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Abstract—SPHINCS+ [CCS ’19] is one of the selected post-
quantum digital signature schemes of NIST’s post-quantum
standardization process. The scheme is a hash-based signature
and is considered one of the most secure and robust proposals.
The proposal includes a fast (but larger) variant and a small (but
slower) variant for each security level. The main problem that
might hinder its adoption is its large signature size. Although
SPHINCS+ supports a trade-off between signature size and the
computational cost of signing, further reducing the signature
size (below the small variants) results in a prohibitively high
computational cost for the signer.

This paper presents several novel methods for further compress-
ing the signature size while requiring negligible added computa-
tional costs for the signer and further reducing verification time.
Moreover, our approach enables a much more efficient trade-off
curve between signature size and the computational costs of the
signer. In many parameter settings, we achieve small signatures
and faster running times simultaneously. For example, for 128-bit
(classical) security, the small signature variant of SPHINCS+
is 7856 bytes long, while our variant is only 6304 bytes long:
a compression of approximately 20% while still reducing the
signer’s running time. However, other trade-offs that focus, e.g.,
on verification speed, are possible.

The main insight behind our scheme is that there are predefined
specific subsets of messages for which the WOTS+ and FORS
signatures (that SPHINCS+ uses) can be compressed, and
generation can be made faster while maintaining the same security
guarantees. Although most messages will not come from these
subsets, we can search for suitable hashed values to sign. We
sign a hash of the message concatenated with a counter that was
chosen such that the hashed value is in the subset. The resulting
signature is both smaller and faster to sign and verify.

Our schemes are simple to describe and implement. We provide
an implementation, a theoretical analysis of speed and security,
as well as benchmark results.
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I. INTRODUCTION

Hash-based signatures are among the most secure digital
signature scheme proposals today. They are believed to resist
quantum computer-aided attacks, and breaking a hash-based
signature scheme would imply devastating and unlikely attacks
in large areas of cryptography. They have solid and well-
understood security guarantees, flexibility in choosing the
underlying hash functions, and enjoy fast signature generation
and verification times. The major drawback of hash-based
signatures, and what is slowing wide deployment, is the
signature size, which is large compared to other alternatives.
Most other signature schemes are either not post-quantum

secure (e.g., discrete-log based), or rely on assumptions that
have not been extensively studied and are often prone to new
attacks [9]. The only post-quantum secure signature schemes
that are efficient in terms of all speeds and sizes are based on
structured lattice problems. As digital signatures are a crucial
cryptographic tool in practice, putting all eggs in one basket is
a dangerous setup. Therefore, reducing the size of hash-based
signatures is of the utmost importance.

Hash-based signatures have a long history starting with
the one-time signatures (OTS) proposed by Lamport [18]
and improved by Winternitz [19]. In 2015, Bernstein et
al. presented a stateless hash-based signature scheme called
SPHINCS [5]. Their proposal had a significant impact on
the area of hash-based signatures. Their scheme combined
several known and novel techniques that managed to get a fast
digital signature candidate and a reasonably small signature
size. The SPHINCS scheme is a practical take on Goldreich’s
proposal to turn stateful schemes into stateless schemes [12].
Goldreich suggested using a binary authentication tree of
one-time signatures, which removed the need to maintain a
local state but practically yields prohibitively large signatures.
The SPHINCS scheme combines a (hyper) tree of one-time
signatures while replacing the one-time signatures in the leaves
of the tree with few-time signatures [22]. This modification
allowed reducing the size of the tree, resulting in a significantly
smaller signature size.

Since this proposal, hash-based signatures have received
renewed interest, and various improvements and variations
have been suggested [23], [13], [3], [15], [4], [10], [21],
[24]. Most notable is the suggested proposal SPHINCS+
[6], which is one of the selected schemes in NIST’s post-
quantum standardization process for digital signatures. The
SPHINCS+ scheme introduces a new few-time signature
scheme called FORS, uses WOTS-TW [16] as the one-time
signature component, and a new security analysis framework
that uses “tweakable hash functions”. The SPHINCS+ scheme
is generally considered the current state-of-the-art of stateless
hash-based signatures. It supports a trade-off between signature
size and the computational cost of the signature. SPHINCS+
allows for up to 264 signatures with the same private key, and
includes a fast (but larger) variant and a small (but slower)
variant for each security level. For example, for 128 bits of
classical security (NIST level 1), it has signatures of size
≈ 8KB for the small variant and ≈ 17KB for the fast variant.
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Unfortunately, further reduction in the signature size is not
considered practical due to prohibitively high computational
cost for the signer.

A. Our results

In this paper, we propose SPHINCS+C, a stateless hash-
based signature scheme based on SPHINCS+, which improves
the best-known results for stateless hash-based signatures. We
reduce the signature size while maintaining (and in some cases
even improving) the speed of signature generation. Furthermore,
the security of our scheme and the number of supported
signatures follows from the security of the components of
the original SPHINCS+ scheme. Our main contributions and
new techniques are summarized in the following points:

• Improved one-time signatures (WOTS+C): We introduce a
new variant of the Winternitz one-time signature scheme
(WOTS), which we refer to as WOTS+C. The scheme
reduces the number of chains in WOTS, which reduces
the signature size and the running time of the verifier
without increasing the running time of the signer or the
key-generation time. The scheme is described in Section III.

• Improved few-time signatures (FORS+C): We introduce a
new variant of the FORS scheme, called FORS+C. As for
WOTS, our variant reduces the signature size and (slightly)
reduces the verification time while maintaining the same
signing and key-generation time. The scheme is described
in Section IV.

• Improved stateless hash-based signature scheme
(SPHINCS+C): We propose a novel variant of SPHINCS+,
called SPHINCS+C that uses WOTS+C and FORS+C. We
show how to integrate the new one-time and few-time
signatures into SPHINCS+, which allows us to reduce the
signature size while maintaining speeds, and enables a more
comprehensive range of trade-offs for the whole signature
scheme. This is described in Section VI.

We provide a security proof of our scheme, a reference
implementation based on the code of SPHINCS+,1 and propose
several parameter sets that we benchmarked. On the one hand,
we analyze the impact of our improvement when using the
same parameters as proposed in the SPHINCS+ submission.
On the other hand, we select parameters that optimize for size
and demonstrate how far one can go in terms of compression
without sacrificing signing speed. We note that users may want
to look for other trade-offs depending on the use-case. Table I
provides a comparison for the signature sizes of the SPHINCS+
variants submitted to round 3 of the NIST competition [2],
and our proposed variants using the size optimized parameters
which maintain a comparable (and sometimes slightly better)
signing speed. For example, for 128-bit security, the small
signature variant of the SPHINCS+ signature is 7856 bytes
long, while our variant is only 6304 bytes long: a compression
of approximately 20% while additionally slightly improving
signing speed (see benchmark at Table V).

1https://github.com/eyalr0/sphincsplusc.

Security Small Signature Size Fast Signature Size

Level SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C

128-bit 7856 6304 (−20%) 17088 14904 (−13%)
192-bit 16224 13776 (−16%) 35664 33016 (−8%)
256-bit 29792 26096 (−13%) 49856 46884 (−6%)

TABLE I: Comparison of signature sizes (in bytes) between
SPHINCS+ and SPHINCS+C (our scheme). The table compares
all three security levels, and for each it compares the small and
fast variants. The reduction percentages in size is shown in the
parenthesis. The signature generation times are (approximately)

the same in both scheme for all parameter settings.

Paper organization

The organization of the rest of the paper is as follows. In
Section II, we give the relevant background on the SPHINCS+
signature scheme and its components. In Section III, we
describe WOTS+C, our new variant of WOTS+, along with its
theoretical analysis. In Section IV, we describe our FORS+C
scheme, along with its theoretical analysis. In Section V, we
introduce SPHINCS+C and prove it secure. We then discuss
parameter selection and propose concrete parameter sets in
Section VI. In Section VII, we describe our implementation
and provide a comparison with the SPHINCS+ scheme (in
terms of speed and signature size). In Section VIII we provide
a general discussion of further considerations that are relevant
to our scheme. Finally, Section IX suggests future work.

II. BACKGROUND

In this section, we provide relevant background on the
SPHINCS+ signature scheme, covering its main building blocks.
Readers familiar with SPHINCS+ may safely skip this section.
we abbreviate log2 as log as we only take logarithms base 2.

A. WOTS

The Winternitz one-time signature scheme (WOTS) and
its variants (e.g., WOTS+) are one-time signature schemes
[14]. The core idea of WOTS (and its variants) is to use len
function chains starting from random values. These random
values together act as the secret key. The public key consists of
the ends of all chains. The signature is computed by mapping
the message to one intermediate value of each function chain.
In this section, we present the original WOTS scheme. We use
this basic WOTS scheme to present our ideas. Later in the
paper, we show that our optimization can also be used with
more complex variants, including WOTS+ and WOTS-TW.

WOTS has two parameters, n and w; n is the security
parameter, and the length of the message; w is the Winternitz
parameter, which defines the length of the chains, and is usually
set to 4, 16 or 256. Let

len1 =

⌈
n

log(w)

⌉
and len2 =

⌊
log(len1 · (w − 1))

log(w)

⌋
+ 1 ,

and len = len1 + len2. Then the WOTS scheme is:
KeyGen(1n):

1) The secret key is random strings sk = (sk1, . . . , sklen).
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2) The public key is pk = (pk1, . . . , pklen), where pki =
Fw−1(ski).

Sign(m, sk):
1) Interpret the message m as a number and transfer it

into base w representation: m = a1, . . . , alen1 , where
ai ∈ [w].

2) Compute a checksum C =
∑len1

i=1(w − 1 − ai),
represented as a string of len2 base-w values C =
(C1, . . . , Clen2).

3) Let (b1, . . . , blen) = (a1, . . . , alen1 , C1, . . . , Clen2)
4) For i ∈ [len] compute σi = F bi(ski).
5) Output σ = (σ1, . . . , σlen).

Verify(1n,m, σ, pk):
1) Parse σ as (σ1, . . . , σlen).
2) Parse pk = (pk1, . . . , pklen).
3) Compute the message and checksum encoding

b1, . . . , blen ∈ [w].
4) Verify that for all i ∈ [len], it holds that pki =

Fw−bi−1(σi).
Various variants of WOTS were introduced in the literature,

including WOTS+ [15] and WOTS-TW [16]. They mainly
differ in the exact manner in which the chains are computed.
For example, WOTS+, replaces the simple hash function with
a more complex chaining function which involves random
masking values r and a family of hash functions fk. In
every iteration, the function first takes the bitwise xor of
the intermediate value and bitmask r and evaluates fk on
the result. This results in a tight security analysis using weak
(inversion) properties of the hash functions. WOTS-TW is built
on tweakable hash functions with different security notions.

B. FORS

One-time signature schemes lose all security after doing
more than one signature. In contrast, few-time signatures (FTS)
can maintain some level of security even after a few signatures
are signed. The security of the scheme (usually) deteriorates
with each added signature.

