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Abstract—Local differential privacy (LDP) collects user data
while protecting user privacy and eliminating the need for a
trusted data collector. Several LDP protocols have been proposed
and deployed in real-world applications. Frequency estimation is
a fundamental task in the LDP protocols, which enables more
advanced tasks in data analytics. However, the existing LDP pro-
tocols amplify the added noise in estimating the frequencies and
therefore do not achieve optimal performance in accuracy. This
paper introduces a convolution framework to analyze and opti-
mize the estimated frequencies of LDP protocols. The convolution
framework can equivalently transform the original frequency
estimation problem into a deconvolution problem with noise.
We thus add the Wiener filter-based deconvolution algorithms
to LDP protocols to estimate the frequency while suppressing
the added noise. Experimental results on different real-world
datasets demonstrate that our proposed algorithms can lead to
significantly better accuracy for state-of-the-art LDP protocols by
orders of magnitude for the smooth dataset. And these algorithms
also work on non-smooth datasets, but only to a limited extent.
Our code is available at https://github.com/SEUNICK/LDP.

I. INTRODUCTION

Differential privacy (DP) [1] has been accepted as the
standard of practice for data privacy in the real world. And
the U.S. Census Bureau adopts differential privacy to protect
2020 census data [2]. Recently, local differential privacy (LDP)
[3] has been proposed, which is a more rigorous differential
privacy technique in the local setting for protecting personal
privacy. In the local setting, the data collector does not gather
the raw data from the users. Instead, each user sends perturbed
data with random noise to the data collector, who aims to learn
the data distribution from the reports of all users. Since the raw
data never leave users, the technique of LDP enables collecting
and analyzing data from users while preserving the privacy
of every user without relying on a trusted data collector.
Nowadays, local differential privacy has been adopted by
several major tech companies, including Google [4], Apple [5],
Microsoft [6], etc. Examples of usage include collecting web
settings and browsing behavior to help identify encountered
threats; collecting commonly used emojis and phrases to
enhance quick type suggestions; or collecting telemetry data
to improve the user experience and make informed business
decisions.

A fundamental task in the LDP is frequency estimation. In
frequency estimation, there are numerous users and one data
collector. Each user owns a value from a specified domain
and the data aggregator attempts to estimate the frequency

of each value among all users. In recent years, there have
been various LDP protocols [4], [5], [7]–[12] proposed for
frequency estimation. All these protocols essentially consist
of three steps: encoding, perturbation and aggregation [9].
Encoding converts each user’s value into a certain format.
Perturbation adds noise to the encoded value and sends the
perturbed output to the data collector. Aggregation collects all
the reports from users to estimate the frequency of each value.
Both encoding and perturbation are done on each user’s device,
and thus the data collector can never know the raw value of
each user.

However, since each user has to add noise to his or her pri-
vate value, the total added noise of LDP is significantly high.
Moreover, while the aggregation step can estimate frequencies,
we find it further amplifies the added noise. As a consequence,
the estimated frequencies may not be accurate enough, and
some of them will even be negative. Although there are post-
processing algorithms, mostly consistency-based algorithms,
that calibrate the estimated frequencies after the aggregation
step, they are not effective enough since the added noise has
been amplified and they do not fully exploit the properties of
the added noise. And these consistency-based algorithms have
basically no enhancement for the top 𝑘 frequent values [13].

To analyze and suppress the noise amplification, we propose
a convolution framework. Figure 1 demonstrates existing LDP
protocols and our convolution framework. In the convolution
framework, the encoding and perturbation steps can be equiv-
alently represented as a one-dimensional circular convolution
of true frequency and transfer vector with added noise which
will be fully explained in Section 3. Thus, the aggregation step
to estimate frequencies can be converted to a deconvolution
problem which has been well studied in signal processing [14],
[15], image enhancement [16], [17], etc. We can suppress the
noise in the deconvolution process and obtain much more
accurate estimation results. Most existing protocols fit our
proposed framework, especially for all pure LDP protocols.

Since the noise is added by a specified protocol, the
distribution of the added noise can be inferred from the
known parameters. Our theoretical derivation shows that for
pure LDP protocols, the noise follows a zero-mean Gaussian
distribution with a known variance. As the Wiener filter is
the optimal linear filter for a signal with Gaussian noise and
one of the most fundamental noise reduction approaches [18],
we introduce Wiener filter-based algorithms to estimate the
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Fig. 1: Our convolution framework.

frequencies in the modified aggregation step. Wiener filter is
assumed to know the power spectrum of the original signal and
the added noise, as the distribution of the noise is known, the
main challenge is to estimate the original signal. To achieve
that, we propose the Direct Wiener (DW) filter algorithm
and the Improved Iterative Wiener (IIW) filter algorithm. DW
algorithm directly uses the output of the existing aggregation
step as input to get the generalized spectrum which is easy
to implement. IIW algorithm uses the fixed-point iteration to
converge to the ideal generalized spectrum of true frequencies,
which provides much better accuracy. Moreover, since only the
aggregation step is actually modified, existing protocols can
easily incorporate our proposed filtering algorithms to improve
the accuracy of the estimation results.

The contributions of this paper are as follows:
• We introduce a convolution framework for the existing

LDP protocols. This framework enables us to transform
the frequency estimation problem into a denoising de-
convolution problem, which has been well studied in
signal processing, image enhancement, etc. And this
allows deconvolution techniques to be applied to locally
differentially private frequency estimation.

• Based on the convolution framework, we give the power
spectrum of added noise and introduce DW and IIW
algorithms to filter the added noise while estimating
frequencies to improve the accuracy of existing LDP
protocols. Since we only modify the aggregation step,
existing LDP protocols can easily append our proposed
algorithms to filter noise and boost the accuracy.

• We conduct extensive experiments on real-world datasets
based on the two commonly used LDP protocols. Re-
sults illustrate that appending our proposed algorithms to
the state-of-the-art protocols provides significantly better
accuracy for smooth datasets.

Roadmap. In Section 2, we review the LDP definition, exist-
ing LDP frequency estimation protocols and post-processing
calibration algorithms. In Section 3, We present our convolu-
tion framework for LDP protocols and apply it to analyze the
noise amplification in existing LDP protocols. We give Wiener
filter-based algorithms to suppress the noise in Section 4. We

show our experimental results in Section 5 and conclude in
Section 6.

II. BACKGROUND AND RELATED WORK

We assume that there are 𝑚 users and one data collector in
frequency estimation. Each user possesses a private value 𝑣

from a specified domain D which is denoted as {1, 2, . . . , 𝑑}.
The goal of the data collector is to learn the frequencies of
each value from all users, and 𝑓𝑖 is the frequency of value
𝑖. Frequency estimation is a fundamental task in the LDP
protocols and is the key building block of other advanced
tasks, e.g., heavy hitter identification [12], [19], [20], range
queries [21]–[23], etc. Improving the accuracy of frequency
estimation will also improve the effectiveness of the protocols
for other tasks.

Notational Conventions. In this paper, bold letters are used
to denote vectors and bold capital letters denote the vector
after Fourier transform. For instance, f = [ 𝑓1, 𝑓2, . . . , 𝑓𝑑] is
the true frequencies of each value in the specified domain D
and F is the Fourier transform of f. If there is a tilde above
the notation(e.g., f̃), it is an estimate or a theoretical value by
the data collector.

Privacy Requirement. A frequency estimation protocol A
is used by each user to perturb his or her private value 𝑣,
and the data collector receives all the perturbed values A(𝑣)
to estimate the frequency of each value. To satisfy the LDP
privacy requirement, the output of protocol A must comply
with the following property.

