
Token meets Wallet:
Formalizing Privacy and Revocation for FIDO2

Lucjan Hanzlik
CISPA Helmholtz Center
for Information Security

hanzlik@cispa.de

Julian Loss
CISPA Helmholtz Center
for Information Security

loss@cispa.de

Benedikt Wagner
CISPA Helmholtz Center
for Information Security

Saarland University
benedikt.wagner@cispa.de

Abstract—The FIDO2 standard is a widely-used class of
challenge-response type protocols that allows to authenticate
to an online service using a hardware token. Barbosa et al.
(CRYPTO ‘21) provided the first formal security model and
analysis for the FIDO2 standard. However, their model has
two shortcomings: (1) It does not include privacy, one of the
key features claimed by FIDO2. (2) It only covers tokens that
store all secret keys locally. In contrast, due to limited memory,
most existing FIDO2 tokens either derive all secret keys from
a common seed or store keys on the server (the latter approach
is also known as key wrapping).

In this paper, we revisit the security of the WebAuthn
component of FIDO2 as implemented in practice. Our contri-
butions are as follows. (1) We adapt the model of Barbosa et
al. so as to capture authentication tokens using key derivation
or key wrapping. (2) We provide the first formal definition
of privacy for the WebAuthn component of FIDO2. We then
prove the privacy of this component in common FIDO2 token
implementations if the underlying building blocks are chosen
appropriately. (3) We address the unsolved problem of global
key revocation in FIDO2. To this end, we introduce and analyze
a simple revocation procedure that builds on the popular BIP32
standard used in cryptocurrency wallets and can efficiently be
implemented with existing FIDO2 servers.

Index Terms—FIDO2; BIP32; unlinkability; revocation;

1. Introduction

Online authentication is one of the most pressing chal-
lenges faced by security engineers and cryptographers today.
Reliable authentication is an important concern for both
the security of user’s accounts as well as the reputation of
service providers. A simple way to strengthen the security
of an authentication process is to introduce additional au-
thentication factors. Usually, the user has to just provide a
login and password (something she knows). A popular way
to introduce a second factor is to use a device (something
she has) that is registered to the user’s account. Universal
Second Factor (U2F) (or CTAP1, as it is currently named)
is a protocol to achieve two-factor authentication using a
designated device that we refer to as a token. The token

runs a simple piece of code and interacts with the user’s
interface, e.g., a web browser. We refer to this interface
as the client or agent. The agent acts as a proxy device
during the authentication process between a token and a
server that we call the relying party. The main benefit of this
solution over the login/password approach is the protection
against phishing attacks and database breaches. CTAP1/U2F
and its successor CTAP2 are part of the FIDO specification
[1]. Together with the complement W3C web authentication
[2] (WebAuthn) they form the state-of-the-art for online
authentication using security tokens.

In recent work, Barbosa et al. [3] gave the first for-
mal model for token-based authentication and provided a
security proof for the FIDO2 standard. While their model
provides an important starting point for further exploration
of FIDO2’s security properties, it does not accurately model
several key aspects of FIDO2 as used in practice. In this
work, we revisit the FIDO2 standard and give a more
complete security analysis of its security features. We also
augment the existing standard with a new feature that al-
lows to easily revoke keys of compromised tokens. Before
presenting our contributions in more detail, we first explain
several disparities between the model of Barbosa et al. and
how FIDO2 is commonly used in practice.

Attestation. Barbosa et al. consider a model where the
token and the relying party are initially provided a pair
of attestation secret key and attestation public key by the
manufacturer. Thereby, servers can verify that they interact
with tokens from trusted manufacturers. While attestation is
common practice for critical interactions such as banking
transactions, it is rarely used for more mundane scenarios
such as logging in to an internet account [4]. Also, naive
attestation violates privacy [5]. Therefore, to reason about
the security and privacy of FIDO2 in its most widely used
form, we consider a model without attestation.

Privacy. There are two ways to implement FIDO2 tokens.
The first is to store all secret keys of the token locally, i.e.
on the authentication token. In practice however, keys are
almost exclusively stored externally on the server [6], [7].
External key storage can be implemented securely using so
called key wrapping, where an encryption of the key is stored
with the server. Another approach is to use a key derivation

1491

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Lucjan Hanzlik. Under license to IEEE.
DOI 10.1109/SP46215.2023.00056

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

37
3

function to derive keys on the fly. Throughout, we refer to
both key wrapping and key derivation function approaches
as external key storage.

Since tokens are limited with regards to storage space,
externally stored keys provide a distinct storage advantage
over locally stored keys. On the downside, externally stored
keys may give the server additional information that it may
use to link separate sessions of the token.

Let us illustrate this using a (pathological) implemen-
tation of key wrapping. Assume that the server stores ci-
phertexts of the form (Enc(k, sk), H(k)), where Enc is a
symmetric encryption scheme, H is a hash function, k
denotes the encryption key, and sk denotes the signing
key used for authentication. Observe that the above scheme
appends a hash of the secret encryption key to the ciphertext
of Enc. Intuitively, in the random oracle model, the above
scheme is as secure as Enc. However, ciphertexts produced
by the same token (i.e. using the same key k) can trivially
be linked using the second component.