The FORS (Forest of Random Subsets) signature scheme
is the few-time signature scheme used in SPHINCS+ [6],
introduced as an improvement to HORST [5]. The FORS
scheme is defined in terms of integers k and t = 2b, and can
be used to sign message digests of k · b bits. The private key
contains k · t random n-bit values (for security parameter n).
These values are viewed as the leaves of k trees, each with t
leaves. A Merkle tree is computed for each tree based on the
hashes of secret values, resulting in k roots. The public-key
consists of the hash of all these roots together. Given a message
digest of k · b bits, the signature algorithm reveals k secret
values – one from each tree. Each of these k bit strings of
length b is interpreted as the index of a leaf in one of the
k FORS trees. The signature contains an authentication path
for each leaf. As each index is used in a different tree, FORS
solves the problem of weak messages in HORST [3], that is
due to a collision of two or more indices in the single tree
used by HORST.

sk_1 sk_2 sk_3 sk_4 sk_5 sk_6

H H H H H H

H H H

ROOT ROOT ROOT

FIG. 1: A toy example of a FORS signature. The image presents
a FORS instance for k = 3, b = 1, t = 2. It is possible to sign a

message of 3-bits length. The image shows a signature for
message m = 010, blue blocks represent the revealed leafs and

orange blocks represent the authentication paths.

An example of the FORS signature is shown in Figure 1.

C. SPHINCS+

The SPHINCS+ [6] scheme is a stateless hash-based signa-
ture improving upon the previous version called SPHINCS [5].
To understand SPHINCS+, consider a Merkle tree over the
public keys of WOTS+ instances of height h′. Such construc-
tion allows us to sign 2h

′
messages. We group the trees in

layers. Instead of signing messages, each WOTS+ instance is
used to sign a root of another Merkle tree on all but the lowest
layer. We call this tree of Merkle trees a hyper-tree. Having d
layers in our hyper-tree structure allows us to generate 2h

′·d

signatures on the lowest layer. Since the secret elements for
WOTS+ are generated pseudorandomly, each Merkle tree can
be generated independently of others. For security reasons and
to allow for more message signatures, WOTS+ instances on
the bottom layer of the hyper-tree are used to sign public keys
of FORS instances. Finally, one of the FORS instances will
be used to sign the message. An example of the SPHINCS+

structure is shown in Figure 2.
During key generation, a seed and a PRF-key are chosen,

which define the secret key. The former is used to derive all the
FORS and WOTS+ secret key values, while the latter is used
to deterministically generate randomness for the message hash
during signing. To compute the public key, a hash function
key called public parameters is chosen that is used for all hash
function calls and is the first half of the public key. The second
half is the root of the top tree of the hyper-tree, which can be
computed by generating just this top tree.

To sign a message, its digest = (m, i) is computed using a
(pseudo)-random salt, which prevents collision-finding attacks.
The second part i of the digest determines the leaf of the hyper-
tree – and thereby the FORS keypair – used to sign the other
part m. The FORS public key is signed by the corresponding
WOTS+ key pair of the hyper-tree. The Merkle tree containing
that WOTS+ key pair is computed to obtain its root. This root
is signed using the respective WOTS+ instance from the next
layer and the containing tree is computed. This is repeated until
the root of the top-level tree is reached, which is an element
of the public key. The SPHINCS+ signature includes all the
generated FORS and WOTS+ signatures and the corresponding
authentication paths in the Merkle trees (these are the sibling
nodes for the path from the used leaf to the root).

The verification process tries to recompute the root of the
top-level tree from the signature. This is possible as FORS
and WOTS+ allow to recompute their public keys given a
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WOTS WOTS
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FORS
FORS

sign 

Message 
digest

FIG. 2: Example of the SPHINCS+ structure

signature and the signed message. Similarly, given a leaf and
an authentication path, Merkle trees allow to compute their
root. Together this allows to derive a candidate root value
from a SPHINCS+ signature. The signature is accepted if the
computed root matches the public key value.

See [6] for more details and security proofs. A slightly more
formal description can also be found in Appendix A.

III. WOTS+C

In this section, we present a modification of the WOTS
[20] construction (also applicable to other variants). Our
modification reduces the size of the signature, without making
the chains longer and without increasing the running time of
verification (indeed, the verification times are actually reduced).

Recall that the WOTS scheme has two parameters n and
w. The parameter n is the security parameter and the length
of the message. The parameter w is the Winternitz parameter,
which defines the length of the chains, and is usually set to 4,
16 or 256. Our scheme introduces two additional parameters
Sw,n, z ∈ N. Instead of signing the message m, we sign d =
H(s∥m) where s is a short random bit string (a salt). We choose
s such that the resulting bit string d satisfies the following
property: d is mapped to len1 chain locations a1, . . . , alen1 ∈
[w] with:

1) Fixed sum:
∑len1

i=1 ai = Sw,n.
2) Additional zero-chains: ∀i ∈ [z] : ai = 0.
The signing algorithm is tasked with finding such a suitable salt
s. This is done by enumerating over s until the two conditions
hold. We analyze the cost of this process in the next subsection,
but first we describe the benefits we gain:
• The first condition means the sum of all words is always

equal to a fixed value (that might depend on w and n). As
this sum is a fixed parameter of the scheme and can be
easily checked by the verifier, we do not need to sign its
value, which is what is done in WOTS(+). This significantly
reduces the size of the signature, as well as the verification
time.

• The second condition allows us to further compress the
signature size, by not including elements for the first z chains.
Again, z is a parameter of the scheme and this condition
can be checked by the verifier.

Our scheme can be viewed as a variant of WOTS or WOTS+
(or other variants as well), where we have less chains to sign
and verify. Instead of having len = len1+ len2 chains, we only
need to sign and verify len1 − z chains (c.f. Figure 3).

Let ℓ = len1 − z. Our scheme is implemented as follows:
KeyGen(1n):

1) The secret key is random strings sk = (sk1, . . . , skℓ).
2) The public key is pk = (pk1, . . . , pkℓ), where pki =

Fw−1(ski).
Sign(m, sk):

1) Sample a salt s ∈ {0, 1}n at random, until d =
H(s∥m) satisfies the above two conditions (if none
exists then abort).

2) Compute d = H(s∥m).
3) Map d to len1 chain locations a1, . . . , alen1 ∈ [w].
4) For i ∈ [ℓ] compute σi = F ai(ski).
5) Output σ = (σ1, . . . , σℓ, s).

Verify(1n,m, σ, pk):
1) Parse σ as (σ1, . . . , σℓ, s).
2) Parse pk = (pk1, . . . , pkℓ).
3) Compute d = H(s∥m).
4) Map d to len1 chain locations a1, . . . , alen1 ∈ [w].
5) Verify that

∑len1
i=1 ai = Sw,n and that ∀i ∈ [z] : ai = 0.

6) Verify that for all i ∈ [ℓ], it holds that pki =
Fw−ai−1(σi).

Note that in the description we have two different hash
functions: H and F . H is used to compute a digest of the
message m and F is used to construct chains in WOTS. In
more complex constructions such as WOTS+ and WOTS-TW
instead of iteratively applying a single hash function more
complex functions are used. Such functions are usually called
chaining functions. Note that our modification is independent
of the way these chains are computed. For now we focus on
this simple construction with one hash function. Later in the
paper we discuss a construction with a more complex chaining
function. The analysis of this construction is conceptually the
same and differs only in the way we handle the message hash
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pk1
a1

sk1

alen1
pklen1

a2
sk2

sklen1

pk2
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sklen1+1
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sklen2

pklen1+1

pklen2

Removed in SPHINCS+C

FIG. 3: An illustration of the WOTS chains that are removed in
the WOTS+C scheme in the case that z = 0. If z > 0 then

additional chains will be removed.

function (in our example H). Hence, we conclude that our
modification works for any WOTS-like scheme that has the
chaining structure. It does not depend on how the chain is
computed, or which functions are used for chaining. However,
we stress that our implementation and experimental results are
for the WOTS-TW scheme. The description below uses WOTS
solely for ease of presentation.

Once we remove the checksum chains, the running time of
the verification becomes much faster (as it does not need to
compute hashes for these chains). Signing has an additional
step of finding the right counter value, but this is compensated
for by the smaller number of chains that have to be computed.
Overall, the new scheme allows for smaller signature size,
faster verification, and keeping the signature generation time
(almost) the same.

Choosing to further compress the signature by also requiring
z > 0 additional zero-chains can probabilistically increase the
overall signature generation time. However, as we discuss in
Section VIII-C, it decreases the overall time for SPHINCS+C
signature generation in expectation.

A. Security of WOTS

We tightly relate the EU-CMA security of our WOTS+C
scheme to that of the WOTS+ [15] scheme and the security of
the used hash function. The EU-CMA security is defined using
the following experiment (where Dss(1n) denotes a signature
scheme with security parameter n).

Experiment ExpEU-CMA
Dss(1n) (A):

• (sk, pk)← KeyGen(1n).
• (m∗, σ)← ASign(sk,·)(pk).
• Let {(mi, σi)}i∈[q] be the query-answer pairs of Sign(sk, ·).
• Return 1 iff Verify(pk,m∗, σ∗) = 1 and m∗ /∈ {mi}i∈[q].
For the success probability of an adversary A in the above
experiment we write

SuccEU-CMA
Dss(1n) (A) = Pr[ExpEU-CMA

Dss(1n) (A) = 1] .

Using this, we define EU-CMA security the following way.

Definition III.1. Let n, t, q ∈ N, t, q = poly(n), Dss(1n) a
digital signature scheme. We call Dss(1n) EU-CMA-secure, if
for any adversary A with running time t, making at most q

queries to Sign in the above experiment, the success probability
SuccEU-CMA

Dss(1n)(A) is negligible in n.

An EU-CMA secure one-time signature scheme (OTS) is
a Dss(1n) that is EU-CMA secure as long as the number of
oracle queries of the adversary is limited to one, i.e. q = 1.
This is the case for WOTS and WOTS+.

B. Security of standalone WOTS+C

Intuitively, the security of WOTS+C follows from the
hardness of forging a signature for WOTS and the hardness
of finding a colliding message for a message that hashes to
some subspace of the image of the hash function. This is the
case as the forgery message m∗ either is colliding with the
message m used in the signature query, or it is not. If it is
not, the forgery is a valid WOTS forgery as it is on a fresh
message (H(m) ̸= H(m∗)). If the two messages collide, m∗

clearly is a colliding message for m.
To complete the picture, it is important to note that, at least

for a random function, an adversary does not gain anything from
knowing that it will have to find a collision for a message that
hashes into a given subset of the image. This is not surprising
as a similar case was already analyzed in [10]. Intuitively, the
reason is that we are considering a form of target-collision
resistance where the adversary is allowed to choose the message
and only afterwards is told under which function key a colliding
message has to be found. Hence, putting a restriction on the
messages which are considered valid targets rather constrains
the adversary than easing its task. We give a full security proof
in Appendix B.

C. Complexity analysis of WOTS+C

In this section we provide a mathematical analysis of the
time requirements for generating WOTS+C signatures. We
count time in number of hash-function calls. As in WOTS-TW,
the cost of computing the chains is essentially equal to the
length of the chains times the number of the chains. However,
we still need to analyze the cost of finding a counter value
such that the message digest satisfies the WOTS+C constraints.
We assume that Th behaves like a random function and output
values are uniformly distributed. Let us recall that to generate a
WOTS+C signature for a message m under public seed P and
tweak T ∗ one should find a value i such that Th(P, T ∗,m∥i)
satisfies the following requirements:
1)

∑len1
i=1 ai = Sw,n.

2) ∀i ∈ [z] : ai = 0,

for parameters Sw,n, and z. We can replace the second
condition with the more general one that simply requires that
the last zb bits are equal to zero. This is useful when logw does
not divide n. This requirement will decrease the probability of
hitting a good hash by a factor of 2−zb .

We will now focus on the Sw,n requirement. To calculate the
probability one has to compute the number of good hashes. One
can see that the number of strings that satisfy our restrictions is
equal to the number of ways the value Sw,n can be represented
as a sum having exactly len terms, where each term is in
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[0, w − 1] and the order of the terms is important. According
to [1] (Section 3, equation E) this number can be computed
as:2

ν =

len∑
j=0

(−1)j
(

len
j

)(
(Sw,n + len)− jw − 1

len− 1

)
.

