
PublicCheck: Public Integrity Verification for
Services of Run-time Deep Models

Shuo Wang∗†, Sharif Abuadbba∗†, Sidharth Agarwal‡, Kristen Moore∗†, Ruoxi Sun∗,
Minhui Xue∗†, Surya Nepal∗†, Seyit Camtepe∗† and Salil Kanhere§

∗CSIRO’s Data61, Australia
†Cybersecurity CRC, Australia

‡Indian Institute of Technology Delhi, India
§University of New South Wales, Australia

Abstract—Existing integrity verification approaches for deep
models are designed for private verification (i.e., assuming the
service provider is honest, with white-box access to model
parameters). However, private verification approaches do not
allow model users to verify the model at run-time. Instead,
they must trust the service provider, who may tamper with the
verification results. In contrast, a public verification approach
that considers the possibility of dishonest service providers can
benefit a wider range of users. In this paper, we propose
PublicCheck, a practical public integrity verification solution
for services of run-time deep models. PublicCheck considers
dishonest service providers, and overcomes public verification
challenges of being lightweight, providing anti-counterfeiting pro-
tection, and having fingerprinting samples that appear smooth.
To capture and fingerprint the inherent prediction behaviors of
a run-time model, PublicCheck generates smoothly transformed
and augmented encysted samples that are enclosed around the
model’s decision boundary while ensuring that the verification
queries are indistinguishable from normal queries. PublicCheck
is also applicable when knowledge of the target model is limited
(e.g., with no knowledge of gradients or model parameters).
A thorough evaluation of PublicCheck demonstrates the strong
capability for model integrity breach detection (100% detection
accuracy with less than 10 black-box API queries) against various
model integrity attacks and model compression attacks. Pub-
licCheck also demonstrates the smooth appearance, feasibility,
and efficiency of generating a plethora of encysted samples for
fingerprinting.

I. INTRODUCTION

Cloud-enabled Machine Learning as a Service (MLaaS)
has shown enormous promise to transform how deep learn-
ing models are developed and deployed. Model agents, who
facilitate the commercialization of machine learning based
frameworks or licensed products, feature in the entire pipeline
- from downstream end-users (clients) to upstream cloud plat-
forms. Their role is to commercialize pre-trained models (that
they did not necessarily develop themselves) by deploying
them for profit to cater to broader end users’ demands. One
of the benefits of such a business model is the isolation
of the development, deployment, and use of models, e.g.,
the details of the deployed model need not be known by
model agents and clients. For example, Atrium (atrium.ai)
recently created a Machine Learning Model Broker service
(model agent) to facilitate machine learning adoption. Hence,
the MLaaS business ecosystem now includes four players.

A model developer (the original owner), a model agent (the
broker, e.g., Atrium) who facilitates model adoption without
white-box access, a service provider (Google/Amazon) where
the model is deployed with commercial APIs with black-box
query access, and model clients who commercially use the
model by querying those service provider APIs.

On an orthogonal path, potential risks and security threats
are emerging with MLaaS, since the pre-trained models can be
maliciously modified through Trojan or backdoor attacks [1]–
[7], or can be degraded [8] and even backdoored by model
compression [9], [10] during deployment. To protect the model
integrity and benefits of end-users, it is imperative for model
agents, service providers, and end-users to verify whether
the deployed model has been tampered with. Contrary to the
traditional integrity verification process for objective entities
(e.g., files hashing), this work intends to conduct integrity
verification on services of the run-time deep model in the
MLaaS platform (e.g., black-box access to the prediction ser-
vice). To achieve this, verification keys, such as fingerprinting
(sample, label) pairs, are designed to verify the deployed
surrogate models, derived from the source of original or
licensed models (e.g., model developers or model agents).
During verification, if a deployed model outputs a different
label on a fingerprinting sample, the model will be considered
modified. Most existing verification techniques for model in-
tegrity belong to private verifiability [11] by honest verification
providers, which only provide a verification service to honest
parties, such as the model developers who have white-box
access to the training data and model parameters. However, a
dishonest verification service provider could easily manipulate
the integrity verification results, for example, by providing a
verification service through the hash value of a compromised
version of the deployed model. Additionally, as the service
providers themselves are part of the service, self-validation of
verification results is unfair when providers can profit from
being dishonest. Public verifiability aims to serve a wider
range of users, including model agents, service providers,
and clients who opted in or purchased the API. This also
releases model developers from the workload of conducting or
maintaining the verification service, enabling a more flexible
business model through the inclusion of model agents. Most
importantly, it disentangles the integrity protection of the

1348

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Shuo Wang. Under license to IEEE.
DOI 10.1109/SP46215.2023.00071

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

38
0

Deployed Model, f'

ML Model
Storage

API Clients, Uc

Independent Secure
Verification Server

Fingerprinting
Samples

Upload f

MLaaS

Deploy

Verify

Download

(a) Private Verification (b) Public Verification

Deployed Model

ML Model
Storage

Original Model

API

Fingerprinting
Samples

Clients, Uc

Deploy

Upload

MLaaS

Verify

Verify

Model Developer
(White-box)

Dishonest Service
Provider, Up

Verification Workflow

Potential Threats

Model Developer
(White-box)

Licensed Model, f
& Session Key

Model Agent, UA
(Black-box)

Fingerprinting Samples
(Encysted Samples)

Upload f

Limited Encrypted
Training Data

Session Key
PublicCheck

1

2

3

4

1

2

3

4

Modifying models during transmission

Exploiting storage vulnerabilities

Tampering deployed models

Manipulating verification

Potential attacks in private verification:

Dishonest Service
Provider, Up

Fig. 1: An overview of private verification and public verification.

(a) (b) (c)

Fig. 2: Demonstration of the deep neural networks fin-
gerprinting approaches: (a) trigger-based fingerprinting; (b)
adversarial-based fingerprinting; (c) PublicCheck (ours).

deployed model from the trustworthiness identification of the
service provider (e.g., cloud platform) (see Figure 1).

To defeat dishonest cloud providers, the key is to guarantee
that the verification process is indistinguishable from normal
business, which forces the service provider to always answer
the queries with predictions output from the actual deployed
model, rather than from a compromised model. Thus, the
design of the verification key must be efficiently linked to the
model prediction behaviors, and should satisfy the following
three requirements:

• Lightweight to ensure an affordable computational cost for
a large-scale disposable (designed to be used once per
user within a limited time period to avoid replay attacks)
verification key generation.

• Smooth appearance to ensure verification queries are in-
distinguishable, and to enable protection against adaptive
attacks. One feasible approach is to add structural patterns
in pixel space that blends in with the original manuscript.

• Anti-counterfeiting to prevent the adversary from bypassing
verification or training a surrogate model. Randomness and
uncertainty should be incorporated into the design for secure
and long-term verification.

Our solution. The purpose of this research is to answer
the following research question: how can we enable MLaaS
users to publicly verify the integrity of services for the un-
derlying deep model while satisfying the three aforementioned
requirements to defeat the dishonest cloud provider? To the
best of our knowledge, the proposed PublicCheck is the first

practical methodology for public integrity verification, with
only black-box access to the target MLaaS models during
both fingerprinting design and inference. The intuition is that
manipulation of the model will manifest as a shift in the
decision boundary, changing the prediction of certain samples
in the general vicinity of the decision boundary. The key
idea is to leverage a generative autoencoder model and apply
clever sample selection strategies to conduct controllable data
augmentation that encysts the target model’s decision bound-
ary (Figure 2(c)), to capture the predicted behavior patterns
around the decision boundary. A set of encysted samples and
associated predictions serve as the fingerprint of the model.
We also consider the design of verification samples in the
scenario where there is limited knowledge (e.g., gradients or
parameters) of the target model, and perform the verification
with black-box API queries. This covers cases where the
target models could be non-gradient-based or encapsulated as
executable files, where the only available information is the
prediction result.
Our contributions. The key contributions are as follows:

• We propose the first public integrity verification approach
for services of run-time deep models via encysted sample
augmentation. The public integrity verification considers
dishonest service providers.

• We implement a lightweight generation strategy to produce
large-scale verification samples in a low-cost and control-
lable manner in terms of semantic attributes. Randomness
and uncertainty are integrated into the generation via latent
perturbation, while smoothness selection is used to filter
candidate samples. PublicCheck can be applied in model-
agnostic scenarios using black-box knowledge of the tar-
get models, with no assumptions on network architecture,
hyper-parameters, and optimization.

• We implement and evaluate our approach against numerous
integrity attacks and model compression across different
models. PublicCheck demonstrates 100% accuracy on model
integrity detection, with low overhead (less than ten API
queries). The appearance evaluation of encysted samples
reveals that they are smooth and indistinguishable from nor-
mal ones. We also demonstrate the feasibility of generating a

21349

TABLE I: An overview of state-of-the-art verification.

Verification Approaches
Knowledge NOT Required No Model

Degradation

Public Verifiability Requirements

Gradient/
Parameters

Model
Fine-tuning

Backward
Propagation Lightweight Smooth

Anti-
counterfeiting

Hash-based verification N/A
Backdoor-based
watermarking [3], [11]
Adversarial-based
watermarking [8], [12], [13]
PublicCheck (Ours)

: the property or requirement is not satisfied by the approach; : the property or requirement is satisfied by the approach.

large number of verification samples, reducing the time from
300 seconds to 1 second compared to the existing adversarial
perturbation-based approaches.

II. RELATED WORK

Existing verification approaches can be categorized into
hash-based verification [14], trigger-based fingerprinting [11],
and adversarial-based fingerprinting [8], [12], [13]. However,
none of them can fulfill the requirements of lightweight,
smooth appearance, and anti-counterfeiting whilst being ap-
plied to public verification. We present an overview of state-
of-the-art model verification in Table I.

Hash-based verification is only available to entities, which
can easily be tampered with. Trigger-based verification pro-
duces (backdoor sample, target label) pairs to extend the
classifier’s decision boundary as the fingerprinting of the
model (Figure 2(a)). The generation of fingerprinting samples
through model fine-tuning and backward propagation de-
mands a significant computational resource, and in addition to
this, the backdoor embedding also causes model degradation.
Adversarial-based verification utilizes the misclassification
behaviors introduced by well-designed noise in the pixel space
as fingerprinting (Figure 2(b)). Utilizing adversarial examples
has the primary advantage of eliminating the need for training
or re-training and enabling the black-box inference capability.
Therefore, in trigger-based and adversarial-based fingerprint-
ing approaches, white-box knowledge of the model is needed,
such as gradients/parameters. Additionally, the computation
cost of backward propagation is high for these approaches.
Furthermore, these approaches only allow verification by an
honest party—they are only privately verifiable due to their
technical limitations of lacking randomness/uncertainty, infi-
nite generation, or imperceptibility. Meanwhile, the smooth
appearance of fingerprinting samples (see Figure 9 in the
Appendix), as well as the anti-counterfeiting protection (a
malicious service provider can embed the same backdoor or
conduct adversarial training to bypass verification, as demon-
strated in Section V-H), is not guaranteed.