The above discussion shows that the use of externally
stored keys leads to unexpected subtleties with regards to
privacy across different sessions of the same token. Unfor-
tunately, as Barbosa et al. consider exclusively the setting
of locally stored keys, their model does not provide any
treatment of privacy. Thus, proving the privacy properties
claimed by FIDO2 remains an open problem.

1.1. Our Contribution

In this work, we present a new security model for
the WebAuthn component of FIDO2. We analyze existing
FIDO2 implementations in this model. In a second step,
we identify a lack of practical key revocation in these
implementations that is compatible with our privacy goals.
We now explain our contributions in more detail.

New Security Models for Privacy and Impersonation.
Our first contribution is to augment the model of Barbosa
et al. with a suitable notion of privacy, and analyzing ex-
isting token implementations using key wrapping and key
derivation functions in this augmented model. Concretely,
we define a natural security game with three different
winning conditions, leading to strong, medium and weak
unlinkability. Intuitively, the winning condition for strong
unlinkability only disallows a generic linking attack that
no token implementation can mitigate [6]. For medium and
weak unlinkability, we slightly weaken the restrictions on
this attack. The results of our analysis in these models are
given in the top part of Table 1. Notably, while key wrap-
ping provides strong unlinkability if we rely on anonymous
authenticated encryption, our analysis shows that implemen-
tations using the key derivation function approach provide
only medium unlinkability. In this sense, our privacy notions
show exactly which linking attacks are possible for these
implementation, and reveal a gap between the key wrapping
and key derivation approaches for externally storing keys.
On top of these new privacy definitions, we also define an
appropriate notion of security against impersonation in the

context of externally stored keys and show that existing
implementations satisfy it.

Adding Global Revocation. When using FIDO2, a crucial
aspect is how to securely revoke keys in case access to the
authentication token is ever lost. Indeed, the usability study
by Lyastani et al. [8] shows that one of the top concerns of
users is that an adversary can gain access to their account in
case their FIDO2 token gets lost or is stolen. For all current
token implementations, a user has to revoke all keys sepa-
rately by logging in at each server, which is highly imprac-
ticable. To address this revocation problem in a usable way,
we desire a procedure that allows to simultaneously revoke
all keys associated with an token without communicating
with each server individually. This includes also any future
keys that the (compromised) token may attempt to register
with the relying party. Ideally, revocation is done by globally
publishing some short revocation information, which is then
noticed by all servers. The revocation information can be
stored externally (e.g. on a piece of paper) by the user in
a secure location. We refer to such a procedure as global
revocation. In terms of security, we desire three properties:
First, as long as the revocation information is not published,
all credentials should be unlinkable to guarantee privacy.
Second, we demand security against impersonation even
after publishing the revocation information. This is of great
importance, as otherwise an attacker could actively look for
such published revocation information and impersonate a
user before a server that periodically checks for revocations
may notice. Finally, it should be difficult for a malicious
party to launch a denial of service (DoS) attack in which it
revokes keys on behalf of an honest user. In Section 6 we
formalize these security properties of global revocation.

As we observe, however, achieving these properties for
global revocation is a challenging endeavour. To get an intu-
ition why, consider a naive approach where every credential
of a user is prefixed with some common tag t. To revoke,
one can simply publish t. This approach clearly links all of
the prefixed credentials and hence violates any reasonable
notion of privacy. Additionally, a DoS attack as mentioned
above is possible, because t is not kept secret. This shows
the technical challenge introduced by global revocation: On
the one hand, keys can not be generated independently, as
the published revocation information has to identify all keys.
On the other hand, generating keys using some correlated
randomness may violate the users privacy and security.

Crypto Wallets to the Rescue. Fortunately, we can rely
on a practical solution from the cryptocurrency space to
solve this issue. A common approach to store a multitude of
keys compactly is to use deterministic key derivation1. Con-
sidering the case of BIP32, the most widely implemented
procedure for deterministic key derivation, ECDSA keys are
derived from a pair of master keys msk ∈ Zp,mpk = gmsk

and a chaincode chain. Here, g denotes the base point
of an elliptic curve and chain can be thought of as a
random seed. To derive a fresh key pair for an identity id,

1Such a mechanism is colloquially referred to as a wallet.

1492

Scheme Unlinkability Authentication Revocation

kdfPA Medium Secure Local
kwrPA Strong Secure Local

bip32PA Weak Secure Global/Local

TABLE 1. OVERVIEW OF OUR RESULTS. WE GIVE THE FIRST ANALYSIS
OF EXISTING SCHEMES kdfPA, kwrPA, AND PROPOSE AND ANALYZE

SCHEME bip32PA. IN LOCAL REVOCATION, THE USER HAS TO REVOKE
ALL KEYS SEPARATELY, WHILE GLOBAL REVOCATION MEANS THAT THE

USER CAN PUBLISH ONE STRING TO REVOKE ALL KEYS
SIMULTANEOUSLY.