Then the probability of hitting a good hash is

pν =
ν

wlen · 2zb
.

We can view each hash evaluation as an independent biased
coin toss. The number of evaluations until the first success
follows a geometric distribution, and the expected number of
required evaluations is 1

pν
. The probability that it will require

more than k hashes is (1−pν)k. A script that can compute these
probabilities can be found in the full version of the paper.We
experimentally verified the theoretical results by generating a
large number of random messages and checking the probability
of getting the expected average checksum.

In Section VI-B, we show how to bound the variance in the
signature generation time.

IV. FORS+C

In this section, we present the FORS+C scheme, as an
improved variant to the FORS few-time signature scheme (see
Section II-B for an overview of the original FORS). Recall
that the FORS scheme uses k trees, where each tree contains
t = 2b leaves. The signature is a collection of preimages of
leaves with their authentication paths, one for each tree. The
main idea behind the security of FORS, is that the best strategy
of an attacker, is to find a message/salt pair that hashes to a
set of leaves that were already revealed as part of the previous
signatures. The amount of required hash function evaluations is
related to the probability that such event happens for a single
message/salt pair.

A. Removing trees from the forest

The first improvement of FORS+C over FORS is to reduce
the number of authentication paths while maintaining the same
level of security (and the same running time of all algorithms).
The idea is to force the hash for the last tree to always open
the first leaf (leaf with index 0). This is equivalent to requiring
that the last b bits of the digest of the message that is signed
by FORS are all zeros. How can this be enforced? We hash a
concatenation of a counter i and the message we want to sign.
The signer then enumerates over values of i until it finds one
where the digest of the message with the counter ends with b
bits of zero and signs it.

Once this is enforced, the verifier knows that only signatures
that reveal leaf 0 in the last tree are valid, and she can check it
directly in the resulting digest value. Thus, the signature itself
does not require the actual authentication path. This means that
we now only need to store the counter in the signature instead
of the whole authentication path of the last tree. Moreover,

2We use (Sw,n + len) to compensate for the fact that [1] assumes values
range of [1, w].

Last tree removed 
in SPHINCS+C

FIG. 4: An illustration of the FORS tree that is removed in the
FORS+C scheme.

there is no need for the signer to compute the last tree. See
an illustration in Figure 4.

On average, this will require trying 2b hash function evalua-
tions before finding a suitable counter and digest. However, as
we mentioned, the signing process saves back the 2b hashes
since it does not need to generate the last tree, thus keeping the
running time of the signer approximately the same. Moreover,
as a result, verification is also (slightly) faster, as it has one
less tree to verify. This results in signatures that are strictly
better, allowing us to generate smaller signatures that are faster
to verify with the same signature time.

To gain further, we can make the last tree bigger before
removing it. Equivalently, this means finding an index i where
its hash (with the message) begins with b′ 0’s, for some b′ > b.
This increases the amount of work needed for signing but
reduces the signature size. This will be useful when considering
different parameter trade-offs (in the overall hyper-tree of the
SPHINCS+C scheme).

1) Security: The security analysis is the same as the security
analysis of FORS. One can (virtually) imagine that all k trees
exist, where in the last tree we always open the same leaf.
The probability of the attacker to find a message/salt pair that
hashes to k leaves that are all opened is not higher in our
scheme. On the contrary, we gain better security guarantees
since, in the last tree, the attacker always has only a single leaf
open, regardless of the number of signatures provided. There
is no degradation in security for the tree.

In [6] it is shown that the security analysis of FORS factors
into two parts: Either an adversary is able to break the security
properties of the hash functions used to compute the leaves
and the trees, or the adversary is able to break what is called
the interleaved target subset resilience (ITSR) of the message
digest function. Informally, ITSR states that it is hard for an
adversary that has seen some γ FORS signatures, to find a
message that is hashed to leaf indices x0, . . . , xk such that the
adversary has seen openings for all the leaves indexed by the
xi in previous signatures.

In more detail, the analysis of FORS shows that the overall
success probability of the attacker against ITSR is the product
of the success probability for each separate tree. The probability
depends only on the number of opened leaves per tree and not
on the locations of the opened leaves. Thus, the security of
our scheme follows verbatim. Moreover, the analysis remains
the same if not all trees are the same size. This means that we
can choose a different tree size t′ = 2b

′
for the last tree that

is not t = 2b.
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We now describe the security analysis of ITSR. Assume
that the adversary has seen γ signatures. We use the analysis
from [6] to bound the probability that a new message digest
selects FORS positions that are covered by the positions already
revealed in previous signatures in a specific tree i. In [6], the
probability is denoted by DarkSideγ . The probability that a
digest hits all covered positions can be computed as follows.
The probability that all the γ messages miss the location of the
message digest is (1− 1

t )
γ . Thus, as shown in [6], we have

that

DarkSideγ = 1−
(
1− 1

t

)γ

.

The probability of being covered in all k trees is:

(DarkSideγ)
k =

(
1−

(
1− 1

t

)γ)k

.

In the case of FORS+C, the analysis is similar, where we
can squeeze out more security by leveraging the fact that for
the last tree, all previous γ signatures collide. For the first k−1
trees, the probability is the same as above. For the last tree,
the probability of choosing the first leaf is merely 1/t′ (where
t′ is the size of the last tree), which is independent of γ. Thus,
we get that the probability of the digest to be all covered is

(DarkSideγ)
(k−1) · 1

t′
=

(
1−

(
1− 1

t

)γ)(k−1)

· 1
t′

.

Note here that

(DarkSideγ)
k−1 · 1

t′
≤ (DarkSideγ)

k

when t′ ≥ t. Hence, we can use the previous ITSR analysis to
bound the security of FORS+C.

B. Interleaving trees

In the full version of the paper, we present another variant of
FORS, which we call “Interleaving trees”. This new technique
allows us to enjoy the “path pruning” method to reduce the
signature size that was suggested in [4] as “Octopus” while
still retaining the simple security analysis of FORS. We employ
the same counter technique we use for tree removal to tackle
the variable signature size issue from [4] and ensure we always
enjoy the average size reduction.

C. Complexity analysis of FORS+C

The number of hash calls required for FORS+C signature
generation is the sum of the calls required in the original
FORS signature (for the authentication paths we provide) and
the cost of finding a suitable counter that removes the last tree.
Assuming that our hash function is a random function and the
last tree has t′ leaves. The probability of hitting the first leaf is
1/t′; hence the estimated number of tries to get a good hash is
t′. The probability of not hitting the needed leaf after k′ tries
is (1− 1/t′)k

′
. The script for calculating the probabilities can

be found in the full version of the paper.
In Section VI-B, we show how to bound the variance in the

signature generation time.

V. SPHINCS+C
At its simplest form, our proposed SPHINCS+C is the

SPHINCS+ scheme where we use WOTS+C instead of WOTS+
and FORS+C instead of FORS (later we describe additional
optimizations). The usage of FORS+C is straightforward, but
WOTS+C in SPHINCS+ requires some work to obtain a tight
security proof as in [16]. In this section we discuss WOTS+C
in the context of SPHINCS+ and show the security bound for
SPHINCS+C.

A. WOTS+C in the context of SPHINCS+

In Section III a standalone version of WOTS+C is described.
In the context of SPHINCS+ the messages signed using WOTS-
TW are roots of binary hash tress that already have the
right length. Therefore, we do not require a hash function
to compress the messages. However, to apply the WOTS+C
idea, we have to hash the message with a counter until we
find a hash that fulfills the WOTS+C requirements. There are
several options to do this. For example, one could incorporate
a counter into the last hash of the binary hash tree. The least
invasive option seems to be to simply hash the binary hash
tree root once more with a counter.

As we discussed earlier the general idea behind the security
of WOTS+C is based on the security of the underlying WOTS
scheme and on the complexity of finding a collision under H .
In Appendix B a security proof based on the m-eTCR property
of H is given. The complexity of generic attacks against m-
eTCR shrinks linearly in the number of targets an attacker
gets. When using WOTS+C in SPHINCS+, an attacker gets to
see more than 260 WOTS signatures in the worst case. That
makes more than 260 target hash values, and consequently a
security loss of 60 bits. In [6], the SPHINCS+ team proposed
what is called a tweakable hash function (THF, see definition
below). Using THFs it is possible to prevent this degradation of
security with the number of targets and to give a tight reduction.
After defining THFs, we give a construction of the WOTS+C
concept with a THF for message hashing. This approach allows
to integrate WOTS+C in SPHINCS+ without a degradation of
the security level (see Section V-B).

Definition V.1 (Tweakable hash function; [16, Definition 1]).
Let n,m ∈ N, let P be the public parameters space and let
T be the tweak space. A tweakable hash function (THF) is an
efficient function

Th : P × T × {0, 1}m → {0, 1}n, MD ← Th(P, T,M)

mapping an m-bit message M to an n-bit hash value MD us-
ing a function key called public parameter P ∈ P and a tweak
T ∈ T . For brevity, we write ThP,T (M) = Th(P, T,M).

The public parameter is called Seed in the context of
WOTS-TW. A Seed is associated with one or several instances
of WOTS-TW. To get optimal security, each hash invocation
uses a different tweak. We follow the WOTS-TW structure
and have a function that creates a unique tweak for each hash
invocation. The tweak associated with the j-th function call
in the i-th chain is defined as Ti,j . WOTS+C adds a unique
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tweak to compute the hash of the message with the counter,
which we denote T ∗. In different applications, one would want
to use several WOTS instances. In this case, the tweaks that
are used in different instances should also be different. To
denote this distinction, we follow the approach of [16], [6]
and define an addressing system. Tweaks contain two parts:
the prefix ADRS which defines the instance and a suffix that
defines the exact position in that instance. For example, we
use T ∗ADRS to denote the tweak for hashing the message for the
WOTS instance that corresponds to the address ADRS, and we
require that the hash with the counter has the desired fixed
sum. We will denote the tweaks in the chains for an instance
corresponding to address ADRS as TADRS,i,j . If we use only
one instance of WOTS+C, we omit the ADRS.

a) Chaining function cj,kADRS(m, i,Seed): The main dif-
ference between WOTS-TW and previous variants is how the
hashing is performed. This is described by the chaining function.
The chaining function takes as inputs a message m ∈ {0, 1}n,
the address ADRS of the instance, iteration counter k ∈ N,
start index j ∈ N, chain index i, and public parameters Seed.
The chaining function then works the following way. In case
k ≤ 0, c returns m. For k > 0 we define c recursively as

cj,k(m, i,Seed) = Th(Seed, TADRS,i,j+k−1, c
j,k−1
ADRS (m, i,Seed)) .

We assume the existence of context information C (which
usually contains a public seed, and a specific address inside
the SPHINCS+ scheme to distinguish the hash invocations).
We assume implicitly that all procedures have access to the
context information. The space which we enumerate to obtain
a good hash is denoted as {0, 1}r. Assume that the security
parameter for our scheme is λ, then the value r we also set to
be λ. This requirement allows us to assume that there always
exists a counter that satisfies the WOTS+C conditions. See
Appendix C for more details. Then, the new scheme is:
KeyGen(1n):

1) The secret key is random strings sk = (sk1, . . . , skℓ).
2) The public key is pk = (pk1, . . . , pkℓ), where pki =

c0,w−1ADRS (ski, i,Seed).
Sign(m, sk):

1) Find count ∈ {0, 1}r such that d =
Th(Seed, T ∗ADRS,m∥count) satisfies the two conditions.