Definition 1 (𝜀-Local Differential Privacy). A protocol A
satisfies 𝜀-local differential privacy (𝜀-LDP), where 𝜀 ≥ 0,
if and only if for any input 𝑣, 𝑣′ ∈ 𝐷, we have

∀𝑦 ∈ A(𝐷) : Pr [A(𝑣) = 𝑦] ≤ 𝑒𝜀Pr [A(𝑣′) = 𝑦]

where A(𝐷) denotes the set of all possible outputs of A.

Because the raw value 𝑣 of each user is never sent to the
data collector, even if the collector is malicious, the privacy
of every user is still preserved.

A. Existing LDP Frequency Estimation Protocols

The LDP frequency estimation protocols can be traced
back to the random response technique proposed in 1965
[24]. Recently, several LDP protocols have been proposed to
estimate the frequencies, e.g., RAPPOR [11], KRR [8], OUE
[9], OLH [9], Subset Selection [10] and Hadamard Response
[7]. All these LDP protocols can be broken down into three
steps: encoding, perturbation and aggregation [9]. Each user
converts his or her value into a certain format in encoding first
and then adds noise to the encoded value in perturbation to
achieve local differential privacy. The data collector gathers all
the perturbed values to estimate the frequencies in aggregation
lastly.

Moreover, most existing LDP protocols for frequency esti-
mation achieve pure local differential privacy [9]. The defini-
tion of pure LDP is as follows:
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Definition 2 (Pure Local Differential Privacy). A protocol A
is pure if and only if there exist two probability values 𝑝∗ > 𝑞∗

such that for all 𝑣

Pr[A(𝑣) ∈ {𝑦 |𝑣 ∈ Support(𝑦)}] = 𝑝∗,

∀𝑣′≠𝑣Pr[A(𝑣′) ∈ {𝑦 |𝑣 ∈ Support(𝑦)}] = 𝑞∗

where the set {𝑦 |𝑣 ∈ Support(𝑦)} denotes all outputs y that
“support” v.

For any protocols that satisfy the pure LDP definition, the
data collector can estimate the frequency 𝑓𝑖 in the aggregation
step using the following equation:

�̃�𝑖 =

∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖) − 𝑚𝑞∗

𝑚(𝑝∗ − 𝑞∗) (1)

where 𝟙Support(𝑦𝑘 ) (𝑖) is 1 if the output 𝑦𝑘 of user 𝑘 supports
the value 𝑖, otherwise 0. Thus

∑𝑚
𝑘=1 𝟙Support(𝑦𝑘 ) (𝑖) sums all

the perturbed outputs that support the value 𝑖. Then, the data
collector use the probabilities 𝑝∗, 𝑞∗ and the total number 𝑚

of users to normalize the counts to estimate the frequency 𝑓𝑖 .
The variance of the estimated frequency indicates the accu-

racy of the LDP protocol quantitatively, i.e., the smaller the
variance, the more accurate the frequency estimation. And the
variance of the estimated frequency 𝑓𝑖 for a pure LDP protocol
is:

Var[ �̃�𝑖] =
𝑞∗ (1 − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)2

+ 𝑓𝑖 (1 − 𝑝∗ − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗) (2)

Formula (1) and (2) are come from [9]. For completeness, we
give the relevant derivations in Appendix A. As the Var[ �̃�𝑖]
in (2) is dominated by the first term, we can use just the first
term to represent the variance approximately as Var∗ [ �̃�𝑖] as in
[9]:

Var∗ [ �̃�𝑖] =
𝑞∗ (1 − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)2

(3)

The following are two commonly used state-of-the-art LDP
frequency estimation protocols that satisfy pure LDP. We use
these two protocols as examples to illustrate the pure LDP and
three steps in detail.

K-ary Randomized Response (KRR). KRR [8] generalizes
the randomized response technique.

Encoding: In KRR, Encode(𝑣) = 𝑣 and 𝑣 ∈ 𝐷.
Perturbation: Perturb(𝑣) outputs 𝑣′ ∈ 𝐷 as follows:

Pr[Perturb(𝑣) = 𝑣′] =
{
𝑝 = 𝑒𝜀

𝑒𝜀+𝑑−1 , if 𝑣 = 𝑣′

𝑞 = 1
𝑒𝜀+𝑑−1 , if 𝑣 ≠ 𝑣′

Aggregation: KRR is a pure LDP protocol and 𝑝∗ = 𝑝, 𝑞∗ =
𝑞. The data collector estimates the the frequency �̃�𝑖 by using
(1), and the approximate variance of �̃�𝑖 is:

VarKRR [ �̃�𝑖] =
𝑒𝜀 + 𝑑 − 2
𝑚(𝑒𝜀 − 1)2

(4)

Optimized Unary Encoding (OUE). OUE [9] achieves state-
of-the-art performance in terms of accuracy.

Encoding: OUE uses unary encoding to encode 𝑣.
Encode(𝑣) = [0, . . . , 0, 1, 0, . . . , 0], a length-𝑑 binary vector
b where only the 𝑣-th bit is 1.

Perturbation: OUE perturbs vector b into b′ bit by bit as
follows:

Pr[Perturb(𝑏′𝑖) = 1] =
{
𝑝 = 1

2 , if 𝑏𝑖 = 1
𝑞 = 1

𝑒𝜀+1 , if 𝑏𝑖 = 0

Aggregation: OUE is also a pure LDP protocol and 𝑝∗ =
𝑝, 𝑞∗ = 𝑞. The data collector estimates the frequency �̃�𝑖 of
value 𝑖 also using (1). However, with different encoding and
perturbation, the approximate variance is:

VarOUE [ �̃�𝑖] =
4𝑒𝜀

𝑚(𝑒𝜀 − 1)2
(5)

Comparing KRR with OUE, KRR is easier and faster to
implement on the client side and the communication cost of
KRR is obviously lower. But when 𝑑 is large, OUE has a
lower variance and is more accurate. More specifically, OUE
outperforms KRR when 𝑑 is greater than 3𝑒𝜀 + 2.

Other LDP Frequency Estimation Protocols. Here we
briefly introduce several other LDP frequency estimation pro-
tocols that have been proposed recently.

Optimized Local Hashing (OLH) [9] uses a random hash
function to map the input values into a smaller domain of
size 𝑡, and then perturbs the hash values to achieve lower
communication cost than OUE. The 𝑝∗ and 𝑞∗ values of
OLH are the same as OUE, which means they have the same
accuracy performance.

Fast Local Hashing (FLH) [25] is also based on local hashing
as OLH. It sacrifices some theoretical guarantees on accuracy
to achieve computational gains on the server side compared to
OLH. This approach is several times faster than OLH, without
much loss of accuracy.

Hadamard Response [7] uses Hadamard transform to compress
the communication cost. It is similar to OLH with 𝑡 = 2.
However, in OLH 𝑡 varies with the privacy budget 𝜀 rather
than being fixed. Therefore, Hadamard Response is suboptimal
to OLH and OUE.

Projective Geometry Response (PGR) [26] is based on using
projective planes over a finite field to define a small collection
of sets that are close to being pairwise independent and a
dynamic programming algorithm for approximate histogram
reconstruction on the server side. According to [26], it achieves
the same variance or accuracy as OUE and OLH.

Piecewise Mechanism [27] consists of two main components,
one is used to handle mean estimation over a single numeric
attribute and the other is used to handle multidimensional data
that can contain both numeric and categorical attributes. And
the part of processing multidimensional data with categorical
attributes is based on OUE.