BIP32 first computes w := Hash(id, chain,mpk), then sets
skid := msk + w, pkid := mpk · gw. We observe that this
procedure provides a simple means of global revocation.
To revoke all public keys associated with a pair msk,mpk,
one can simply publish mpk and chain. Now, each server
can find deterministically recompute the public keys from
mpk and chain, and revoke them. After introducing this
new token implementation based on BIP32, we show that it
satisfies the security and privacy properties that we defined.
We highlight that proving that ECDSA signatures remain
unforgeable with respect to keys derived in this fashion
once chain is leaked turns out be non-trivial. In recent work,
Das et al. were the first to consider this stronger form of
unforgeability and showed that it holds for key-prefixed
ECDSA given that no message is ever signed twice [9]. As
we want our new token implementation to be compatible
with existing FIDO2 server implementations, we can not
rely on key-prefixing as it is used by Das et al. [9], and
have to find a way to allow signing the same message
multiple times. This makes the analysis challenging. For
further details, we refer the reader to Section 7. Finally, we
give experimental results that showcase the efficiency of our
protocol during authentication and revocation.

1.2. Related Work

The first formal model for the FIDO2 protocol was
proposed by Barbosa et al. [3]. The authors introduced
the notion of passwordless authentication that models the
WebAuthn protocol in the scenario when the token uses
keys stored locally. They also present a security model for
PIN-based access control that tries to formally define the
CTAP protocol executed between the token and the client.
Barbosa et al. show that CTAP only provides a weaker
access control notion and proposes an alternative protocol
based on password-authenticated key agreement (PAKE).

Bindel, Cremers, and Zhao [4] (to appear at S&P 2023)
recently extended the Barbosa et al. model to support the
latest specification, introducing CTAP in version 2.1. Their
model uses explicit user verification assurance and guar-
antees stronger token binding properties. Relevant to our
contribution is that they consider the case where attestation
of the token is not used (attestation mode None) and argue
that this is the most widely used mode. Unfortunately, their
model, similar to [3], only works if the token permanently

stores all keys. They also do not consider any privacy defini-
tion that would model the desired property of cross relying
party unlinkability of the token-generated credentials.

Guirat et al. [5] analyzed the WebAuthn protocol us-
ing automated verification and modeled a simple privacy
definition. They showed that if the same key is used for
attestation, it allows a server to link the same token. The
security and privacy issues faced by developers during the
implementation of FIDO and WebAuthn components were
discussed by Alam et al. [10]. Kepkowski et al. [6] report
that existing relying parties are implemented based on ex-
isting open-source solutions and, by default, support only
externally stored keys. The authors also show a timing attack
allowing a malicious relying party to link users across dif-
ferent services, proving that a formal definition and analysis
of privacy is needed. Another line of related work provides
alternative protocols and usability studies. Chakraborty et al.
[11] used a TPM implementation (simTPM) based on a sim
card as a secure and convenient FIDO2 token. A usability
and acceptability study of FIDO2 was done by Lyastani et
al. [8]. The authors report that one of the main concerns of
users is that an adversary can access their account if they
lose their token or it gets stolen. An efficient and usable
revocation mechanism would solve some of those concerns
and increase the acceptance rate among users.

Revocation in anonymous authentication and privacy-
preserving signatures is not a new problem. Camenisch and
Lysyanskaya [12] showed how cryptographic accumulators
can be used to revoke users in an anonymous setting,. The
system’s authority provides users membership certificates,
allowing them to prove zero-knowledge membership against
a publicly available accumulator. Boneh and Shacham [13]
used a different approach in the context of group signatures,
the so-called verifier-local revocation. The verifier is the
only party involved in the revocation process. Camenisch et
al. [14] discussed revocation techniques for pseudonymous
systems. Their solution allows checking the revocation status
in logarithmic time in the number of revoked users, indepen-
dently of all valid users in the system. A simple alternative
approach to VLR is blocklisting in pseudonymous systems.
During the interaction, users generate a domain/application-
specific unlinkable pseudonym that the verifier compares
with elements on the blocklist leading to the check taking
logarithmic time in the number of revoked users.

Dauterman et al. [15] discussed the problem of back-
dooring FIDO tokens. They introduced the notion of veri-
fiable identity families (VIF) and used it to generate FIDO
identities. The key feature is that the tokens can prove an
identity (i.e. public key) to be correct (given a relying party)
and pseudorandom to any party holding a VIF master public
key. It allows the user to verify that the token deterministi-
cally creates identities and a manufacturer did not implement
any backdoor in the key generation algorithm. Their solution
does not support revocation without per-server interaction
since identities are not publicly linkable. To link identities,
the token must create proof of correct VIF evaluation.

Frymann et al. [16] discussed the token backup proce-
dure proposed by Yubico, a recovery solution in case of

1493

token loss/theft. The solution allows a primary token to
generate an identity that the backup device will use with
a specific relying party. Thus, instead of registering both
devices, a user can register once using the primary device
and use the backup token if the former is lost. The problem
of a backup device is orthogonal to revocation, i.e. in case
the primary device gets stolen/lost, it still has to be revoked
to protect the user’s account.

From a cryptographic point of view, FIDO2 is a simple
authentication scheme, a primitive which has been exten-
sively studied. One of the first and well-known protocols is
the Schnorr identification scheme [17], which provides im-
personation resistance under the discrete logarithm assump-
tion. Authenticated key exchange (AKE) protocols provide
means to agree on a secret key between the interacting par-
ties and simultaneously authenticate both parties [18], [19],
[20]. A different approach to authentication is the folklore
challenge-response protocol based on signature schemes, on
which FIDO2 is based. This technique provides a framework
for creating authentication protocols. Instantiated with group
signatures [21], [22] the protocol provides a way for group
members to authenticate to a server anonymously. A direct
solution introduced by Teranishi, Furukawa, and Sako is
anonymous authentication [23]. The extended access control
protocol (EAC) [24], [25] is an alternative approach to
authentication using a hardware device for machine-readable
travel documents (e.g., e-Passports).

