
ShadowNet: A Secure and Efficient On-device
Model Inference System for Convolutional Neural Networks

Zhichuang Sun∗, Ruimin Sun†, Changming Liu‡, Amrita Roy Chowdhury§,
Long Lu‡, Somesh Jha¶

Google∗, Florida International University†, Northeastern University‡,
University of California, San Diego§, University of Wisconsin-Madison¶

Abstract—With the increased usage of AI accelerators on
mobile and edge devices, on-device machine learning (ML) is
gaining popularity. Thousands of proprietary ML models are
being deployed today on billions of untrusted devices. This
raises serious security concerns about model privacy. However,
protecting model privacy without losing access to the untrusted
AI accelerators is a challenging problem. In this paper, we
present a novel on-device model inference system, ShadowNet.
ShadowNet protects the model privacy with Trusted Execution
Environment (TEE) while securely outsourcing the heavy linear
layers of the model to the untrusted hardware accelerators.
ShadowNet achieves this by transforming the weights of the
linear layers before outsourcing them and restoring the results
inside the TEE. The non-linear layers are also kept secure inside
the TEE. ShadowNet’s design ensures efficient transformation of
the weights and the subsequent restoration of the results. We
build a ShadowNet prototype based on TensorFlow Lite and
evaluate it on five popular CNNs, namely, MobileNet, ResNet-
44, MiniVGG, ResNet-404, and YOLOv4-tiny. Our evaluation
shows that ShadowNet achieves strong security guarantees with
reasonable performance, offering a practical solution for secure
on-device model inference.

I. INTRODUCTION

On-device machine learning is becoming increasingly popu-
lar as more and more AI accelerators are being used in mobile
and embedded devices, such as NPU [69], GPU [9] and Edge
TPU [10]. A recent study [67] has shown that thousands of
mobile apps are using on-device machine learning (ML) for
diverse applications, such as OCR [24], face recognition [3],
liveness detection [36], ID card and bank card recognition [7]
and translation [13]. The benefits of on-device machine learn-
ing are obvious; it avoids sending user’s private data to the
cloud, saves the latency of back-and-forth communication and
does not require a network connection. Many ML applications
use on-device ML even for real-time tasks, such as rendering
a live video stream [75], which is not possible with traditional
cloud-based ML on mobile devices.

However, with thousands of private models being deployed
on billions of untrusted mobile devices, model theft is a real
threat today [67]. Attackers are not only technically capable of
but also financially motivated to steal these models [67], [73].
Leakage of such proprietary models can cause severe financial
loss to businesses – accurate models help organizations main-
tain a competitive advantage and training the models requires
a significant engineering effort.

To make matters worse, existing proprietary models are
found to be not well protected. As shown by Sun et al. in
[67], 41% of the models are stored in plaintext and can be
downloaded along with the application packages. Applica-
tions that protect the models (for example, by encrypting the
models [12]) are themselves vulnerable to run-time attacks
that can extract the decrypted models from the memory [67].
Additionally, 54% ML applications use GPUs for acceleration
– the task of protecting model privacy without losing access
to the GPU accelerations is even more challenging.

Prior work on secure model inference can be classified into
two types: cryptography based approaches [25] and trusted
execution environment (TEE) based approaches [56], [70].
Both of these techniques face unique challenges for on-device
model inference. Prior cryptography based approaches use
either homomorphic encryption (HE) [25], [41] or multi-party
computation (MPC) [50], [62]. However, HE based techniques
are orders of magnitude slower than the state-of-the-art (non
secure) model inference. MPC based approaches involve mul-
tiple participants requiring network connectivity which is not
suitable for real-time tasks or offline usage. In light of the
above challenges, popular mobile platforms, such as Android
7, have made it mandatory to support hardware-backed (TEE)
keystore [2]. However, prior TEE-based approaches suffer
from a lot of drawbacks. First, the TEE on mobile devices is
designed for small critical tasks [48], such as key management,
while model inference is a resource demanding task [50].
Hence, supporting model inference on the limited resources,
such as secure memory, of a TEE is challenging. Moreover,
simply moving the model inference task inside the TEE would
significantly increase the TCB size of the TEE (see Sec.
VII). An additional problem is the loss of access to hardware
accelerators.

TABLE I: Comparison of ShadowNet with Related Work

Works Model Privacy Mobile TEE Performance GPU Access
Slalom [70] X X

TensorScone [53] X X
Graviton [72] X X X

CryptoNets [41] X X
TF Encrypted [25] X X X

OMG [32] X X X
ShadowNet (Ours) X X X X

To this end, we design a novel secure model inference sys-
tem for convolutional neural networks (CNNs), ShadowNet.

11596

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Zhichuang Sun. Under license to IEEE.
DOI 10.1109/SP46215.2023.00085

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

38
2

The key idea of ShadowNet is based on the observation that
the linear layers of CNNs usually take up ∼ 90% of the
computational resources of the whole network. This is in
line with previous research, such as Slalom [70]. ShadowNet
offers a novel scheme that allows the heavy linear layers of
the model to be securely outsourced to the untrusted world
(including GPU) for acceleration without leaking the model
weights. ShadowNet achieves it by transforming the weights
of the linear layers before outsourcing them to the untrusted
world and restoring the results inside the TEE. The non-linear
layers are also kept secure inside the TEE.

We build a prototype of ShadowNet based on TensorFlow
Lite [23] and OP-TEE OS [55] and evaluate it on five popular
CNNs, namely, MobileNet [46], ResNet-44, ResNet-404 [45],
YOLOv4-tiny [34]and MiniVGG [66]. Our evaluation shows
that the ShadowNet’s performance overhead is reasonable
– it increases the model inference time by 0.6× to 1.6×.
Table I compares ShadowNet with related prior work (see
Sec. VIII for more details). Compared to the cryptography-
based approaches [41] that are usually orders of magnitude
slower, ShadowNet provides a practical solution for securing
on-device model inference. For instance, for a single image
classification, CryptoNets takes around 570 seconds on PC
while ShadowNet takes < 1s on a smartphone.

In summary, this paper makes the following contributions:
• We design a novel on-device model inference system for

CNNs, ShadowNet, which protects the model privacy with
a TEE while leveraging the untrusted hardware accelerators.
• We build an end-to-end ShadowNet prototype based on

TensorFlow Lite. We propose novel optimizations to support
efficient model inference inside a TEE with a small TCB
that can be of independent interest.
• We build a fully automated model conversion tool that can

transform a user provided CNN to the corresponding Shad-
owNet model. Consequently, ShadowNet models can run
seamlessly with user applications on popular ML platforms,
such as TensorFlow Lite.
• Our evaluation on five popular CNNs for mobile platforms,

namely, MobileNets, ResNet-44, ResNet-404, YOLOv4-tiny
and MiniVGG demonstrates ShadowNet’s feasibility for
real-world usage on a diverse range of CNN architectures.

We have open-sourced ShadowNet [22].

II. BACKGROUND

A. Convolutional Neural Network

Convolutional neural network (CNN) [58] is a class of deep
neural networks which typically consists of an input and an
output layer with a sequence of linear and non-linear layers
stacked in between. The linear layers include convolutional
layers and fully connected layers; the non-linear layers include
activation and pooling layers. Some CNNs, such as ResNet,
introduce shortcut connections between convolutional layers
adding branches and merges in the network structure. Addi-
tionally, MobileNet introduces two new type of linear layers
– pointwise convolution and depthwise convolution.

Convolutional Layer. The parameters of a convolutional
layer consists of a set of learnable kernels. Each kernel is
characterized by the width, height and depth of the receptive
field. The depth must be equal to the number of channels of
the input feature map. For the convolutional layer (conv) from
our example CNN in Fig. 1, the input shape is (222, 222, 3)
where 3 is the depth. It has 64 kernels and the shape of the
convolution kernel is (3, 3, 3).

Let h, b, d represent the height, width and depth of the
kernel w, respectively, and (x, y) refer to the coordinates in
the 2D output feature map. Formally, the convolution operation
on a given image I with kernel w can be described as follows:

Conv(I, w)x,y =

h∑
i=1

b∑
j=1

d∑
k=1

wi,j,kIx+i−1,y+j−1,k (1)

Let X and Y denote the input and output, respectively,
and W = [w1, · · · , wn]T be the convolution filter. The
corresponding convolutional layer is thus given by:

Y = Conv(X,WT) (2)

Pointwise Convolutional Layer. For this type of layer, the
kernel height and width are both 1.

Depthwise Convolutional Layer. Depthwise convolution is
a type of convolution which applies a single convolutional
kernel for each input channel. The number of input channels
and the number of kernels are the same. Let h and b represent
the height and width of the kernel w, respectively, and (x, y)
refer to the coordinates in the two-dimensional output feature
map. For a given image I and kernel w which is a 2D matrix,
the depthwise convolution DWConv on input channel c can
be described as follows:

DWConv(I(c), w)x,y =

h∑
i=1

b∑
j=1

wi,jI
(c)
x+i−1,y+j−1 (3)

The depthwise convolutional layer is described as follows,
where xi represents i-th channel of input X .

Y = DWConv(X,W)

= [DWConv(x1, w1), · · · ,DWConv(xn, wn)]
(4)

Dense/Fully Connected Layer. The dense layer connects
every input node to every output node. It can be implemented
as a pointwise convolutional layer. For example, a dense layer
connect n input to m output can be viewed as a pointwise
convolutional layer that has m kernels of size (1, 1, n).
B. Trusted Execution Environment

A trusted execution environment (TEE) is a secure area
of the main processor. It guarantees the confidentiality and
integrity of the code and data loaded inside [30].

Arm TrustZone [5] is a popular TEE implementation for
mobile devices. It is a hardware feature available on both
Cortex-A processors [28] (for mobile and high-end IoT de-
vices) and Cortex-M processors [29] (for low-cost embedded
systems). TrustZone creates a “Secure World”, an isolated
environment with tagged caches, banked registers and private
memory, for securely executing a stack of trusted software
that includes a tiny OS and trusted applications (TA). In

1597

parallel runs the “Normal World” which contains the regular
(untrusted) software stack. Code in the Normal World, referred
to as the client applications (CA), can invoke the TAs in
the Secure World. A typical use of TrustZone involves a CA
requesting a sensitive service from a TA, such as signing or
encrypting data. Arm TrustZone has been widely used for
security critical services, such as key management and Digital
Rights Management (DRM) on smartphones.