Optimized Multiple Encoding (OME) [28] is motivated by
OUE and is also designed to handle multidimensional data.
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The key idea is to map each real value 𝑣𝑖 of the embedding
vector into a binary vector with a fixed size 𝑙.

B. Existing Calibration Algorithms

Existing LDP protocols introduce significantly high noise
in the encoding and perturbation steps, which are further
amplified in the aggregation step, thus dramatically affecting
the accuracy of the estimation results. To improve the accu-
racy, several post-processing calibration algorithms have been
proposed, most of which are based on consistency.

Specifically, consistency [13] means that each estimated
frequency is non-negative and the sum of the estimated fre-
quencies is 1. To make the estimation result non-negative, the
most common algorithm is the significance threshold [9], [11].

Statistically, higher estimates are more reliable. And with a
fixed distribution of added noise in the specific LDP protocol,
the higher the true frequency, the less likely it is to be swamped
by noise. Therefore, the significance threshold is proposed to
discard unreliable estimates. After applying this algorithm, all
estimated frequencies above the threshold are kept, the rest
are considered unreliable and need to be discarded.

ST = Φ−1 (1 − 𝛼

𝑑
)
√

Var∗ (6)

where Φ−1 is the inverse of the standard normal cumulative
distribution and the parameter 𝛼 controls the magnitude of
the threshold. In [9] and [20], 𝛼 is recommended to be set
to 0.05. In (6), 𝛼

𝑑
can be viewed as the probability that a

zero-mean Gaussian random variable with standard deviation√
Var∗ is above the threshold. Therefore, the probability that all

random variables have a value above the threshold is at most
𝑑 · 𝛼

𝑑
= 𝛼. In other words, 𝛼 controls the number of values

that originally have low frequencies but have high estimated
frequencies above the threshold.

To ensure that the estimated frequencies sum to one, the
normalization algorithm is firstly proposed for the centralized
differential privacy setting [29] and then used in the local dif-
ferential privacy setting [22], [30]. In normalization algorithm,
𝛿 is added to each estimated frequency so that the sum is 1.
Since the normalization algorithm does not force all estimated
frequencies to be non-negative, Kairouz [8] and Bassily [31]
convert negative estimated frequencies to 0 and add 𝛿 to each
remaining estimated frequency. Instead of adding 𝛿, Wang [13]
proposes a different algorithm to convert negative and small
estimated frequencies to zero so that the sum is 1.

Besides the consistency-based approaches, Jia [20] proposes
an algorithm that assumes the true frequencies follow a
certain type of distribution with unknown parameters and
estimates the parameters of the distribution to finally update
the estimated frequencies to achieve the expected least square.
However, it is difficult to have prior knowledge about the
distribution of true frequencies which limits the scenarios of
this algorithm.

III. ANALYZING LDP PROTOCOLS WITH CONVOLUTION
FRAMEWORK

A. Our Convolution Framework

LDP protocols essentially consist of three steps: encoding,
perturbation and aggregation. Our convolution framework can
equivalently convert the encoding and perturbation steps into
a one-dimensional circular convolution process with noise.
Hence, the aggregation step is equivalently transformed into a
deconvolution problem with noise which has been well studied
in signal processing, image processing, etc. And several effec-
tive deconvolution techniques [17], [32] have been proposed.
By applying the deconvolution techniques to the aggregation
step, the noise in the estimated frequencies can be greatly
suppressed.

Theorem 1. For protocol A that satisfies pure LDP, the
encoding and perturbation steps can be equivalently trans-
formed into a one-dimensional circular convolution process
with added noise. Specifically, we have:

g = f ∗ h + n (7)

where g is a length-d vector consisting of the summation of

gathered perturbed outputs, 𝑔𝑖 =

∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖)

𝑚
, h is a

length-𝑑 transfer vector [𝑝∗, 𝑞∗, . . . , 𝑞∗] and n is a length-𝑑
vector of added noise.

Proof. From Definition 2, we can build a 𝑑×𝑑 circulant matrix
𝑀 for pure LDP protocols to characterize the randomization
process of encoding and perturbation.

𝑀 =



𝑝∗ 𝑞∗ 𝑞∗ · · · 𝑞∗

𝑞∗ 𝑝∗ 𝑞∗ · · · 𝑞∗

...
. . .

...

𝑞∗ · · · 𝑞∗ 𝑝∗ 𝑞∗

𝑞∗ 𝑞∗ · · · 𝑞∗ 𝑝∗


The matrix 𝑀 indicates the transformation probabilities, where
𝑀𝑖, 𝑗 represents the probability of input value 𝑖 supports value
𝑗 after perturbation. Thus, for an input value i, the probability
of output supports value 𝑗 is 𝑀𝑖, 𝑗 . And for 𝑚 users and the
true frequency vector f, we have a total expectation of outputs
supporting value 𝑗 as:

E(∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) ( 𝑗)) =

∑𝑑
𝑖=1𝑚 𝑓𝑖𝑀𝑖, 𝑗

Divide both sides by 𝑚, we have:

E(𝑔 𝑗 ) =
∑𝑑

𝑖=1 𝑓𝑖𝑀𝑖, 𝑗

E(g⊤) = 𝑀f⊤

Because 𝑀 is a circulant square matrix, we can rewrite the
equation as the circular convolution:

E(g) = f ∗ h

where transfer vector h is the first column of 𝑀 . Plus the
added noise n in the randomization process, the real gathered
outputs can be expressed as:

g = f ∗ h + n
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□

It is worth noting that Theorem 1 can be further extended
to certain LDP protocols, even though they do not satisfy the
pure LDP, as long as the transformation probability matrix 𝑀

of these protocols is circulant.

Theorem 2. In convolution framework, n can be well ap-
proximated as a Gaussian noise with zero-mean and a known
variance. More specifically, we have:

𝑛𝑖 ∼ N(0, 𝜎2
𝑖 ) (8)

𝜎2
𝑖 =

𝑞∗ (1 − 𝑞∗)
𝑚

+ 𝑓𝑖 (𝑝∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)
𝑚

(9)

Proof. There are 𝑚 users and one data collector, and each user
with value 𝑖 sends the perturbed value to the data collector
which is equivalent to an independent Bernoulli experiment
with parameter 𝑀𝑖, 𝑗 supports value 𝑗 (resp. 1 − 𝑀𝑖, 𝑗 ). In
other words, the random variable 𝑚𝑔 𝑗 is the summation of 𝑚
independent variables drawn from the Bernoulli distribution.
Therefore,

E(𝑚𝑔 𝑗 ) =
∑𝑑

𝑖=1𝑚 𝑓𝑖𝑀𝑖, 𝑗

Var(𝑚𝑔 𝑗 ) =
∑𝑑

𝑖=1𝑚 𝑓𝑖𝑀𝑖, 𝑗 (1 − 𝑀𝑖, 𝑗 )
= 𝑚 𝑓 𝑗 𝑝

∗ (1 − 𝑝∗) + 𝑚(1 − 𝑓 𝑗 )𝑞∗ (1 − 𝑞∗)
= 𝑚𝑞∗ (1 − 𝑞∗) + 𝑚 𝑓 𝑗 (𝑝∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)

Var(𝑔 𝑗 ) =
𝑞∗ (1 − 𝑞∗)

𝑚
+

𝑓 𝑗 (𝑝∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)
𝑚

Let 𝜎2
𝑗
= Var(𝑔 𝑗 ), according to the central limit theorem, the

random variable 𝑔 𝑗 can be regarded as the expected value plus
a Gaussian distributed noise:

𝑔 𝑗 =
∑𝑑

𝑖=1 𝑓𝑖𝑀𝑖, 𝑗 + N(0, 𝜎2
𝑗 )

= 𝑓 𝑗 𝑝
∗ + (1 − 𝑓 𝑗 )𝑞∗ + N(0, 𝜎2

𝑗 )
= 𝑓 𝑗 (𝑝∗ − 𝑞∗) + 𝑞∗ + N(0, 𝜎2

𝑗 )

𝜎2
𝑗 =

𝑞∗ (1 − 𝑞∗)
𝑚

+
𝑓 𝑗 (𝑝∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)

𝑚

That is:
𝑛𝑖 ∼ N(0, 𝜎2

𝑖 )

□

It is worth noting that n is the noise added to the overall
vector in the system of multiple users, which occurs in
the perturbation step before the aggregation step. Although
previous studies [9], [13], [20] have included analyses of the
noise in LDP protocols, these analyses are based on the noise
after the aggregation step.