2. Notation and Preliminaries

We denote by z ← A(x) the execution of algorithm A
on input x and with output z. If we want to make the random
coins ρ of algorithm A explicit, we write z := A(x; ρ)
instead. We write y ∈ A(x) to indicate that y is a possible
output of A on input x. By r ←$ S we mean that r is
chosen uniformly at random over the set S. We will use
[n] to denote the set {1, . . . , n}. By λ, we denote the
security parameter. Throughout the paper, we assume public
parameters par are given implicitly to all algorithms. We will
use standard notions of digital signatures and one of the
rerandomizable signature schemes discussed in [26], [27].
To formally model the key wrapping technique, we will
use a definition of symmetric key encryption that is both
authenticated and anonymous [28]. We present their syntax
and security definitions in more detail in Appendix A.

3. WebAuthn and its Implementations

In this section, we give an overview of the WebAuthn
protocol contained in the FIDO2 standard, and introduce
the syntax we need for our formal analysis. FIDO2 can
be used as means of passwordless authentication or as a
second-factor for the standard login-via-password scenario.
The WebAuthn protocol template consists of a registration
and an authentication process executed between a token and
a server. In both registration and authentication, the protocol
consists of two messages sent between the server and the

token, relayed through a client which is implemented e.g. by
the user’s browser. The first message is sent from the server
to the token (via the client) and contains a challenge rs.
This challenge is then signed by the token, and the resulting
signature σ is sent back to the server. In the registration
protocol, this second message also contains a public key pk,
and a so called credential identifier cid. The server stores
this key and additional information in a credential cred. In
subsequent authentication interactions, the server first finds
cid (e.g. by looking up the username), and then includes it
in the first message of the above flow.

Different token implementations may generate key ma-
terial in a different way. To accommodate for memory-
constraints, the most commonly used implementations do
not store the key material locally, but instead use the value
cid to securely outsource it to the server. In this paper we
will focus on the following two variants:
• Key Derivation Function. The signing key is generated

in a pseudorandom way using a master secret key, the
server’s identifier, and the randomly chosen credential
identifier. This method is e.g. used by the open-source
FIDO2 token SoloKey2.

• Key wrapping. The signing keys are encrypted together
with the server’s identifier and the ciphertext is the cre-
dential identifier. This method is e.g. used by Yubico in
their implementation of FIDO2 tokens [7].

We will now describe the above two schemes in more detail.
An overview (in our syntax) can be found in Figure 1. We
refer to the two variants as kdfPA and kwrPA, respectively.
WebAuthn makes use of a hash function H : {0, 1}∗ →
{0, 1}2λ, modeled as a random oracle.
Key Generation. Initialization of a token is done using the
Gen algorithm that outputs a master secret key msk. For
kdfPA this key is generated by executing msk ←$ {0, 1}λ.
In the case of the key wrapping scheme, this key is the secret
key for a symmetric key encryption scheme SKE with length
function ν : N→ N. Thus, we set msk← SKE.Gen(par).
Registration. We assume that every server S holds a reg-
istration context rcsS , which stores users credentials. Dur-
ing registration, the server S generates a random nonce
rs ←$ {0, 1}λ and sends the challenge c = (idS , rs) to the
client, where idS is a server identifier. The client verifies
that idS is correct and sends Mr = H(rs) and idS to the
token. Here, the token implementations kwrPA and kdfPA
differ slightly. In kdfPA, the token first chooses a random
identifier cid ←$ {0, 1}λ. It then uses a pseudorandom key
derivation function PRF to generate a secret key sk :=
PRF(msk, (cid, idS)). We assume that PRF outputs values
in the secret key space of the signature scheme. The token
computes the corresponding public key pk := ToPK(sk).
In kwrPA the key pair is computed using the signature
scheme key generation algorithm (sk, pk) ← Gen(par).
The secret key sk and idS is then encrypted by the to-
ken as cid := Enc(msk, (idS , sk)). We assume that pairs
(sk, idS) of signing secret keys and server identifiers all