2) Map d to len1 chain locations a1, . . . , alen1 ∈ [w].
3) For i ∈ [ℓ] compute σi = c0,ai

ADRS(ski, i,Seed).
4) Output σ = (σ1, . . . , σℓ, count).

Verify(m, σ, pk):
1) Parse σ as (σ1, . . . , σℓ, count).
2) Parse pk = (pk1, . . . , pkℓ).
3) Compute d = Th(Seed, T ∗ADRS,m∥count).
4) Map d to len1 chain locations a1, . . . , alen1 ∈ [w].
5) Verify that

∑len1
i=1 ai = Sw,n and that ∀i ∈ [z] : ai = 0.

6) Verify that for all i ∈ [ℓ], it holds that pki =
cai,w−1−ai

ADRS (σi, i,Seed).

Security of WOTS+C in the EU-naCMA model. Previously
we showed EU-CMA security of the standalone WOTS+C

scheme. In the SPHINCS+ construction, WOTS is used to sign
messages that are generated by the honest user and not by the
adversary (roots of binary trees). Thus, it was observed in [16]
that it is sufficient to prove a weaker, non-adaptive notion
of security for WOTS, called existential unforgeability under
non-adaptive chosen message attacks (EU-naCMA) where the
adversary receives the public key only after it made its signature
query. The formal definition is given in Appendix C. In [16]
the tweakable WOTS (WOTS-TW) variant used in SPHINCS+
is proven secure under this notion.

It is straightforward to extend our above proof to the notion
of EU-naCMA and base it also on the EU-naCMA notion
of WOTS(-TW). In this case, the adversary does not expect
the public key before picking the signature query. Also, our
reduction only needs the public key when the signature query
is answered. Note that the reduction in Appendix B does not
depend on how the chaining function is calculated. The chaining
function can be implemented using a keyed hash function, a
tweakable hash function, or any other function. The security
reduction is dependent on the positions in the chains and not
on the way these are calculated. So the switch to tweakable
hash functions does not affect the result.

Hence, the only thing left to do to obtain a proof of security
for WOTS+C with tweakable hash functions is to handle the
modified message hash. Towards this end, we introduce a
security definition for a tweakable hash function which we call
special target collision resistance (S-TCR(Prop)). This security
definition is parameterized by some boolean predicate Prop.
The idea behind this notion is that even if an adversary is
promised to only receive targets for which the images satisfy
Prop, it should still be hard to find collisions for these targets.

In the security reduction we follow the ideas from [16] and
make use of a collection of tweakable hash functions which
we call Thλ, which means the adversary has access to the Thλ
oracle. The oracle is used with a challenger for some security
notion of a THF. Thλ(P, ·, ·) accepts tweaks and messages of
arbitrary length and computes a corresponding tweakable hash
function on the provided inputs. It is important to note that
Thλ shares the public parameter with the challenger. The main
purpose of this oracle is to prepare for a challenge query. So
the natural restriction we make is that queries to Thλ should
use different tweaks from the ones that are used for challenge
queries.

A more detailed discussion and a full proof of security can
be found in Appendix C.

B. SPHINCS+C security

The SPHINCS+ proof proceeds in a sequence of game hops
where the difference between any two of those is bounded by
the security of one of the building blocks (e.g., security of
FORS, security of WOTS-TW, security of the tree hashing, or
security of PRF). Hence, to argue security of SPHINCS+C,
we have to give new bounds for the security of the building
blocks that we changed (WOTS-TW), with respect to the right
security notion (d-EU-naCMA) – note that for FORS+C we
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showed above that the security bound does not change despite
our modifications.

For WOTS+C, we show EU-naCMA security in Appendix C.
The notion required for SPHINCS+ is a multi-user security
version of it called d-EU-naCMA introduced in [16] (see
Appendix D). We give a proof sketch for the d-EU-naCMA
security of WOTS+C in the full paper together with an exact
bound. The below theorem is then obtained by replacing the
terms coming from the d-EU-naCMA bound of WOTS-TW by
those of the bound for WOTS+C. Namely, a single term for the
S-TCR(+C) security of the tweakable hash function is added
(see Appendix C for the definition). This is a variant of target
collision resistance (more precisely the SM-TCR property used
everywhere in SPHINCS+) where the adversary is tasked to
find a target collision for hash values that have a certain form
(here, they fulfill the “+ check”, i.e., their base-w representation
sums up to Sw,n and the first z values are 0). For this the
adversary gets access to an oracle that produces hashes of the
right form, defining the targets. In the full paper we show that
generic attacks against S-TCR(+C) have the same complexity
as those against SM-TCR.

Combining the results of this paper and the result from [16]
we get the following bound:
Theorem V.2. For parameters n,w, h, d,m, t, k as described
in [6] and l = len1 + len2 the following security bound can
be obtained for SPHINCS+C:
InSecEU−CMA(SPHINCS+C; ξ, qs) ≤

InSecPRF(PRF, ξ, q1) + InSecPRF(PRFmsg, ξ, qs)

+ InSecITSR(Hmsg, ξ, qs) + w · InSecSM-UD(F ∈ Thλ; ξ, q2)

+ InSecSM-TCR(F ∈ Thλ; ξ, q3 + q7) + InSecSM-PRE(F ∈ Thλ; ξ, q2)

+ InSecSM-TCR(H ∈ Thλ; ξ, q4) + InSecSM-TCR(Thk ∈ Thλ; ξ, q5)

+ InSecSM-TCR(Thl ∈ Thλ; ξ, q6) + 3 · InSecSM-TCR(F ∈ Thλ; ξ, q8)

+ InSecSM-DSPR(F ∈ Thλ; ξ, q8) + InSecS-TCR(+C)(Th+C ∈ Thλ, ξ, q6)

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+1 · l · w,
q4 < 2h+1k·2t, q5 < 2h, q6 < 2h+1, q7 < 2h+1kt, q8 < 2h ·kt
and qs denotes the number of signing queries made by A.

Recall, the ITSR property refers to the security of FORS
as explained above. The PRF property refers to the standard
indistinguishability of a PRF from a random function. Moreover,
the bound contains several terms that refer to properties of
tweakable hash functions (THF). All these THF properties are
single-function, multi-target (SM) properties, i.e., the adversary
receives or defines multiple targets for the same public parame-
ters but with different tweaks. The PRE(image finding) property
refers to the ability of an adversary to find a preimage for given
images. For Target Collision Resistance (TCR) the adversary
is asked to find a collision for targets it defines before it
knows the public parameters. The Undetectability (UD) notion
represents the ability of an adversary to distinguish outputs
of a tweakable hash function on random inputs from random
strings. Decisional Second Preimage Resistance (DSPR) tasks
the adversary with detecting an input for a THF that does
not have a second preimage. The formal definitions of these
properties can be found in Appendix D. The used functions
are defined as follows:

F := Th1 : P × T × {0, 1}n → {0, 1}n;
H := Th2 : P × T × {0, 1}2n → {0, 1}n;
Thl : P × T × {0, 1}ln → {0, 1}n;
Thk : P × T × {0, 1}kn → {0, 1}n;
PRF : {0, 1}n × {0, 1}256 → {0, 1}n;
PRFmsg : {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n;
Hmsg : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m.

Th+C : P × T × {0, 1}n × {0, 1}r → {0, 1}n
Lastly the possibility of a denial-of-service attack is worth
considering. One could imagine an adversary submitting a
message to the signing oracle which requires a huge amount
of time to sign. This case is eliminated by the use of a
(pseudo)-random salt in the message digest computation. This
salt is a part of the original SPHINCS+ design and hence does
not introduce new complexities.

VI. PARAMETER SETS FOR SPHINCS+C

Recall, that for each security level, SPHINCS+ provides
two instantiations or sets of parameters that give us a trade-off
between faster and smaller signatures. This allows us to sign
in settings where speed is crucial with one set (e.g., when the
scheme is implemented in Javascript to run in the browser for
email security), and to use the other set when signing speed
is not that much of an issue or if the size of signatures is the
limiting factor. Following this rationale, we also provide two
such options, while using the fact that SPHINCS+C gives us
a better trade-off curve between signature size and the running
time of the signer.

For our concrete parameter choices, we searched for parame-
ters that will minimize the signature size while maintaining the
same signing speed, security level, and number of supported
signatures (264) as in the original variants proposed in the NIST
submission of SPHINCS+ [2]. Note that this is an arbitrary
choice to allow for a simple comparison with SPHINCS+.
In Section VIII, we discuss the effect of the parameters on
different optimizations, such as minimizing verification time
or reducing the variance in signing speed.

A. Parameters search

To search for the best parameters, we follow the example of
SPHINCS+. We edited the latest sage script published by the
SPHINCS+ team3 and modified it to support SPHINCS+C.

We recall the parameters notation from SPHINCS+:

n: the security parameter in bytes.
w: the Winternitz parameter.
h: the height of the hypertree as defined in Section.
d: the number of layers in the hypertree.
k: the number of trees in FORS.
t: the number of leaves of a FORS tree.

For our scheme we add a parameter:

t’: the number of leaves of the extra FORS tree we remove.

3http://sphincs.org/data/spx_parameter_exploration.sage
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FIG. 5: Hash rate (computational cost) to signature size in bytes
trade-off curves for SPHINCS+ and our various compression
options for (WOTS+C, FORS+C, and the full SPHINCS+C).

Figure 5 shows part of the trade-off curve between the
computational cost (approximated by the number of calls to
the hash function) and the signature size. It can be seen that
at times we are able to get more than a 20% improvement
in size over the original SPHINCS+ scheme for the same
computational cost. As expected, most of our gain comes
from the WOTS+C compression, but adding FORS+C for the
full SPHINCS+C still gives us a significant improvement. The
script used to find the trade-off curve can be found in in the full
version of the paper. To simplify the script and implementation,
we did not incorporate the relatively complex interleaving trees
optimization.

In Table II we provide a summary of the concert parameters
of our proposed variants. We follow the approach of [2] and
propose one size-optimized (ending on “s” for “small”) and one
speed-optimized (ending on “f” for “fast”) parameter set for
each security level. For each variant, the signature generation
time is similar to its counterpart in the SPHINCS+ NIST
submission, while resulting in a smaller signature size.

B. Bounding the signature generation time

Another related concern is that some signatures might take
longer to run than the average. In an unfortunate event, one
of the WOTS+C or FORS+C signatures will take longer than
expected to find a suitable counter. We will now show how
to find the probability that the signature generation time takes
more than a factor f of the expected running time as a function
of the specific parameters of the scheme.

As shown in Section III-C, if the probability of finding a
good counter in a hash evaluation of the WOTS+C signature
is pν , then the expected number of evaluations is 1/pν , and
the probability that finding a good counter takes more than k
hash evaluation is (1− pν)

k. If we want to find the number
of hash evaluations k such that we will only need more than
k evaluation with probability p for some small probability p
(e.g., p = 2−32), we get:

k =
log(p)

log(1− pν)

However, in SPHINCS+C we have d WOTS+C signatures.
We want to find kd, the number of hash evaluations such that
we will only need more than kd evaluations to find all d good
counters with probability p. We can provide the trivial upper
bound kd < d ·k, or to find kd by using the exact calculation of
pd = 1− p, the probability of success after kd hash evaluation:

pd =

kd∑
i=d−1

(
i

d− 1

)
· pdν · (1− pν)

i+1−d

As shown in Section IV-C, the probability of finding a good
counter is 1/t′ where t′ is the number of leaves in the tree we
remove. As we did for WOTS+C, we can find k′, the number
of hash evaluations such that we will only need more than k′

evaluations with probability p to find a good counter for the
FORS+C signature:

k′ =
log(p)

log(1− 1/t′)

We can upper bound kall, such we will only need more than
kall evaluations to find all good counters in the SPHINCS+C
scheme with probability p by kall < kd+k′. Now we can find
the factor f(p), such that only probability p the total number
of hash evaluations required to generate the full SPHINCS+C
signature will be more than f(p) times the expected number.