OP-TEE (Open Portable Trusted Execution Environ-
ment) [55] is an open-source trusted OS running inside Arm
TrustZone. It supports a wide variety of mobile devices
ranging from Arm Juno Board to a series of Hikey boards. It is
also integrated with AOSP to run alongside Android OS. OP-
TEE OS usually reserves a small part of DRAM (for example,
32MB) as secure memory to minimize the performance impact
on the Normal World applications.

III. DESIGN OVERVIEW
A. Design Goals

Our secure on-device model inference system has the fol-
lowing design goals:

• Security that is rooted in the hardware so that the model
remains secure even when the OS is compromised;
• Performance efficiency for supporting real-time analysis;
• Access to hardware accelerators for supporting on-device

ML tasks.
B. Threat Model

We consider a strong adversary who controls the Normal
World (including the OS) and observes everything that is
exposed to the Normal World (including the GPU tasks).
Our primary goal is to protect the model privacy. Specifi-
cally, the adversary should not learn anything about a model,
M(·), beyond what is revealed by its querying API, i.e.
Y =M(X)1. A formal security analysis is presented in Sec.
VI-D. We do not consider model inference integrity which
can be achieved via verification techniques as proposed in
Slalom [70]. Additionally, we do not consider side channel
attacks on the TEE – we assume that the TEE can protect the
confidentiality and integrity of the program and data inside
it. Hence, for loading the model into the TEE all standard
attestation techniques apply (such as, loading an encrypted
model and decrypting it inside the TEE) and this is orthogonal
to ShadowNet’s design.
C. Design Challenges

While TEEs provide hardware-level security, using mo-
bile TEEs for secure model inference has several technical
challenges. First, mobile TEEs, such as Arm TrustZone, are
designed for small security critical services, such as managing
encryption keys. The memory reserved for the TEE OS is
limited. For example, only 14 MB is available for trusted
applications of OP-TEE OS on Hikey960 Dev Board while the
model size of ResNet-404 is 28 MB. Hence, it is not feasible

1some extra information about the architecture, such as the number and
type of linear layers, is also allowed – see Sec. VI-D for details)

to run the resource-intensive model inference task inside the
TEE (see Sec.VII). Second, current TEEs do not include the
GPU/NPU inside the secure domain. Hence, we would lose
access to hardware acceleration. Third, the model inference
framework would also significantly increase the TCB size.

D. Our Solution: ShadowNet

The key idea of ShadowNet is as follows:

Key Idea. ShadowNet is based on the observation
that the linear layers of CNNs occupy the majority
of the model weight and model inference time [70].
For example, we observe that the linear layers of
MobileNet occupy around 95% of the model weights
and 99% of the model inference time. The key idea
is to obfuscate the the weights of the linear layers by
applying linear transformations and outsource them to
the untrusted world. This enables leveraging the hard-
ware accelerators without trusting them. ShadowNet
then restores the results inside the TEE. The non-linear
layers are kept secure inside the TEE.

Example Application. We use a simple example to show how
ShadowNet works on a typical CNN as depicted in Fig. 1.
The example CNN is a stack of convolutional layers, and each
convolutional layer (conv) is followed by a batch normalization
(bn) layer and a ReLU6 (relu6) activation layer.

For each convolutional layer conv, the ShadowNet trans-
formation works in four steps: (1) adds a mask layer to the
input; (2) replaces the original conv layer with a transformed
conv’ layer; (3) adds a linear transformation layer to restore
the result of conv’; (4) unmasks the input. The combina-
tion of conv’+linear transformation is equivalent to conv in
the original CNN. The combination of mask+conv’+linear
transformation+unmask is also equivalent to conv. The batch
normalization layer and ReLU6 layer remain unchanged.

The mask and unmask layers in step (1) and step (4), respec-
tively, are introduced to prevent the adversary from observing
the original input and output of the outsourced linear layers.
Note that we embed the inputs in a field F via quantization
before applying the mask layer. Additionally, all the weights of
the convolutional layers are also quantized accordingly. The
unmasked output is de-quantized before being forwarded to
the non-linear layers (for example, the activation layer). We
discuss how these layers are implemented in Sec. IV-C. Note
that the conv’ layer has 76 kernels instead of 64 kernels.
This is due to the obfuscation ratio, a tunable parameter in
ShadowNet. In Sec. IV-D, we explain the rationale behind the
choice of this number and how to generate the weights for
conv’ layer and linear transform layer.

Discussion. In summary, ShadowNet offers a novel model
inference system that protects the model weights with a
TEE while leveraging the untrusted hardware for acceleration.
ShadowNet achieves its goal by transforming the computa-
tionally heavy linear layers’ weights and masking their input
before outsourcing them to the untrusted world and restoring

1598

Input conv bn+relu6 outputconv bn+relu6

mask

(222,222,76)

conv'

bn+relu6

(3,3,3,76)

linear
transformation

(222,222,64)

unmask

Normal World

Secure World

output from the
previous layer

input for
the next layer

(3,3,3,64)

(222,222,64)

1 43

2

Before transformation

After transformation

conv ...bn+relu6

mask

1

Fig. 1: An overview of ShadowNet transformation on a simple CNN.
This CNN is a stack of convolutional layers and each convolutional layer (conv) is followed by a batch normalization (bn) layer and a
ReLU6 (relu6) activation layer. The shapes of the weights are marked on the top of the box and the shapes of the outputs are marked

under. The red color indicates the change in shape after the transformation. For each convolutional layer (conv), the ShadowNet
transformation works in four steps. After the transformation, the conv’ runs in the Normal World, the other layers run in the Secure World.

(3,3,3,76)

(64,64,3)

ShadowNet Transformed CNN

LinearTransform

conv'

input

conv'

conv'

....

conv'

output

Normal World Secure World

(3,3,64,76)

(3,3,64,76)

(3,3,64,76)

ReLU+Batchnorm

Mask

....

LinearTransform

UnMask

ReLU+Batchnorm

Softmax(10)

Avgpool+Flatten+Dense

Fig. 2: An example of ShadowNet transformed CNN.
The above example has four convolutional layers. Observe

that for the first layer, only the output is masked. For the last
layer, only the input is masked. This is because according to

our threat model, the input to the first layer (model input)
and the output of the last layer (model output) is known to

the adversary.

the results inside the TEE. All the non-linear layers are kept
secure inside the TEE. With this design,

• ShadowNet’s security is rooted in the TEE, meeting the first
design goal.
• ShadowNet does not introduce any heavy cryptographic

operations and our evaluation shows that ShadowNet is
efficient – this meets our second design goal.
• ShadowNet is still able to use the accelerators which meets

the third design goal.

ShadowNet solves the technical challenges (Sec. III-C) of
mobile TEEs by maintaining low memory usage and a small
TCB which is detailed in Sec. IV and Sec. V.

IV. SHADOWNET

In this section, we introduce ShadowNet. First, we explain
how ShadowNet applies linear transformation on a broad
class of linear layers, namely convolutional, pointwise convo-
lutional, depthwise convolutional, and dense/fully connected
layers. Next, we discuss the mask layer for input/output
privacy. Finally, we describe an optimized implementation of
the linear transformations for ShadowNet.
Notations. Here, we introduce the notations we use for the
rest of the paper. F denotes a field. X and Y denote the input
and output of a convolutional layer. X ′ and Y ′ denote the
masked input and output. Ŵ =

[
ŵ1, · · · , ŵn

]
represents the

transformed convolution filter corresponding to the original
convolution filter W =

[
w1, · · · , wn

]
where ŵi (wi) denotes

the masked (original) convolution kernel. For a positive integer
n ∈ N, [n] denotes the set {1, · · · , n}.

A. Quantization

All the transformations in ShadowNet work on a field F.
For this, we quantize all inputs and weights of a CNN to
integers and embed them in the finite field Zp modulo a prime
p (p is sufficiently large to avoid wrap-around). This step is
necessary for providing a formal security guarantee (see Sec.
VI-D). Following prior work [70], [43], ShadowNet converts
a floating point number x to a fixed-point representation as
x̃ = FP(x; l) := round(2l · x). After the computation of the
linear layers, we de-quantize x̃ by scaling it by 2−l.

B. Transformation of Linear Layers

ShadowNet relies on linear transformation to obfuscate the
weights of the linear layers.

Linear Transformation. Linear transformation is a function
f defined on vector spaces V and T over the same field F,
f : V → T . For any two vectors u, v ∈ V and any scalar
c ∈ F, the following two conditions are satisfied:

additivity : f(u+ v) = f(u) + f(v)

homogeneity : f(cu) = cf(u)
(5)

Convolutional Layer. A convolutional layer is given by
Y = Conv(X,WT) where X and Y denote the input

1599

and output, respectively, and W = [w1, · · · , wn]T is the
convolution filter. A detailed discussion of convolutional layer
is attached in Appendix II-A. Let F = [f1, · · · , fn] be a
random filter such that each fi, i ∈ [n] has the same shape
as wi. Additionally, let Λ be a diagonal matrix where the
diagonal elements λi ∈ F, i ∈ [n] are random scalars.
Conceptually, the linear transformation on the convolutional
layer in ShadowNets works as follows:

ŴT = WT · Λ + F

⇒ [ŵ1, · · · , ŵn] = [w1, · · · , wn]

λ1

. . .
λn

+ [f1, · · · , fn]

(6)

Thus, each of the kernels are transformed as follows

ŵi = λiwi + fi (7)

Hence, from the above transformation (Eq. (6)) and the
properties of linear transformation (Eq. (5)), we have:

Conv(X, ŴT) = Conv(X,WT .Λ + F))

= Conv(X,WT) · Λ + Conv(X,F)
(8)

So, we can compute Conv(X, ŴT) on the untrusted GPU
and restore the output Y inside the TEE as follows:

Y =
(
Conv(X, ŴT)− Conv(X,F)

)
· Λ−1 (9)

Note that the computation of Conv(X,F) is done in the
Normal World. We discuss an optimized implementation of
the above in Sec. IV-D.

Pointwise Convolutional Layer. The scheme for the standard
convolutional layer can be directly applied to the pointwise
convolutional layer.

Depthwise Convolutional Layer. For depthwise convolutional
layers, ShadowNet applies linear transformations on both the
input and the kernels. Specifically, we (1) shuffle the sequence
of input/kernel channels and (2) obfuscate each input/kernel
channel with a random scalar as detailed below.