2see https://github.com/solokeys/solo

1494

have the same length l0 = l0(λ) ∈ N, which is achieved
using appropriate padding. We set ν∗ := ν(l0). For both
schemes the secret key sk is used to create the signature
σ ← Sig(sk,m), where m := (H(idS), cid, pk,Mr). Fi-
nally, the token sends a response message Rr = (pk, σ)
together with cid to the client, which forwards it to the
server. The server verifies the token’s response as follows.
It aborts and stores no credential in case Ver(pk, σ,m) = 0,
where m := (H(idS), cid, pk,Mr). Otherwise, it accepts.
This means that it adds pk to its registration context, i.e.
rcsS [cid] := pk.
Authentication. For authentication, we assume that the
server knows the credential identifier cid of interest. Finding
cid depends on the concrete use case of WebAuthn, e.g.
using FIDO2 as a second factor, or in a standalone fashion.
For example, a user could enter its username, and the server
holds a mapping from usernames to credential identifiers.
The authentication protocol begins with the server generat-
ing a random nonce rs←$ {0, 1}λ and sending the challenge
c = (idS , rs) and cid to the client. The client verifies that idS
is correct and sends the message Ma := H(rs), the server
identifier idS and identifier cid to the token. Now, in the
first step the token recreates the signing key sk that it created
during registration. For kdfPA this means that the token runs
sk := PRF(msk, (cid, idS)). In case of the kwrPA the token
first decrypts the cid to receive (id, sk) := Dec(msk, cid).
It then checks if this secret key correspond to the server,
i.e. it returns an error if id 6= idS . For both schemes the
secret key sk is used to create the signature σ ← Sig(sk,m),
where m := (H(idS),Ma). Finally, the token sends Ra = σ
to the client, which forwards it to the server. The server
verifies the token’s response as follows. First, the server
uses the registration context rcs to get the token’s public
key pk ← rcsS [cid]. Then, it sets m := (H(idS), H(rs))
and accepts if Ver(pk, σ,m) = 1.

Formal Syntax. In our model, we consider parties P =
T ∪ S, partitioned into the set of tokens T and the set of
servers S. Each server S ∈ S keeps as a registration context
rcsS as internal state, which is an initially empty key-value
table. When new tokens register, an entry to rcsS is added.
Each token T ∈ T keeps a fixed state that is initialized
once with a key mskT and does not change. We do not
model clients explicitly. Instead, we allow the adversary to
do the computation that the clients do. As in [3], we assume
that each server has a unique identifier idS . In reality, idS
corresponds to a URL, which justifies this assumption. In all
experiments that we define, we assume that these identifiers
are given to all parties. We do not explicitly model the initial
contact of user and server, as this may differ depending on
the use case. That means that we assume that the server
already knows the users account and therefore its cid.

We postpone the formal syntax and completeness defi-
nition to Appendix B, and give a short overview here. The
reader may also consider Figure 1 to familiarize with the
syntax. A passwordless authentication scheme (PlA) is a
tuple PLA = (Gen,Reg,Auth), where Gen(par) generates
a master secret key msk, stored on a token, and Reg and

Auth are the registration and authentication protocols. Reg-
istration is as follows: The server runs (c, st)← rchall(idS)
and the client runs Mr ← rcomm(idS , c). Then, the to-
ken runs (cid, Rr) ← rresp(msk, idS ,Mr) which gener-
ates a credential identifier cid. Finally, the server runs
(br, cred)← rcheck(st, cid, Rr), where cred is the credential
that will then be stored on the server as rcs[cid] := cred.
Authentication is done analogously, except that the token
algorithm aresp takes cid as input instead of outputting it,
and acheck only returns a bit and no credential cred.

4. Modeling Security and Privacy

In this section, we formally define security and privacy
models for WebAuthn. While privacy is not considered in
[3], our security model is closely related to their model.
Before presenting our models, we first define server and
token oracles an adversary may access. These oracles model
the capability of an adversary to freely communicate with
tokens and servers, and will be used in all of our security
definitions. For server S, rcsS is the registration context,
i.e the set of credentials it stores, stS is used to model
the state transferred between algorithms rchall, achall and
rcheck, acheck, respectively, and the map CS is used for
bookkeeping to bind registration interactions to authentica-
tion interactions.

Definition 1 (Server and Token Oracles). Let A be an
algorithm and PLA = (Gen,Reg,Auth) be a PlA. We
associate each party P ∈ T ∪ S with a set of handles
πi,jP which model two types of instances corresponding to
registration and authentication. Each party is represented
by a number of these instances. Concretely, we refer to πi,jP
for j = 0 as the ith registration instance of party P and for
j ≥ 1 as the jth authentication instance of P corresponding
to the ith registration.

We assume that for each token T ∈ T , a secret key
mskT ← Gen(par) is given, and that for each server S ∈ S,
key-value tables rcsS , CS , and stS are given. Per default,
these are empty. Then, adversary A has access to oracles
Start,Challenge,Complete as follows.
• Start(πi,jS): This executes (c, st) ← rchall(idS) in case
j = 0 or (c, st)← achall(idS) in case j > 0. The oracle
sets stS [i, j] := st, and returns c to A.

• Challenge(πi,jT , idS , cid,M): This runs algorithm
(cid, Rr) ← rresp(mskT , idS ,M) if j = 0 or
Ra ← aresp(mskT , idS , cid,M) if j > 0. The result
((cid, Rr) or Ra) is returned to A. Note that the input
cid is ignored for j = 0.

• Complete(πi,jS , cid, R): This aborts if Start(πi,jS) has
not been queried before. If j = 0, it runs
(b, cred) ← rcheck(stS [i, j], cid, R), sets CS [i] := cid,
and rcsS [cid] := cred. If j > 0, it aborts if cid 6= CS [i].
Otherwise, it runs b ← acheck(stS [i, j], rcsS , cid, R). In
both cases, b is returned to A.

We assume that for each (i, j, T, S) ∈ N × N ×
T × S, the oracles Start(πi,jS),Challenge(πi,jT , ·, ·, ·), and
Complete(πi,jS , ·, ·) are executed only once.