The trending MLaaS platforms nowadays have attracted
massive users, and this necessitates the need for public verifi-
ability with those requirements. To the best of our knowledge,
this is the first work to promote the public integrity verification
of deployed models by leveraging lightweight, smoothness,

and anti-counterfeiting properties while only using black-box
access during both inference and design procedures.

III. PROBLEM STATEMENT AND THREAT MODEL

We consider the public verification of models deployed in
the cloud to provide prediction services via APIs, for any user
roles, including the model agent, service providers, and any
model clients. This is a typical MLaaS service provided by
service providers, such as Amazon SageMaker. The process
of the public verification is illustrated in Figure 1(b).

A. Problem Statement

Trusted third-party verification server. The model developer
will transmit the licensed model f and the encrypted sampled
training data (derived from the same distribution as the training
data for the model f) to an independent secure verification
server (i.e., a trusted third party), and passes a session key
(including the decryption key) to the model agent UA. The
model agent UA only has black-box access to the licensed
model and has no knowledge of the sampled training data
on the secure verification server. The agent can request the
secure verification server to decrypt the encrypted sampled
training data with the decryption key, and the agent controls
the launch of PublicCheck along with the session key. The
once-off training of the autoencoder adopted by PublicCheck
takes place on the secure verification server.
Verification pipeline. The verification service starts with the
generation of the fingerprint of a model which is represented
as FM = {(si, ri)}Vi=1, ri = f(si), where {si}Si=1 are
fingerprinting samples generated for UA through PublicCheck.
Note that V � S is the minimum number of samples required
to conduct efficient verification (around 7 in our experiments),
and the pool of verification pairs, S, should be sufficiently
large at all times to allow for multi-time disposable public
verification. An independent secure verification server would
be appropriate for running and maintaining the verification
production service and the pool of verification pairs to meet the
lightweight, smoothness and anti-counterfeiting requirements.
The licensed model is then uploaded to and stored on a
platform maintained by the cloud service provider UP , and
deployed to an endpoint instance to provide an API querying
service for public users. Considering that the deployed model
f ′ on the cloud platform may differ from the licensed model
f (which will be detailed in the threat model), it is important

31350

for the model agent UA, model provider UM and clients UC
who purchased the API to verify whether the model f ′ is the
same as f . A set of verification keys are used to verify the
integrity of the deployed model. During verification inference,
the user obtains FM = {(si, ri)}Vi=1 from the independent
secure verification server (after the paywall), and then queries
the API of the deployed model f ′ with fingerprinting samples
{si}Vi=1. The model is not intact if there exists i ∈ {1, . . . , V }
such that f ′(si) 6= ri.

B. Threat Model

From the integrity breach perspective, there is no assump-
tion about how the integrity of a deployed model is compro-
mised (i.e., no limitations are placed on the adversary, includ-
ing malicious service provider). From the integrity verification
perspective, we assume that the service provider is dishonest,
who may maliciously modify the model in deployment and
intentionally provide counterfeit verification services.
Adversary’s goal. There are three main service procedures
during model deployment: (i) model transition to the cloud;
(ii) model storage in the cloud; and (iii) inquiry services after
deployment via APIs. We assume that model integrity could
be compromised at any procedure, and make no assumptions
about how the model is modified, by an external attack or
internal manipulation. The Integrity adversary’s goal is to
derive a surrogate model to replace the original licensed
model. The adversary may embed backdoor or misclassifica-
tion behaviors in the modified model for malicious purposes. A
dishonest cloud service provider may deploy degraded models
that will incur a lower cost (e.g., model compression). The
Verification adversary’s goal is to identify the verification
keys from queries and then counterfeit the verification keys
or the verification process to bypass a compromised model.
For example, during private verification (Figure 1(a)), only
the model developers can use the service to determine whether
the deployed model is intact, while they can be fooled by the
counterfeit verification keys issued by the service provider.
Adversary’s capacity. We summarize both the integrity and
verification adversary’s capacity with respect to potential vul-
nerabilities and security risks in MLaaS. We also present
these threats in Figure 1(a) with red arrows. We note that all
vulnerabilities on the path from the model fingerprinting to the
model integrity verification are invisible to clients, as well as
to the verification tools such as PublicCheck. Therefore, we
would like to propose a single solution to all these potential
vulnerabilities, rather than solve them one by one. Besides
the other attackers, the dishonest cloud service provider is
considered as a much stronger insider attacker. We summarize
some typical examples of an adversary’s capacity as follows.

• Modifying models during transmission (Integrity). The ad-
versary can modify a model while it is transmitted from the
model agent to the service provider by exploiting vulnera-
bilities in cloud network protocols or service interfaces, i.e.,
during upload procedure in Figure 1(a).

• Exploiting storage vulnerability (Integrity). Adversaries can
exploit machine learning model storage vulnerabilities to
substitute a compromised model for the safe one.

• Tampering deployed models (Integrity). The insider attacker
is capable not only of backdooring the deployed model but
also of other abnormal behaviors such as model compres-
sion. Note that model compression could be a weak attack,
but acts as a worst-case for verification (modifications of
model behavior could be hard to identify).

• Manipulating verification (Verification). The adversary can
manipulate the verification results, either manipulating the
results of verification queries or forging verification keys
to convince the user that the deployed model is intact.
For example, a dishonest service provider can leverage a
discriminator to identify verification queries and arbitrarily
manipulate the verification results before being sent to the
user. Otherwise, the adversary can publish fake a hash
code or embed fingerprinting samples into modified models
through fine-tuning or adversarial training to bypass the
verification.

Adversary’s knowledge. Existing deep neural networks wa-
termarking or fingerprinting approaches [8], [11], [14] as-
sume the service provider is trusted. This is too strong an
assumption, as the cloud provider has white-box access to
all the parameters and run-time information, resulting in the
potential to breach the fingerprinting patterns through the
backdoor or adversarial misclassification behaviors. To model
a more practical scenario, we assume that the adversaries,
including the service provider, have white-box knowledge of
the deployed models. We also assume that an adversary has
white-box access to a collection of verification samples.

IV. PUBLICCHECK SYSTEM DESIGN

PublicCheck first conducts data augmentation. A small
number of training samples are used as referenced samples
(x), and data augmentation is achieved by reconstructing the
perturbed encoded latent codes (z to z′) after adding random
noise. The noise is restricted by two criteria: (i) control-
lable augmentation ensures the reconstructions are densely
populated around the decision boundary, and the prediction
behavior of the target classifier is controlled; and (ii) selec-
tion of candidates based on smoothness ensures the smooth
appearance of reconstructions via adaptive similarity. After
candidate selection, the reconstructed samples x′ are used for
fingerprinting verification. Finally, the model’s fingerprint is
represented as a prediction vector for a small set of encysted
samples. During verification inference, the model is verified to
be intact when the response of the test model on the encysted
sample set is equal to the fingerprint prediction vector. The
overview of the PublicCheck verification is illustrated in
Algorithm 1 and Figure 3. A visual illustration is provided
in Figure 4.

A. Data Augmentation

Using attribute manipulation-based generation, we augment
data samples along a semantic feature axis for efficient data

41351

D
ec

od
er

Encoder

x x'z z'

Latent Space
 Representation

Noise ∼ N (μ,σ)

Augmented
Samples

Encysted
Samples

Classifier

Black-box Access

Selection via
Adaptive
Similarity

Fingerprinting
SamplesSample Augmentation

Controllable
Augmentation

Fig. 3: Overview of the PublicCheck fingerprinting.

augmentation. Variational autoencoder (VAE)-based genera-
tive models [15], [16] are developed to represent samples
in the high-dimensional pixel space into a low-dimensional
latent space via latent codes. Combined with disentanglement,
they are capable of providing such a controllable mechanism.
We aim to develop latent representations that encode distinct
attributes of data as disentangled latent codes, where changes
in one part of a latent code correspond only to changes in a
single attribute of data. We introduce generative models with
two levels of disentanglement in an unsupervised learning
manner, where attribute-level disentanglement is based on a
low-dimensional latent representation vector and abstraction-
level disentanglement is based on high-dimensional latent
representations.

For low-fidelity and simple images, e.g. handwritten digits
MNIST, the VAE-based generative model can be used to learn
a simple representation of data in the latent space, e.g., a 20-
dimensional latent vector. Attribute-level disentanglement can
be attained by forcing the distribution of latent representa-
tions to be factorial via loss terms, leading to independent
distributions across dimensions. To better balance the trade-
offs between reconstruction quality and disentanglement, we
adopt the Total Correlation (TC) [15] and adopt a human
perceptual evaluation Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [17] as a reconstruction error (see details in
Appendix A-A).

For high-fidelity and complicated images, such as high-
resolution human face images, or multi-domain images such
as CIFAR-10, the dimension of the latent codes should be
largely extended to maintain more features. Therefore, the
disentanglement strategies used for disentangle-VAE are not
applicable. Accordingly, we provide an abstraction-level dis-
entanglement strategy to handle high-fidelity and complicated
images. We extend the scale of the latent codes and divide
them into a style (high abstraction) level and a texture (low
abstraction) level latent representation, via two separate en-
coders. To extend the latent representation, we apply the
Vector Quantized strategy used in previous works [18], [19]. In
general, VQ-based autoencoders consist of three components,
encoder En, decoder De, and codebook C. The codebook
C can be viewed as a common feature dictionary shared
between the encoder and decoder, consisting of K categorical
embedding items with D dimensions. The encoder is a non-
linear mapping from the input instance x in the pixel space to

Algorithm 1: Model Integrity Public Verification
Input: ES size V , licensed and deployed models f , f ′, maximum

scale and variance of perturbation ∆max, σ, pre-trained
encoder and decoder En, De, iteration I′

Output: ES and integrity verification result r
1 Xt ← Random samples from training datasets
2 while |ES| < V do
3 for x in Xt do
4 z ← En(x)
5 // Boundary value of noise
6 µ← argmin ∆z, s.t. ∆z ≤

∆zmax and f(De(∆z + z)) 6= f(De(z))
7 // Filtering via adaptive similarity
8 ξ ← Adaptive Perceptual Similarity Threshold
9 while i ≤ I′ do

10 ∆z ∼ N (µ, σ)
11 // Perceptual Similarity
12 if PS(De(z + ∆z)) ≥ ξ then
13 ESx ← De(z + ∆z)

14 i = i+ 1

15 esx ← one random sample from ESx

16 ES ← ES ∪ esx

17 Fingerprinting of FM← f(ES)
18 r ← True if f ′(ES) = f(ES) else False

the latent representation ze(x), consisting of latent embedding
vectors with D dimensions. Vector Quantization is to map
ze(x) to a discrete latent matrix with each element representing
the index of the nearest embedding items in the codebook
for each latent embedding vector of ze(x). The decoder
reconstructs back to pixel space using the queried embedding
items zq(z) corresponding to the discrete latent index matrix
via another non-linear function, as shown in Figure 10 (see
details of VQ-based generative models in Appendix A-B).