B. Noise amplification in LDP protocols

According to the definitions and derivations in Theorems 1
and 2, we have:

𝑔𝑖 =

∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖)

𝑚
= 𝑓𝑖 𝑝

∗ + (1 − 𝑓𝑖)𝑞∗ + 𝑛𝑖 (10)

Substituting 𝑔𝑖 into (1) used in the existing aggregation step,
we have:

�̃�𝑖 = 𝑓𝑖 +
𝑛𝑖

𝑝∗ − 𝑞∗ (11)

Var[ �̃�𝑖] = Var[ 𝑛𝑖

𝑝∗ − 𝑞∗ ] =
𝜎2

(𝑝∗ − 𝑞∗)2

=
𝑞∗ (1 − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)2

+ 𝑓𝑖 (1 − 𝑝∗ − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)

≈ 𝑞∗ (1 − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)2

(12)

Equation (11) suggests that the added noise is further amplified
by a factor of 1/(𝑝∗ − 𝑞∗) in the existing aggregation step,
which leads to further inaccuracies in the estimation results.
Equation (12) yields the same variance as in (2) and (3) derived
by pure LDP, which verifies the correctness of our convolution
framework.

For the commonly used KRR and OUE introduced in
Section 2, their 𝜎2 of added noise n can be solved by (9)
separately as follows:

𝜎2
KRR =

𝑒𝜀 + 𝑑 − 2
𝑚(𝑒𝜀 + 𝑑 − 1)2

(13)

𝜎2
OUE =

𝑒𝜀

𝑚(𝑒𝜀 + 1)2
(14)

It is clear that the added noise of KRR is smaller than
that of OUE, especially when d is large, although the final
estimated frequencies of OUE are more accurate. This is due
precisely to the fact that KRR has a much larger factor of
noise amplification in the existing aggregation step.

However, with the convolution framework, the encoding and
perturbation steps can be converted equivalently into a one-
dimensional convolution process with noise as g = f ∗ h + n,
where f is the input true frequency vector and g is the output
after the perturbation received by the data collector. With
known g and h, estimating the true frequency vector f is a
classical problem of restoring data degraded by a convolution
and the addition of Gaussian noise. By using the deconvolution
techniques, it is possible to significantly suppress the added
noise while estimating the frequencies. And there is a chance
that the estimation accuracy of KRR exceeds that of OUE with
the deconvolution techniques, as the added noise of KRR is
smaller than that of OUE.

IV. WIENER DECONVOLUTION

A. Overview of Wiener deconvolution

Wiener deconvolution is an application of the Wiener filter
to the noise problems inherent in deconvolution, especially
for such additive Gaussian noise, Wiener filtering is optimal
in terms of the mean squared error (MSE) after recovering
the data [18]. In other words, it executes an optimal tradeoff
between inverse convolution and noise smoothing. Wiener
filtering removes the additive noise and inverts the convolution
simultaneously to restore the data. To use Wiener deconvo-
lution, Equation (7) needs to be converted to the frequency
domain. Since circular convolution in the time domain is
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equivalent to the multiplication of the frequency domain, we
have:

G = FH + N (15)

where G, F, H, and N are the Fourier transform of g, f, h,
and n respectively.

The Wiener filter in the frequency domain can be demon-
strated as:

𝑊 =
H∗

|H|2 + 𝑃n/𝑃f
=

1
H
[ 1
1 + 1/(|H|2SNR)

] (16)

where H∗ is the conjugation of H, 𝑃f and 𝑃n are the
generalized power spectral density of f and n respectively,
SNR = 𝑃f/𝑃n is the signal-to-noise ratio.

The filtering operation is carried out in the frequency
domain as:

F̃ = 𝑊G (17)

and then executing an inverse Fourier transform on 𝐹 to obtain
f̃ as:

f̃ = IFFT(F̃) (18)

As seen in (16), when the signal-to-noise ratio goes to
infinite (i.e., the noise goes to zero or the signal goes to
infinite), the term inside the square brackets equals 1, and the
Wiener filter is just the inverse of the degraded data and has
the same effect as the original aggregation step. However, as
the signal-to-noise ratio falls at specific frequencies, the term
inside the square brackets also falls, which means the Wiener
filter automatically adjusts the filtering intensity according to
the signal-to-noise ratio at different frequencies.

There are two main assumptions in the Wiener filter. One
is the noise is independent of the signal, and the other is the
signal is a weak stationary stochastic process. The basic idea of
stationarity is the statistical properties of the stochastic process
do not change over time. For non-stationary processes, Wiener
filter may not achieve optimal filtering performance, but it
will still be somewhat effective. For real-life data, they often
follow a certain type of distribution. And for numerical data,
there will be some continuity or smoothness in the frequency
of adjacent numerical values, which can be considered to be
approximately stationary on a small scale. In nature, many
attributes are ordinal or numerical, e.g., age, height, weight,
income, population by age, etc. And all these datasets can be
viewed as smooth and have a certain level of stationarity.

To implement the Wiener filter in practice, we need to
estimate the power spectral density of the true frequencies
f and the additive noise n.

B. Estimating 𝑃n

Since n can be modeled as the additive Gaussian noise, it is
uncomplicated to obtain the expected power spectral density
E(𝑃n). In our algorithms, we use the expectation E(𝑃n) as the
estimate 𝑃n.