Assume that the input has n channels. Thus, the depthwise
convolutional layer has n kernels, one per channel. Let wi
represent the i-th kernel of the convolution filter W , where
W = [w1, w2, . . . , wn]T . Let (λ1, . . . , λn) ∈ Fn be a set of
random scalars and π ∈ Sn (Sn is the group of permutations
on [1, . . . , n]) be a random permutation. Additionally, let Pπ be
a n×n permutation matrix corresponding to π (Pπ(i, j) = 1 if
π(i) = j, and 0 otherwise). We scale and shuffle the sequence
of the kernels in W with Λ as follows:

Λ =

λ1

. . .
λn

 Pπ (10)

We apply the same permutation to shuffle the input channels.
The input transformation matrix A is defined as follows:

A =

λ
−1
1

. . .

λ−1
n

 Pπ (11)

Thus, for identity matrix I , we have:

A · ΛT = I (12)
Given the transformed weights Ŵ = [ŵ1, . . . , ŵn]T , the
transformations on the input X and weights W are described
as follows:

ŴT = WT · Λ
X ′ = X ·A

(13)

Let Y ′ = DWConv(X ′, ŴT). It is easy to see that:
Y ′ = [DWConv(x1, w1), · · · ,DWConv(xn, wn)]Pπ (14)

Let P−1
π be the inverse of Pπ . We can restore the correct

result with the following equation:
Y = Y ′ · P−1

π (15)
Note that both the transformation of the input and the

restoration of the result are performed inside the TEE while
the depthwise convolution on the transformed filter can be
outsourced to the untrusted GPU.

Dense/Fully Connected Layer. Recall that a dense layer can
be implemented as a pointwise convolutional layer. Hence,
ShadowNet applies the same linear transformation as the one
described for the standard convolutional layer.
C. Layer Input/Output Privacy

We introduce the mask/unmask layer to protect the input X
and output Y of the convolutional layers.

Mask Layer. The mask layer adds a random mask to the
input of a convolutional layer which is outsourced to the
Normal World. Note that, in a typical CNN, the output of a
convolutional layer output will be the input for the next layer.
In the offline phase, ShadowNet generates random masks M
of the same shape as X inside the TEE. The masked input X ′

is defined as follows:
X ′ = X +M (16)

X ′ is outsourced to the Normal World for the convolutaional
layer with filter W . A fresh mask is used for every convolu-
tional layer and for every round of model inference. Since all
the values are embedded in a field F, this masking is equivalent
to applying a one-time pad [51].

Unmask Layer. After obtaining the masked output Y ′ from
the Normal World, the TEE restores the original value via:

Y = Y ′ − Conv(M,W) (17)
where the TEE pre-computes and stores the value of
Conv(M,W) in an offline phase. This masking step is similar
to Slalom [70].

Recall from our threat model (Sec. III-B) that the adversary
already knows Y = M(X) where M is the CNN model.
Hence, the input to the first layer (model input) and the output
of the last layer (model output) is not masked. This is depicted
in Fig. 2. After Y is unmasked inside the TEE, it is de-
quantized and then, forwarded to the non-linear layers.

D. Optimized Implementation

In this section, we describe how ShadowNet implements the
linear transformation for the convolutional layers.

Recall from our discussion in Sec. IV-B that F acts as a
mask that protects the weights of the kernels. However, the
TEE needs access to Conv(X,F) for restoring Y (Eq. (9))
– the extra computation for Conv(X,F) is an performance

1600

overhead. This introduces a performance/security trade-off
which is tackled in ShadowNet as follows:

• First, we select r ∈ R, r > 1. We refer to r as the
obfuscation ratio and it is a parameter for tuning the
performance/security trade-off. We elaborate on this later
in this section.
• Select at random F = [f1, · · · , fm−n] where m = dr · ne.

Each fi has the same shape as that of the kernels of W .
• Select a set of n random scalars (λ1, · · · , λn) ∈ Fn.
• Compute

W ′ = [λ1w1 + f ′1, . . . , λnwn + f ′n, f1, . . . , fm−n]T (18)

where f ′is are randomly chosen from F . Repetitive choice
is allowed here as m− n might be smaller than n.
• Store an index matrix C where C[i] = j iff f ′i = fj .
• Finally, shuffle W ′ with a random permutation matrix Pπ

for π ∈ Sm.
ŴT = W ′TPπ (19)

All of the above steps can be pre-computed securely in an of-
fline phase. With this transformation, we can easily recover the
convolution results with the inverse of the permutation matrix
Pπ , the index matrix C and the random scalars (λ1, . . . , λn).
Conceptually, the recovery process can be implemented as a
pointwise convolution with n filters of shape (1, 1,m).

Intuitively, the permutation π prevents the adversary from
distinguishing between the kernels in Ŵ that correspond to
F and the ones that correspond to (transformed) W . Clearly,
higher the values of r, better is the security and higher is the
computational overhead. The formal security and performance
analysis is presented in Secs. VI-D and VI-C, respectively.
Note that ShadowNet applies the aforementioned transforma-
tion to every convolutional layer of the CNN.
Discussion. Here, we discuss how ShadowNet’s design ad-
dresses the challenges of mobile TEE as outlined in Sec.
III-C. First, ShadowNet tackles the challenge of limited TEE
memory by running only a subset of the layers of the model
inside the TEE. Specifically, it leaves the resource-heavy
linear layers outside the TEE. To further reduce ShadowNet’s
computational load, we propose the aforementioned optimized
design which reduces TEE’s overhead for restoring the value
of the transformed linear layers. Additionally, we propose
several novel optimizations for ShadowNet’s implementation
to reduce its memory consumption (Sec. V-D). Second, our
design of the transformations provides a formal security guar-
antee (Thm. 1). Consequently, ShadowNet allows efficient
outsourcing of the linear layers to the accelerators without
compromising on security. Third, the new operations intro-
duced by ShadowNet (for masking and linear transformations)
are relatively simple. Hence, ShadowNet’s implementation
adds only 2, 100 LOC into the TCB (see Sec. V). Note that
TensorFlow Lite has tens of thousands of lines of code and
porting it as a whole inside the TEE would require a much
larger TCB. ShadowNet, by design, keeps it outside the TCB,
thereby supporting its rich functionality in a secure manner
with a small TCB.

Android OS TEE OS

GPU

ShadowNet
TA

ShadowNet
Model Part BTensorFlow

Lite

ML App

ShadowNet
Extension

ShadowNet Model Part A

CA

CPU

Fig. 3: The system architecture of Shadownet on mobile
platforms. Color grey shows the part modified by ShadowNet
in the Normal World. Color green shows the part in the Secure
World. The ShadowNet model part A and B refer to linear and
non-linear part, respectively.

V. IMPLEMENTATION

A. Overview of the ShadowNet prototype

We implement the ShadowNet prototype as an end-to-end
on-device model inference system as shown in Fig. 3. Our pro-
totype contains the ML mobile application, TensorFlow Lite
runtime library with extensions for ShadowNet, ShadowNet
client application (CA) and ShadowNet trusted application
(TA). ShadowNet runs the transformed linear layers in the
Normal World and uses the CA to communicate with the TA
in the Secure World, which runs the other (non-linear) layers
securely. ShadowNet models are split into two components –
Part A and Part B which run in the Normal World and the
Secure World, respectively. During inference, Part A, which
runs in TensorFlow Lite, processes the linear layers in the
Normal World. When executing the non-linear layers, Part A
invokes the CA to send commands to the TA which runs Part
B inside the Secure World and passes the results back.

B. Model Conversion

The model conversion mechanism can be divided into two
steps as depicted in Fig. 4.

• Step I. The original model (left of Fig. 4) is converted to the
ShadowNet model (middle of Fig. 4) with the help of four
new layers that transform the weights of the linear layers.

• Step II. All the non-linear layers from the above ShadowNet
model (red dotted in Fig. 4) are replaced with a placeholder
layer which represents the model in the Normal World
and interacts with the Secure World. Now, we have two
components of the model – Part A contains the weights of
the transformed linear layers and runs in the Normal World
(right of Fig. 4) while Part B contains the weights of the
other layers in the Secure World (red dotted box in Fig. 4).

Step I. Recall that, convolutional, pointwise convolutional,
depthwise convolutional and fully connected/dense layers
are considered to be the linear layers. We transform these
layers in Step I by introducing four new layers, namely,
LinearTransform, ShuffleChannel, PushMask and PopMask.
LinearTransform applies a linear transformation to the input.
ShuffleChannel scales each channel in the input and shuf-

1601

fles their sequence. PushMask/PopMask adds/removes a mask
from its input respectively. In a nutshell,

• Every convolutional layer (including pointwise convolu-
tional and fully connected/dense layers) is replaced with
four layers: PushMask layer, transformed convolutional
layer, LinearTransform layer and PopMask layer.
• Every depthwise convolutional layer is replaced with five

layers: PushMask layer, ShuffleChannel layer, transformed
depthwise convolutional layer, ShuffleChannel layer and
PopMask layer.
• The weights for the convolutional layers and mask layers

are quantized. The outputs from quantized layers are de-
quantized accordingly before being forwarded to the non-
linear layers.
• The batchnorm layers can be fused with its preceding

convolutional layers for the ease of implementation (we do
not show it in the example for the ease of exposition).

Depthwise Conv (3,3,32)

Batchnorm

ReLU

Pointwise Conv (1,1,32,64)

Original model
description

Batchnorm

ReLU

Full ShadowNet
model description

Depthwise Conv (3,3,32)

Batchnorm

ReLU

Pointwise Conv (1,1,32,76)

Batchnorm

ReLU

Push Mask

Shuffle Channel

Shuffle Channel

Pop Mask

Push Mask

Linear Transform

Pop Mask

Push Mask

Linear part of
ShadowNet

model description

Depthwise Conv (3,3,32)

TeeShadow

TeeShadow

Pointwise Conv (1,1,32,76)

TeeShadow

Fig. 4: An example of ShadowNet model conversion (r =
1.2). First, the convolutional layers are transformed. The
pointwise convolutional layer’s weight shape changes from (1,
1, 32, 64) to (1, 1, 32, 76), where 76 = 64 × 1.2. Next, the
linear layers remain unchanged and the non-linear layers are
replaced with a placeholder TeeShadow.

Step II. In Step II, we introduce an additional layer called
TeeShadow that replaces all the non-linear layers between two
successive linear layers. This newly introduced layer serves
as a placeholder for the interposed non-linear layers. During
model inference, TeeShadow switches to the Secure World to
handle the non-linear layers and returns back to the Normal
World after its completion. Note that all the newly added
ShadowNet layers in Step I as well as the original non-linear
layers are placed in the Secure World.