Table III shows the results for our proposed SPHINCS+C
parameter sets. We note that the dominating factor here is t′,
the size of the tree we remove at the FORS+C signature. If
we want less variance in the signature generation time, we can
simply search for parameter sets with smaller values of t′ (at
the cost of slightly larger signatures).

Even with our current parameter set choices, taking the
parameter set with the largest running time variance, the
probability that the signature generation time will take more
than 5 times the expected time is less than 2−32.

VII. IMPLEMENTATION

We based our implementation on the latest official version
of the SPHINCS+ code.4 We modified the original code to add
our optimizations and to allow for performance comparison
with the original version. We will make the full code available
with the publication of this paper.

A. Implementing FORS+C

To implement FORS+C we simply added an extra 4 bytes
counter value at the end of the first hashing of the message
to be signed. We try different values of the counter, until the
first t′ bits of the resulting messages to be signed by FORS+C
are zero. We store the counter value that we found as part of
the signature. This means that the verifier can simply read the
counter value and check that the resulting bits are zero, instead
of searching for the counter value again. If the resulting bits
are not zero, the validation fails.

The counter value can be replaced with a different one that
results in zero bits (the whole computation only requires public

4https://github.com/sphincs/sphincsplus/
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n h d log(t) k w log(t’) bitsec sig bytes

SPHINCS+C-128s 16 66 11 13 9 128 18 128 6304 (−20%)
SPHINCS+C-128f 16 63 21 9 19 16 8 128 14904 (−13%)
SPHINCS+C-192s 24 66 11 15 13 128 12 192 13776 (−16%)
SPHINCS+C-192f 24 63 21 9 30 16 13 192 33016 (−8%)
SPHINCS+C-256s 32 66 11 14 19 64 19 256 26096 (−13%)
SPHINCS+C-256f 32 64 16 10 34 16 10 256 46884 (−6%)

TABLE II: Example parameter sets for SPHINCS+C targeting different security levels and different tradeoffs between size and speed. The
signer running time for each variant is better than the ones in the SPHINCS+ NIST submission, and the size reduction in percentages is

shown in the parenthesis. We note that k described the number of FORS+C trees authentication paths included in the signature, not
including the last tree of size t′ that is signed implicitly by the zero bits in the signature.

expected f(p) for probability

hash calls log(t′) 2−8 2−16 2−24 2−32 2−40 2−48 2−56 2−64

SPHINCS+C-128s 220.9 18 1.6 2.3 3.1 3.8 4.5 5.3 6.0 6.7
SPHINCS+C-128f 216.7 8 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1
SPHINCS+C-192s 221.7 12 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1
SPHINCS+C-192f 217.4 13 1.2 1.5 1.8 2.0 2.3 2.6 2.9 3.1
SPHINCS+C-256s 221.5 19 1.8 2.8 3.7 4.7 5.7 6.6 7.6 8.6
SPHINCS+C-256f 218.4 10 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.2

TABLE III: Factor f(p), such that only with probability p the total number of hash calls required to generate the full SPHINCS+C
signature will be more than f(p) times the expected number.

parameters). However, we use SPHINCS+C to sign a message
that is simply the concatenation of the counter and the original
message, and forging either the counter or the message is as
hard as forging the message in the original SPHINCS+ scheme.

B. Implementing WOTS+C

Implementing WOTS+C is a bit more involved and is tailored
to the implementation of SPHINCS+, and its “tweaked” hash
functions. To minimize the modification to the existing code
and maintain the size of the input to the hash functions
(larger input may reduce performance), we encode counters
for WOTS+C inside the address structure used in SPHINCS+.
Recall that in SPHINCS+, each “tweaked” hash call includes
a unique “address” to make each call in a virtual tree
structure independent of each other. We refer the reader to
the SPHINCS+ [6] paper for more details on how tweaked
hash function and the address structures are defined and
implemented.

In each WOTS+C in the virtual tree, we need to hash the
message we want to sign (the root of a Merkle tree) together
with a counter. As we want the hashes of the different WOTS+C
signatures in the tree to be independent, we use an address
structure that is unique for each WOTS+C signature. We add a
new address structure “WOTS+C message compression address”
with type values 7 to separate it from all other address types.
It is similar to the WOTS+ public key compression address in
that it is unique for each WOTS+C signature, but we also add
a 4-bytes counter. As in the WOTS+ public key compression
address, the resulting structure has 32-bit layer address field,
72-bit tree address field, 32-bit type field (with value 7), and
32-bit key pair address. To do this, we add a 32-bit counter
field, and the remaining 64-bits are padded with zeros.

To save computation time, the unique bitmask used in the
tweaked hash function is generated once with a counter value

of zero. After that we try incremented values of the counter,
until the resulting digest of the addresses concatenated with
the masked message have the required checksum value. Again
we refer the reader to the SPHINCS+ paper for more details
on how the bitmask is generated and used.

Similarly to what we did in FORS+C, the counter value for
each WOTS+C signature is stored as part of the signature to
speed up the running time of the verifier. The verifier reads
the counter value and validates that the checksum is correct.
If not, the public key of the WOTS+C signature is set to all
zeros. This will result in a generation of an incorrect root of
the Merkle tree and, in the end, generation of an incorrect
public root of the SPHINCS+C signature. As the calculated
root is compared with the public key, the validation will fail.

C. Benchmark

The script we used for searching parameters gives us
only an approximation of the running time of the signer. To
test the actual running time, the official code of SPHINCS+
includes a framework for benchmarking the code. We use this
framework to benchmark both the original SPHINCS+ code
with the parameters sets submitted to NIST, and our modified
SPHINCS+C code with the parameters sets we chose.

The tests were run on a Intel(R) Core(TM) i7-8550U CPU
1.80GHz with 16GB of RAM, running Ubuntu 20.04.4 LTS.
The measurements were done using the RDTSC command
with constant_tsc assuring that the command measures
the passage of time on a single-threaded code. SPHINCS+
supports 3 different underlining hash constructions, we chose
to benchmark the reference code for the “robust” SHAKE [11]
variant based on the Keccak permutation [8]. Our main goal is
to compare the running time of SPHINCS+C with SPHINCS+
[6]. For each parameter set we ran the key generation,
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FIG. 6: Comparison of variability in signature generation time
between SPHINCS+ and SPHINCS+C variants. The results of

each variant include 100 repeated runs of randomized signatures
and are normalized to the median of the SPHINCS+ variant.

randomized signature generation and verification procedure,
for 100 times.

First, we show how our optimization can improve both the
running time and signature size. We compared the original
SPHINCS+ variants with the “compressed” versions. The
“compressed” variants use the same parameters as in the original
SPHINCS+ NIST submission but use WOTS+C to remove the
checksum and FORS+C to remove the last tree in the signature.
Table IV shows the results of the benchmark comparison. It
shows that while reducing the signature sizes by as much as
7%, the optimization also reduces the run time for all variants
for key generation, signature generation, and verification.

Table V shows the average results of our second benchmark
comparing the original SPHINCS+ variants with our new
SPHINCS+C. In all parameter regimes, our new SPHINCS+C
variant has smaller signature size compared to its corresponding
SPHINCS+ variant, while the signature generation time is
approximately the same. Note that although we increase the
verification time for our new “small” variants, it is still
more than two orders of magnitude faster than the signature
generation time.

We also experimentally benchmarked the run-time variability
of our SPHINCS+C implementations compared to the original
SPHINCS+ over 100 measurements. As the results in Figure 6
show, although the variability in the signature generation time
of the SPHINCS+C variants is larger than the SPHINCS+
variants, it is not very big. In all our experiments, the longest
signature generation time was at most 40% slower than the
median of the SPHINCS+ variant. Most use cases can handle
a small number of somewhat slower signatures. We note that
at the same time, the average values that determine the total
signature generation throughput are very similar (see Table V).

VIII. DISCUSSION

We discuss several properties and trade-offs of our schemes
that are somewhat different then in SPHINCS+.

A. Variance in signature generation time
The signing speed is not constant due to the search for

good counters. In Section VI-B, we show how to bound the

generation time and show that for some of our parameter
sets, the variance is negligible, whereas, for others, it is a
small factor. The variance is mostly determined by the ratio
between the expected time to find a good counter and the
total signing speed. This means that to get negligible variance,
we need to use slightly smaller values for t′ at the cost of a
slight increase in signature size. Note that due to the fact that
we have many WOTS+C signatures, their contribution to the
variance is negligible.

Due to a maybe unlucky naming when coining the term
“constant time”, one may think that the variable signing speed
may enable side-channel attacks. However, constant-time refers
to the independence of running time and secret inputs. A
variance in speed caused by public values does not cause any
vulnerability. In our case, the variance only depends on the
message and public values that are revealed as part of the
signature (i.e., the public key and public roots of the Merkle
trees) and is completely independent of any secret values.
Consequently, it can also not leak information about those.

B. Signature verification time

The “small” variants that we proposed for SPHINCS+C
have a longer verification time. This is because we optimize
for signature size and therefore use large values for w. The
SPHINCS+ scheme only supports w values of 16 and 256 as
the resulting encoding is of 4 and 8 bits per chain. Otherwise,
the last chain will not be “wasteful” and will encode less than
log(w). In practice, all the parameter sets only used w = 16.

In WOTS+C, we support a wider range of w values, and
some of our variants also use w values of 64 and 128. This is
because we can simply zero out the last “partial” chain. This
allows for smaller signatures at the cost of longer verification.
To optimize for shorter signature verification time, we can
use smaller values of w. As a further optimization, we can
use different values of w for different WOTS instances of the
scheme (e.g., a combination of w = 16 and w = 64). As the
value of w is essentially a trade-off between signature size and
running time, this will give us more options on the curve.

C. WOTS+C public key vs. signature generation time trade-off

In WOTS+C, merely removing the checksum keeps the
signature run time approximately the same while reducing
the signature size and verification time. In addition, it also
reduces the key generation time. Trying to find additional zero
chains will increase the overall run time of the signer. However,
in SPHINCS+ and SPHINCS+C we calculate Merkle trees of
WOTS+C signatures. For each tree in the signature, we need to
generate only one signature but a large number of public keys
for all the other WOTS+C signatures in the tree. This means
that in SPHINCS+C, there is a tradeoff between the WOTS+C
public key and the signature generation times. In some cases,
it may be better to try and find additional zero chains, as this
will decrease the total signature time of SPHINCS+C while
also reducing the signature size.
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Key Generation Signature Verification Size

SPHINCS+ Compressed SPHINCS+ Compressed SPHINCS+ Compressed SPHINCS+ Compressed

SHAKE-128s 382.2 344.3 (−10%) 2860.0 2630.3 (−8%) 2.6 2.6 (−1%) 7856 7344 (−7%)
SHAKE-128f 5.7 5.1 (−11%) 135.8 123.1 (−9%) 8.7 7.5 (−13%) 17088 16012 (−7%)
SHAKE-192s 566.1 509.8 (−10%) 4839.0 4388.8 (−9%) 4.5 3.9 (−12%) 16224 15392 (−6%)
SHAKE-192f 8.0 7.1 (−12%) 201.7 184.2 (−9%) 11.6 10.3 (−12%) 35664 33956 (−5%)
SHAKE-256s 345.7 343.4 (−1%) 4012.3 3903.6 (−3%) 6.0 6.0 (−1%) 29792 28580 (−5%)
SHAKE-256f 23.5 20.4 (−13%) 455.8 404.4 (−11%) 12.7 11.2 (−12%) 49856 47976 (−4%)

TABLE IV: Comparison of average running time in milliseconds between the original SPHINCS+ NIST submission and the “compressed”
version for the SHAKE robust variants. The compressed versions use the same parameter sets but apply WOTS+C to remove the

checksum and FORS+C to remove the last FORS tree.