1495

Token Client Server
(cid, Rr)← rresp(msk, idS ,Mr) : Mr ← rcomm(idS , c) : (c, st)← rchall(idS) :

cid←$ {0, 1}λ (id, rs) := c rs←$ {0, 1}≥λ

sk := PRF(msk, (cid, idS)) // kdfPA idS ,Mr if id 6= idS : abort c c := st := (idS , rs)

pk := ToPK(sk) // kdfPA Mr := H(rs)

(sk, pk)← Gen(par) // kwrPA (b, cred)← rcheck(st, cid, Rr)

cid := Enc(msk, (idS , sk)) // kwrPA m := (H(idS), cid, pk, H(rs))

σ ← Sig(sk, (H(idS), cid, pk,Mr)) cid, Rr cid, Rr b := Ver(pk, σ,m)

Rr := (pk, σ) if b = 0 : cred :=⊥
else : cred := pk

Ra ← aresp(msk, idS , cid,Ma) : Ma ← acomm(idS , c) : (c, st)← achall(idS) :

sk := PRF(msk, (cid, idS)) // kdfPA idS , cid,Ma (id, rs) := c cid, c rs←$ {0, 1}≥λ

(id, sk) := Dec(msk, cid) // kwrPA if id 6= idS : abort c := st := (idS , rs)

if id 6= idS : abort // kwrPA Ma := H(rs) b← acheck(st, rcs, cid, Ra)

σ ← Sig(sk, (H(idS),Ma)) pk := rcs[cid]

Ra := σ Ra Ra m := (H(idS), H(rs))

b := Ver(pk, σ,m)

Figure 1. The WebAuthn registration (top) and authentication protocol (bottom) protocol for the variations kdfPA and kwrPA. The highlighted statements
are only executed in the variation that is given in the respective comment. Functions Vt, Vs (cf. Definition 16) are given as (H(idS), H(rs), cid).

The index i in token handles πi,jT may seem artificial
at first, as tokens are stateless. However, this index will
simplify the following definition significantly. Namely, we
follow the work of Bellare et al. [29] to define partnering
of handles, which will be used in the winning condition
of security experiments. Two handles πi,jS and πi

′,j′

T are
partnered if they share the same session identifier. One
should think of partnered handles as if the adversary just
forwarded messages between the respective oracles. For-
mally, the notion of session identifiers must be defined by
the protocol. A natural choice is that the session identifiers
correspond to the view of a party. Note that the choice of
session identifiers influences the notion of security that is
achieved. We give a formal definition of session identifiers
and partnering in Appendix B.

4.1. Impersonation Security

We now define what it means for a passwordless authen-
tication protocol to be secure against impersonation. Infor-
mally, we say that if this property holds then the token that
registered must be used to authenticate against a server and
a single interaction cannot be used to authenticate multiple
times. In the security game, the adversary can interact with
tokens and servers in an arbitrary way, using the oracles
from Definition 1.

Definition 2 (Impersonation Security). For PlA PLA =
(Gen,Reg,Auth) and an adversary A, we define the ex-
periment ImpAPLA as follows.

• Setup. For each token T ∈ T , a key is generated by
running mskT ← Gen(par).

• Online Phase. The adversary is allowed to interact with
the oracles Start,Challenge,Complete as in Definition 1.

• Output Phase. Finally, A terminates, and the experiment
outputs 1 if and only if there exists a server handle πi,jS
for j > 0 such that the following conditions hold:

1) πi,0S is partnered with a token handle πk,0T .
2) πi,jS accepted, i.e. in call Complete(πi,jS , cid, R), algo-

rithm acheck(stS [i, j], rcsS , cid, R) returned 1.
3) πi,jS is not partnered with any token handle πi

′,j′

T , or
it is partnered with a token handle, which is partnered
with a different server handle πi

′′,j′′

S′ .
We define the advantage of A in winning the experiment as:

AdvAImp,PLA := Pr[ImpAPLA = 1].

Let us explain the three winning conditions that are
defined. By the first condition, we know that the token T
registered at server S. By the second and the third condition
we know that the adversary was able to authenticate at
server S for that particular registration. We highlight that
this models a “trust-on-first-use” concept. Namely, servers
consider the user communicating during registration as the
honest user. In addition to the stateless nature of tokens, this
is another difference to the model by Barbosa et al. [3], who
use attestation keys as their trust anchor.

1496

4.2. Unlinkability

We define unlinkability for passwordless authentication.
Informally, we want that interactions of the same token are
unlinkable, and different registrations of the same token can
not be linked. Data that is exchanged outside of the protocol
is out of the scope of our definition, e.g. metadata that could
be used to link interactions of the token.

The Unlinkability Experiment. To model the above goal in
a security experiment, we let the adversary A interact with
all oracles in Definition 1 to get a global view of the system.
Then, A targets two tokens T0, T1, and gets two additional
oracles Left,Right, running Tb and T1−b internally, for a
random bit b. The goal of A is to determine which token
is used in which oracle. That means that if A can link
interactions with the same token, it can for example link
the interaction with oracle Left to the interaction with token
oracle Challenge for token Tb. This would allow him to win
the game. Also, note that unlinkability can only make sense
if there are at least two tokens used in the system, which is
the reason why A has to output two tokens.