CNNs with shortcuts, such as ResNet [45] and Inception-
Net [68], contains branches and merges of different con-
volutional operations in its data-flow. We address this by
introducing a new operation called TeeMerge as shown in

ReLU

Conv1

ReLU

Batchnorm

Conv2

Add

ReLU

Conv1 Conv2

Add

Push Mask

Linear
Transform

Pop Mask

Push Mask

Linear
Transform

Pop Mask

TeeShadow

Conv2

Conv3 Conv3

ReLU ReLU

Conv3

Conv1

Original Model
description

Full ShadowNet
model description

Linear part of
ShadowNet
description

Batchnorm

ReLU

TeeMerge

Fig. 5: An example of TeeMerge. In the left part of the figure,
a shortcut is introduced by ResNet (a convolution is removed
from the left branch for simplicity). The middle figure shows
the ShadowNet transformed model where the outputs from two
different convolutions (Conv1 and Conv2) need to be merged.
A new layer, TeeMerge, is introduced to take the inputs from
the two branches and generate the corresponding output.

Fig 5. Unlike TeeShadow which takes a single input, TeeMerge
can take multiple inputs and produce the corresponding output.

In a nutshell during Step II, the non-linear layers are
replaced with TeeShadow layers and the linear layers remain
unchanged, as shown in Fig. 4.

C. Adding ShadowNet Support in TensorFlow Lite

ShadowNet introduces five new operations that are not in-
herently supported in TensorFlow Lite (TF Lite), namely, Lin-
earTransform, ShuffleChannel, AddMask, TeeShadow and
TeeMerge. Note both PushMask and PopMask layers are
implemented via AddMask. To implement these operations,
we extend TF Lite as follows:

• We implement these operations as CustomOps for Tensor-
Flow.
• We add these CustomOps in the Keras Layer API.
• We add the TF Lite implementations of the CustomOps.

The extension is based on TensorFlow 2.2 which was the
latest version at the time of our implementation. To support
CustomOp for TensorFlow, we add 563 LOC in Python, 924
LOC in C++; to support TF Lite, we add 774 LOC in C++.
Our tool for model conversion is 1223 LOC in Python.

Remark 1. The motivation of integrating ShadowNet
into TF Lite is two fold. First, it shows that it is feasible
to apply ShadowNet on a mainstream on-device model
inference platform. Second, adoption of ShadowNet
simply requires updating the TF Lite library with
our ShadowNet patch. This introduces no changes to
the application logic, i.e., the model loading/inference
interface remains the same as that of the standard TF
Lite. Thus, our design of ShadowNet makes it practical
for real-world usages.

1602

D. ShadowNet CA and TA

The ShadowNet CA and TA work as follows. During the
initialization phase, the CA starts a secure session with the
TA and loads the ShadowNet model Part B into the TA.
Before each round of model inference, the CA loads the pre-
computed weights for the mask layers into the TA. During
model inference, the CA passes the parameters from the
TeeShadow operation to the TA and fetches results from it.
The TA performs the model inference task for the non-linear
layers represented by the TeeShadow (see Fig. 4).

The CA sets up a secure session with the TA and passes
the parameters. The ShadowNet TA is implemented as a
lightweight and generic model interpreter that can parse the
model binary (Part B), and run partial model inference based
on the CA’s parameters. It can handle any model in the
TensorFlow Lite format (flatbuffers).

We add 480 and 2, 100 LOC in C for the CA and the TA, re-
spectively. Specifically, the new operations (LinearTransform,
AddMask, ShuffleChannel) add < 200 LOC in the TCB as
they are relatively simple operations.

E. Optimizations

CA and TA’s communication. The OP-TEE OS is designed
to work with a TA with a relatively small TEE memory usage
(< 1MB). As a result, for every call the CA makes to the TA,
the TEE OS sets up a page mapping for the entire memory
used by the TA even when the CA and the TA are in the same
session. This has an adverse effect on the performance – when
the TA’s memory size increases, the associated cost of the
CA’s call to the TA increases proportionately even when the
TA is idle inside the TEE. For example, the time increase from
0.1ms to 6ms for a memory increase of 1MB to 64MB. This
TEE design limitation is known to be a major challenge in the
general OP-TEE community [18], [19]. In order to tackle this,
we propose a novel optimization as follows. Note that only the
parameters (handles for the memory shared between the CA
and the TA) of the CA’s call change and require a new mapping
each time – the majority of the TA’s memory, namely the data
and code, do not need to be re-mapped for every call. Based
on this observation, we implemented an optimization in the
TEE OS to cache the page mapping for the TA’s code and data
section. Only the pages corresponding to the parameters passed
between the CA and the TA are re-mapped. This improves
the performance significantly. For instance for ResNet-44, the
ShadowNet model inference time reduces from 106ms to 57ms
– a 2× improvement. We believe that our key idea of caching
certain pages could be of independent interest to the broader
OP-TEE community.

Optimizing TA’s Memory Management. The TEE OS has a
limited memory reserved for the TA. Without careful memory
management, the TA would exhaust the memory and crash.
We tackle this challenge as follows. First, we allocate memory
statically in the TA to avoid fragmentation caused by dynamic
memory allocation. Specifically, for a given model, the mem-
ory needed for each layer can be determined at the time of

loading and allocated statically. Second, we do not allocate
memory for the output of each layer. Instead, we allocate two
sufficiently large buffers and rotate them to save memory.

Optimizing TA’s Performance. Implementing the TA in
OP-TEE has many restrictions. For example, since OP-TEE
only supports C, we would lose access to popular compute
libraries, such as Eigen[11] and Arm Compute Lib [4] in C++.
Additionally, OP-TEE lacks a math library. Hence, we propose
efficient implementations of mathematical functions, such as
sqrt, exp, or tanh, for the non-linear layers.

TABLE II: Optimizations of the TA (with MobileNets model)

Optimizations Exec. Time (ms)
Baseline (Static mem. alloc) 1500
(1) Neon sqrt 300
(2) Cache friendly 245
(3) Optimize loop sequence 205
(4) Preload weights 100
(5) Neon for Batchnorm, AddMask 90
(6) Neon for ReLU6 81

Note: The optimizations are applied incrementally in a sequence. For
example, 81ms is the execution time inside the TA (excluding mask weights

reloading time) when optimizations (1) to (6) are all applied.

Initially, we ported the non-linear layers from Darknet [60],
a deep learning framework for desktop written in C. However,
the resulting TA was very slow on our Arm64 Dev Board.
Hence, we propose the following optimizations to bring the
performance at par with that of TensorFlow Lite.
• Use Arm Neon to optimize the sqrt implementation in the

Batchnorm layer.
• Swap the inner and outer loops when necessary to support

cache-friendly data access for multi-dimensional data.
• Move repetitive computation out of the loops and pre-

compute it.
• Pre-load all the weights to avoid repetitive loading.
• Use Neon multiply+add instructions to optimize the Batch-

norm and AddMask operations.
• Use Neon minimum/maximum instructions to optimize the

activation layers, such as ReLU6.
Table II shows the execution times for our proposed opti-
mization for the MobileNets TA. An illustration of the sqrt
optimization is presented in App. A

Configuration of the TEE OS. We also increase the size
of the secure memory reserved for the TEE OS from 16MB
to 64MB to accommodate a larger Part B. Additionally, we
changed the size of the reserved shared memory from 2MB
to 8MB. This shared memory is used for communications
between the Normal World and the Secure World. These
changes only require a few lines of configurational code in the
TEE OS and Arm Trusted Firmware. No change is required
in the Normal World OS, such as Android/Linux.

VI. EVALUATION

Our evaluation focuses on four questions:
• Correctness: Does ShadowNet produce the same result as

the original model?

1603

0.00

0.25

0.50

0.75

1.00

MobileNets ResNet-44 MiniVGG ResNet-404

Orig-Top1 SN-Top1 Orig-Top5 SN-Top5 Consistency

Fig. 6: Prediction accuracy and consistency evaluation.
Orig-Top1 refers to the original model’s top-1 accuracy, SN-
Top1(5) refers to the top-1(5) accuracy of the ShadowNet
transformed model. Consistency measures the % of Shad-
owNet predictions that match with that of the original model.
• Efficiency: What is the overhead introduced by ShadowNet?
• Obfuscation Ratio: What is the impact of the obfuscation

ratio on the correctness and performance of ShadowNet?
• Security: How secure is ShadowNet?
Configuration. We perform the evaluation on the
Hikey960 [1] board equipped with Kirin 960 SoC with
4 Cortex A73 + 4 Cortex A53 Big.Little CPU architecture,
ARM Mali G71 MP8, and 3GB LPDDR4 SDRAM. We run
Android P in the Normal World and OP-TEE OS 3.9.0 [17] in
the Secure World. We use the field Zp for prime p = 224 − 3
and a fixed-point representation of l = 8 for quantization.
The obfuscation ratio is set to be 1.2.

Models. We evaluate ShadowNet on five popular models –
MobileNet [15], ResNet-44 [21], ResNet-404 [20], YOLOv4-
tiny [31] and MiniVGG [14]. The rationale behind choosing
these models is that they cover a wide range of CNN architec-
tures. MiniVGG is derived from VGG which represents a clas-
sical CNN architecture. MobileNet uses pointwise and depth-
wise convolution which are convolutional layers customized
for mobile devices. ResNet uses shortcut connections between
the convolutional layers which create branches and merges
in the network structure. YOLOv4-tiny is an object-detection
model with a complex CNN architecture. First, object detec-
tion requires a multi-task model/multi-objective optimization
which outputs a prediction class and a bounding box. Second,
the model structure is non-sequential with new activation
operations, such as LeakyRelu [61], and complicated Lambda
layers consisting of different non-linear operations, such as
upsampling, concatenation. Third, the original model size is
34MB which is large in the context of mobile environments.

Datasets. MobileNet is evaluated on the ImageNet-2012
dataset [64] with 50K images. ResNet-44, ResNet-404 and
MiniVGG are evaluated on the CIFAR-10 dataset [52] with
10K images. We evaluate YOLOv4-tiny on the VOC2007
testing dataset [39].
A. Correctness

We evaluate the correctness of ShadowNet by comparing
the prediction accuracy and consistency before and after model
transformation. Consistency checks whether ShadowNet top-1
prediction is consistent with the original model on the same

input. Fig. 6 shows our evaluation results on four models
– MobileNet, ResNet-44, ResNet-404 and MiniVGG. For
YOLOv4-tiny, we calculated mean average precision (mAP)
based on 50% Intersection Of Union which is the standard
metric for object detection. The accuracy of the original
model and ShadowNet is 57.06% mAP and 55.90% mAP,
respectively. Our implementation is based on the pre-trained
model from [31]. Overall, we observe that ShadowNet has
accuracy comparable to that of the original models (∼ 1%
decrease is due to the numerical errors from quantization – an
essential step for security).