Key Generation Signature Verification Size

SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C

SHAKE-128s 382.2 180.7 (−53%) 2860.0 2438.4 (−15%) 2.6 16.3 (+518%) 7856 6304 (−20%)
SHAKE-128f 5.7 4.6 (−20%) 135.8 125.9 (−7%) 8.7 6.4 (−27%) 17088 14904 (−13%)
SHAKE-192s 566.1 265.5 (−53%) 4839.0 4295.7 (−11%) 4.5 23.8 (+429%) 16224 13776 (−16%)
SHAKE-192f 8.0 6.8 (−15%) 201.7 201.0 (−0%) 11.6 9.9 (−15%) 35664 33016 (−8%)
SHAKE-256s 345.7 228.9 (−34%) 4012.3 3888.6 (−3%) 6.0 19.1 (+218%) 29792 26096 (−13%)
SHAKE-256f 23.5 20.0 (−15%) 455.8 429.4 (−6%) 12.7 10.5 (−18%) 49856 46884 (−6%)

TABLE V: Comparison of average running time in milliseconds between the original SPHINCS+ NIST submission and our new
SPHINCS+C for the different variants. Here the used SPHINCS+C parameters differ from those of SPHINCS+ and are chosen with a

focus on size reduction.

D. Signature time vs. signature size and verification time
tradeoff

Our scheme allows a server to create smaller signatures
that are also faster to verify with the cost of increasing the
signing time. This trade-off can be beneficial for CAs that
sign a relatively small number of certificates but have their
signatures included in a very large number of certificates and
verified for many connections. For these servers, it may be
possible to find other parameter sets even with a very large
signature generation time.

As mentioned in [4], a signing server can batch together
several signatures. This is done by first calculating a Merkle
tree on all of the batched signatures and then signing the
root of the Merkle tree. Moreover, the current parameter sets
can support up to 264 signatures. As batching (and longer
signature generation time) can reduce the total number of
possible signatures, it might also be possible to use smaller
tree sizes that will lead to smaller signatures.

In many use cases (e.g., CAs, Certificates for IoT devices)
where we want to have smaller signatures and may be willing
to pay the price of extra computational cost for the signer or a
smaller number of possible signatures. Exploring the potential
trade-offs and parameter sets for these use cases may help to
facilitate the deployment of hash-based signature schemes.

E. Constant verification time

Similar to [21], [24] our WOTS+C variant ensures a constant
verification time. The number of hash calls required by the
verifier is determined by the checksum. As in WOTS+C
signatures the value of the checksum is always the same, the
verification time is constant. We note that the counters for both
WOTS+C and FORS+C are stored inside the signature and
provided to the verifier. This means the running time for the
verifier is constant for a fixed set of parameters.

IX. FUTURE WORK

In this work, we explored new trade-offs opened up by
our optimizations. We were able to reduce up to 20% of
the signature size, but there are still opportunities to reduce
the remaining 80%. We believe there is room for further
exploration, which can exploit additional optimizations we
described but did not implement. For example, we did not
implement the interleaved trees, but this could be useful in
some settings of parameters. Furthermore, one can look at other
working points (e.g., higher signature generation time, a smaller
number of supported signatures) and find novel approaches
for further compression and improving the computational
complexity.

As we believe that the main factor limiting the wide
deployment of hash-based signatures is the signature size,
any advance in this direction can have a big impact on the
practicality of these schemes.

For future work, we present two optimization directions.
Although in our initial analysis, their contribution to our new
variants is not very significant, they may be useful for other
parameter sets and might be improved upon in future work.

A. Small trees of FORS+C

In the current SPHINCS+ design, the bottom layer of the
hyper-tree signs the root of a FORS signature. This means that
the total number of FORS signature is equal to the number of
leaves in the tree. Suppose we want to support a larger number
of signatures (for increased security or small FORS signature
size). In that case, we need to make the tree larger (which will
either increase the signature generation time or the signature
size).

However, we note that usually, the FORS signature genera-
tion time is only a small part of the full signature generation
time. This means we can potentially calculate the root of several
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FORS signatures with a small increase in the overall signature
generation time.

In the bottom layer of the tree, instead of signing the root
of a FORS signature, we can instead sign multiple FORS
signatures using a Merkle tree. This means that we increase
the total number of FORS signatures, with only a negligible
increase in verification time and signature size (the added cost
of the Merkle authentication path). For example, if we sign a
Merkle tree over 4 FORS signatures, we increase the FORS
signature generation time by 4 but only add two hash values
to the signature size and two calls to the hash function in
verification.

Note that we could simply increase the size of the FORS
signature, but that would require a significant increase in the
signature size (due to longer or more authentication paths) and
a small increase in verification time.

Taking this approach to the extreme, we can imagine a “soft
state-full” variant to XMSS. In this variant, we don’t use any
WOTS+ signatures but only use a tree of FORS signatures.
This will allow us to support a small number of signatures
while only bounding the total number of signatures without
maintaining an exact state or counter.

B. Reducing the verification time for WOTS+C

In our proposed WOTS+C, we find a digest such that∑len1
i=1 ai = Sw,n, where Sw,n is the expected value. Instead,

we can use larger values for Sw,n. As long as the value we
used is not much larger than the expected value, the added
cost for finding a good counter is not high. On the other hand,
as Sw,n gets larger, the number of hash evaluations required
by the verifier gets smaller, reducing the total verification time.
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APPENDIX

A. Brief description of SPHINCS+

Here we briefly describe the SPHINCS+ signature scheme
from [16]. This description is the same as in the referred paper
and is presented here to make the paper self-sufficient. An
example of the SPHINCS+ structure was presented in Figure 2.
A detailed description can be found in [7].

The public key consists of two n-bit values: a random public
seed PK.seed and the root of the top tree in the hypertree
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structure. PK.seed is used as a first argument for all tweakable
hash function calls. The private key contains two more n-bit
values SK.seed and SK.prf. We now discuss the main parts of
SPHINCS+ starting with the addressing scheme. As SPHINCS+

uses Tweakable Hash Functions (THF), different tweaks are
required for all calls to THFs. The tweaks are instantiated by
addresses. An address is a 32-byte value that describes the
position of a hash function call within the virtual structure of
a SPHINCS+ key pair. Addresses are built hierarchically and
a prefix describes to which part of the SPHINCS+ structure
the primitive that uses the hash belongs. We denote this prefix
as ADRS.

WOTS-TW is a one-time signature scheme used in the
SPHINCS+ structure. The secret keys of WOTS-TW are
pseudorandomly generated using SK.seedand tweaks for
appropriate addresses. The public key is formed by a sequence
of hashing applied to the elements of the WOTS-TW secret
key.

Another building block is binary trees. In the SPHINCS+

algorithm, binary trees of height γ always have 2γ leaves. Each
leaf Li, i ∈ [0, 2γ − 1] is a bit string of length n. Each node
of the tree Ni,j , 0 < j ≤ γ, 0 ≤ i < 2γ−j is also a bit string
of length n. The values of an internal nodes of the tree are
calculated from the children of that node using a THF. A leaf
of a binary tree is the output of a THF that takes the elements
of a WOTS-TW public key as input.

Binary trees and WOTS-TW signature schemes construct a
hypertree structure. WOTS-TW public keys form the leaves
of the binary trees. These instances are then used to sign the
roots of binary trees on lower levels. WOTS-TW instances on
the lowest level are used to sign the public key of a FORS
(Forest of Random Subsets) few-time signature scheme. FORS
is defined with the following parameters: k ∈ N, t = 2a. This
algorithm can sign message digests of length ka-bits.

FORS key pair. The private key of FORS consists of kt
pseudorandomly generated n-bit values grouped into k sets of
t elements each. To get the public key, k binary hash trees
are constructed. The leaves in these trees are k sets (one for
each tree) of t values each. Thus, we get k trees of height a.
As roots of k binary trees are calculated, they are compressed
using a THF. The resulting value will be the FORS public key.

FORS signature. A ka bits message digest is divided into
k lines of a bits. Each line is interpreted as a leaf index
corresponding to one of the k trees. The signature consists of
these leaves and their authentication paths. An authentication
path for a leaf is the set of siblings of the nodes on the path
from this leaf to the root. The verifier reconstructs the tree
roots, compresses them, and verifies them against the public
key. If all match, the signature is declared valid. Otherwise, it
is declared invalid.

The last thing to discuss is the way the message digest
is calculated. First, a pseudorandom value R is prepared as
R = PRFmsg(SKprf ,OptRand,M) using a dedicated secret
key element SK.prf and the message. This function can be
made non-deterministic, initializing the value OptRand with

randomness. The R value is part of the signature. Using R,
we calculate the index of the FORS key pair with which
the message will be signed and the message digest itself:
(MD||idx) = Hmsg(R,PK.seed,PK.root,M).

The key generation algorithm generates the WOTS-TW
instances of the top-level binary tree from SK.seedand uses
the public keys of those instances to compute the root of the
binary tree. PK.seed together with the root form a public key.

The signature algorithm computes the digest. Then uses
the idx-th FORS instance to produce a FORS signature. The
WOTS-TW signature on the FORS public key is computed.
The authentication path that helps compute this binary tree’s
root will be added to the signature. The same procedure is
repeated up to the top-level binary tree. The signature consists
of the randomness R, the FORS signature (under idx from
Hmsg) of the message digest, the WOTS-TW signature of the
corresponding FORS public key, and a set of authentication
paths and WOTS-TW signatures of tree roots.

To verify this chain, the verifier iteratively reconstructs the
public keys and tree roots until it gets the root of the top tree.
The signature is accepted if this matches the root given in the
SPHINCS+ public key.

B. Security proof for standalone WOTS+C

To prove the security of WOTS+C we give a reduction from
multi-target extended target collision resistance (m-eTCR) [17].
Assume a keyed hash function H : K ×M → {0, 1}n. For
such a hash function we define m-eTCR below. To keep the
definition readable we use a challenge oracle Box(·) that on
input of a message outputs a random function key K.

Definition A.1 (Multi-target extended target collision resistance
(m-eTCR) [17]). The success probability of an adversary A
against M-ETCR that makes no more than p queries to Box(·)
is defined as:

SuccM-ETCR
H,p (A) =Pr

[
(M ′,K ′, i)

$←− ABox(·) (1n) :

M ′ ̸= Mi ∧HKi
(Mi) = HK′ (M ′)] .

We base the security of WOTS+C on the security of the
original signature scheme (either WOTS+ or WOTS-TW) and
the M-ETCR property of H . We do so giving a game hopping
proof. GAME.0 is the original WOTS+C game in the EU-CMA
model. GAME.1 is the same as GAME.0, but we consider
the game lost if the forgery together with a signature query
response presents a collision under H . We limit the difference
between those two games by the M-ETCR property of H .
Then we show that the success of the adversary in GAME.1 is
upper bounded by the security of the original signature scheme
WOTS* (WOTS-TW or WOTS+).