To prevent trivial linking, we have to introduce two
winning conditions. The first one is a consequence of our
definition of oracles and ensures that A can not violate
the assumption in Definition 1. For the second condition,
namely credential separation, we define three variants, lead-
ing to strong, medium, and weak unlinkability guarantees.
Due to the stateless nature of tokens, the behavior of a token
is determined by cid and idS . This leads to the following
trivial attack: Adversary A gets a cid from oracle Left during
registration, and submits it to oracle Challenge for token
T0 and server identity idSL

. It compares the resulting view
(e.g. returned public keys) with the view that it gets from
submitting cid to oracle Left in authentication. If the views
are consistent, T0 is used in Left. Our strongest notion of
credential separation, leading to strong unlinkability, rules
out exactly this behavior of A.

In practice, servers can follow this strategy to determine
if any credential cid in its database belongs to a user that
aims to log in. The server just sends cid instead of the
credential that is actually stored for this user and checks
if the authentication goes through. It is worth noting that
such an attack can be launched almost unnoticed by the
user. In recent work, Kepkowski et al. [6] showed a timing
attack against unlinkability where they exploit a small time
difference on some hardware tokens when handling the cid.
Their paper’s key idea is to use the WebAuthn specification
to amplify the attack. To support multiple tokens, the relying
party sends a list of supported cid’s, which are locally
queried to the token by the browser to find the correct
one, i.e. the one for which the token responds with a valid
signature. Those queries do not require interaction and are
oblivious to the user.

Going back to our example, the malicious relying party
can add cid to the list containing the correct credential for
the user account. If the response is a valid signature for cid,
the relying party knows that cid corresponds to this account.
If this distinguishing fails, the user is oblivious to the attack.

Weaker Notions. Not every implementation used in practice
is strongly unlinkable. As we still aim for an analysis and
a precise statement about which attacks allow to link, we
define weaker variations of the above notion. To define
medium unlinkability, we make the credential separation
condition more restrictive. Namely, we also rule out that
A queries the same cid at oracle Challenge (for the target
T0, T1, idSL

, idSR
) and Left,Right, even if the cid is made

up by A and not returned in a registration of these oracles.
Looking ahead, this subtle difference will be required to
prove unlinkability in case cid is not authenticated. For weak
unlinkability, we additionally rule out the case that oracle
Challenge (for the target T0, T1, idSL

, idSR
) and Left,Right

return the same cid during registration. If cid has high
enough entropy this implies medium unlinkability. However,
there are schemes only satisfying weak unlinkability.

Definition 3 (Unlinkability). For a PlA PLA = (Gen,
Reg,Auth) and an adversary A, we define experiments
wUnl,mUnl, sUnl as follows.
• Setup. For each token T ∈ T , a key is generated by

running mskT ← Gen(par).
• Phase 1. The adversary is allowed to interact with oracles
Start,Challenge,Complete (see Definition 1).

• Phase 2. The adversary outputs two (not necessarily
distinct) token identifiers T0, T1, and two (not necessarily
distinct) server identifiers SL, SR ∈ S. Let i0 and i1 be
the smallest identifiers for which the token handles πi0,0T0

and πi1,0T1
were not queried to the Challenge oracle in

Phase 1. The experiment chooses a bit b uniformly at
random. It sets j0 := 0, j1 := 0 and initializes two oracles
Left,Right as follows:
– Left(cid,M): Return Challenge(πib,jbTb

, idSL
, cid,M)

and set jb = jb + 1.
– Right(cid,M): Return Challenge(π

i1−b,j1−b

T1−b
, idSR

, cid,
M) and set j1−b = j1−b + 1.

• Phase 3. The adversary is allowed to interact with all the
oracles defined in Phase 1 and 2.

• Output Phase. Finally, the adversary outputs a bit b̂.
Consider the following lists of cid’s:
– Lrch contains all cid’s returned by queries that are

not issued via Left,Right and are of the form
Challenge(πi,0T , idS , ·, ·) for any i, T ∈ {T0, T1} and
S ∈ {SL, SR}.

– Lach contains all cid’s that are part of the input of
queries that are not issued via Left,Right and are of
the form Challenge(πi,jT , idS , ·, ·) for any j > 0,i, T ∈
{T0, T1} and S ∈ {SL, SR}.

– Lrlr contains all cid’s returned by queries to Left or
Right when jb = 0 or j1−b = 0, respectively.

– Lalr contains all cid’s that are part of the queries to
Left or Right when jb > 0 or j1−b > 0, respectively.

The experiment returns 1 if and only if:
– bit b̂ is equal to bit b, and
– (instance freshness) the adversary never made a query

to oracle Challenge using handles πi0,k0T0
and πi1,k1T1

for
any k0, k1, and

1497

– (credential separation) The following set is empty:

sUnl : SsUnl := (Lrch ∩ Lalr) ∪ (Lrlr ∩ Lach) ,
mUnl : SmUnl := SsUnl ∪ (Lach ∪ Lalr),
wUnl : SwUnl := SmUnl ∪ (Lrch ∪ Lrlr).

For x ∈ {w,m, s}, we define the advantage of A in winning
the experiment as:

AdvAxUnl,PLA := |Pr[xUnlAPLA = 1]− 1/2|.