ShadowNet is 94% consistent for YOLOv4-tiny. Shad-
owNet’s Top1 prediction consistency for ResNet-44, ResNet-
404, MiniVGG and MobileNet are 97%, 96%, 98% and 88%,
respectively. The relatively low consistency for MobileNet
is due to the inputs which are predicted incorrectly by the
original model. Specifically for inputs with correct predictions
from the original model, ShadowNet is 95% consistent; for
the incorrect predictions, ShadowNet is 74% consistent. The
original model’s mean confidence (top-1 score) for the inputs
with correct and incorrect prediction is 0.8 and 0.38, respec-
tively. Recall that MobileNet is evaluated on ImageNet with
1K classes. Hence for classification tasks with such a large
number of classes, ShadowNet’s numeric errors can impact
inputs that have low confidence scores from the original model
(for instance, the top-2 scores are very close). The performance
is acceptable since this affects mostly the inputs with incorrect
predictions from the original model.

B. Efficiency

We use the model inference time as our metric which
measures the time span between feeding an image and getting
the classification result.

Experimental Highlights. Our evaluation shows that:

• ShadowNet results in a reasonable overhead, increasing the
model inference time by 0.6× to 1.6×.
• GPU acceleration can reduce the model inference time for

all three models from 1ms to 30 ms. There is still a large
room for improvement with software and hardware updates.

Methodology. We use the TensorFlow Lite Android image
classifier Demo application [26] developed by Google to
evaluate the end-to-end model inference time. We evaluate
ShadowNet under different settings – (1) the original model
on CPU; (2) the ShadowNet transformed model on CPU; (3)
the original model on GPU; (4) the ShadowNet transformed
model on GPU.
Fig. 7 shows the model inference time for ShowdowNet.

ShadowNet’s Performance on CPU. Compared with the orig-
inal model in the CPU mode, ShadowNet incurs an overhead
of 252ms (1.6×), 30ms (1.1×), 5ms (0.6×), 281ms (1.5×)
and 451ms (0.7×) for MobileNet, ResNet-44, MiniVGG,
ResNet-404 and YOLOv4-tiny, respectively. The overhead is
reasonable as ShadowNet refreshes the masks for each round
of model inference. Table III shows the model size before

1604

0

250

500

750

1000

1250

MobileNets ResNet-44 MiniVGG ResNet-404 YoloV4-tiny

Original (CPU) ShadowNet(CPU) Original(GPU) ShadowNet(GPU)

Fig. 7: ShadowNet performance evaluation (ms). We evalu-
ate ShadowNet on five CNN models: MobileNet, ResNet-44,
MiniVGG, ResNet-404 and YOLOv4-tiny (r = 1.2). For each
model, we measure the model inference time for one image
on four different settings: original model on CPU, ShadowNet
model on CPU, original model on GPU and ShadowNet model
on GPU. We report the mean of 100 trials.

and after the ShadowNet transformation. For example, for
MobileNet, the weights of the mask layers has a size of 37MB
which takes around 200ms to be updated. For ResNet-44, the
mask size is 3.3MB which takes 18ms to be updated.

TABLE III: ShadowNet model size change.
Model Size(MB) MobileNet ResNet-44 ResNet-404 YOLOv4-tiny MiniVGG
Original
Model

Conv 17 2.43 24.71 22.56 20
Other 0.175 0.029 0.23 0.79 0

ShadowNet
Model

Conv 20 2.92 29.79 27.11 24
Other 37 3.3 29.73 40.53 2

Model weights are divided into two parts – Conv layers’ weights (standard
convolutional, pointwise convolutional, depthwise convolutional and dense

layers) and Other layers’ weights (AddMask, LinearTransform,
ShuffleChannel, Batchnorm). Among the Other layers, the weights of the

AddMask layer occupy the maximum space for ShadowNet models.

Despite having an additional 5ms to 451ms latency de-
pending on the original model size, we find that the impact
on the user is acceptable. We test this by running Demo to
detect objects in real-time. For MobileNet, Demo processes
around six images per second for the original model, and two
and a half images for ShadowNet. For small models, such as
MiniVGG, the extra 5ms latency is imperceptible to users.

Performance Impact from GPU. Running on GPU reduces
model inference time by 15ms (4%), 5ms (9%) and 1ms (8%),
8ms (2%), 30ms (3%) for MobileNet, ResNet-44, MiniVGG,
ResNet-404 and YOLOV4-tiny, respectively. The benefit of
GPU acceleration for ShadowNet model is not as good as that
for the original models due to the following reasons. First, the
GPU speedup (∼ 2×) on our evaluation board is significantly
less than the GPU speedup in the cloud. Any advancement
in on-device GPUs would immediately improve ShadowNet’s
performance. Second, ShadowNet requires splitting the model
inference between the CPU (TEE mode) and the GPU. The
interleaving between the CPU and the GPU causes extra
overhead for repeated setting up of the GPU jobs.

We would like to remark that mobile GPU acceleration for
on-device ML is still a developing research area [9]. Hence,
ShadowNet’s benefit is that it opens the door for leveraging
future advances in on-device accelerators.

Offline Time. Offline model conversion takes 10min 59s

Adversary’s view of
ShadowNet

Input: X1

View (Normal World):
Ŵi, i ∈ [k]
X ′i = Yi−1 +Mi, i ∈ [2, k]

Output: Yk, output of the model

Goal of Adversary: Find weights of Wi, i ∈ [k]

Fig. 8: Formalization of the adversary’s goal. Let M(·)
denote a CNN with k convolutional layers. Given input X1

(input to the first layer), the model’s output is Yk (output of
the last layer). The input of i-th layer is the output of the
previous layer2, i.e., Xi = Yi−1, i ∈ [2, k]. For ShadowNet,
X ′i denotes the masked input for the i-th layer which is given
Yi−1 + Mi. For each convolutional layer, the adversary can
observe the masked input X ′i and the transformed filter Ŵi.
The adversary’s goal is to find the original weights of Wi.

for MiniVGG, 6min 5s for ResNet-44, 31min 23s for Mo-
bileNet, 28min 46s for ResNet-404, 24min 23s for YOLOv4-
tiny. Regeneration of mask layers’ weights for 100 instances
takes 2.19s for MiniVGG, 20.29s for ResNet-44, 97.26s for
MobileNet. 127.9s for ResNet-404, 25.5s for YOLOv4-tiny.

C. Obfuscation Ratio

Fig. 9 shows how the accuracy, size and inference time of
the MobileNet model vary with r. We observe that both top1
and top5 accuracy remain almost unchanged as r varies from
1.0 to 2.0. This shows that ShadowNet’s accuracy does not
depend on the obfuscation ratio. Another observation is that
the model size increases linearly with r and so does the model
inference time. This is intuitive because both the weight size
and the amount of computation for the convolutional layers
grow linearly with r. See Sec. VI-D for more discussion on
how to choose r.

D. Security Analysis

In this section, we present the formal security analysis of
ShadowNet. Let us consider a CNN with k standard convolu-
tional layers where Wi denotes the convolution filter for the
i-th layer. Additionally, Xi (Yi) denote the input (output) for
the i-th layer. For a transformed filter Ŵ , let F(Ŵ) represent
the set of filters that could have been transformed to Ŵ , i.e.,
the set of possible pre-images for Ŵ . We call this the feasible
set for Ŵ . The exact construction of F(Ŵ) is detailed in
App. B. The view of the adversary is equivalent to that of the
Normal World and is illustrated in Fig. 8.

2We are ignoring the batch normalization and ReLU layers for simplicity
and a worst case analysis for security. In practice, the adversary can only
observe X̂i = G(Yi−1) +Mi where G(·) represents the non-linear layers.
This adds additional complications for the adversary. For instance, negative
values cannot be reversed for ReLU activation layers. .

1605

1.0 1.2 1.4 1.6 1.8 2.0
Obfuscation Ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

/T
im

e(
Re

gu
la

riz
ed

)

Impact of ShadowNet obfuscation ratio on MobileNets

top1
top5
time(regularized)
model size(regularized)

Fig. 9: Analysis of performance with varying obfuscation
ratio. We measure the change in accuracy (top1 and top5),
size (regularized) and inference time (regularized) with the
obfuscation ratio, r, (ranging from 1 to 2) for MobileNet. Here,
r = 1 refers to the original model and is treated as the baseline.

Theorem 1. For a CNN with k convolutional layers
and a given view of the normal world3 ViewNormal =(
X1, Yk, Ŵ1, · · · , Ŵk, X

′
2, · · · , X ′k

)
, we have:

∀i ∈ [k],∀(W ′,W ′′) ∈ F(Ŵi)×F(Ŵi) (20)

Pr
[
Wi = W ′|ViewNormal

]
= Pr

[
Wi = W ′′|ViewNormal

]
(21)

Proof Sketch. Every input/output pair for the intermediate
layers i ∈ [2, k−1] is embedded in F and masked. As a result,
X ′i is indistinguishable from a randomly chosen input of the
same shape in F. Hence, X ′is clearly contain no information
about the convolution filters. For the first (last) layer, the output
(input) is masked which also prevents any reconstruction of
the true weights for W1 (Wk). The rest of the proof follows
trivially from the construction of the feasible sets F(Wi). The
full proof is presented in App. B.

The above theorem states that, on observing a transformed
filter Ŵi, corresponding to any convolutional layer i, an
adversary cannot distinguish between two filters that belong
to its feasible set. Thus, the feasible sets act as cloaking
regions for the original weights. Intuitively, the parameter r
is analogous to the security parameter (such as, key size) for
generic cryptographic protocols. The larger the value of the
obfuscation ratio r, the greater is the size of the feasible
set and consequently, the better is the security. Concretely,
F(Ŵa) ⊃ F(Ŵb) where ma = |Ŵa| > |Ŵb| = mb

(equivalently, ra > rb). r is essentially a trade-off between the
security guarantee and performance. The exact size of feasible
sets can be analytically computed (see App. B). Fig. 9 shows
ShadowNet’s performance with varying values of r. Based on
this, we set r = 1.2 for our experimental setup since this was
the sweet spot. Specifically, even with n = 16 (smallest n for
our evaluation) and field F = Zp for p = 224 − 3, the size
of the feasible set, |F(Ŵ)|, is of the order of 2268 which is

3For simplicity and ease of exposition, we assume that the TEE is perfectly
secure, i.e., it acts as a trusted third party, and that it has access to a true
random number generator. In practice, we would have to use a pseudorandom
number generator (PRNG) with some security parameter κ. We can account
for this by assuming a computationally bounded adversary and considering an
additional negl(κ) term in the Eq. (21) where negl(·) is a negligible function.

sufficient for security. The reason why we get a large feasible
set even with a relatively small value of r is that the random
permutation matrix Pπ and random scalar multiplications by
λis also contribute significantly to the size of the feasible set.
Note. In the above guarantee, the formal security of the mask
layers is rooted in the quantization step. Specifically, the
quantization operation embeds the value in a finite field, F.
Subsequently, the masks can be chosen uniformly at random
from F thereby making the mask layer equivalent to one-time-
pad encryption [63].