To achieve abstraction-level disentanglement, we apply two
separate (encoder, codebook) pairs to model texture infor-
mation and style information, respectively. A global encoder
Eng and codebook Cg are applied to capture high-abstractive
information, such as style, shape, and geometry, and a local
encoder Enl and codebook Cl are used to capture low-
abstractive information, such as texture, color, or background.
Specifically, the local encoder initially maps the input instance
into local latent representation zle(x) using Enl, followed
by conducting a global encoder Eng to map zle(x) into
zge (x). Then we transfer the zge (x) and zle(x) into a discrete
latent matrix zg(x) and zl(x) via vector quantization by
nearest neighbor searching on the global codebook Cg and
Cl, respectively. zlq(x) and zgq (x) are the queried/retrieved
embedding items according to the discrete latent matrix. The
global decoder Deg is then applied to recover the latent
representation zgq (x) back to a representation sl with the same
size as zle(x). The composited ẑlq(x) = sl+zlq(x) are fed into
the decoder Del. Finally, the local decoder Del takes as input
all levels of the quantized latent representation back to the
original image size. Here, we also replace the default pixel-
wise reconstruction evaluation with the perceptual evaluation
metric LPIPS.

51352

B. Controllable Augmentation

Controllable augmentation aims to transform a given ref-
erence sample into a set of augmented reconstructions that
encyst around the decision boundary of the target model,
using the pre-trained generative model with disentanglement.
Specifically, augmentation is conducted via adding certain
perturbation ∆z into specific latent codes that clearly control
a semantic attribute (line 4 of Algorithm 1), followed by
reconstruction via a decoder De(z+ ∆z). The perturbation is
added to selected elements of a latent code vector as attribute-
level disentanglement, or to the entire low abstraction latent
representation as abstraction-level disentanglement.

Encysted samples are defined as reconstructed copies from
perturbed latent representations, where noise is from a given
distribution within a given scale (e.g., normal distribution
N (µ, σ)). Given a target model f(x), we define the marginal
value of the encysted boundary (e.g., µ) as the minimum
value that changes the prediction (line 6). Scale σ defines
the encysted noise range with the maximum noise scale
(upper bound µ + σ) and the minimum scale (lower bound
µ − σ). Encysted samples ES = {es1, . . . , esn} are defined
as reconstructed copies using the perturbation sampled from
the normal distribution N (µ, σ). Within the encysted noise
range, the predictions of the reconstructed encysted samples
using the perturbed latent codes are easy to be flipped. An
encysted sample derived from x that produces a changed
prediction is referred to as the outer encysted sample, and vice
versa, the inner encysted sample. Depending on the randomly
sampled noise, reconstructed encysted samples are either the
inner or outer samples. We develop two strategies to effectively
determine the encysted noise distribution N (µ, σ) for the
generation of the encysted sample, under the limitation of
the knowledge of the target model in the following parts.
Note that the advantage of our approach is the continuous
generation of fingerprinting samples up to the plethora of
amounts, producing infinite encysted samples (due to cardinal-
ity of the continuum) with lightweight computational overhead
via feedforward computation using a pre-trained autoencoder,
and only requires black-box inference of the target model.
Additional generation boosting strategies are given in Ap-
pendix B. Fingerprinting design with few training samples.
To address the black-box knowledge setting for the target
model in Section III, we conduct the fingerprinting design with
a few training samples as follows. The term black-box in our
work is twofold: (i) there is only black-box access to the model
to perform verification; (ii) the design of the fingerprinting
of the model is conducted with black-box knowledge about
the model (see more details in Appendix C). Given the pre-
trained autoencoder, the fingerprinting design has access only
to a few training samples and the prediction results of a
licensed model, without access to any other knowledge about
the target model, such as its parameters and structure during
fingerprinting design. This strategy aims to determine the outer
bound of noise, namely, the minimum noise scale added to
the latent representation that changes the prediction of the

corresponding reconstructed image. The perturbation of the
latent representation is considered as the optimization of ∆Z
using the C&W loss [20]:

max(0, log f(De(·))y −max
c 6=y

log f (De(·))c), (1)

where De(·) = De(Z + ∆Z) and Z is the latent codes for
input x, the f (·)y reveals that the output of the function f is
y. The minimum loss is achieved when f(De(Z + ∆Z))y 6
maxc 6=y f (De(Z + ∆Z))c, i.e., we reach the outer bound
of the noise ∆Z. Thus, finding the outer bound of latent
perturbation for the input data x is defined as follows:

∆Zoutb = arg min
∆Z≤∆max

L (De(Z + ∆Z)) (2)

In the black-box knowledge case, Equation 2 is optimized via
only accessing the inputs and outputs of the function f (e.g., a
classifier). Therefore, the Smooth Evolution Strategies (SES)
is adopted to optimize Equation 2 via search gradients. We
define the latent noise ∆Z to be from an isometric normal
distribution with mean µ and standard deviation σ, denoted by
N

(
∆Z | µ, σ2I

)
, using ι as {µ, σ} [21]–[23]. SES defines a

search distribution p(·|ι) on L (·), De(Z + ∆Z) is denoted
by · to simplify notation, followed by optimization under this
distribution on the objective:

J(ι) = Ep(·|ι) [L (·)] = EN (∆Z|µ,σ2I) [L (·))] (3)

Gradient descent is then used to optimize the Equation 3 by
figuring out the Jacobian of J(ι). Here, σ is considered as
a hyperparameter, and the loss J(·) will be only optimized
with respect to µ. The parameters ι are updated via a gradient
descent step with learning rate α in Equation 4. Finally,
we generate the encysted samples by reconstructing the per-
turbed latent representation using the noise ∆Z sampled from
N

(
∆Z | µ, σ2I

)
.

ιµ ← ιµ − α∇µJ(µ, σ),

∇µJ(µ, σ) = EN
[
L (·)∇ι log

(
N

(
∆Z | µ, σ2I

))] (4)

In our case, only one parameter (i.e., perturbation ∆z for
specific latent code) is needed to be learned via black-box
optimization. Additionally, the sampling is guided by the latent
semantic feature vector. The number of iterations is generally
less than 100. A greedy algorithm can also be implemented to
approximate a noise value range for latent perturbation along
a specific latent semantic feature vector.

Fingerprinting design with a substitutive model. In this
scenario, the fingerprinting design is assumed to have a
substitutive model with respect to the target model, even with
different structures and parameters. It is practical to train such
a substitutive model using similar training datasets like those
used to train the target model. This strategy aims to obtain an
approximation for the outer bound of noise using the given pair
of substitutive modelM for the target model f and its attacked
version M◦. Namely, the minimum noise scale added to the
latent representation distinguishes the prediction of M from
that of M◦ on the same reconstructed image. Formally, the

61353

.

"Female" "Female" "Female"
"Female"

"Male"

"Male"

"Male" "Male""Female" "Female"

"Female" "Female"

"Female" "Female" "Female"

"Male" "Male" "Male"

"Male" "Male"

"Female" "Female""Female" "Female"

Actual Model, f'

Modified model detected!

Training Sample Subspace and
Model Decision Boundary

Controllable Augmentation
w.r.t. Effectiveness Criteria

Watermarking Sample Filtering
w.r.t. Smooth Criteria Verification

Perceptual
Similarity

Encysted samples

Encysted samples for fingerprinting
Boundary of classifying
Male/Female

Encysted samples for fingerprinting

Fig. 4: Visual illustration of our public fingerprinting.

perturbation of the latent representation is the approximation
of ∆Z using loss:

max(0, logM (De(·))y −max
c 6=y

logM◦ (De(·))c) (5)

Here, De(·) = De(Z + ∆Z). The minimum loss is achieved
when M(De(Z + ∆Z))y 6 maxc6=yM◦ (De(Z + ∆Z))c,
namely, we reach one approximation of as outer bound of the
noise ∆Z. Finding the outer bound of latent perturbation for
the input data x is defined as:

∆Zoutb = arg min
∆Z ≤ ∆max,

M(De(Z + ∆Z)) =M(De(Z))

L (De(Z + ∆Z)) (6)

We define the latent noise ∆Z from an isometric normal
distribution with mean µ and standard deviation σ, denoted
by N

(
∆Z | µ, σ2I

)
. In this case, we directly use the approx-

imation of ∆Zxoutb as the µx for each input x, while σ is con-
sidered as a hyperparameter. Finally, we generate the encysted
samples by reconstructing the perturbed latent representation
using the noise ∆Z sampled from N

(
∆Z | µ, σ2I

)
, targeting

function f .

C. Sample Selection

We then apply the sample selection (lines 8-14 of Algo-
rithm 1) to enhance the smoothness of the augmented encysted
samples, using an adaptive threshold to build a pool of
smooth samples for random selection. Following augmentation
of the encysted samples using perturbation scales derived
from the two strategies above, the next step is to use the
filtering strategies to select suitable encysted samples to be
fingerprinted to meet the smoothness criterion. We retain
only the encysted samples with a higher similarity evaluation
based on LPIPS. A fixed threshold for perceptual similarity is
difficult to establish for different data types, so we propose an
adaptive approach for assessing smoothness. Given a small set
of reference instances (generally around 10) randomly selected
for each class, denoted by RIc, the LPIPS loss metric is
then applied to calculate the similarity between every two
instances of the same class. We use the average similarity
as the adaptive threshold ξc of each class for the filtering.
During the filtering, given a reconstructed encysted sample

candidate esi, the adaptive threshold ξc and reference instance
set RIc according to its predicted class via f(esi) = c are used
to decide the filtering results. Specifically, we calculate the
LPIPS similarity between the esi and each sample in RIc. The
encysted sample esi will be selected as a fingerprinting sample
only if all distances are smaller than the threshold ξc. Formally,
the encysted sample for fingerprinting is satisfied only when
LPIPS(esi, ri) ≤ ξc, ∀ri ∈ RIc. Note that the sample
selection can also incorporate other criteria filters as a defense
against adaptive attacks, as demonstrated in Section V-H, such
as prediction confidence, discriminators, or other similarity
evaluation metrics.

V. EVALUATION OF PUBLICCHECK

We evaluate the performance of PublicCheck on three
datasets: MNIST [24], CIFAR-10 and CIFAR-100 [25], and
FFHQ [26], [27]. Target classifiers are LeNet (5 layers),
ResNet-18 [28], and VGG-16 [29], respectively, with different
complexity. Details of the datasets and classification models
used in our experiments, as well as the accuracy of the original,
clean models, are in Appendix D.