Theorem A.2. Let WOTS* be either WOTS+ or WOTS-TW. Let
H be a keyed hash function. Then the insecurity of WOTS+C
against one-time EU-CMA attacks is bounded by

InSecEU-CMA(WOTS+C; t; 1)

≤ 1/ϵ · InSecM-ETCR(H; t̃, q) + InSecEU-CMA(WOTS*; t′, 1)
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Algorithm 1: M-ETCR reduction
Input : M-ETCR challenger C, adversary A against

WOTS+C
Output : (K∗,M∗, i) or ⊥

1 Generate a random public seed P ←$ {0, 1}n
2 Generate the context information for WOTS+C instance T
3 Run KeyGen of WOTS* providing P and T if needed
4 Give the public key Pub to the adversary A
5 Receive a signing query m from A
6 for i = 1; i++; i < q + 1 do
7 Query C with m′ = (m, context information)
8 Get Ki from C
9 Set seed = Ki Compute di = H(seed,m′)

10 if di satisfies the properties for WOTS+C then
11 Break;

12 seed = 0

13 if seed == 0 then
14 return ⊥
15 Map di to len1 chain locations a1, . . . , alen1 ∈ [w]
16 For i ∈ [ℓ] compute σi as is Sign algorithm of WOTS*
17 Send σ = (σ1, . . . , σℓ, seed),m to A
18 Obtain a forgery σ∗ = [σ∗ = (σ∗

1 , . . . , σ
∗
ℓ , seed

∗),m∗]
19 Set m′′ = (m∗, context information)
20 if m∗ ̸= m ∧ Verify(m,σ∗, Pub) ∧H(seed∗,m′′) =

H(seed,m′) then
21 return seed∗,m′′, seed,m′

22 else
23 return ⊥

where ϵ is the probability of finding a hash that satisfies the
conditions of WOTS+C with q queries, t̃ = t + q, and t′ is
the time needed to find a hash that satisfies the conditions
of WOTS+C, where time is given in number of hash function
calls.

Proof. As we mentioned above let us define GAME.0 as the
original game. GAME.1 differs from GAME.0 in that we
consider the game lost if one can extract a collision under H
from a signature query and the forgery. Assume the signature
query was for message m. Assume the response was σ =
(σ1, . . . , σlen1−z, s) and the valid forgery for message m∗ is
σ∗ = S(σ∗1 , . . . , σ

∗
len1−z, s

∗). We assume that GAME.1 is lost
if H(s,m) = H(s∗,m∗).

We now show that the difference in winning the two games
can be bounded by the M-ETCR security. Consider Algorithm 1.
In the algorithm we view a hash function H for message
hashing as a keyed hash function. But instead of a key it
accepts a random seed. The seed (which can be viewed as
a key) is then published as part of the signature. Note that
every time the algorithm does not abort, the forgery contains a
collision for a previous query under H . The occurrence of this
event is exactly the difference between GAME.0 and GAME.1
(conditioned on that it finds a proper hash with q queries in the
first place). At the same time, if the reduction does not abort,
it outputs a collision under H which is a valid solution for the
M-ETCR challenge. Assume that the probability of eventually
hitting line 11 in Algorithm 1 is ϵ then we obtain the following

Algorithm 2: WOTS* reduction
Input : WOTS* challenger C, adversary A against

WOTS+C
Output : message, signature

1 Given pk← KeyGen(1n) (generated by the WOTS* scheme),
take pk = (pk1, . . . , pklen) and create a public key
pk′ = (pk1, . . . , pklen1−z) for A by removing the len2
words encoding the sum and to the first z words

2 Obtain a signature query m from the adversary A
3 Sample a random seed seed←$ {0, 1}n until

d = H(seed,m, context information) satisfies the properties
of WOTS+C

4 Send d as a signature query for C
5 Obtain a signature for d: σ = (σ1, . . . , σlen)
6 Set σ′ = (σ1, . . . , σlen1−z, seed)
7 Send σ′ to the adversary A
8 Obtain a forgery (m∗, σ∗) from A
9 Compute d∗ = H(seed∗,m∗, context information). Set

σ̃ = (σ∗
1 , . . . , σ

∗
len1−z, σlen1−z+1, . . . , σlen) by adding the

truncated parts from the signature we received from the
WOTS* challenger

10 return d∗, σ̃

inequality:

|GAME.0−GAME.1| ≤ 1/ϵ · InSecM-ETCR(H; t̃, q)

We are left to bound the probability of the adversary
in succeeding in GAME.1. To do so we construct another
algorithm. In Algorithm 2 we see that if d∗ ̸= d than any
forgery for WOTS+C results in a forgery for WOTS*. Since
the case where d∗ = d is excluded in GAME.1 we conclude
that

GAME.1 ≤ InSecEU-CMA(WOTS*; t′, 1)

Note here that t′ depends on how many iterations are done to
find d. We give bounds for this in Section III-C. This concludes
the proof.

C. Security of WOTS-TW in the EU-naCMA model

In this section we give a full proof for Theorem A.5. For
this we introduce two more security notions. First we formally
define EU-naCMA security [16]. Next we introduce a special
target-collision resistance notion for tweakable hash functions.
In the proofs we utilize an oracle O+C(P, ·, ·) which on a fixed
public key accepts a tweak and a message (T,M) and outputs
Th(P, T,M∥i) where i is chosen so that the hash satisfies the
WOTS+C requirements.

EU-naCMA security is defined using the following experi-
ment where S is a shared state of algorithms A1 and A2.

Experiment ExpEU−naCMA
Dss(1n) (A = (A1,A2)):

(sk, pk)← Kg(1n).
({M1, . . . ,Mq}, S)← A1().
Compute {(Mi, σi)}qi=1 using Sign(·, sk).
(M⋆, σ⋆)← A2(S, {(Mi, σi)}qi=1, pk)
Return 1 iff V(M⋆, σ⋆, pk) = 1 and M⋆ /∈ {Mi}qi=1.

Definition A.3 (EU-naCMA [16]). Let Dss be a digital
signature scheme. We define the success probability of an
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adversary A against the EU-naCMA security of Dss as the
probability that the above experiment outputs 1:

SuccEU−naCMA
Dss(1n),q (A) = Pr

[
ExpEU−naCMA

Dss(1n) (A) = 1
]
,

where q denotes the number of messages that A1 asks the
game to sign.

When we limit the number of queries q to the signing oracle
to 1 we call the model one-time EU-naCMA.

We now turn to special target-collision resistance.

Definition A.4 (S-TCR(Prop)). In the following let Th be
a tweakable hash function as defined above. We define the
success probability of any adversary A = (A1,A2) against the
S-TCR(Prop) security of Th. The definition is parameterized
by the number of targets p for which it must hold that p ≤ |T |.
In the definition, A1 is allowed to make p queries of the form
(T ×M) to an oracle OProp(P, ·, ·), which works the following
way: OProp(P, T,M) = {Th(P, T,M ||i), i}, where i ∈ N
such that Prop(Th(P, T,M ||i)) = 1. We denote the set of A1’s
queries and responses by Q = {(Ti,Mi), (yi, ji)}i∈[p] and
define the predicate DIST({Ti}i∈[p]) = (∀i, k ∈ [1, p], Ti ̸=
Tk), i.e., DIST({Ti}i∈[p]) outputs 1 iff all tweaks are distinct.

SuccS-TCR(Prop)
Th,p (A) = Pr[P ←$ P;S ← A

OProp(P,·,·)
1 ();

(i,M, counter)← A2(Q,S, P,Th) :

Th(P, Ti,Mi||ji) = Th(P, Ti,M ||counter)
∧ M ̸= Mi ∧ DIST({Ti}i∈[p])] .

This notion is a variant of the notion of single-function
multi-target target-collision resistance (SM-TCR) that is used
in the analysis of SPHINCS+. The new notion is necessary for
a technical reason: In SM-TCR the adversary is only allowed
to query its challenge oracle once per tweak. However, we need
targets that fulfill Prop. The search for these requires to query
the oracle with different counter values for the same tweak. In
S-TCR(Prop) this is handled by OProp. In the full version of
the paper, we show that generic attacks against S-TCR(Prop)
have the same complexity as those against SM-TCR.

In the rest of the paper we instantiate Prop with the predicate
+C. This predicate is modelling the requirements of WOTS+C,
i.e. on input d it returns true if the len1 values a1, . . . , alen1 ∈
[w] representing the base-w encoding of d satisfy:
1)

∑len1
i=1 ai = Sw,n.

2) ∀i ∈ [z] : ai = 0 .
Another thing to discuss is the counter. Assume the probability
of hitting a good hash is pν . The probability of not succeeding
after k tries is (1−pν)

k. In case we have d instances of WOTS
the probability of not being able to find a good counter after k
tries for each of them is P = 1−(1−(1−pν)k)d. For example
if we set k = 230, pν ≈ 0.015, and d = 16 (example of actual
parameters for w = 16 and ℓ = 32) we get approximately
1−(1−2−23412264)16. Note that (1−2−23412264)16 is extremely
close to 1. Hence, the resulting probability P is extremely close
to 0. So in our analysis we assume that it is always possible to

find a good counter and the adversary cannot make its behavior
depend on the existence or nonexistence of a fitting counter.

As we mentioned before, we also utilize collections of
tweakable hash functions and a Thλ(P, ·, ·) oracle. This idea
was introduced in [16]. More complex constructions such as
SPHINCS+ utilize collections of tweakable hash functions.
The main difference between the tweakable hash functions in
the collection is the input length. THFs for one instance of
the scheme are united by using the same public parameter for
all the calls. On the other hand each call is separated from
another by using different tweaks. To obtain a security proof
one may want to put challenges inside the scheme structure.
These challenges may depend on previous invocations of the
collection of THFs. If the reduction does not have access to the
public parameter that is used throughout the whole scheme at
the moment of challenge placement it will not be able to place
create a suitable challenge. Making a Thλ oracle available
solves this problem. The oracle shares the public parameter
with the challenger. The adversary should be able to prepare
for a challenge query by using Thλ. To maintain security the
adversary is allowed to make queries to Thλ only with tweaks
that are different from the tweaks used for challenge queries. If
we consider a random tweakable function, then tweak defines
an independent random function, which gives no information
to the adversary about the challenges, hence such oracle does
not affect the security of the primitive.

We now got everything to prove the following theorem.

Theorem A.5. Let WOTS-TW be a signature scheme as defined
in [16]. Let Th be a tweakable hash function. Then the
insecurity of WOTS+C using Th against one-time EU-naCMA
attacks is bounded by

InSecEU-naCMA(WOTS+C; t; 1) ≤ InSecS-TCR(+C)(Th; t̃, 1)

+ InSecEU-naCMA(WOTS-TW ∈ Thλ; t̃, 1),

where t̃ ≈ t is the time needed to find a proper counter value
to obtain a hash that satisfies the requirements of WOTS+C.