Theorem 3. For the additive Gaussian noise n which consists
d independent variables and 𝑛𝑖 ∼ N(0, 𝜎2

𝑖
), its generalized

power spectral density expectation is:

E(𝑃n) = E( [𝑃0, 𝑃1, . . . , 𝑃𝑑−1])
= [∑𝑑

𝑖=1 𝜎
2
𝑖
,
∑𝑑

𝑖=1 𝜎
2
𝑖
, . . . ,

∑𝑑
𝑖=1 𝜎

2
𝑖
]

(19)

∑𝑑
𝑖=1 𝜎

2
𝑖
=

𝑑𝑞∗ (1 − 𝑞∗)
𝑚

+ (𝑝
∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)

𝑚
(20)

Proof. According to the definition of Fourier transform, we
have:

N = FFT(n) = [𝑁0, 𝑁1, . . . , 𝑁𝑑−1]

𝑁𝑘 =
∑𝑑−1

𝑙=0 𝑛𝑙+1𝑒
− 𝑗 2𝜋

𝑑
𝑙𝑘 (𝑘 = 0, 1, . . . , 𝑑 − 1)

𝑛𝑙+1𝑒
− 𝑗 2𝜋

𝑑
𝑙𝑘 = 𝑛𝑙+1 (cos

2𝜋
𝑑
𝑙𝑘 − 𝑗 sin

2𝜋
𝑑
𝑙𝑘)

Here we use 𝑛𝑙 instead of 𝑛𝑖 to prevent confusion with the
imaginary number 𝑖 or 𝑗 . Since 𝑛𝑙+1 ∼ N(0, 𝜎2

𝑙+1), we have
the expectation of 𝑛𝑙+1𝑒

− 𝑗 2𝜋
𝑑
𝑙𝑘 as:

E(𝑛𝑙+1𝑒− 𝑗
2𝜋
𝑑
𝑙𝑘) = 0

E( |𝑛𝑙+1𝑒− 𝑗
2𝜋
𝑑
𝑙𝑘 |2) = E(𝑛2

𝑙+1 (cos2 2𝜋
𝑑
𝑙𝑘 + sin2 2𝜋

𝑑
𝑙𝑘))

= E(𝑛2
𝑙+1) = 𝜎2

𝑙+1

As each variable in n is independent, the expectation of the
summation 𝑁𝑘 is:

E(𝑁𝑘) = E(∑𝑑−1
𝑙=0 𝑛𝑙+1𝑒

− 𝑗 2𝜋
𝑑
𝑙𝑘) = 0

E( |𝑁𝑘 |2) =
∑𝑑−1

𝑙=0 𝜎2
𝑙+1 =

∑𝑑
𝑙=1 𝜎

2
𝑙

𝑃n can be derived from N as follows:

𝑃n = |N|2 = [|𝑁0 |2, |𝑁1 |2, . . . , |𝑁𝑑−1 |2]

Thus, we have:

E(𝑃n) = E( [|𝑁0 |2, |𝑁1 |2, . . . , |𝑁𝑑−1 |2])
= [∑𝑑

𝑙=1 𝜎
2
𝑙
,
∑𝑑

𝑙=1 𝜎
2
𝑙
, . . . ,

∑𝑑
𝑙=1 𝜎

2
𝑙
]

In addition, as the sum of all frequencies is 1, the
∑𝑑

𝑙=1 𝜎
2
𝑙

is:∑𝑑
𝑙=1 𝜎

2
𝑙
=

𝑑𝑞∗ (1 − 𝑞∗)
𝑚

+ (𝑝
∗ − 𝑞∗) (1 − 𝑝∗ − 𝑞∗)

𝑚

□

It is worth noting that for KRR, 𝑃0 = 0 is an exception.
In KRR, one output supports only one input, and the sum of
all estimates is 𝑚, which is equal to the sum of the expected
counts of each value in domain D. Thus we have 𝑚𝑁0 =

𝑚
∑𝑑−1

𝑙=0 𝑛𝑙+1𝑒0 = 𝑚(𝑛1 + 𝑛2 + · · · + 𝑛𝑑) is the subtraction of
these two sums equal to 0 and 𝑃0 = 0. But for 𝑘 ≠ 0, 𝑃𝑘 can
still be considered as

∑𝑑
𝑖=1 𝜎

2
𝑖

in KRR. We will demonstrate
this in the empirical experiments in Section 5.
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Algorithm 1 Improved Iterative Wiener Filter Algorithm

Input: g, h and 𝑃n
Output: f̃

Let G← FFT(g),H← FFT(h), 𝑃f (0) ← |GH |
2

𝑊 (0) = H∗
|H |2+𝑃n/�̃�f (0)

F̃(0) = 𝑊 (0)G
while F̃(𝑖) not converge do

𝑃f (𝑖)correction ← 𝑃n
|H |2+𝑃n/�̃�f (𝑖−1)

𝑃f (𝑖) ← |F̃(𝑖 − 1) |2 + 𝑃f (𝑖)correction
𝑊 (𝑖) = H∗

|H |2+𝑃n/�̃�f (𝑖)
F̃(𝑖) = 𝑊 (𝑖)G

end while
f̃ = IFFT(F̃(𝑖))
Return f̃

C. Estimating 𝑃f and f
Direct Wiener (DW) filter algorithm. Since the variables 𝑃f
and f are related as follows:

𝑃f = |F|2 (21)

where F is the Fourier transform of f. Therefore, by using the
result f̃ estimated by (1), we can estimate 𝑃f . After that, given
𝑃f , 𝑃n, G and H, we can re-estimate f by Wiener filtering.
This is the Direct Wiener filter algorithm. The DW algorithm
directly uses the original estimate f̃ of the aggregation step
to obtain the power spectrum 𝑃f , so it can be regarded as a
smoothing of the original estimate f̃ to some extent. Because
the denoising effect of the Wiener filter is directly related to
the accuracy of the spectrum estimation 𝑃f , which is obviously
still far from the ideal 𝑃f , the DW algorithm is not yet
optimal. However, the performance of the DW algorithm will
be greatly improved if there is prior knowledge of the true
power spectrum 𝑃f .

Improved Iterative Wiener (IIW) filter algorithm. Although
the DW algorithm is not optimal, we can find that the
frequency estimation f̃ is refined after one DW algorithm
processing. The improved frequency estimation can gives a
more accurate spectral estimation of 𝑃f , which allows the
DW algorithm to be used again to improve the frequency
estimation. Repeating the process in an iterative fashion is
iterative Wiener filtering. However, the simple iterative Wiener
filtering converges to more than one fixed point, and the
convergence of the iterative Wiener filtering is not the true
minimum MSE solution. In order to make the iterative results
converge to the true 𝑃f , a possible modification is to add
a correction factor to the power spectrum and the formal
proof of convergence can be found in [32]. The Improved
Iterative Wiener filter algorithm is shown in Algorithm 1. In
our proposed IIW algorithm, we only need to use g, h and 𝑃n
as initial values without any other additional preconditioning.

The fixed points of the update equation in the IIW algorithm
are determined by solving for the roots of 𝑃f (𝑖+1) −𝑃f (𝑖) = 0
as follows:

𝑃f (𝑖 + 1) − 𝑃f (𝑖) =
|H|2𝑃f

2 (𝑖) [|G|2 − |H|2𝑃f (𝑖) − 𝑃n]
[|H|2𝑃f (𝑖) + 𝑃n]2

(22)

There are two fixed points at

𝑃f =
|G|2 − 𝑃n

|H|2
and 𝑃f = 0 (23)

Since the added noise n can be considered irrelevant to the
real frequencies f, from (15) we have:

𝑃f = |F|2 =
|G|2 − |N|2
|H|2

=
|G|2 − 𝑃n

|H|2
(24)

Comparing (23) and (24), we can find that the proposed IIW
algorithm does lead to the ideal power spectrum 𝑃f for any
positive starting point. It is also easy to notice from (24) that
any error in the estimate of 𝑃n will be dramatically amplified
for a small value of |H|2. Therefore, the result of (24) cannot
be used as an estimate of 𝑃f to be applied in the DW algorithm.
However, in the IIW algorithm, this problem can be alleviated
by controlling the times of iterations. Besides, we find that
if the initial value of the power spectrum 𝑃f in IIW is set to
𝑃g = |G|2, the performance for KRR on smooth datasets can
be substantially improved. But this enhancement is not stable
and only works on KRR. For better generality, we set the
initial value of 𝑃f to |GH |

2, and G
H is equivalent to the original

aggregation estimation result, while the result of F̃(0) is equal
to the result of DW. Empirically, the IIW algorithm usually has
an extremely slow convergent rate after about 30 iterations.
Therefore, the stopping criterion is set to 30 iterations to
achieve a balance between performance and computing cost.

