per_class: 2

Here, lines 1–3 select the strn subset; lines 4–6 tell Revizor

to test against CT-SEQ contract; lines 7 and 8 enable the

speculation and the observation filters (§IV-B and §IV-C); and

line 9 tells CIG (§IV-D) to create two inputs for each input

class.

We passed this configuration file to our modified version

of Revizor, and launched a testing campaign with 100’000

programs, each tested with 100 inputs:

./cli.py fuzz -c conf.yaml -n 100000 -i 100

Already after starting the testing process, we saw signs of

speculation: An unusually high number of test cases passed

through the filters. (Figure 6 illustrates this observation.)

After about three hours of testing, Revizor detected a vio-

lation. At this point, we knew that we have discovered a new

speculation type—there has been previously no speculative

leak reported within this subset of instructions. However, we

did not know the source of leakage.

From Revizor, we received a test case—a program and a

sequence of inputs—that witnessed an unexpected information

leakage. As the program was generated randomly, it contained

many irrelevant instructions, which complicated the investiga-

tion. Therefore, we passed the program to Revizor’s automatic

minimizer, and it returned the following:

1 CLD # instrumentation

2 SUB CL, DL

3 AND RSI, 0b1111111111111 # instrumentation

4 SUB RAX, -1904627778

5 NEG AL

6 CMP EDX, -122

7 AND RBX, 0b1111111111111 # instrumentation

8 SBB byte ptr [R14 + RBX], 111

9 CMP SI, 117

10 AND RDI, 0b1111111111111 # instrumentation

11 ADD RDI, R14 # instrumentation

12 AND RCX, 0xff # instrumentation

13 ADD RCX, 1 # instrumentation

14 REPNE SCASD

Next, we tried to find out which specific instruction within

this program triggers speculation. For this, we removed one

instruction at a time, executed the test case on Revizor, and

checked if it still passed the speculation filter. The culprit

turned out to be REPNE SCASD at line 14.

From there on, we manually reverse-engineered the mech-

anism behind the speculation of SCAS, and it led to the

discovery of SCO.

C. Configurations Used in Evaluation

The following is a detailed description of the testing con-

figurations used in §V-B and Figure 5. The names of the ISA

subsets are described in Appendix A.

Configuration Spectre V1:

• ISA subsets: cond, nop, bit, cmov, conv, dxfr, flag,

setc, logi

• Target contract: CT-SEQ

• Spectre V4 patch enabled: True

• Microcode assists permitted: False

The configuration can surface V1 because the instruction set

contains conditional branches. In principle, this configuration

can also detect V1-Var, yet the probability of detecting V1-

Var is much lower compared to V1, thus it has only a minor

impact on the measurement results.

The configuration cannot surface V4 because the corre-

sponding patch is enabled; LVI—because microcode assists

are not permitted; ZDI—because the subsets do not include

divisions; SCO—because the subsets do not include string

operations.

Configuration Spectre V4:

• ISA subsets: nop, bit, cmov, conv, dxfr, flag, setc,

logi
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• Target contract: CT-SEQ

• Spectre V4 patch enabled: False

• Microcode assists permitted: False

The configuration can surface V4 because the instruction

set contains memory accesses and the patch is disabled.

The configuration cannot surface V1 and V1-Var because

the instruction set does not contain branches; LVI—because

microcode assists are not permitted; ZDI—because subsets do

not include divisions; SCO—because subsets do not include

string operations.

Configuration LVI-Null:

• ISA subsets: nop, bit, cmov, conv, dxfr, flag, setc,

logi

• Target contract: CT-SEQ

• Spectre V4 patch enabled: True

• Microcode assists permitted: True

The configuration can surface LVI because microcode as-

sists are permitted. The configuration cannot surface V1 and

V1-Var because the instruction set does not contain branches;

V4—because the corresponding patch is enabled; ZDI—

because subsets do not include divisions; SCO—because sub-

sets do not include string operations.

Configuration V1-Var:

• ISA subsets: nop, bit, cond, cmov, conv, dxfr, flag,

setc, logi

• Target contract: CT-COND

• Spectre V4 patch enabled: True

• Microcode assists permitted: False

The configuration can surface V1-Var because the instruc-

tion set contains conditional branches and variable-latency

instructions. The configuration cannot surface V4 because

the corresponding patch is enabled; LVI—because microcode

assists are not permitted; V1 is not reported because the target

contract (CT-COND) permits conditional branch mispredic-

tion; ZDI—because subsets do not include divisions; SCO—

because subsets do not include string operations.

Configuration ZDI:

• ISA subsets: dmul, nop, bit, cond, cmov, conv, dxfr,

flag, setc, logi

• Target contract: CT-SEQ

• Spectre V4 patch enabled: True

• Microcode assists permitted: False

The configuration can surface ZDI because the instruction

set contains 64-bit divisions. The configuration cannot surface

V1 and V1-Var because the instruction set does not contain

branches; V4—because the corresponding patch is enabled;

LVI—because microcode assists are not permitted; SCO—

because subsets do not include string operations.

Configuration SCO:

• ISA subsets: strn, nop, bit, cond, cmov, conv, dxfr,

flag, setc, logi

• Target contract: CT-SEQ

• Spectre V4 patch enabled: True

• Microcode assists permitted: False

The configuration can surface SCO because the instruction

set contains string operations. The configuration cannot surface

V1 and V1-Var because the instruction set does not contain

branches; V4—because the corresponding patch is enabled;

LVI—because microcode assists are not permitted; ZDI—

because subsets do not include divisions.
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