Based on Thm. 1, we present the following conjecture:
Conjecture 1. Let q be the number of queries required for
a model stealing attack with access to just the querying API,
i.e, Y =M(X)4 (black-box model stealing attack) and some
information about the model architecture (such as, number and
type of convolutional layers). Let q′ be the number of queries
required for an attack on ShadowNet. We conjecture that q′ is
of the order of O(q).

Black-box model stealing attacks can be typically classified
into two types – (1) functionally-equivalent model stealing
attacks [47] where the attacker tries to extract the exact
weights of model by analytically solving a set of linear
equations, (2) learning-based model stealing attacks where the
adversary tries to learn a shadow model [71], [59], [57], [33].
The first type of attacks are impossible in ShadowNet – since
our mask layers are refreshed every time, it is mathematically
impossible to solve for the model weights (Lemma 2, App. B).
Clearly from our threat model (Sec. III-B), protection against
learning-based black-box model stealing attacks is beyond the
scope of ShadowNet. The implications of Conjecture 1 in
this context is that with ShadowNet, an adversary cannot do
anything significantly better than a standard learning-based
black-box5 model stealing attack. Our reasoning is based on
the fact the feasible sets for the transformed weights are
sufficiently large – this provides sufficient cloaking region
for the original weights. In other words, an adversary cannot
learn anything useful about the original weights by observing
the ShadowNet transformed weights. We provide empirical
evidence in support of our conjecture as follows.

Empirical Analysis. Table IV shows the empirical evaluation
of our conjecture based on two black-box attacks, namely,
Knockoff attack [57] and MixMatch [33], [47], on a victim
model of a four layer fully-connected CNN trained on CIFAR-
10 (Fig. 2). Knockoff is the state-of-the-art black-box attack
with an adaptive query strategy. A recent survey [38] shows
that MixMatch is currently the state-of-the-art attack with the
highest attack accuracy. Knockoff queries the victim model
from an out-of-distribution dataset. For our evaluation, Knock-
off uses 10K queries from CIFAR-100 [8] selected via an
adaptive strategy based on reinforcement learning. MixMatch
is based on semi-supervised learning; the attack samples 8K
points from CIFAR-10 for querying the victim model and

4This corresponds to access to (X1, Yk) from Fig. 8.
5with some extra information about the architecture as stated in Conj. 1

1606

uses an additional 8K unlabeled points from CIFAR-10 for its
semi-supervised training. For Knockoff, the victim model is
trained on CIFAR-10 with accuracy 81.6% (column 1 in Table
IV). For MixMatch, the victim model is trained on CIFAR-
10 with the MixMatch semi-supervised training approach and
has accuracy 98.1% (column 1). We used different training
strategies for the victim model for the two attacks in order
to be consistent with the configurations of their respective
original papers [16]. The baseline shadow model (column 2)
for Knockoff and MixMatch is and ResNet-18 and Wide-
ResNet-28, respectively.

In order to assess whether the adversary benefits from
knowing the transformed weights (Ŵ) in ShadowNet, (1) we
create a custom adversary model with the same architecture
as that of the victim model, (2) we copy weights Ŵ to
the adversary’s model, (3) we mark the convolutional layers
with weights Ŵ as non-trainable and train only the other
layers (results in column 3). The resulting adversary model
is depicted in Fig. 11 in App. B. We observe that the
ShadowNet adapted attack is less accurate than the baseline
attack (column 2) after the same number of queries. In fact, it
performs worse than a random baseline (column 4) where the
weights of the non-trainable convolutional layers (as described
above) are randomly assigned. This shows that the ShadowNet
transformed weights contain no useful information about the
original weights and the adversary gains no advantage by
reusing the transformed weights.

TABLE IV: Empirical evaluation of black-box attack

Victim Attack Baseline ShadowNet Random Baseline
Knockoff [57] 81.6% 36.6% 31.1% 36.2%

MixMatch [33], [47] 98.1% 95.8% 92.3% 92.4%
Column 1 reports the underlying victim model’s accuracy. Column 2

corresponds to the attack baseline where the adversary has no knowledge of
the victim model. Column 3 corresponds to the attack setting adapted for

ShadowNet where the adversary has access to the victim model’s
transformed weights. Column 4 corresponds to the case where the

convolutional layers of the attacker’s model have random weights.
VII. DISCUSSION

Running unmodified model inside the TEE. There are
several challenges in running the unmodified model inside
the TEE. First, standard model inference (outside the TEE)
is memory intensive relative to the original model size. For
instance, the original model size for MiniVGG and ResNet-
44 is 20MB and 2.4MB, respectively. However, running the
unmodified model inference requires dynamically allocating
at least 44MB (2.2X) and 10MB (4.2X) for MiniVGG and
ResNet-44, respectively. This is because running convolutional
layers for standard model inference requires reshaping a 3D
weight matrix into 2D matrices – this needs large chunks of in-
termediate dynamic memory allocation to store the extra copy
of the resized weights. In contrast, ShadowNet only requires
4MB (0.2X) and 5MB (2.1X) TEE memory for MiniVGG and
ResNet-44, respectively. ShadowNet reduces the memory foot-
print by keeping the memory-intensive linear layers outside
the TEE. ShadowNet’s memory requirement for MobileNets
(original model size 17.2MB) is relatively high (48MB -2.7X)
since the MobileNets architecture introduces special CNN
layers such as depthwise and pointwise convolution which

tanh

tanh

Ct-1

ht-1

xt

ht Ct

ht

it
ot

ft

tanh

CONV'

Ct-1

ht-1

xt

ht Ct

ht

it
ot

ft

PUSHM

LT

CONV'

LT

CONV'

LT

tanh

POPM POPM POPM

CONV'

LT

POPM

Fig. 10: Proof-of-concept transformation on LSTM. The
original LSTM layer is showed on the top and the Shad-
owNet transformed LSTM is depicted at the bottom. The red
circles represent pointwise matrix operations and the yellow
square boxes marked with activation symbols represent fully
connected layers followed by the corresponding activation
layers. Green boxes marked “LT”, “PUSHM” and “POPM”
represent the “LinearTransform”, “PushMask” and “PopMask”
layer of ShadowNet, respectively. The yellow square boxes
marked with “CONV′” represent the ShadowNet transformed
convolutional layers which are outsourced to the untrusted
world. All the other parts of the LSTM layer including the
internal states remain in the secure world.

increases the size of the input and output for each layer.
As a result, the mask layer added by ShadowNet consumes
a relatively larger amount of TEE memory. Nevertheless, it
is still significantly lower than running the unmodified model
inside TEE (61MB-3.5X). Second, running unmodified models
inside the TEE would require a significant engineering effort.
TensorFlow Lite needs to be ported into the TEE to support
the convolutional layers and matrix operations which rely on
certain mathematical libraries (in C++) for efficiency. This
entails a significant engineering effort since currently Arm OP-
TEE OS does not support C++ and its associated computing
libraries. Third, the limited size of the TCB presents additional
challenges. TensorFlow Lite has tens of thousands lines of
code and porting it as a whole inside TEE would require a
much larger TCB. On the other hand, recall that ShadowNet
can work with a small TCB – its TA adds only 2100 LOC
inside the TEE (the new operations add < 200 LOC inside
the TCB). Additionally, note that the extra code added for
model conversion is used offline by the model vendor and is
not deployed on the device. Hence, this does not increase the
on-device TCB size. Last, we will lose access to hardware
accelerators if we run the unmodified model inside the TEE.

Support for CNNs and LSTMs. In general, ShadowNet
can be applied to any CNN model as long as the TEE
can support the memory requirements of the corresponding
ShadowNet transformed model. The amount of TEE memory
required for running the ShadowNet transformed model can
be estimated by the size of the weights that need to be stored
inside the TEE (Other in Table III). Concretely, the total size

1607

is given by the sum of the size of the weights of four Shad-
owNet operations, namely, LinearTransform, ShuffleChannel,
AddMask and Batchnorm. The size of LinearTransform and
ShuffleChannel can be computed from the shapes of the
convolutional layer and the obfuscation ratio. The size of
AddMask can be computed from the input and output shape of
each layer. The size of Batchnorm can be computed directly
from the model.
ShadowNet can also be used for LSTMs. LSTMs typically
consist of fully-connected layers, pointwise matrix operations
and activation layers. Recall that a fully connected layer can
be treated as a convolutional layer during the ShadowNet
transformation. Hence for LSTMs, ShadowNet applies linear
transformation on the fully connected layers while keeping
the pointwise matrix operations and activation layers inside
the TEE. As a concrete example, a LSTM layer (top) and
its corresponding ShadowNet transformation (bottom) is de-
picted in Fig. 10. We implement a prototype ShadowNet
transformation for the LSTM layer depicted in Fig. 10 with
an input (xt) shape of (12, 30), output space/units set to be
10, obfuscation ration r = 1.2 and 1640 parameters. The
number of parameters after the ShadowNet transformation is
3640 – the extra parameters are due to the mask layers and the
transformed CONV′ layers. Original LSTM model inference
time is 33 ms while the Shadownet transformed LSTM model
inference time is 41ms (1.24X).
Support for Cloud Platform. ShadowNet can be used for
secure model inference in the cloud as well. For this, the
ShadowNet CA/TA needs to be changed to support a cloud
TEE, such as SGX. Compared with other designs that perform
model inference inside SGX [53], [27], we expect ShadowNet
to be more efficient in using the SGX memory and to benefit
from the co-located GPUs for acceleration.
Layerwise ShadowNet. ShadowNet transformations can be
applied on each convolutional layer independently. Hence, an
alternative strategy for implementation is to selectively apply
ShadowNet to only the sensitive layers which would improve
performance. The rationale behind Layerwise ShadowNet is
supported by research on transferable learning [74] which
shows that the bottom layers contain features that are more
specific to the training dataset. Hence, these features are more
sensitive than the generalized features in the top layers.