As the representation capability is specific to modeling the
domain of data, generative models are commonly evaluated
from two angles: single-domain and multi-domain. Limited
by the capability of existing generative models, our primary
focus is to evaluate the performance of PublickCheck on the
single domain data. Moreover, we examine PublickCheck’s
performance with a generative model on multi-domain data
with limited quality of generation. Therefore, two data sources
are considered for the autoencoder.
(i) Public source for single domain data. The representation
capability learned from public datasets (e.g., celebrity faces)
is consistent with common human and private users from the
same domain. As the face dataset contains only celebrities, we
randomly sample 20% of training data according to identity
(e.g., 20 out of 100 people) as public available data for training
a generative model only, which is similar to sampling from
public data.
(ii) Private source for multi-domain data. We also consider
when the public dataset is unavailable or there is domain drift
for multi-domain data. The generative model is trained on

71354

sampled private training data, and 20% is used as the baseline.
We also evaluate the performance of PublicCheck on limited
categories and limited size of sampled data (5% and 10%) in
Section V-D. We find that the integrity verification detection
performance is similar under limited data settings, while the
only impacted part is reconstruction quality. It is still one of
the frontier research topics in the deep generative model field
to learn good expressive representation from cross-domain
and limited data. Instead, we implement the quality refiner
strategy to enhance the quality of reconstructed images using
less sampled data, as detailed in Appendix E.

We randomly sample 20% of training data with the same
distribution to establish the training dataset for the autoencoder
only for both public and private source settings, and we use the
remaining 80% data in the training and testing of the original
model (classifier) that we want to protect. Therefore, the 20%
selected data are from the same distribution but unseen to the
original model (classifier).

The VAE-based generative model (attribute disentangle-
ment) is used for MNIST, and the VQ-based one (abstraction
disentanglement) is used for CIFAR and FFHQ. Architectures
and hyperparameters for the generative models are given in
Appendix F. Only a small set of instances (around 20) are
sampled from the remaining 80% of the dataset, to use as the
reference samples for fingerprinting design, and evaluation.
The 80% data split is also used to train the substitutive model
in Section IV-B.

A. Evaluation Goals and Metrics

Our first experimental goal is to determine the accuracy
of PublicCheck for integrity breach detection. We test the
accuracy under various attacks, as well as under model com-
pression. In general, the less information we can derive from
the underlying target model, the more difficult it is to verify
its integrity. Therefore, we assume the worst-case scenario of
API access, where only the Top-1 classification label (i.e., the
most likely label) can be obtained.

The model fingerprint, denoted by (ES, Y), is defined to
be the Top-1 classification prediction of the original model on
the fingerprinting set of encysted samples ES. The fingerprint
is created by the model agent. Given a set of fingerprinting
pairs {(es1, y1), (es2, y2), . . . , (esM , yM)} ⊂ (ES, Y) and
the predictions Ŷ = {ŷ1, ŷ2, . . . , ŷM} of these given en-
cysted samples by the black-box API model, we define an
integrity breach to be successfully detected if: ∃ ŷi ∈ Ŷ
such that ŷi 6= yi. We report the detection rate under both
a few reference samples and substitutive model knowledge
cases in Section V-C. We investigate the performance of our
PublicCheck under more restricted scenarios in Section V-D,
in which the availability of data is limited. The overheads
associated with designing and implementing fingerprinting
samples are in Section V-E. We evaluate the performance of
our method when varying the hyperparameters, such as noise
scale, in Section V-F. The smoothness of the encysted sample
for fingerprinting is evaluated in Section V-G. Finally, we
evaluate the performance of our fingerprinting approach under

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

0

20

40

60

80

100

D
et

ec
tio

n
R

at
e

(%
)

(a) Modified LeNet on MNIST

TrojanNN
BadNet
CleanLabel
TrojanNN-5%
TrojanNN-10%
TrojanNN-50%

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

(b) Modified ResNet18 on CIFAR-10

TrojanNN
BadNet
CleanLabel
TrojanNN-5%
TrojanNN-10%
TrojanNN-50%

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

(c) Modified VGG16 on FFHQ

TrojanNN
BadNet
CleanLabel

Fig. 5: Detection rates for model integrity breaches under
three attacks (TrojanNN, BadNet, and Clean-Label) in the few
sample knowledge setting.

an adaptive attack in Section V-H. We compare our approach
to the baseline (randomly selected original reference samples)
and the adversarial-based approaches (Sensitive Sample [8] as
a typical work) for the private verification of model integrity,
with white-box knowledge on target models.

B. Experimental Setups

We mimic two adversarial settings of the integrity breach
in the experiments. The first is backdoor attacks that com-
promised the model, assuming the target model is known
and under the attacker’s control. The second scenario we
investigate is model compression as the hard case for veri-
fication (i.e., least changes in models). (i) For the backdoor
attacks, we use the TrojanZoo [30] platform to deploy the
BadNet [31], TrojanNN [6], and CleanLabel [5] attacks on
the image classification models, which are typical backdoor
attacks that compromise the training data to change the
model’s behavior at test time. In our implementation, the attack
success rate of each of these 3 adversarial models was more
than 95%. The default settings of these attacks are given in
Table VII in the Appendix. (ii) We apply weight pruning
to compress the models on three datasets. Pruning starts by
learning the connectivity via regular network training. Next,
all connections with weights below a threshold are removed,
followed by retraining the network to learn the final weights
for the remaining sparse connections. The network is pruned
by retaining only important connections, with between 15%
of weights removed for the LeNet model on the MNIST
dataset, 20% removed for the ResNet model on the CIFAR-10
dataset, and around 24% removed for the VGG16 model on
the FFHQ dataset. Pruning resulted in only a minor change in
the accuracy of each model (< 2%).

C. Evaluation on Integrity Breach Detection

1) Evaluating the black-box setting of fingerprinting design
with few training samples: Under this setting, the design of
the encysted sample for fingerprinting is only based on the
encysted noise that is restricted by µ and user-specific scale
σ described in Section IV-B. In our experiment, we set the
default perturbation scale as σ = 0.05.

Results of the detection success rate against three attacks
are reported in Figure 5. As shown, the detection rate rises
when increasing the number of encysted samples used for
verification. Even when only 2 encysted samples were used for
verification, the detection rate of integrity breaches was above

81355

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

0

20

40

60

80

100

D
et

ec
tio

n
R

at
e

(%
)

(a) Modified ResNet18 on CIFAR-100

TrojanNN
BadNet
CleanLabel

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

(b) Compressed models

MNIST
CIFAR-10
CIFAR-100
FFHQ

Fig. 6: Success detection rates for model integrity breaches
(a) under three attacks for CIFAR100 and (b) under model
compression on MNIST, CIFAR-10, CIFAR-100, and FFHQ
datasets under rare sample knowledge settings. The axes are
the number of encysted samples for fingerprinting and the
detection rate.

93% for MNIST, 97.9% for CIFAR-10, and almost 100.0%
for FFHQ. Our results also suggest that the detection rate
increases when the target model grows in size and complexity.
The reason is that the complex model has a more complicated
decision boundary, and our method has more sources to design
the fingerprinting. With 5 encysted samples for fingerprinting,
we achieve 100% detection accuracy for all the datasets and
attacks we tested. Furthermore, the overhead of model integrity
validation is minimal, with only 5 API queries.

To evaluate the effectiveness of our fingerprinting approach
on a dataset with a larger number of classes, we also applied
an evaluation on CIFAR-100. As shown in Figure 6(a), using
only 1 encysted sample for fingerprinting, the detection rate of
an integrity breach was above 88% for CIFAR-100 for all three
attacks, as opposed to 76% for CIFAR-10. Using 2 encysted
samples increased the detection accuracy for CIFAR-100 to
98%, and using 4 samples resulted in 100% accuracy. As a
result of the more complex decision hyperplane, the detection
rate increases when the classification task has more classes.

Besides the above three adversarial attacks, we also evalu-
ate the breach detection accuracy under model compression,
as shown in Figure 6(b). Using only 2 encysted samples
for fingerprinting, the integrity breach detection rate for the
compressed models was around 97% for MNIST, 98.0%
for CIFAR-10 and FFHQ, and 98.6% for CIFAR-100. We
again observe that the detection rate increases with model
complexity. Using 5 encysted samples to fingerprint the model,
we achieved 100% detection accuracy for all datasets we
tested against model compression, demonstrating the minimal
overhead associated with verification. For the dataset with
a larger number of classes, e.g., CIFAR-100, using only 1
encysted sample for fingerprinting, the detection rate of the
integrity breach could reach more than 90% under model
compression, compared to 57% for CIFAR-10. 4 encysted
samples of CIFAR-100 are able to achieve 100% detection
accuracy. This also confirms the effectiveness of our finger-
printing approach when applied to a dataset with more classes.
Comparison with baseline. When using randomly selected
samples instead of our approach to verifying three modified
models attacked by TrojanNN, BadNet, and CleanLabel, we
found the detection rates are around 10-20%, which are even
lower on compressed models (between 10-15%).

Comparison with SOTA. In this section we compare our
approach to the Sensitive Sample [8] as the state of the
art (SOTA) for the private verification of model integrity.
For the detection of adversarial attacks, the performance of
our PublicCheck under the few sample knowledge setting
is similar to that of the Sensitive Sample under the white-
box knowledge setting. For model compression, the change
of parameter values under model compression is intuitively
more significant than the change under attacks, since a large
fraction of the parameters is removed, with values reduced
to zero instead of being just slightly modified. Therefore, one
would anticipate that the detection rate for model compression
is higher than for adversarial attacks, which is demonstrated
by our results above.

We next compare the performance of PublicCheck and
sensitive samples [8] under the same model compression
settings on the CIFAR-10 classifier. Using only two samples,
PublicCheck achieves a 98% detection rate for CIFAR-10,
compared to around 84.4% for sensitive samples, and below
10% for the randomly selected training samples. 5 samples
are sufficient to achieve 100% detection for our approach. In
contrast, 10 samples are not enough to achieve 100% detection
rate for the sensitive sample approach.

It is interesting to note that the sensitive samples approach
performs much worse on model compression than on attacks.
This has demonstrated the major limitation of the sensitive
samples approach under the public verification of the model
integrity scenario. The reason is due to the design of the
adversarial perturbation used to reveal the changes in the
parameters of the target model. Namely, because it is based on
the activation or gradient of parameter updates during training.
At the same time, the model compression approaches such as
pruning also utilize similar signals to remove parameters with
lower activation, resulting in degradation of detection of the
model change. Due to this, the gradient-based perturbation for
fingerprinting was not able to detect the model changes caused
by attacks or compression approaches that utilize similar
gradient information.

These results indicate that our PublicCheck can achieve
state-of-the-art performance for model integrity verification
against diverse attacks and model compression under rare
sample knowledge settings. The advantage of our approach
is that a high detection accuracy can be achieved without
requiring any knowledge of model parameters or structure
and with a lower cost associated with designing fingerprint
samples—only feedforward procedures are required.