Average Multiple Random Permuted (AMRP). Wiener
filtering requires the signal to be weakly stationary to achieve
the optimum MSE. Through experiments, our proposed ap-
proaches based on Wiener filtering work best on smooth
datasets, while less effective on non-smooth datasets, espe-
cially on randomly permuted datasets. To overcome this, we
propose the AMRP approach for non-smooth datasets. It is
inspired by the fact that different re-permutation of the same
aggregation results lead to different Wiener filter estimation
results. Therefore, we randomly re-permute the observations
on the server side and then restore the estimated result to the
order before re-permute. We sum the restored estimated result
obtained by different randomly re-permute orders and average
it to achieve a more accurate result. The number of re-permute
estimated results is set to 100.

Intuitively, Wiener deconvolution can be considered a decor-
relation process. Usually, the noise signal and the original sig-
nal are not correlated, so the noise can be effectively removed
after deconvolution. However, after random permutation, the
distributions of the input signal and noise signal will have
some similarity (but not fully), so Wiener deconvolution will
be less effective in denoising (but remain somewhat effective).
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(a) Taxi with 𝑑 = 1000 (b) RP Taxi with 𝑑 = 1000 (c) Kosarak

Fig. 2: Frequencies distribution of all datasets.

(a) Taxi with 𝑑 = 1000 (b) RP Taxi with 𝑑 = 1000 (c) Kosarak

(d) Taxi with 𝑑 = 1000 (e) RP Taxi with 𝑑 = 1000 (f) Kosarak

Fig. 3: Comparing empirical and analytical power spectral density of added noise (first row: KRR, second row: OUE).

Since the performance of Wiener deconvolution is related to
the order of the input signal, the main goal of the AMRP
method is to obtain the average performance among multiple
random orders. And after averaging, the noise suppression
amplitude of each frequency item is also averaged, which helps
the noise suppression amplitude to be neither too large nor too
small.

V. EXPERIMENTS

A. Experimental Setup

Datasets. This paper uses the following three datasets for the
experiments.

Taxi pickup time dataset. Taxi pickup time dataset comes
from 2021 June New York Yellow Taxi Trip Records [33].
The recorded taxi pickup time in a day is accurate to a
second. There are 2,834,264 records in this dataset. Since it

is composed of numerical data, it can be easily normalized to
[0,1] and categorized at different granularities.

Randomly Permuted (RP) Taxi pickup time dataset. Since
the Taxi pickup time dataset can be viewed as a smooth
dataset, we randomly permute its frequency vectors to generate
an extremely non-smooth dataset as a comparison.

Kosarak dataset. Kosarak dataset [34] contains
(anonymized) click-stream data of a hungarian on-line
news portal. In total, there are 8,019,015 click events for
41,270 different webpages. This dataset is very non-smooth
and the data varies dramatically, where the largest number of
clicks on the same page is 601,374, while the 10th largest is
only 65,412. As the Kosarak dataset is already categorized, it
has a fixed domain size of 41,270.

The Taxi dataset is used as a representative of a continuous
or smooth dataset and the RP Taxi dataset is used as a
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Fig. 4: The convergence of IIW approach with 𝜀 = 4.
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Fig. 5: The convergence of IIW and IIW-G approach with 𝑑 = 1000 on Taxi dataset, varying 𝜀.

worst-case comparison. As in previous studies [9], [20], the
Kosarak dataset is used as a representative of the discrete non-
smooth dataset. Figure 2 shows all the datasets used for the
experiments. The Taxi dataset is relatively smooth, while the
RP Taxi dataset and Kosarak dataset are non-smooth and the
Kosarak has more drastic data variation.

Metrics. We verify the correctness of the theoretical analysis
of the convolution framework and evaluate the effects of
frequency estimation in two scenarios, namely, full-domain
evaluation and frequent-value evaluation. In full-domain eval-
uation, we estimate the frequency of each value in the entire
domain. And in frequent-value evaluation, we only estimate
the frequencies of top 𝑘 frequent values.

We use the metrics of Mean Squared Error (MSE) to
evaluate the performance of the frequency estimation protocols
as in the previous study [8], [9], [11]. MSE measures the
mean of the squares of the errors—that is, the average squared
difference between the estimated values and the true value.
And when the estimated frequencies are unbiased, the MSE
is equivalent to the variance. For full-domain evaluation, we
have

MSE =
1
𝑑

∑︁
𝑣∈𝐷
( �̃�𝑣 − 𝑓𝑣)2

As for frequent-value evaluation, we only calculate the MSE
of the 𝑘 most frequent values instead of the full domain.

In addition, we use the number of true (false) positives
to indicate the number of reliable estimates as in [9]. A

true (false) positive is a category value that has a frequency
above (below) a certain threshold and is estimated to have
a frequency above the threshold. This metric also directly
reflects the accuracy of the frequency estimation protocol
used for heavy hitter identification, which aims to detect the
category values whose frequencies are larger than a given
threshold.

Baseline/alternative approaches. The following protocols
and algorithms are compared:

KRR and OUE. KRR [8] and OUE [9] are two commonly
used LDP frequency estimation protocols. We choose them
as the baselines because OUE achieves the best performance
in accuracy when d is large, while KRR can achieve better
accuracy when d is smaller than 3𝑒𝜀 + 2. For more details
about these two protocols please refer to Section 2.

KRR-DW, OUE-DW, KRR-IIW, KRR-IIW-G and OUE-IIW.
Our proposed DW and IIW algorithms are appended to KRR
and OUE separately. Without additional explanation, IIW uses
|GH |

2 as the initial value of the power spectrum 𝑃f , because
this ensures the robustness of the algorithm. And we rename
the IIW method with the initial value of |G|2 as IIW-G. For
non-smooth datasets, we only use the DW approach and addi-
tionally append the AMRP approach to improve performance.

Smoothing approach. Besides, since the Taxi dataset is
relatively smooth, we use the same smoothing approach in
[35] as a competitor to DW and IIW on Taxi dataset. This
smoothing approach assumes continuity between adjacent data
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Fig. 6: MSE results on full-domain (first row: KRR, second row: OUE, and KRR-IIW-G in both (a) and (d)), varying 𝜀.

items, thus averaging the estimates between adjacent data can
greatly improve the accuracy. Its specific formula is as follows:

�̃�𝑖 =
1
2
�̃�𝑖 +

1
4
( �̃�𝑖−1 + �̃�𝑖+1) (25)

All the protocols and algorithms are implemented using
Python 3.8.6 and Numpy 1.22.3. Because LDP protocols
add randomized noise, the frequency estimated by the data
collector is not completely determined each time. This means
that the frequencies estimated by the data collectors will
vary after each execution of the LDP protocols. To reduce
randomness, we repeat each experiment 10 times to calculate
the average MSE for each protocol.

As mentioned in Section 2.2, some post-processing algo-
rithms, mostly consistency-based, have been proposed recently
to calibrate the estimation results. However, these consistency-
based algorithms have very limited effectiveness in accuracy
and no enhancement for the frequent values [9]. Therefore,
we do not apply these algorithms to the baselines. It is worth
noting that these algorithms can be used together with our pro-
posed algorithms and may help to improve the performance.