VIII. RELATED WORK
Existing research on secure ML covers both end devices

and cloud-based solutions. Offline Model Guard (OMG) [32]
provides a secure model inference framework for mobile
devices based on SANCTUARY [35], a user space enclave
built on Arm TrustZone. However, the original paper presents
only a proof-of-concept implementation for OMG that can-
not be directly integrated with existing mobile apps (unlike
ShadowNet). Moreover, OMG is based on the Sanctuary
enclave [35] which runs a user application along with the
OS in an isolated environment. For model inference, the
unmodified model is run inside the Sanctuary enclave. Thus,
the threat model is different as OMG requires the whole
software stack, including the OS, libraries and the application

inside Sanctuary, to be trusted. ShadowNet, on the other hand,
relies only on a secure TEE-OS and TA which is a more
relaxed trust assumption. MLCapsule [44] also deploys the
model on the client side to protect the user input from being
sent to the untrusted cloud. Additionally, it runs the model
inference inside SGX to prevent the model from being leaked
to the client. DarkneTZ [56] is a secure machine learning
framework built on top of Arm TrustZone. It allows a few
selected layers to run inside the TEE to protect part of the
model. OMG, MLCapsule and DarknetTZ do not support
secure GPU acceleration and have a larger TCB size than
ShadowNet. Graviton [72] proposes TEE extension for GPU
hardware, thus allowing GPU tasks to run securely. However, it
requires hardware changes to the GPU. Secloak [54] partitions
the GPU into Secure World to run GPU tasks securely at a
high performance penalty. ShadowNet does not change the
GPU hardware or partition the GPU into the Secure World.

TensorSCONE [53] proposes a secure ML framework that
runs on the untrusted cloud. However, it is only evaluated
on Inceptionv4 and has a 3.1X time overhead with 330MB
memory consumption – these overheads are higher than that
of ShadowNet. Additionally, it is designed for a cloud envi-
ronment while ShadowNet is aimed at a mobile environment
which is more resource constrained. TF Trusted [27] leverages
custom operations to send gRPC messages to the Intel SGX
device via Google Asylo [6].This requires more TEE resources
than ShadowNet and does not support GPU acceleration.

Slalom [70] outsources the linear layers to the GPU for
acceleration with masked inputs while keeping the other layers
inside SGX. Slalom protects the user input privacy but not the
model weights6 from the untrusted server while ShadowNet
protects the model weights. YerbaBuena [42] partitions the
model into frontnets and backnets, and executes the front-
nets inside SGX. This protects the input from the cloud.
SecureNets [37] transforms both the input and the linear layer
into matrices and applies matrix transformations [65] before
sending them to the cloud. It is unclear whether SecureNets
supports depthwise convolution and convolution with stride.
ShadowNet does not require transforming input and weights
into matrices and is compatible with existing linear operations.

Some secure ML systems use cryptographic primitives,
such as CryptoNets [41], [49], TF Encrypted [25] and Safe-
tyNets [40]. ShadowNet’s performance is orders of magnitude
better than such cryptographic approaches. For instance, for
a single image classification, CryptoNets takes ∼570s s on a
PC while ShadowNet takes <1s on a smartphone.

IX. CONCLUSION

In this paper, we have proposed ShadowNet, a secure on-
device model inference system for CNNs that protects the
model privacy with a TEE while leveraging the untrusted
hardware for acceleration. We have implemented an end-to-
end prototype of ShadowNet on TensorFlow Lite and OP-TEE
with optimizations to work with a small TCB.

6Slalom outlines a conceptual way for protecting the model privacy from
clients – however, no concrete implementation and evaluation is provided.

1608

REFERENCES

[1] HiKey 960 . https://www.96boards.org/product/hikey960/.
[2] Android 7.0 Compatibility Definition. https://source.android.com/docs/

compatibility/7.0/android-7.0-cdd#9 11 keys and credentials.
[3] AppLock Face/Voice Recognition - Apps on Google Play.

https://play.google.com/store/apps/details?id=com.sensory.tsapplock\
&hl=en US\&gl=US.

[4] Arm Compute Library. https://www.arm.com/why-arm/technologies/
compute-library.

[5] Arm TrustZone. https://developer.arm.com/ip-products/security-ip/
trustzone.

[6] Asylo, An open and flexible framework for enclave applications. https:
//asylo.dev/.

[7] Card Scanner - Apps on Google Play. https://play.google.com/store/
apps/details?id=com.zoho.android.cardscanner&hl=en US&gl=US.

[8] The cifar-100 dataset. https://www.cs.toronto.edu/∼kriz/cifar.html.
[9] Coral: An ecosystem for local AI. https://blog.tensorflow.org/2019/01/

tensorflow-lite-now-faster-with-mobile.html.
[10] Coral: An ecosystem for local AI. https://coral.ai/about-coral/.
[11] Eigen. http://eigen.tuxfamily.org/index.php?title=Main Page.
[12] Fritz AI: Model Protection - Secure your Intellectual Property

from being tampered-with or stolen. https://www.fritz.ai/features/
model-protection.html.

[13] Google Translate - Apps on Google Play. https://play.google.com/store/
apps/details?id=com.google.android.apps.translate&hl=en US&gl=US.

[14] Minivgg pre-trained model. https://pyimagesearch.com/2021/05/22/
minivggnet-going-deeper-with-cnns/.

[15] Mobilenets pre-trained model. https://keras.io/api/applications/.
[16] Model-extraction-iclr. https://github.com/cleverhans-lab/

model-extraction-iclr.
[17] OP-TEE AOSP support. https://optee.readthedocs.io/en/latest/building/

aosp/aosp.html.
[18] Optee-os issue : Keep the context of the last session.

https://github.com/OP-TEE/optee os/pull/4891/commits/
0fa9b4efadf8ae7a48f87184660d6b6f8e56749d.

[19] Optee-os issue :questions about memory management. https://github.
com/OP-TEE/optee os/issues/5042.

[20] Resnet-404 pre-trained model. https://github.com/wikibook/keras/blob/
master/chapter2-deep-networks/resnet-cifar10-2.2.1.py.

[21] Resnet-44 pre-trained model. https://github.com/wikibook/keras/blob/
master/chapter2-deep-networks/resnet-cifar10-2.2.1.py.

[22] ShadowNet Repo. https://github.com/RiS3-Lab/ShadowNet.
[23] Tensorflow lite. https://www.tensorflow.org/lite.
[24] Text Scanner [OCR] - Apps on Google Play. https://play.google.com/

store/apps/details?id=com.peace.TextScanner&hl=en US&gl=US.
[25] TF Encrypted. https://github.com/tf-encrypted/tf-encrypted.
[26] TF Lite Android Image Classifier App Example. https://github.com/

tensorflow/tensorflow/tree/r2.2/tensorflow/lite/java/demo.
[27] TF Trusted. https://github.com/dropoutlabs/tf-trusted.
[28] TrustZone for Cortex-A. https://www.arm.com/why-arm/technologies/

trustzone-for-cortex-a.
[29] TrustZone for Cortex-M. https://www.arm.com/why-arm/technologies/

trustzone-for-cortex-m.
[30] Wiki: Trusted Execution Environment. https://en.wikipedia.org/wiki/

Trusted execution environment.
[31] Yolov4-tiny pre-trained model. https://github.com/bubbliiiing/

yolov4-tiny-keras.
[32] Sebastian P Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian

Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel
Stapf, and Christian Weinert. Offline model guard: Secure and private
ml on mobile devices. DATE 2020, 2020.

[33] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot,
Avital Oliver, and Colin A Raffel. Mixmatch: A holistic approach to
semi-supervised learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[34] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. CoRR,
abs/2004.10934, 2020.

[35] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Sanctuary: Arming trustzone with user-space
enclaves. In NDSS, 2019.

[36] Cristiano Breuel. Implementing Liveness Detection
with Google ML Kit. https://towardsdatascience.com/
implementing-liveness-detection-with-google-ml-kit-5e8c9f6dba45.

[37] Xuhui Chen, Jinlong Ji, Lixing Yu, Changqing Luo, and Pan Li.
Securenets: Secure inference of deep neural networks on an untrusted
cloud. In Asian Conference on Machine Learning, pages 646–661, 2018.

[38] Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas
Papernot. Increasing the cost of model extraction with calibrated proof of
work. In ICLR (International Conference on Learning Representations)
[SPOTLIGTH], 2022.

[39] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
volume 88, pages 303–338. Springer, 2010.

[40] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable
execution of deep neural networks on an untrusted cloud. In Advances
in Neural Information Processing Systems, pages 4672–4681, 2017.

[41] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
International Conference on Machine Learning, pages 201–210, 2016.

[42] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Ankita Lamba,
Dimitrios Pendarakis, and Ian Molloy. Yerbabuena: Securing deep
learning inference data via enclave-based ternary model partitioning.
arXiv preprint arXiv:1807.00969, 2018.

[43] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, page 1737–1746.
JMLR.org, 2015.

[44] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max
Augustin, Michael Backes, and Mario Fritz. Mlcapsule: Guarded
offline deployment of machine learning as a service. arXiv preprint
arXiv:1808.00590, 2018.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[46] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[47] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High-fidelity extraction of neural network models.
arXiv preprint arXiv:1909.01838, 2019.

[48] Dongxu Ji, Qianying Zhang, Shijun Zhao, Zhiping Shi, and Yong
Guan. Microtee: designing tee os based on the microkernel architecture.
In 2019 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE), pages 26–33. IEEE, 2019.

[49] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure
outsourced matrix computation and application to neural networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1209–1222, 2018.

[50] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1651–1669, 2018.

[51] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[52] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian
institute for advanced research).

[53] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. Tensorscone: A secure tensorflow frame-
work using intel sgx. arXiv preprint arXiv:1902.04413, 2019.

[54] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattachar-
jee. Secloak: Arm trustzone-based mobile peripheral control. In
Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 1–13, 2018.

[55] Linaro. Open Portable Trusted Execution Environment. https://www.
op-tee.org/.

[56] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou,
Ilias Leontiadis, Andrea Cavallaro, and Hamed Haddadi. Darknetz:

1609

Towards model privacy at the edge using trusted execution environments.
In ACM MobiSys 2020.

[57] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff
nets: Stealing functionality of black-box models. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4949–4958, 2019.

[58] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458, 2015.

[59] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[60] Joseph Redmon. Darknet: Open source neural networks in c. http:
//pjreddie.com/darknet/, 2013–2016.

[61] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015.

[62] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applications.
In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pages 707–721, 2018.

[63] Frank Rubin. One-time pad cryptography. Cryptologia, 20(4):359–364,
1996.