2) Evaluating the black-box setting of fingerprinting design
with substitutive model training: In this section, we evaluate
PublickCheck when more information about the model is
available. Under this setting, the design of the encysted sample
for fingerprinting is based on the substitutive model of the
target model and its attacked versions (Section IV-B). Figure 7
shows that, as in the few sample setting, the success detection
rate rises when increasing the number of encysted samples
for fingerprinting. When using only one encysted sample for
fingerprinting, the breach detection rate against adversarial

91356

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

0

20

40

60

80

100

D
et

ec
tio

n
R

at
e

(%
)

(a) Modified LeNet on MNIST

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

(b) Modified ResNet18 on CIFAR-10

1 2 3 4 5 6 7 8 9 10
of Fingerprinting Samples

(c) Modified VGG16 on FFHQ

TrojanNN
BadNet
CleanLabel

Fig. 7: Success detection rate for model integrity breaches
under three attacks (TrojanNN, BadNet, and Clean-Label)
under substitutive model knowledge setting. The axes are
the number of encysted samples for fingerprinting and the
detection rate (%).

attacks is higher in the substitutive model setting than in the
few sample setting, by 22% for MNIST, and roughly 11%
for CIFAR-10. When using two or more encysted samples,
the substitutive model setting continues to outperform the few
sample settings by around 1% until both approaches achieve
100% detection accuracy when using 5 encysted samples for
fingerprinting. This was observed for all datasets and attacks
tested. Additionally, we also evaluate the successful detection
rate of model integrity breaches caused by model compression
under the substitutive model setting. Using only one encysted
sample for fingerprinting, the detection rate of the integrity
breach increased by 15% to 20% in the substitutive model
setting compared to the few sample knowledge setting.

Our results indicate that our PublicCheck can perform better
against diverse attacks and model compression under substi-
tutive model settings compared to the few sample knowledge
settings, randomly selected training samples, and sensitive
samples, particularly in the model compression case. The
results demonstrate that the detection rate increases with more
information about the target model, when substitute models are
available. As 5 encysted samples for fingerprinting can obtain
the 100% accuracy of model integrity verification for both the
few samples and the substitutive model knowledge settings,
the former seems to be the more reasonable choice due to no
assumption on the model itself. These results also demonstrate
the advantage of our PublicCheck in terms of practicality and
performance under under limited knowledge.

D. Performance under Restricted Setups

We examine performance under more restrictive conditions
of the training dataset for the generative model, i.e. limited
categories and limited size of training samples.
Limited categories of available samples. The default as-
sumption for the few sample knowledge settings (used in
the previous section) is that the set of reference samples
from the training data that are used for creating the encysted
samples contain most of the classes in the dataset. However,
in practice, it may not always be possible to train generative
models with samples from all classes. Here we examine this
more limited setting in which a small set of reference samples
covering only a few categories is used. In the following, we
report our investigation on the impact of the limited categories
on integrity violation detection accuracy. We compare the

performance of PublicCheck in detecting attacked models on
MNIST and CIFAR-10 when encysted samples are generated
by using only a subset of classes, namely, by randomly
sampling 1, 2, 3, or 5 of the classes, instead of using all ten
classes in each dataset.

Next, we evaluate whether the model integrity breach de-
tection rate could be 100% within the limited number of API
queries. Results are averaged over these two datasets and all 3
TrojanZoo attacks. We report the results in Table II. In general,
we observe an increase in accuracy as the number of classes
increases. Although the detection rate of our PublicCheck
under 1, 2, 3, or 5 classes restriction has a slight drop
compared to all-classes available scenario, it is demonstrated
that even when fingerprinting samples are created for one class
only, PublicCheck still achieves 100% accuracy when using
seven fingerprinting samples for verification. It shows that
5 samples are enough to achieve 100% detection accuracy
using PublicCheck, assuming the reference samples used to
generate encysted samples for fingerprinting consist of five
randomly selected classes. Furthermore, the variance in detec-
tion accuracy decreases as the number of encysted samples
increases. Increasing the number of different classes used in
the encysted samples had little impact on the variance. It
demonstrates our approach’s generalization ability, relying on
the well-encysted and fine-granularity measure of the decision
boundary using the attributed augmentation in the latent space.
Specifically, due to the structural perturbation of PublicCheck,
each encysted sample is generated from a randomly sampled
perturbation, which lies very close to a random part of the
decision boundary of the classification model. The prediction
on the encysted sample for fingerprinting is used to distinguish
whether the boundary of the verified model has the right
disturbed in that localized region. Every additional fingerprint-
ing sample then may test a different localized region of the
decision boundary, thereby increasing the detection ability of
PublicCheck.
Varying sampled data for training the autoencoder. We
further evaluate the performance of PublicCheck under re-
stricted training data for the autoencoder. In particular, we
evaluate the performance of PublicCheck on less sampled
data (5%, 10%) compared to the 20% baseline. As shown in
Figure 5, the detection accuracy results on 5% and 10% size
of sampled data are similar to the 20% baseline (achieve 100%
accuracy with sample verification for both 5% and 10% less
sampled data settings, and only within 2% drop with less than
5 samples verification). We find that the impacted part is the
quality of the reconstructed images. The reconstruction error
(MSE) of the 10% and 5% size setting increases by 39.2%
and 63.3% respectively, compared to the 20% baseline, as
shown in Figure 11 in the Appendix. However, after applying
our quality booster strategy, the reconstruction error from the
5% and 10% size settings is equivalent to the 20% baseline
and 50% size settings, respectively. After applying the quality
refiner, the reconstruction distribution of the 10% and 5% size
settings are similar to 20% baselines, as shown in Figure 12
in the Appendix.

101357

TABLE II: Performance of PublicCheck under restricted setups. The detection rates of PublicCheck under 1, 2, 3, or 5 classes
restriction have a slight drop, compared to the all-classes available scenario, demonstrating that even when watermark samples
are created for 1 class only, PublicCheck still achieves 100% accuracy when using 7 watermark samples for verification.

of Classes Detection Rate (mean± std) w.r.t. # of Encysted Samples

1 2 3 4 5 6 7 8 9 10

1 59.0± 8.2% 92.1± 2.3% 94.1± 2.1% 97.8± 0.4% 99.2± 0.3% 99.8± 0.1% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
2 59.0± 8.2% 94.4± 2.0% 94.8± 1.9% 98.1± 0.4% 99.8± 0.1% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
3 59.0± 8.2% 94.6± 1.9% 96.7± 0.5% 99.1± 0.3% 99.9± 0.1% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
5 59.0± 8.2% 94.8± 1.9% 96.8± 0.5% 99.3± 0.2% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%

Varying the number of reference samples. In this work,
20 randomly sampled references can generally achieve 100%
detection accuracy with 5 verification samples. The 5-sample
accuracy values for [2, 4, 6, 10] reference samples are from
99% to 100%, while the 7-sample accuracy is all 100%. The
number of reference samples is mainly used in the smoothness
filtering, which may be further reduced as the generative
ability increases.

E. Performance across Various Noise Scales

To conduct the augmentation, we add a perturbation to
the latent code that controls specific attributes. Generally, the
generation of encysted samples aims to produce inner and
outer encysted samples as close to the decision boundary
as possible, via reconstructing the selected latent code after
adding randomly sampled noise from the given distribution
N (µ, σ) under the few sample knowledge settings. As the
noise scale σ should be decided in advance as a hyperparam-
eter, we now investigate “How does scaling the noise impacts
the accuracy?”. Intuitively, a smaller noise scale, σ, could
result in a better performance of the fingerprinting samples,
since more minor noise leads to inner and outer samples being
closer to the decision boundary. We conduct experiments to
evaluate the detection rate of our method when varying the
noise scale σ. The results are reported in Table III, confirming
the intuition above that a smaller noise scale brings a higher
detection rate. Even under the broader noise scale, i.e., 0.1
or 0.5, six or nine encysted samples for fingerprinting are
sufficient to achieve 100% detection accuracy, demonstrating
the effectiveness of our method with the flexible settings. Fur-
thermore, the variances of detection accuracy against different
attacks decrease as the number of encysted samples increases.
The variance of detection accuracy is also reduced as the scale
of noise decreases. Generally, there is a trade-off between
accuracy and overheads of computation. If smaller steps are
taken, it takes more iterations to find the marginal value
of the encysted boundary (e.g., µ). Accordingly, a broader
noise scale could improve the performance of a fast and
flexible fingerprinting design, which is suitable for resource-
constrained devices. We demonstrate this argument in the next
section with respect to the run-time overheads.

F. Overheads for Fingerprints Design

We examine the run-time as an overhead measure to
demonstrate the practicality of PublicCheck. We mimic the
end-users as a laptop with GPU resources (NVIDIA Quadro
RTX 4000 8GB and i7 9900 16G CPU), and the other has

CPU resources only (i5 8265U 8GB CPU). Two types of
consumed time are examined. One is the generation of one
individual encysted sample, and the other is the generation and
selection of one smooth encysted sample (which we refer to
as the generation of one smooth encysted sample). The run-
time to generate a single encysted sample for fingerprinting
for three given datasets under various noise scale settings is
reported in Table IV. Given the once-off trained generator,
the encysted noise range, and the default noise level of 0.05
used in our experiments, the generation time of each encysted
augmentation is less than 2s for all testing datasets, including
the high-fidelity images such as FFHQ images. For MNIST
and CIFAR datasets, the time values are 0.33s and 0.83s for
each encysted augmentation, respectively. We also report the
generation time for each augmentation of high-fidelity FFHQ
images for CPU-Only end users, which is around 15s per
augmentation.

To ensure the smooth appearance requirement under public
verification, a further filtering procedure is conducted on the
set of augmented encysted samples. The overhead for the
filtering procedure is minimal, less than 0.2s for selecting one
smooth encysted sample for fingerprinting. The total time for
the combination of augmentation and filtering of one encysted
sample for fingerprinting varies from roughly 2s for MNIST,
CIFAR-10, and CIFAR-100, to roughly 9s for FFHQ, under
0.05 noise level for GPU end users. For CPU-only users, run-
time is similar to GPU users’ for simple cases like MNIST and
CIFAR-10 but can be longer for tasks involving larger class
numbers or high-fidelity inputs. A possible solution for CPU
users is to perform parallel processing for LPIPS evaluation
across classes and the generation of encysted samples. Once
fingerprinting samples have been generated, the time required
to verify a deployed model is less than 0.2s per sample.
Therefore, we can expect model verification to take less than
one second when we have five fingerprinting samples. Thus,
our solution can be deployed in real-time applications.

There is a trade-off between noise scale and overheads
of computation. The broader the noise scales, the less time
is used to conduct the encysted samples for fingerprinting.
To achieve more efficient verification, smaller noise scales
must be used, which means more iterations are needed to
determine the marginal value of the encysted boundary. As
demonstrated in Section V-E, even under the larger noise
scale, i.e., 0.5, nine encysted samples for fingerprinting are
sufficient to achieve 100% detection accuracy, demonstrating
the effectiveness of our method with the flexible settings.
In this setting, the generation of the encysted samples for

111358

TABLE III: Performance of PublicCheck when varying noise scale. Even under the broader noise scale (i.e., 0.10 or 0.50), 7
or 9 encysted samples for fingerprinting are sufficient to achieve 100% detection accuracy.