B. Verification of Analysis

Estimation of the power spectral density of the additive
noise n. In our convolution framework, the encoding and
perturbation steps of existing LDP protocols are equivalently
considered as a circular convolution process with added Gaus-
sian noise. We now show that our analytical power spectrum

of the added noise in collected perturbed outputs matches
the actual measured noise. For empirical data, we run the
LDP protocols and generate the collected perturbation outputs.
We measure the added noise by subtracting the theoretical
expectation from the obtained perturbation outputs, namely,
n = g − f ∗ h. We then calculate the power spectrum of the
measured noise and compare it with the analytical noise power
spectrum.

Figure 3 shows the empirical and analytical noise power
spectrum for all LDP protocols with 𝜀 = 4. The measured
power spectrum data of the noise are the values obtained
from one experiment and the average of 10 experiments,
respectively. The practical power spectrum is found to fluctuate
up and down from our analytical value through experiments.
This is consistent with our theoretical derivation since our
analytical spectrum is the expected value, and it can be seen
experimentally that the average measured spectrum of 10
experiments is much closer to our analytical value. The noise
power spectrums of the Taxi and RP Taxi datasets are very
similar because the random permutation to the same dataset
has essentially no effect on the noise power spectrum. It is
worth noting that both theory and experiment show that 𝑃0 = 0
for KKR, but since we are using a logarithmic representation
of Figure 3, the point 𝑃0 = 0 is not plotted in Figure 3.

Convergence of the IIW approach. We experimentally verify
the convergence of the IIW approach with |GH |

2 as the initial
value of 𝑃f on each dataset. Because the IIW-G approach with
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Fig. 7: MSE results on full-domain with 𝜀 = 4, varying 𝑑.

|G|2 as the initial value has a huge performance improvement
of the KRR approach on the smooth dataset, we additionally
verified the convergence of the IIW-G approach on the Taxi
dataset.

Figure 4 demonstrates the convergence of IIW approach
for all datasets. We find that the IIW approach converges
quickly, for KRR after a few iterations, while for OUE it can
be considered converged after at most 30 iterations. Because
the results of the 1st iteration of IIW are equivalent to the
DW approach, we can see that the IIW approach significantly
improves the MSE of DW on the smooth dataset (i.e., Taxi
dataset). However, for non-smooth datasets, the IIW approach
is not always working, and may even worsen the performance
of DW. Therefore, we run DW and AMRP approaches on
the non-smooth datasets without the IIW approach in the
following experiments.

Figure 5 describes the convergence of IIW and IIW-G ap-
proaches for the Taxi dataset with different 𝜀. The convergence
rate of IIW in the experiment is unaffected by the change
in 𝜀, but the convergence rate of KRR-IIW-G slows down
as 𝜀 becomes smaller. In particular, when 𝜀 = 1, KRR-IIW-
G is stuck at the initial value even after 200 iterations. This
is because when the noise amplitude is too large, the signal
can be considered as a Gaussian random process with mean
1/𝑑 after superimposing the noise, while the initial value of g
tends to be 1/𝑑. As a result, IIW-G is stuck and over-fitted to
the noise. For 𝜀 >= 2, KRR-IIW-G may eventually converge
to a result similar to KKR-IIW, it can obtain a much lower
MSE than KRR-IIW, or even lower than OUE-IIW, during
the iterative process. However, the number of iterations of the
KRR-IIW-G approach to obtain the optimal MSE is not stable
and is mainly influenced by the ratio of the noise to the average
signal amplitude, i.e.,

√
Var∗
1/𝑑 = 𝑑

√
Var∗. The ratio is 10.93, 2.95,

0.99, and 0.36 when 𝜀=1, 2, 3, and 4 for KRR, respectively.
Therefore, to ensure validity, this ratio should be lower than
1 when using KRR-IIW-G, and the number of iterations can
be set to about 10 to achieve a desirable MSE.

C. Full-domain Evaluation

Different privacy budgets 𝜀. Theoretically, the larger the
privacy budget 𝜀, the less added noise in LDP protocols,
the weaker the privacy protection, and the more accurate the
frequency estimation. We experiment with all protocols and
approaches and varying 𝜀 from 1 to 5. The experimental results
are showed in Figure 6. For the smooth Taxi dataset, we
can see that the KRR-IIW-G perform significantly better than
the others, including the OUE-based approaches. However,
according to our experiments on the convergence of KRR-
IIW-G in Figure 5, the estimates are trustworthy only when
𝜀 is greater than 2.25, and when 𝜀 is between 1 and 2.25,
KRR-IIW-G is stuck at the initial value. The performance of
the smoothing approach is very similar to that of the DW
approach but not as good as that of the IIW approach for both
KRR and OUE. When 𝜀 = 5, after appending to the KRR or
OUE, the IIW approach reduces the MSE to one-third to one-
quarter of the original, and the noise reduction effect is very
stable. For both non-smooth datasets, the effect of DW noise
reduction decreases with increasing 𝜀. This is because our
estimated expectation of the noise spectrum is still accurate,
and the larger the noise is, the more pronounced the noise
reduction effect is. The additional AMRP approach havs some
performance improvement, but the improvement is weak.

Different domain size 𝑑. For the same dataset with fixed
privacy budgets 𝜀, the greater the domain size 𝑑, the higher
the MSE of KRR becomes, while the MSE of OUE remains es-
sentially the same as shown in (4) and (5). Because the domain
size of the Kosarak dataset is fixed, we only experiment on the
Taxi dataset and the RP Taxi dataset with varying d. Figure
7 illustrates the MSE results of compared LDP protocols and
approaches on these two datasets with varying 𝑑 from 100 to
1000. For the smooth dataset, KRR-IIW-G still achieves the
best denoising effect. Theoretically, KRR only performs better
than OUE when 𝑑 < 3𝑒𝜀 +2 = 166, and KRR performs worse
as d increases. However, after appending the IIW and IIW-
G approaches, KRR-IIW can perform better than OUE at d
= 800, and KRR-IIW-G performs even better than OUE-IIW.
The performance of the smoothing approach is similar to that
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Fig. 8: MSE results on top 𝑘 frequent values (first row: KRR, second row: OUE, and KRR-IIW-G in both (a) and (d)) with
𝜀 = 4, varying 𝑘 .

of the DW approach but worse than that of the IIW approach
for both KRR and OUE. We can see that for both smooth
and non-smooth datasets, the noise reduction performance of
DW and IIW approaches improves with increasing d. And the
AMRP approach has performance improvement to the DW
approach on the RP Taxi dataset.

D. Frequent-value Evaluation

For frequent-value evaluation, we only consider the MSE of
the top 𝑘 values among the domain. We measure the MSE of
the 𝑘 most frequent value with varying 𝑘 from 10 to 100, fixing
𝜀 = 4. The experimental results are illustrated in Figure 8. We
observe that our proposed IIW algorithm performs best among
all algorithms (except KRR-IIW-G) for the Taxi dataset. The
performance of the smoothing approach is still similar to that
of the DW approach. When 𝑘 < 30, the performance of KRR-
IIW-G on 𝑘 top value is slightly weaker than OUE, but still
much better than KRR. For the RP Taxi dataset, the DW
approach is much less effective than the Taxi dataset, and
in particular, the OUE-DW approach is even worse than the
OUE at some points. However, the addition of the AMRP
approach guarantees a certain enhancement for both KRR and
OUE. For the Kosara dataset, both the appending DW and
DW-AMRP approaches to KRR or OUE are worse than no
appending for the top 𝑘 value. We believe this is because the
actual power spectrum 𝑃n is found to fluctuate up and down

from our estimates and eventually lead to an over-suppression
of extremely large frequency values. However, these extreme
points are easy to identify and we can just leave these extreme
values unchanged after filtering to address this issue.