[64] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[65] Sergio Salinas, Changqing Luo, Weixian Liao, and Pan Li. Efficient
secure outsourcing of large-scale quadratic programs. In Proceedings of
the 11th ACM on Asia Conference on Computer and Communications
Security, pages 281–292, 2016.

[66] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[67] Zhichuang Sun, Ruimin Sun, and Long Lu. Mind your weight (s): A
large-scale study on insufficient machine learning model protection in
mobile apps. arXiv preprint arXiv:2002.07687, 2020.

[68] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[69] Tianxiang Tan and Guohong Cao. Deep learning on mobile de-
vices through neural processing units and edge computing. CoRR,
abs/2112.02439, 2021.

[70] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287, 2018.

[71] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
25th {USENIX} Security Symposium ({USENIX} Security 16), pages
601–618, 2016.

[72] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on gpus. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), pages
681–696, 2018.

[73] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin
Liu, and Xuanzhe Liu. A first look at deep learning apps on smartphones.
In The World Wide Web Conference, pages 2125–2136, 2019.

[74] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? In Advances in neural
information processing systems, pages 3320–3328, 2014.

[75] Yi Zhang, Jiun-Hao Liu, Chih-Yu Wang, and Hung-Yu Wei. Decompos-
able intelligence on cloud-edge iot framework for live video analytics.
IEEE Internet of Things Journal, 7(9):8860–8873, 2020.

1610

APPENDIX A
OPTIMIZING THE SQRT FUNCTION

TABLE V: Performance of different sqrt implementation.

Sqrt Impl. Time(ms) S/H Algorithm CFLAG
GNU libc 3.53 S IEEE754 Default

Newlib 13.78 S IEEE754 -O2
Our TA 194.04 S Newton -Os

Arm VFP 10.86 H unknown Default
Arm Neon 6.62 H Newton Default

Note: a. S/H: S means Software based implementation, H means Hardware
based implementation, like special instructions; b. CFLAG: GCC

compilation flag; c. IEEE754 means algorithm exploits bits hacking of
IEEE754 float format; d. Newton means Newton Iteration for sqrt.

There are many different implementations of the sqrt
function for floating point numbers for AArch64 architec-
ture. Software-based implementations include algorithms us-
ing Newton iteration and bits hacking of IEEE754 float
representation. Hardware-based implementations include Arm
VFP support for fsqrt, and Arm Neon support for float sqrt.
Additionally, the performance of software-based implementa-
tions is also affected by the compilation flag. The default gcc
compilation flag for TA is -Os, which optimizes space first; if
we change it to -O2, the performance is more than 100x faster
while the TA size increases from 55KB to 67KB. We evaluate
all the above implementations by doing 3,200,000 sqrt oper-
ations and show the results in Table V. Our TA initially used
a software implementation using Newton Iteration algorithm.
After evaluation, we switched to the Arm Neon based sqrt
implementation for the speed and ease of implementation.

APPENDIX B
SECURITY ANALYSIS

Construction of Feasible Set. We refer to the kernels fi
in the random filter F = [f1, · · · , fm−n] as mask kernels.
Additionally, let ∈R represent a uniform random sampling.
In what follows, we outline the methodology to compute the
feasible set, F(Ŵ) for a given transformed weight matrix Ŵ .
The idea is to back-trace and compute the set of possible pre-
images. Now, the feasible set is constructed as follows:

1) Select the set of m− n indices uniformly at random:

Ω ⊂R [m], |Ω| = m− n (22)

Ω represents a possible set of indices that correspond to
the mask kernels.

2) The corresponding set of mask kernels is:

ΦΩ = {ŵi|i ∈ Ω} (23)

3) Let ΦΩ = {ŵi|i ∈ [n] \ Ω} be the set of transformed
original kernels. Additionally, let W = [w1, · · · , wn]
where wi ∈ ΦΩ and wi 6= wj , i, j ∈ [n], i 6= j.

4) Sample a random permutation σ ∈R Sn. We assume
that σ = π[1 : n]−1, i.e,, σ reverses the effect of
π on the transformed original kernels. Thus, Wσ =
[wσ(1), · · · , wσ(n)] represents a possible transformed fil-
ter.

5) Compute

∀i ∈ [n]

F iΩ,σ(Ŵ) = {w|w = d · (wσ(i) − ŵ′), d ∈R F, ŵ′ ∈R ΦΩ}

F iΩ,σ(Ŵ) represents the set of possible values for the
kernel wi for the given Ω and σ.

6) Compute

FΩ,σ(Ŵ) =
{[
w1, · · · , wn

]∣∣∀i ∈ [n], wi ∈ F iΩ,σ(Ŵ)
}}

FΩ,σ(Ŵ) denotes the set of possible filters W for the
given Ω and σ.

7) Clearly, we have

F(Ŵ) =
⋃
Ω

⋃
σ

FΩ,σ(Ŵ) (24)

Clearly, larger the value of r, greater is the size of Ω and
consequently, F(Ŵ). Additionally, it is evident that F(Ŵa) ⊃
F(Ŵb) where ma = |Ŵa| > |Ŵb| = mb (equivalently, ra >
rb). For depthwise convolutional layer, we have

F(Ŵ) = {[d1 · ŵσ(1), · · · , dn · ŵσ(n)]
∣∣σ ∈R Sn,∀i ∈ [n] di ∈R F}

(25)

Theorem 1. For a CNN with k convolutional layers
and a given view of the normal world ViewNormal =(
X1, Yk, Ŵ1, · · · , Ŵk, X

′
2, · · · , X ′k

)
, we have:

∀i ∈ [k],∀(W ′,W ′′) ∈ F(Ŵi)×F(Ŵi)

Pr
[
Wi = W ′|ViewNormal

]
= Pr

[
Wi = W ′′|ViewNormal

]
(26)

Proof. First, we present two helper lemmas as follows.

Lemma 1. X ′i, i ∈ [k] is indistinguishable from a random
tensor in F with the same shape as Xi.

Proof. Note that Xis are embedded in a field F. Thus clearly,
masking the inputs X ′i = Xi +M is equivalent to applying a
one-time pad which concludes our proof.

Lemma 2. Adversary cannot reconstruct Wi, i ∈ [n] from
(X1, Yk).

Proof. Recall that the goal of the adversary is to find Wi, i.e.,
solve for the |Wi| variables.

Consider the first layer – the adversary has access to
the true input X1 but only gets to see the masked output
X ′2 = Y1 + M2. In other words, adversary has 2|Y1| + |W1|
unknown variables. Consequently, the adversary cannot solve7

for the weights of W1 from this. Similarly, for the last layer the
adversary cannot solve for Wk from (X̂k, Yk). This concludes
our proof for the above lemma.

7The input/output pair (Xi, Yi) for any layer is connected to Wi by a
system of linear equations. Hence, an adversary needs access to both the
input and the output to solve for Wi

1611

(3,3,3,64)

(64,64,3)

Original CNN
(a)

conv

input

conv

conv

conv

output

(3,3,64,64)

(3,3,64,64)

(3,3,64,64)

ReLU+Batchnorm

ReLU+Batchnorm

Softmax

(10)

Avgpool+Flatten+Dense

ReLU+Batchnorm

ReLU+Batchnorm

(3,3,3,76)

(64,64,3)

ShadowNet transformed CNN
(b)

conv'

input

conv'

conv'

conv'

output

(3,3,64,76)

(3,3,64,76)

(3,3,64,76)

(10)

(3,3,3,76)

(64,64,3)

Adversary's equivalent CNN
(c)

conv'

input

conv'

conv'

conv'

output

(3,3,64,76)

(3,3,64,76)

(3,3,64,76)

ReLU+Batchnorm

ReLU+Batchnorm

Softmax

(10)

Avgpool+Flatten+Dense

pwconv

ReLU+Batchnorm

pwconv

ReLU+Batchnorm

pwconv

TeeShadow

TeeShadow

TeeShadow

TeeShadow

Fig. 11: Figure (a) shows the original CNN model. Figure (b) is the ShadowNet transformed model. Figure (c) the adversary’s
equivalent CNN. Before training, its conv’ layers are initialized with weights copied from the corresponding conv’ layers of
the ShadowNet transformed model. These conv’ layers are then reused by the adversary and marked as non-trainable during
training.

Note that here we assume the worst case situation for
ShadowNet where Xi = Yi−1. In practice, the adversary can
only observe X̂i = G(Yi−1) +Mi where G(·) represents the
non-linear layers. This adds additional complications for the
adversary. For instance, negative values cannot be reversed for
ReLU activation layers.

Clearly, from our construction of the feasible set in Equa-
tions (24) and (25), we have

∀i ∈ [k],∀(W ′,W ′′) ∈ F(Ŵi)×F(Ŵi)

Pr
[
Wi = W ′|Ŵi

]
= Pr

[
Wi = W ′′|Ŵi

]
(27)

Equation (26) follows directly from Lemma 2 and Equation
(27), concluding our proof.

(222,222,76)

conv' bn+relu6

(3,3,3,76)

pwconv

(222,222,64)

(1,1,76,64)

(3,3,3,64)

(222,222,64)
Original CNN

Adversary's equivalent CNN

(4,64)

(4,64)

bn+relu6conv

Fig. 12: The equivalent CNN architecture needed to be
trained by an adversary. The grey color marks the weights
of the layers with unknown parameters that the adversary has
to train. The weights shape is marked on top of the box and
the output shape is marked under the box.

Illustration. In order to study the advantage an adversary
might have in ShadownNet, over a black-box model stealing
attack, we assume that the adversary reuses the transformed
weights to build an equivalent CNN. Consider the example
CNN from Figure 1 – the minimum equivalent CNN that
reuses the transformed weights is shown in Figure 12. As
mentioned before in Section IV-D, the linear transformation
layer is essentially a pointwise convolutional layer and we
use pwconv to represent it inside the TEE. Note that the
mask/unmask layers are not needed to construct the equivalent
CNN.

We use the number of learnable parameters to assess the
difficulty of training a CNN. In our example, the block in
the original CNN has 3 × 3 × 3 × 64 + 4 × 64 = 1, 984
parameters while the block in the adversary’s equivalent CNN
has 76× 64 + 4× 64 = 5, 120 parameters to be trained. Here,
4×64 learnable parameters are due to the batch normalization
(bn) layer. There are 76 kernels in the conv’ layer and this
number can be configured via the obfuscation ratio, which is
set to r = 1.2 in our example (76 = 64 × 1.2). In fact, even
for r = 1, the minimum allowed value, the adversary’s CNN
has more learnable parameters (64× 64 + 4× 64 = 4, 480).

1612