Noise Scale σ Detection Rate (mean± std) w.r.t. # of Encysted Samples

1 2 3 4 5 6 7 8 9 10

0.01 65.1± 7.2% 95.7± 1.2% 97.9± 0.4% 99.9± 0.1% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
0.05 59.0± 8.0% 94.9± 1.8% 96.8± 0.5% 99.4± 0.2% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
0.10 44.5± 9.2% 87.9± 3.1% 90.4± 2.5% 93.6± 2.1% 95.5± 1.2% 99.5± 0.2% 100± 0.0% 100± 0.0% 100± 0.0% 100± 0.0%
0.50 30.3± 9.9% 53.4± 8.2% 66.4± 7.5% 79.8± 5.4% 84.3± 3.9 92.4± 2.3% 95.7± 1.1% 98.7± 0.3% 100± 0.0% 100± 0.0%

TABLE IV: Time(s) required to generate a smooth watermark-
ing sample for various noise levels using GPU/CPU.

Datasets Execution time under GPU/CPU settings (second)

σ = 0.50 σ = 0.10 σ = 0.05 σ = 0.01

MNIST 0.5 / 1.3 1.2 / 2.0 2.3 / 2.3 7.1 / 20.1
CIFAR-10 0.6 / 0.7 1.3 / 1.5 2.1 / 2.9 7.8 / 13.3
FFHQ 1.2 / 15.0 4.8 / 25.0 9.1 / 59.0 44.4 / 230.0

fingerprinting with smoothness filtering takes around 1 second
for all three datasets, including high-fidelity images.
Comparison with SOTA. Compared to Sensitive Sample [8],
we tested the time to generate sensitive samples on the same
dataset, taking human face images as an example under the
GPU settings. It took 2965s to generate 100 samples, and then
an additional 725s to select the best 10 examples from those
100 according to its Maximum Active-Neuron Cover Sample
Selection, giving a total time of 3690s to generate 10 samples.
Using a filtering ratio of selecting the 10 best samples from a
pool of 100 generated samples, the time to generate a single
fingerprinting sample is roughly 369s, compared to around 1s
for our PublicCheck. Reducing this filtering procedure would
reduce the generation time at the cost of degradation of the
performance for the selected sensitive samples. However, the
time to generate one candidate of the sensitive sample (with
no filtering) is still of the order of 30s, revealing that the
generation of PublicCheck is still much faster.

G. Evaluation of Smoothness

We demonstrate the smoothness of the generated encysted
sample for fingerprinting in this section. We first visualize the
produced encysted samples for fingerprinting in Figure 13 in
the Appendix. As shown, there are few artifacts introduced in
the encysted samples compared to the original reference sam-
ples. Generally, the generated samples’ small texture or color
temperature is modified by manipulating the corresponding
latent codes. Thus, from human perception, these generated
encysted samples are smooth. These results confirm the advan-
tages of our method under the public verification scenarios. In
addition to this, we also report the quantitative evaluation of
the smoothness of encysted samples for fingerprinting, using
the LPIPS metric in Figure 8. The average LPIPS values
of the encysted samples for MNIST and CIFAR-10 among
classes are approximately 0.2, 0.45, and 0.55 for CIFAR-
100 and FFHQ, respectively. The smoothness of encysted
samples for fingerprinting is obvious and consistent among
different classes for all these three datasets (FFHQ is a male
and female class), demonstrating that they are smooth in
pixel space. We provide more smoothness evaluation toward

1 2 3 4 5 6 7 8 9 10
of Classes in Fingerprinting Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LP
IP

S
D

is
ta

nc
e

Naturality of Encysted Samples

MINIST
CIFAR-10
FFHQ

Fig. 8: Smoothness of encysted samples for fingerprinting
among different classes.

indistinguishability between encysted and normal samples in
the following part.
Comparison with SOTA. Roughly 25% of randomly aug-
mented encysted samples satisfy the smoothness evaluation
in terms of the adaptive threshold (0.57). In contrast, we
demonstrate that only 1% of sensitive samples meet the
adaptive smoothness threshold (LPIPS = 0.65). For the time
cost, generating one smooth sensitive sample takes more than
one hour, which is infeasible in practice. Our PublicCheck
only takes 9 seconds to generate one smooth encysted sample
for fingerprinting. The visualization of the successful sensitive
samples is shown in Figure 9 in the Appendix, which does
not seem smooth for human perception despite having a small
pixel-wise error level.

H. Evaluation of Adaptive Attacks

1) Adaptive attack settings: The attacker’s capability of
collecting verification samples is limited as the verification
samples are provided after the paywall (e.g., limited by the
amount of API purchased). To demonstrate the worst-case,
we consider the scenario when a large number of verifica-
tion samples and associated labels are directly collected by
the adversary, denoted by LK-I, mimicking an information
leakage of the exact generative and verification capabilities.
We assume the sampled data for the generative model is
encrypted and transmitted only between the model developer
and the independent secure verification server. Therefore, it is
not possible for the adversary to gain access to the training
data. We further consider the ramification if the sampled data
was stolen as another worst-case scenario, LK-II.

First, we consider that the attacker may collect a set of
N collected verification samples for each class along with
original samples (e.g., public available samples from the same

121359

domain, or the sampled data to train the generative model),
i.e., LK-I+LK-II. Three types of adaptive attacks (AA1-3)
are evaluated under such a scenario. Furthermore, we consider
two attacks (AA4-5) when the adversary leverages a substitute
generative model trained on the LK-II.
AA1: Adaptive detector. A threshold-based detection that uses
leaked samples to identify original samples from verified sam-
ples. The detection criteria include prediction behavior (e.g.,
confidence) via a classifier, perceived similarity of images, and
reconstruction error via an autoencoder.
AA2: Adaptive classifier. A DNN-based classifier conducts
binary classification on leaked samples.
AA3: Adaptive adversarial training. Leaked samples are used
to conduct adversarial training on the attacked model (e.g.,
backdoored version) in order to bypass verification (produce
the correct prediction on the verification sample).
AA4: Substitute discriminator. In the scenario LK-II, a
substitute generative model associated with a discriminator
(such as GAN or VAE-GAN) is trained to distinguish between
generated images and original images.
AA5: Substitute adversarial training. Using the substitute
generative model trained in LK-II, the adversary simulates
the encysted sample generation procedure to obtain verification
samples for adversarial training.

2) Adaptive attacks evaluation and analysis: To evalu-
ate AA1, AA2, and AA3, N encysted samples (N =
10, 50, 1000, 2000) for each class and 20% original training
data are assumed to be collected by the adversary.
Results for AA1 and AA2. We evaluate the prediction
confidence values, the logit values before the softmax, and
the Structural Similarity Index Measure (SSIM) perceived
similarity values of encysted samples, compared with original
samples. We find that the prediction confidence values and
the logit values of encysted samples under different settings
are similar in mean and distribution. We further evaluate the
perceived similarity (SSIM) and Learned Perceptual Image
Patch Similarity (LPIPS) values on generated encysted sam-
ples, under different settings (N = 10, 50, 1000, 2000). The
experimental result shows that the similarity is high (mean
SSIM 0.9, LPIPS 0.05) between the encysted samples from
20% baseline and original samples. Even the similarity is
dropped when decreasing the data size to 5% (mean SSIM
0.85, LPIPS 0.06) and 10% (mean SSIM 0.88, LPIPS 0.052),
and similarity increases to 20% baseline equivalent or better
after applying the quality refiner strategies. To conclude, it is
not practical to distinguish encysted samples from the original
samples using the threshold in terms of prediction behaviors
and perceived/perceptual similarity.

Additionally, we also examined the indistinguishability of
the samples through a stronger detector based on reconstruc-
tion errors between the input image and its reconstructed
image via a pre-trained autoencoder to differentiate the ver-
ification samples. The result shows that more than 91.2%
(out of 1,000) pixel-wise perturbations are identified by the
reconstruction error-based detector, while the detection rate
for our structural perturbation is less than 2.3% (out of 1,000)

using the same reconstruction error threshold and pre-trained
autoencoder. As demonstrated in Figure 14 in the appendix,
the pixel-wise perturbation results in a larger reconstruction
error. A reconstruction error threshold (e.g., 10, under different
versions of pre-trained autoencoder) could be used to identify
most of the verification samples derived from existing pixel-
wise perturbation based approaches. The distribution of the
reconstruction error of encysted samples is within the value
range for original samples. Namely, the identification of en-
cysted samples is at the expense of misidentifying original
samples. For example, the threshold used to identify 90%
encysted samples results in roughly a 50% false positive rate
on original samples. This reconfirms the indistinguishability
of the encysted samples. Furthermore, the results of the AA2
confirm the indistinguishability of our encysted samples that
the real/fake binary classification result for the classifier is
equal to the random guess (50%) under all data size settings.
On the other hand, our smoothness filtering after encysted sam-
ple generation could also include the conditions incorporating
these criteria to further ensure that verification samples are
within the indistinguishable value range, based on the infinite
generation capability. The demonstrated indistinguishability
will force the service provider to give up verification manipu-
lation, as the provider can neither identify a query nor treat all
queries as verification queries (leading to the loss of service
quality).
Results for AA3. Given the target deployed model TM ,
the adaptive adversaries combine these verification samples
and labels into the training data in order to construct the
compressed model TM ′ (hard case for verification). Next,
the verification function is used to generate new encysted
samples to distinguish TM ′ from TM . We first test the
performance of the Sensitive Sample against the AA3 detec-
tor. The results indicate that the detection accuracy sharply
decreases when the network is trained with sensitive samples
along with their clean pairs. Based on adversarial training
with N = 1000, the attacked model could bypass more
than 80% of sensitive samples created by the baseline [8],
resulting in a similar performance to the randomly selected
training samples. Adversarial training has successfully learned
the distribution of fingerprinting patterns created by Sensitive
Samples, demonstrating that AA3 is a strong adaptive attack.
However, the detection accuracy of PublicCheck for TM ′ is
not affected after applying adversarial training with different
amounts of publicly released encysted samples (less than 2%
of verification samples are compromised by adaptive attack).
We acknowledge that the abusive collection of verification
samples shall be restricted by the prescribed amount of API
consumed.