E. Distinguish True Counts from Noise

Figure 9 shows the number of true (false) positives for
different approaches and datasets with 𝜀 = 4. For clarity, here
we use count 𝑐𝑖 as threshold instead of frequency 𝑓𝑖 , and we
have 𝑐𝑖 = 𝑚 𝑓𝑖 . For the Taxi and RP taxi datasets, since we
have 𝑚 · STOUE = 763, 𝑚 · STKRR = 1676, the threshold
range in our experiment is set from 500 to 2000. For the
Kosara dataset, we just set the threshold range from 5000 to
20000 as in the previous study [9]. The number of true (false)
counts is an average of 10 experiments. From figure 9, we
can find that all approaches perform similarly to the previous
full-domain evaluation experiments on the Taxi dataset. For
this smooth dataset, KRR outputs the least true positives and
the most false positives. In contrast, KRR-IIW-G achieves the
best performance. For extremely non-smooth datasets, AMRP
has improved performance over DW for both KRR and OUE.
Specifically, for the RP Taxi dataset, DW and DW-AMRP
output more true positives while also more false positives than
the original approaches. For the Kosarak dataset, KRR-DW
and KRR-DW-AMRP output about ten fewer true positives
and thousands of fewer false positives, and OUE-DW-AMRP
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Fig. 9: Number of true(false) positives with 𝜀 = 4

has improved performance over OUE by outputting fewer false
positives.

In summary, our proposed approaches have improved accu-
racy for both smooth and non-smooth datasets. For smooth
datasets, we recommend using the IIW approach since it
is very stable and has a clear accuracy improvement. Even
though the KRR-IIW-G approach may have better accuracy,
it can only be used when 𝑑

√
Var∗ < 1. For extremely non-

smooth datasets, the DW-AWRP approach can be used, but
the improvement in accuracy is relatively weak. To use our
proposed approaches, the aggregator should know the structure
of the h-vector. In most cases, the aggregator should know
this as long as the aggregator can estimate the data using the
equation (1). However, if the aggregator is uncertain about the
structure of the h-vector, we give two possible ways to obtain
the unknown h-vector for blind deconvolution in Appendix B.

VI. CONCLUSION

In this paper, we introduce a convolution framework for
locally differentially private frequency estimation. This frame-
work enables us to analyze and calibrate the estimated frequen-
cies of different LDP protocols in the form of convolutions.
By transforming the encoding and perturbation steps into a
circular convolution process, the problem of estimating fre-
quencies by the data collector is converted into a deconvolution
problem. We propose two Wiener filter-based deconvolution
approaches to boost the accuracy of existing LDP protocols.
Experimental results demonstrate that the proposed approaches

significantly improve the accuracy of state-of-the-art protocols
on the real-world smooth dataset. For extremely non-smooth
datasets, our approaches are still effective although the im-
provement is limited.
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APPENDIX A
DERIVATION OF FORMULA (1) AND (2)

According to the definition of pure LDP, we have the
expectation of

∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖) as

E(∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖)) = 𝑚 𝑓𝑖 𝑝

∗ + 𝑚(1 − 𝑓𝑖)𝑞∗

= 𝑚 𝑓𝑖 (𝑝∗ − 𝑞∗) + 𝑚𝑞∗
(26)

Move 𝑚𝑞∗ to the left, then divide both sides by 𝑚(𝑝∗ − 𝑞∗),
we have:

E(
∑𝑚

𝑘=1 (𝟙Support(𝑦𝑘 ) (𝑖) − 𝑚𝑞∗

𝑚(𝑝∗ − 𝑞∗) ) = 𝑓𝑖 (27)

With equation (27), we get the formula (1) to estimate 𝑓𝑖 .
And to calculate the variance of �̃�𝑖 , which is to calculate the
variance of

∑𝑚
𝑘=1𝟙Support(𝑦𝑘 ) (𝑖). We can find it can be viewed

as the summation of 𝑚 𝑓𝑖(resp. 𝑚(1− 𝑓𝑖)) independent random
variables drawn from the Bernoulli distribution with parameter
𝑝∗(resp. 𝑞∗). So we can derive Var[ �̃�𝑖] as follows:

Var[ �̃�𝑖] = Var[
∑𝑚

𝑘=1𝟙Support(𝑦𝑘 ) (𝑖) − 𝑚𝑞∗

𝑚(𝑝∗ − 𝑞∗) ]

=
Var[∑𝑚

𝑘=1𝟙Support(𝑦𝑘 ) (𝑖)]
𝑚2 (𝑝∗ − 𝑞∗)2

=
𝑚 𝑓𝑖 𝑝

∗ (1 − 𝑝∗) + 𝑚(1 − 𝑓𝑖)𝑞∗ (1 − 𝑞∗)
𝑚2 (𝑝∗ − 𝑞∗)2

=
𝑞∗ (1 − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)2

+ 𝑓𝑖 (1 − 𝑝∗ − 𝑞∗)
𝑚(𝑝∗ − 𝑞∗)

(28)

APPENDIX B
BLIND DECONVOLUTION

Blind deconvolution is the data aggregator or the adversary
inverses to convolution without knowing the structure of the h-
vector. Here we give two possible ways to obtain the unknown
h-vector for blind deconvolution.

1) As the perturbation of the LDP protocol is run locally,
it is possible that the adversary can reuse the same input
locally to obtain various outputs. After enough outputs
are obtained, the adversary can estimate the h-vector by
counting the frequency of each item supported by all these
outputs.

2) For pure LDP protocols in which one output supports
multiple inputs, the expected number of inputs supported
by outputs is 𝑚(𝑑 − 1)𝑞∗ +𝑚𝑝∗ with 𝑚 inputs. Since the
outputs are known, the number of supported inputs is also
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Fig. 10: MSE results(first row: KRR, second row: OUE), (a) and (d) with 𝑑 = 1000, (b) and (e) with 𝜀 = 4, (c) and (f) with
𝑑 = 1000 and 𝜀 = 4

known, and both 𝑝∗ and 𝑞∗ are related to 𝜀. Once the type
of the LDP protocol used is known, we can estimate the
𝜀 and thus obtain the h-vector.

APPENDIX C
SMOOTHING BASELINE WITH A LARGER WIDTH

We use the Gaussian filter approach with a larger smooth
width for the taxi dataset, where the sigma parameters of the
Gaussian filter are 1 and 3 (namely GF1 and GF3), respec-
tively. Besides, we use the output of the Gaussian to estimate
𝑃f and pass it to the DW method (namely GF1-DW and GF3-
DW). Figure 10 gives the experimental results. For the taxi
dataset, larger width can greatly improve performance when
the noise is high, but when the noise is low(i.e., small domain
size and large epsilon), details are lost and thus performance
degrades, especially when d = 100, GF-3 performs even worse
than without Gaussian filtering. Overall, GF1 performs weaker
than IIW while GF3 performs better than IIW, but the best-
performing method is GF3-DW, which combines Gaussian
filtering with Wiener deconvolution. Since the performance of
Wiener deconvolution is related to the accuracy of the initial
estimate 𝑃f , using the output of the Gaussian filter as the initial
estimate can significantly improve the denoising ability of
Wiener deconvolution for smooth datasets. And compared to
GF3, GF3-DW can better preserve the details of the estimation
results while removing noise. Moreover, other post-processing

approaches can also be combined with Wiener deconvolution
to improve performance.
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