Proof. We follow ideas from the EU-CMA proof. We define
GAME.0 as the original game. GAME.1 differs from GAME.0
in that we consider the game lost if one can extract a collision
under Th from a signature query and the forgery. Assume
the message sent for the signature query was m. Assume the
response was σ = (σ1, . . . , σlen1−z, i) and the valid forgery
for message m∗ is σ∗ = (σ∗1 , . . . , σ

∗
len1−z, j). We consider

GAME.1 lost if Th(P, T ∗,m||i) = Th(P, T ∗,m∗||j).
To prove a bound for this game-hop we utilize the

S-TCR(+C) property. Consider Algorithm 3. One can see that
similar to Algorithm 1 every time the algorithm does not abort
the forgery contains a collision under Th which is on the one
hand the difference between GAME.0 and GAME.1 and on
the other hand a solution for the S-TCR(+C) challenge. Hence,
we obtained the following inequality:

|GAME.0−GAME.1| ≤ InSecS-TCR(+C)(Th; t̃, 1)

Now we limit the probability of the adversary in succeeding
in GAME.1. To do so we construct another algorithm. In
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Algorithm 3: S-TCR(+C) reduction
Input : S-TCR(+C) challenger C, adversary A against

WOTS+C
Output : (M∗, j) or ⊥

1 Generate the context information for WOTS+C instance T ∗

2 Receive a signing query m from A
3 Query O+C from the S-TCR(+C) challenger C with (T ∗,m)
4 Obtain a response {(T ∗,m), i,Th(P, T ∗,m||i)}
5 Obtain public value P from C
6 Run KeyGen of WOTS+C with public seed P and context

information T ∗

7 Obtain a signature σ on the requested message by mapping
d = Th(P, T ∗,m||i) to len1 chain locations a1, . . . , alen1

and proceeding as in the Sign algorithm
8 Return the signature to the adversary
9 Give the public key Pub to the adversary A

10 Obtain a forgery σ∗ = [σ∗ = (σ∗
1 , . . . , σ

∗
ℓ , j),m

∗]
11 if m∗ ̸= m ∧ Verify(m,σ∗, Pub) ∧ Th(P, T ∗,m∗||j) =

Th(P, T ∗,m||i) then
12 return j,m∗, i
13 else
14 return ⊥

Algorithm 4: WOTS-TW reduction
Input : WOTS-TW ∈ Thλ challenger C, adversary A

against WOTS+C
Output : message, signature

1 Obtain a signature query m from the adversary A
2 Query Thλ with T ∗,m∥seed′ for seed′ ∈ {0, 1}r until a

value seed is found such that d = Th(P, T ∗,m∥seed)
satisfies the properties of WOTS+C

3 Send d as a signature query for C
4 Obtain a signature for d: σ = (σ1, . . . , σlen)
5 Set σ′ = (σ1, . . . , σlen1−z, seed)
6 Send σ′ to the adversary A
7 Obtain pk← KeyGen(1n) (generated by the WOTS-TW

scheme), take pk = (pk1, . . . , pklen, P ) and create a public
key pk′ = (pk1, . . . , pklen1−z, P ) for A by removing the
len2 words encoding the sum and to the first z words

8 Obtain a forgery (m∗, σ∗) from A
9 Compute d∗ = Th(P, T ∗,m∗||seed∗). Set

σ̃ = (σ∗
1 , . . . , σ

∗
len1−z, σlen1−z+1, . . . , σlen) by adding the

truncated parts from the signature we received from the
WOTS-TW challenger

10 return d∗, σ̃

Algorithm 4 we see that if d∗ ̸= d then a forgery for WOTS+C
results in a forgery for WOTS-TW. Since we excluded the
case where d∗ = d we conclude that

GAME.1 ≤ InSecEU-naCMA(WOTS-TW ∈ Thλ; t
′, 1)

Note here that t̃ depends on how much time it took the oracle
O+C to find d. We give the calculations for that in Section III-C.
This concludes the proof.

In [16], it was shown that

InSecEU-naCMA(WOTS-TW; t, 1) ≤
InSecPRF(PRF; t̃, len) + InSecSM-TCR(Th; t̃, len · w)+

InSecSM-PRE(Th; t̃, len) + w · InSecSM-UD(Th; t̃, len)

with t̃ = t + len · w, where time is given in number of Th
evaluations. See Appendix D for the precise definition of PRF,
SM-PRE, and SM-UD, which we do not provide here.

Our proof only adds a term for the S-TCR(+C) notion. Thus,
we conclude with our security bound:

InSecEU-naCMA(WOTS+C; t, 1) ≤ InSecPRF(PRF ∈ Thλ; t̃, len)

+ InSecSM-TCR(Th ∈ Thλ; t̃, len · w)
+ InSecSM-PRE(Th ∈ Thλ; t̃, len)

+ w · InSecSM-UD(Th ∈ Thλ; t̃, len) + InSecS-TCR(+C)(Th; t′, 1)

with t̃ = t+ len · w and t′ ≈ t.

D. Properties definitions

In this section we recall the remaining security definitions
that we require from Th as given in [16], and the definition of
d-EU-naCMA security. These are not novel but included for
the paper to be self-contained.

We start with d-EU-naCMA security which is defined via
an experiment. In the experiment the adversary is allowed to
make signature queries for different instances of WOTS+C. The
set of queries Q = {(Mi,ADRSi)}di=1 contains messages
Mi to be signed and addresses ADRSi that reference the
different instances of WOTS+C used to sign the messages.
We require that no more than one signing query for each
WOTS+C instance can be made, so every address should be
unique. Additionally, the adversary is allowed to query the
collection oracle Thλ defined above. The oracle Thλ can be
used to generate dependent signing queries and should not
provide additional information about the WOTS+C instances.
This is modeled via the limitation that the addresses used as
tweaks in queries to Thλ must be different from the ones used
in the signing queries. The resulting experiment is as follows:
Experiment Expd-EU-naCMA

WOTS+C (A)
• Seed←$ {0, 1}n
• S ←$ {0, 1}n
• state← AWOTS+C.sign(·,Seed,·,S),Thλ(Seed,·,·)

1 ( )
• (M⋆, σ⋆, j)← A2(state, Seed)
• Return 1 iff j ∈ [1, d] ∧ [Vf(PKj , σ

⋆,M⋆,ADRSj) =
1] ∧ [M⋆ ̸= Mj ]∧
[DIST({ADRSi}di=1)] ∧ [∀ADRSi ∈ Q,ADRSi /∈
T ′ = {adrs(Ti)}pi=1],

where DIST({ADRSi}di=1) outputs 1 iff all arguments are
distinct and 0 otherwise, T ′ denotes a set of tweaks used for
Thλ queries and adrs(·) returns a prefix of a tweak.

The success probability of an adversaryA in the described ex-
periment with d instances is defined as Succd-EU-naCMA

WOTS+C,d (A) def
=

Pr
[
Expd-EU-naCMA

WOTS+C (A) = 1
]
.

Next we cover the remaining security properties for THFs.

Definition A.6 (SM-TCR). In the following let Th be a
tweakable hash function as defined above. We define the
success probability of any adversary A = (A1,A2) against
the SM-TCR security of Th. The definition is parameterized
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by the number of targets p for which it must hold that
p ≤ |T |. In the definition, A1 is allowed to make p classical
queries to an oracle Th(P, ·, ·). We denote the set of A1’s
queries by Q = {(Ti,Mi)}pi=1 and define the predicate
DIST({Ti}pi=1) = (∀i, k ∈ [1, p], i ̸= k) : Ti ̸= Tk, i.e.,
DIST({Ti}pi=1) outputs 1 iff all tweaks are distinct.

SuccSM-TCR
Th,p (A) = Pr[P ←$ P;S ← A

Th(P,·,·)
1 ( );

(j,M)← A2(Q,S, P ) : Th(P, Tj ,Mj) = Th(P, Tj ,M)

∧M ̸= Mj ∧DIST({Ti}pi=1)]

Definition A.7 (SM-PRE). In the following let Th be a
tweakable hash function as defined above. We define the
success probability of any adversary A = (A1,A2) against the
SM-PRE security of Th. The definition is parameterized by
the number of targets p for which it must hold that p ≤ |T |. In
the definition, A1 is allowed to make p classical queries to an
oracle Th(P, ·, xi), where xi is chosen uniformly at random
for the query i (the value of xi stays hidden from A). We
denote the set of A1’s queries by Q = {Ti}pi=1 and define the
predicate DIST({Ti}pi=1) as we did in the definition above.

SuccSM-PRE
Th,p (A) = Pr[P ←$ P;S ← A

Th(P,·,xi)
1 ( );

(j,M)← A2(Q,S, P ) : Th(P, Tj ,M) = Th(P, Tj , xj)

∧DIST({Ti}pi=1)]

Definition A.8 (SM-UD). In the following let Th be a
tweakable hash function as defined above. We define the
advantage of any adversaryA = (A1,A2) against the SM-UD
security of Th. The definition is parameterized by the number
of targets p for which it must hold that p ≤ |T |. First the
challenger flips a fair coin b and chooses a public parameter
P ←$ P . Next consider an oracle OP (T , {0, 1}), which works
the following way: OP (T, 0) returns Th(P, T, xi), where xi

is chosen uniformly at random for the query i; OP (T, 1)
returns yi, where yi is chosen uniformly at random for the
query i. In the definition, A1 is allowed to make p classical
queries to an oracle OP (·, b). The goal of A is to distinguish
whether the oracle is OP (T , 0) or OP (T , 1). We denote the
set of A1’s queries by Q = {Ti}pi=1 and define the predicate
DIST({Ti}pi=1) as we did above.

AdvSM-UD
Th,p (A) =

|Pr[P ←$ P;S ← A
OP (·,0)
1 ( ); 1← A2(Q,S, P )

∧DIST({Ti}pi=1)]−
Pr[P ←$ P;S ← A

OP (·,1)
1 ( ); 1← A2(Q,S, P )

∧DIST({Ti}pi=1)]|

Definition A.9 (Keyed hash function). Let K be the key space,
M the message space, and N the output space. A keyed hash
function is an efficient function F : K ×M→ N generating
an n-bit value out of a key and a message.

In the following we give the definition for PRF security of a
keyed hash function F : K×M→ N . In the definition of the
PRF distinguishing advantage, the adversary A gets (classical)
oracle access to either F (S, ·) for a uniformly random secret
key S ∈ K or to a function G drawn from the uniform
distribution over the set G(M,N ) of all functions with domain
M and range N . The goal of A is to distinguish both cases.

Definition A.10 (PRF). Let F be defined as above. We define
the PRF distinguishing advantage of an adversary A making
q queries to its oracle as

AdvPRF
F,q(A) =

∣∣∣∣ Pr
S←$K

[AF (S,·) = 1]− Pr
G←$G(M,N )

[AG(·) = 1]

∣∣∣∣ .
Here we present a multi-target version of DSPR which is

denoted as SM-DSPR. To do so, we need a second-preimage
exists predicate for tweakable hash functions.

Definition A.11 (SPP,T ). A second preimage exists predicate
of tweakable hash function Th : P × T × {0, 1}m → {0, 1}n
with a fixed P ∈ P , T ∈ T is the function SPP,T : {0, 1}m →
{0, 1} defined as follows:

SPP,T (x)
def
=

{
1 if |Th−1P,T (ThP,T (x))| ≥ 2

0 otherwise
,

where Th−1P,T refers to the inverse of the tweakable hash
function with fixed public parameter and a tweak.

Now we present the definition of SM-DSPR from [7] for a
tweakable hash function. The intuition behind this notion is
that the adversary should be unable to find a preimage that
doesn’t have a second preimage.

Definition A.12 (SM-DSPR). Let Th be a tweakable hash
function. Let A = (A1,A2) be a two stage adversary. The
number of targets is denoted with p, where the following
inequality must hold: p ≤ |T |. A1 is allowed to make p
classical queries to an oracle Th(P, ·, ·). We denote the query
set Q = {(Ti,Mi)}pi=1 and predicate DIST({Ti}p1) as in
previous definitions.

AdvSM-DSPR
Th,p (A) = max{0, succ− triv},

where

succ = Pr[P ←$ P;S ← A
Th(P,·,·)
1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj
(Mj) = b ∧ DIST({Ti}p1)].

triv = Pr[P ←$ P;S ← A
Th(P,·,·)
1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj
(Mj) = 1 ∧ DIST({Ti}p1)].
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