The robustness against the strong adversarial training-based
attack and model extraction is based on uncertainty and ran-
domness in the generation of encysted samples. The released
augmented encysted samples could be regarded as randomly
sampled points distributed around uncertain areas of the deci-
sion boundary of the target model, which are treated as noisy
samples and excluded from the learning process (see detailed

131360

explanation in Appendix G).
Results for AA4 and AA5. We also demonstrate the per-
formances of AA4 and AA5 attacks when the adversary
leverages a substitute generative model trained on the LK-II.
The real/fake classification results of the discriminator of
a GAN are equal to the random guess (50%) under all
data size settings. The discriminator of a VAE-GAN slightly
outperforms classification (roughly 49.5% across all data size
settings), which will be reduced to a random guess level after
incorporating the VAE-GAN into the autoencoder of Public-
Check training. The performance of the adversarial training,
using the 2000 surrogate encysted samples via the substitute
generative model trained on LK-II, is similar to that of
AA3, without impacting the detection accuracy and bypassing
less than 1% of encysted samples. These results demonstrate
the robustness of PublicCheck against adversarial attacks,
especially after incorporating the adversarial strategies into
the filter. We also note that discussions of Denial-of-Service
attacks (e.g., abuse of the generation of verification samples
by compromised accounts) and attacks on communication
protocols (e.g., session key distribution) are beyond the scope
of this paper.

VI. CONCLUSION

We propose a practical run-time deep models verification
scheme PublicCheck, for ensuring the integrity of cloud-
enabled deep models with public verifiability. We show that
PublicCheck can withstand model integrity attacks and com-
pression. We also show PublicCheck can achieve three impor-
tant requirements that (i) [Lightweight] only five randomly se-
lected encysted fingerprinting samples are sufficient to achieve
a 100% verification and zero false-positive rates, without
any extra coverage-guarantee mechanism; (ii) [Smoothness]
our structured perturbation in the latent space has reason-
able controllability and disentanglement strategies; (iii) [Anti-
counterfeiting] linear perturbations in the latent space will
result in non-linear structural change in the pixel space. These
augmented encysted samples could be randomly scattered over
the vicinity of the decision boundary of the target model and
multi-class reference samples for random augmentation will
further help prevent blind spots on the decision boundary. We
also demonstrate the robustness of PublicCheck against five
adaptive attacks. We hope that PublicCheck could be amenable
to future-generation verification in deep neural networks.

ACKNOWLEDGEMENT

The work has been supported by the Cyber Security Re-
search Centre Limited whose activities are partially funded
by the 1348 Australian Government’s Cooperative Research
Centres Programme.

REFERENCES

[1] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu,
“Hidden backdoors in human-centric language models,” in Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2021, pp. 3123–3140.

[2] S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 5,
pp. 2088–2105, 2020.

[3] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. Miller, “Back-
door embedding in convolutional neural network models via invisible
perturbation,” in Proceedings of the Tenth ACM Conference on Data
and Application Security and Privacy, 2020, pp. 97–108.

[4] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[5] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,”
2018.

[6] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” Network and Distributed Systems
Security (NDSS) Symposium, 2018.

[7] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang, “The “Beatrix”
resurrections: Robust backdoor detection via Gram matrices,” Network
and Distributed System Security (NDSS) Symposium, 2023.

[8] Z. He, T. Zhang, and R. Lee, “Sensitive-sample fingerprinting of deep
neural networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4729–4737.

[9] H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba, A. Fu, S. Al-Sarawi,
and D. Abbott, “Quantization backdoors to deep learning models,” arXiv
preprint arXiv:2108.09187, 2021.

[10] Y. Tian, F. Suya, F. Xu, and D. Evans, “Stealthy backdoors as com-
pression artifacts,” IEEE Transactions on Information Forensics and
Security, vol. 17, pp. 1372–1387, 2022.

[11] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1615–1631.

[12] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and Ap-
plications, vol. 32, no. 13, pp. 9233–9244, 2020.

[13] N. Lukas, Y. Zhang, and F. Kerschbaum, “Deep neural network finger-
printing by conferrable adversarial examples,” in International Confer-
ence on Learning Representations, 2021.

[14] J. Fridrich and M. Goljan, “Robust hash functions for digital wa-
termarking,” in Proceedings International Conference on Information
Technology: Coding and Computing (Cat. No. PR00540). IEEE, 2000,
pp. 178–183.

[15] H. Kim and A. Mnih, “Disentangling by factorising,” in International
Conference on Machine Learning. PMLR, 2018, pp. 2649–2658.

[16] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in beta-vae,” arXiv
preprint arXiv:1804.03599, 2018.

[17] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 586–595.

[18] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse
high-fidelity images with vq-vae-2,” in Advances in Neural Information
Processing Systems, 2019, pp. 14 866–14 876.

[19] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation
learning,” in Advances in Neural Information Processing Systems, 2017.

[20] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[21] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “Nattack: Learning the
distributions of adversarial examples for an improved black-box attack
on deep neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 3866–3876.

[22] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmid-
huber, “Natural evolution strategies,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 949–980, 2014.

[23] H. Mohaghegh Dolatabadi, S. Erfani, and C. Leckie, “Advflow: Incon-
spicuous black-box adversarial attacks using normalizing flows,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 15 871–
15 884, 2020.

[24] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

141361

[25] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[26] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4401–4410.

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 8110–8119.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] R. Pang, Z. Zhang, X. Gao, Z. Xi, S. Ji, P. Cheng, and T. Wang,
“Trojanzoo: Everything you ever wanted to know about neural backdoors
(but were afraid to ask),” in arXiv Preprint, 2020.

[31] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[32] Z. Wang, “Zero-shot knowledge distillation from a decision-based black-
box model,” in International Conference on Machine Learning. PMLR,
2021, pp. 10 675–10 685.

APPENDIX A
AUTOENCODER-BASED GENERATIVE MODELS

A. Variational autoencoder (VAE)

The loss of VAE incorporated with a TC term is given as
follows:

LVAE = LRec −DKL[(qφ(z|x)||p(z))]− υ TC(z) (7)

The first term LRec is the reconstruction error based on LPIPS,
which assesses whether the latent codes z are informative
enough to reassemble the original instance. The second part
is a regularization term, to push Encoder qφ(z|x) to match
the prior distribution p(z), e.g., a Gaussian distribution. The
third part is the TC term, to measure the dependence for
multiple random variables, with υ = 40. We replace the de-
fault pixel-wise reconstruction evaluation with the perceptual
evaluation metric Learned Perceptual Image Patch Similarity
(LPIPS) [17], calculated as a weighted difference between two
VGG16 embeddings.

B. VQ-based Generative Models

The codebook C defines the commonly-shared latent em-
bedding space C ∈ RK×D, consisting of K categorical

(a) (b)

Fig. 9: A verification sample is generally created from an
original example by adding a trigger or pixel perturbation in
existing works. Such pixel-level patterns can be distinguished
by human perception. (a) Sensitive Samples [8] for private
verification of model integrity (Second row). The first row is
the original images. (b) Triggers (Trojan Square and Trojan
Watermark) used in Backdoor attacks [6].

Fig. 10: Demonstration of a VQ-based generative model.

embedding items with D dimension, i.e., Ci ∈ RD, i ∈
{1, 2, . . . ,K}. The encoder is a non-linear mapping from the
input instance x in the pixel space the latent representation
ze(x) ∈ RW×H×D, namely, W ×D latent embedding vectors
with D dimension (z(i,j)

e ∈ RD, i ∈ {1, 2, . . . ,W}, j ∈
{1, 2, . . . ,H}). Then, the latent representation ze(x) is further
mapped to a discrete latent matrix z(i,j) ∈ R1. Here, each
z(i,j) is the index of the nearest embedding items Cnrs in
the codebook for each z

(i,j)
e via nearest neighbour searching

arg minm

∥∥∥z(i,j)
e (x)− Cm

∥∥∥, also called Vector Quantized, as
demonstrated in Figure 10. The decoder reconstructs back
to pixel space using the queried embedding items zq(z)
corresponding to the discrete latent index matrix via another
non-linear function. Trainable parameters for the model are the
union of parameters of the encoder, decoder, and codebook.
The loss function is:

Dist(x−De(zq)) + ‖sg[En(x)]−Cnrs‖22 + β‖sg[Cnrs]− En(x)‖22 (8)

The operator sg refers to a stop-gradient operation that
blocks gradients from flowing into its argument, and β is
a hyperparameter to control the reluctance to change the
code corresponding to the encoder output. The first term is
the gradient of the reconstruction error Dist(x − De(zq)),
which will be back-propagated through the decoder, and to
the encoder using the straight-through gradient estimator. The
procedures of training encoder and decoder, and exponential
moving average updating of the codebook are followed [18],
[19], while replacing the default pixel-wise reconstruction
evaluation with the perceptual evaluation metric Learned Per-
ceptual Image Patch Similarity (LPIPS) [17]. Although the
training time of the VQ generative model takes hours for 256x
images, that is a once-off procedure on the server side that
could be carried out in parallel across several GPUs or by
using the pre-trained model for transfer learning to further
reduce the training time. Additionally, the generative could
be reused for similar datasets, e.g., the model pre-trained on
the FFHQ face dataset could be used for other human face
datasets.

151362

APPENDIX B
BOOSTING STRATEGIES FOR INFINITE SUPPLY OF

VERIFICATION SAMPLES

One of the advantages of our approach is that it enables
large amounts of disposable verification samples. Firstly, for
each user, only 5 verification samples can achieve a 100%
verification accuracy (Section 5.3). Secondly, an infinite num-
ber of perturbations (within a specific noise range) could
be sampled from the latent space, producing a plethora of
encysted samples (1 code-1 reference). A set of reference
original samples would further enhance the number of ver-
ification samples (1 code n reference). The amount could still
be further boosted to infinity by combining existing latent
codes (e.g., selecting two or more latent codes simultaneously
to add the same or varying perturbations, n code strategy),
or extending the dimension of the latent representation (ex-
tended dimension code strategy), or assuming different noise
distributions (extended distribution-code strategy). Due to the
strong and efficient generation ability of our fingerprinting
approach, it is possible to provide the once-off verification
in practice. Further, the attacker’s capability of collecting
verification samples is limited as the verification is provided
with API purchasing and under a verification budget (e.g. 10
times per day per client).

APPENDIX C
BLACK-BOX SETTINGS

We redefine the term black-box in our work into twofold:
(i) there is only black-box access to the model to perform
verification; (ii) the design of the fingerprinting of the model
is conducted with black-box knowledge about the model. The
existing pixel perturbation-based fingerprinting approaches re-
quire white-box knowledge about the certified model, which
is not always available to the participants in the MLaaS life
cycle, such as the model agents. The licensed model obtained
by the model agent is typically protected or encapsulated as
executable files. Additionally, model files may be encrypted by
compilation, shelling, or confusion, making them difficult to
decompose. Furthermore, a model may not be gradient-based,
such as simulated annealing or evolutionary strategies. In such
circumstances, verification samples can only be generated in
a black-box fashion. Moreover, with the white-box knowledge
restriction, any users who do not have white-box access to
the model will not be able to utilize the model fingerprinting
services. Our approach eliminates the white-box knowledge
restriction in favor of a more practical black-box knowledge
scenario. The generalized and practical black-box knowledge
assumption on the model brings more benefits, such as the
provision for the infringement assessment of two deployed
models by third parties, or the provision of regular integrity
checks remotely from the end users’ side rather than the
server’s.

TABLE V: Classification model and baseline accuracy.
Dataset Task Model Accuracy

MNIST Digit Classification LeNet 99.97
CIFAR-10 Image Classification ResNet18 [28] 93.59
FFHQ Gender Classification VGG16 [29] 89.87

TABLE VI: Default hyperparameter settings.

Parameter Default Values

MNIST CIFAR-10 FFHQ

Input size 28 256 256
β N/A 0.25 0.25
Batch size 16 128 128

Codebook size N/A (512,64) bottom (512,64)
top (256,32)

Training steps 50 25000 25000
Learning rates 1e-4 2e-4 2e-4

APPENDIX D
DATASETS AND SETTINGS

(i) MNIST consists of 28 × 28 grayscale handwritten digits
0-9, and has a training set of 55,000 instances and a test set
of 10,000 instances.
(ii) The CIFAR-10 dataset consists of 60,000 32×32 color
images in 10 classes, with 6,000 images per class.
(iii) CIFAR-100 dataset contains 100 classes with 600 images
per class. The images are resized to 64px in our experiments.
(iv) Flickr-Faces-HQ (FFHQ) consists of 70,000 high-quality
1,024×1,024 resolution human face images from Flickr and
is associated with considerable variation in terms of age,
ethnicity, and image background. The images are resized to
256px in our experiments.

Table V shows the classification models used in our experi-
ments for each of these datasets, and the corresponding model
accuracy.

Our DNN techniques are implemented using PyTorch, back-
door attacks are deployed in the TrojanZoo [30] platform,
and the PublicCheck in Python. The number of instances
that are randomly sampled as reference samples is generally
3-4 times of the required number of the encysted sample
for fingerprinting. For example, if four encysted samples for
fingerprinting are desired, accordingly, we randomly select 20
reference samples to conduct augmentation, followed by ran-
domly selecting 4 augmented encysted samples that satisfied
the smooth appearance. Each entry in the results of perfor-
mance for fingerprinting is averaged over 1,000 repetitions of
augmentation and selection.

APPENDIX E
QUALITY REFINER STRATEGIES

The quality refiner consists of data augmentation and knowl-
edge distillation from the target model. One method for
loosening the restrictions regarding the amount of training data
accessible for training generative models is data augmentation,
such as Differentiable Augmentation (DiffAugment), in which
the performance of a generative model trained on 100 seed
images for augmentation is comparable to that of the model
trained on the entire dataset (demonstrated in the human

161363

50% 20% 10% 5% 10%+QR 5%+QR
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
R

ec
on

st
ru

ct
io

n
E

rr
or

 (M
SE

)

Fig. 11: MSE under various limited data settings.

face, CIFAR-10 and Imagenet). On the other hand, during
autoencoder training, there is also auxiliary knowledge that
we can draw upon, namely, the well-trained classifier trained
on the entire training dataset, even with only black-box access.
Therefore, the decision-based black-box knowledge distillation
[32] is used to transfer the knowledge of the well-trained clas-
sifier (black-box teacher) to the student classifier that consists
of the encoder portion (and the common codebook) + one fully
connected layer and softmax, using the augmented samples
(e.g., rotation between [−10◦, 10◦]) and associated labels. The
soft label of each training sample can be constructed with the
value of sample robustness (the distance from a sample to the
targeted decision boundary) and used for training the student
via knowledge distillation. Then, we train the decoder portion
of the network (while fine-tuning the encoder weights with a
smaller learning rate) using the augmented samples.

APPENDIX F
ARCHITECTURES AND HYPERPARAMETERS

The VAE-based generative model (attribute-level disentan-
glement) is used for MNIST, and the architecture and hyper-
parameters are similar to the settings in [15]. The encoder
consists of four convolutional layers with steps of 2 and a
window size of 4 × 4, followed by two fully connected layers
with 128, 2 × 10 hidden units respectively. In the decoder,
there is one fully connected layer (128 hidden units), followed
by four transposed convolutions with stride 2 and window
size 4 × 4. The VQ-based generative model (abstraction-
level disentanglement) is used for CIFAR and FFHQ. As the
CIFAR-10 images are of low fidelity, we combine the top
and bottom encoder into one, i.e., the ordinary VQ-based
autoencoder in Appendix A-B is used. The architecture and
hyperparameters of the ordinary VQ-based autoencoder are
similar to the settings in [19] and that of the two-encoder VQ-
based generative model (abstraction-level disentanglement) for
FFHQ are similar to the settings in [18]. The encoder consists
of two convolutional layers with a stride of 2 and a window
size of 4 × 4, followed by two residual 3 × 3 blocks
(implemented as ReLU, 3 × 3, ReLU, 1 × 1), all of which
have 128 hidden units. In the decoder, there are two residual
3 × 3 blocks, followed by two transposed convolutions with
stride 2 and window size 4 × 4. Default hyperparameters are
in Table VI.

Ori-
20

%

Ver
if-2

0%

Ori-
10

%

Ver
if-1

0%

Ori-
5%

Ver
if-5

%

Ori-
10

%+QR

Ver
if-1

0%
+QR

Ori-
5%

+QR

Ver
if-5

%+QR

Pix
el-

wise

0

10

20

30

40

50

60

R
ec

on
st

ru
ct

io
n

E
rr

or
 (%

)

Fig. 12: Reconstruction errors for verification samples.

(a) (b)

Fig. 13: Encysted samples for fingerprinting on MNIST (a)
and FFHQ (b). The first row is the original reference samples,
second and last row is the inner (same prediction with the
reference) and outer (different prediction) encysted samples,
respectively, as close to the decision boundary.

APPENDIX G
ABILITY AGAINST ADAPTIVE ATTACKS

Our approach could defeat such strong adaptive attacks for
the following reasons. As shown in Figure 15, adversarial
perturbation in the pixel space is around an ε-ball, which
exhibits spatial clustering patterns. In addition, due to the
restriction into a certain region of the decision boundary, the
misclassification behavior caused by such pixel perturbation is
also with some certainty. An adaptive attack may therefore use
adversarial training to learn such patterns to fix a certain region
of the decision boundary and defeat the pixel perturbation.

By contrast, our perturbation occurs in the latent space after
non-linear encoding and is then reconstructed into the pixel
space through non-linear decoding. During each augmentation,
these augmented encysted samples may be distributed over
multiple parts of the decision boundary of the target model
uncertainly. Moreover, using multiple reference samples across
multiple classes for random augmentation will allow coverage
of a wider region of the decision boundary. Consequently, the
region of the decision boundary that needs to be fixed by
adversarial training is uncertain and covers a wide area of
the decision boundary. Further, the misclassification behavior
caused by encysted samples generated by our methodologies
is also high in uncertainty, generally among multiple classes.
Namely, such encysted samples are hard to handle for the

171364

TABLE VII: Attack default settings.

Attack Parameters Values

Training learning rate, retrain epoch, opti-
mizer, momentum, weight decay

0.01, 50, SGD,
0.9, 2× 10−4

BadNet poison percent 0.1

TrojanNN layer, neuron, optimizer, lr, iter,
threshold, target

logits, 2, PGD,
0.015, 20, 5,10

Clean-Label poison generation, tau, epsilon,
noise dim, iter

PGD, 0.4, 0.1,
100, 1000

20% 10% 5% 10%+QR 5%+QR

0

2

4

6

8

10

R
ec

on
st

ru
ct

io
n

E
rr

or
 (%

)

Fig. 14: Reconstruction quality of encysted samples under
limited data settings.

capability of the protected model. For example, given a
reference sample and selected latent code z, the reconstructed
samples x′ and x′′, by adding 0.01 and 0.02 perturbations to
z respectively, may have different predicted labels from the
protected model. x′ and x′′ also share high similarity in the
pixel space. As illustrated in Figure 15, three reconstructed
images with similar latent perturbations (also visually similar)
have totally different predictions.

For adversarial training conducted by the adaptive attacker,
it is reasonable to treat our encysted samples as noisy samples
and exclude them from the learning process. Due to the un-
predictability, the labels of these encysted samples are usually
distributed among multiple classes, which is not imbalanced,
resulting in weight loss ineffectiveness.

Why smoothness is important in the public verification
scenario? (i) The dishonest cloud may implement commonly
adopted anomaly detection approaches to identify the queried
verification samples using their abnormal patterns in pixel
space. This is the reason why existing fingerprinting ap-
proaches can be defeated, because fingerprinting patterns, such
as the trigger pattern and pixel-wise perturbation pattern, can
be easily identified. The fingerprinting design in pixel space
and detection approaches are both operating in pixel space,
one side always beats the other, as a Min-Max zero-sum
game. Therefore, powerful attacks could always be designed
to undermine the pixel-wise fingerprinting design. However,
our fingerprinting design is conducted in the latent space,
while guaranteeing smoothness in the pixel space as well. The
reconstruction error via an autoencoder has been demonstrated
to be efficient to detect pixel-wise perturbation, detecting more

(a) (b)

Fig. 15: Demonstration of the robustness against adaptive
attacks: (a) uncertainty of encysted samples; (b) the misclas-
sification labels for three of the reconstructed images with
similar latent perturbations are different.

than 90% pixel perturbation-based verification samples in
Section 5.8. However, such detection is inefficient to identify
our latent perturbation (2.3% with the cost of a high false-
positive rate), as our encysted sample is generated from the
autoencoder with reconstruction error as one regularization
term. Therefore, our approach is feasible to achieve an in-
distinguishable verification query from the normal business
query, so as to defeat the dishonest could. (ii) Additionally,
we consider extreme adversaries who are capable of collecting
a set of publicly available verification samples for all classes.
Then, they use these samples to perform adversarial training in
order to defeat the verification service. As we demonstrate in
Section 5.8, such adaptive attacks can bypass more than 80%
of verification samples that are designed in pixel space, using
1,000 publicly released verification samples for adversarial
training. In other words, the adaptive attacker has successfully
learned the distribution of fingerprinting patterns in the pixel
space. Contrary to this, our approach remains unchanged
after applying adversarial training with the same amount of
publicly available verification samples. One reason is that
the smoothness in the pixel space restricts the ability to
learn fingerprinting patterns from publicly released verification
samples.

APPENDIX H
CROSS-VALIDATION

In this work, cross-validation across a model’s decision
boundary is conducted on the variations from retraining the
same model structure on the same dataset with different
initialization, producing fingerprints accordingly. Then the
fingerprints are randomly selected w.r.t. retraining group to
perform verification of integrity on each retraining model,
resulting in 100% accuracy with 5 verification samples for
all cases. It is worth mentioning that the model’s quality
check and the integrity check are two different businesses.
The purpose of the quality check is to determine the quality
of the model, including its vulnerability and fragility from
the development view. On the contrary, this work focuses
primarily on the integrity check, which verifies whether the
queried model is the certified model from the consistency
view or if it is different from the model used to produce
fingerprinting at the start.

181365