The credential separation condition models the attacks a
server can do when the same token is used twice at the same
server. Even for schemes with strong unlinkability, there is
a trivial active attack, as sketched above. For schemes with
weak unlinkability, but no medium unlinkability, there is a
passive attack that only involves the two registrations.

5. Analysis of Existing Implementations

In this section, we analyze the existing token implemen-
tations kwrPA and kdfPA of WebAuthn. Recall that these
schemes are formally given in Figure 1. We analyze both
impersonation security and unlinkability.
Analysis of Impersonation Security. As the first part of
our analysis, we show that both implementations kwrPA
and kdfPA satisfy impersonation security. We obtain the
following statements.

Lemma 1. Let A be an adversary in the impersonation
game of kdfPA. Assume that A makes at most QH queries
to random oracle H , at most QS queries to oracle Start,
and at most QC queries to oracle Challenge. Then there
exists algorithms B,B′ with the same running time as A
such that

AdvAImp,kdfPA ≤
Q2
S +Q2

C

2λ
+
Q2
H

22λ
+ |T | ·AdvB

′

prf ,PRF

+QC ·AdvBeuf -cma,SIG

Lemma 2. Let A be an adversary in the impersonation
game of kwrPA. Assume that A makes at most QH queries
to random oracle H , and at most QS , QC queries to oracles
Start,Challenge, respectively. Then there exist algorithms B
and C with the same running time as A such that

AdvAImp,kwrPA ≤
Q2
S

2λ
+
Q2
H

22λ
+ |T | ·AdvBanon-auth,SKE

+QC ·AdvCeuf -cma,SIG.

We give a proof intuition here, and postpone the formal
proofs to the full version [30] and Appendix C.2.

Proof Intuition. Our goal is to give a reduction from the
euf -cma security of SIG. To do that, recall that the
adversary wins the impersonation game, if a token first

registers a public key pk at a server, and then the ad-
versary authenticates, i.e. it forges a valid signature for
m = (H(idS), H(rs)) with respect to pk, without using
the token. We call this interaction the forged authentication.

Our strategy is to embed the public key that we get from
the euf -cma game into one of the registration interactions
between oracle Challenge and the adversary. Secret keys are
not only used to sign, and we need to deal with that. Namely,
in variant kdfPA, we first need to apply pseudorandomness
of PRF to make secret keys independent and random. The
variant kwrPA additionally outputs a ciphertext cid encrypt-
ing the secret key. To eliminate this dependency on the secret
key, we perform a hybrid step to switch all cid’s output
by oracle Challenge to random, while internally storing a
mapping from cid to the secret key to ensure consistency.

Now we can give a reduction that first guesses the
registration interaction in which it embeds the given public
key. To simulate the signatures for the embedded public key,
the reduction can use the signing oracle provided by the
euf -cma game. Finally, it can use the signature that the
adversary sends in the forged authentication as a forgery
for the euf -cma game. To see that the forgery is fresh, we
rule out collisions for random oracle H and the challenges
rs that servers send.

Analysis of Unlinkability. Next, we give our results in
terms of unlinkability. Notably, we obtain strong unlinka-
bility for kwrPA, while kdfPA only satisfies medium un-
linkability.

Lemma 3. Let A be an adversary in the medium unlink-
ability game of kdfPA. Assume that A makes at most QC
queries to oracle Challenge. Then, there is an algorithm B,
which has the same running time as A, such that

AdvAmUnl,kdfPA ≤
2QC
2λ

+ |T | ·AdvBprf ,PRF.

Lemma 4. Let A be an adversary in the strong unlinkability
game of kwrPA. Then there exists an algorithm B, which has
the same running time as A, such that

AdvAsUnl,kwrPA ≤ |T |2 ·
(
AdvBanon-auth,SKE +

2QC
2ν∗

)
.

Again, we give a proof intuition here, and postpone formal
proofs to Appendices C.1 and C.2.

Proof Intuition. To show unlinkability, our goal is to remove
all information about tokens Tb, T1−b from the oracles Left
and Right. For the variant kdfPA and medium unlinkability,
this can be done roughly as follows. We first use the entropy
of mskTb

to argue that the adversary can only access the pre-
fixed random oracle G := K(mskTb

, ·) via oracles Challenge
and Left. Then, we rule out that two registrations sample
the same cid. This essentially tells us that we can assume
weak credential separation instead of medium credential
separation. Using weak credential separation, we see that
oracles Challenge and Left access oracle G on distinct

1498

points, which allows us to split the oracle into two oracles.
Using a similar argument for Tb and Right, we can conclude.

For kwrPA, our strategy is different. Namely, we first
guess the target tokens and then apply the security of the
encryption scheme, switching all cid’s for these tokens to
random. As in the proof of impersonation security, we hold
a mapping to keep the keys that we use consistent. Now, for
different cid’s the tokens use independent keys. The only
way to link between oracles Challenge and Left,Right, is to
reuse values cid. This is forbidden by the strong credential
separation condition. In contrast to the medium credential
separation condition, the adversary is allowed to submit a
fresh cid that is not output in an registration to Challenge
and Left,Right. However, as the encryption scheme is au-
thenticated, this will lead to aborting tokens.

To see why kdfPA does not achieve strong unlinkabil-
ity in general, consider an adversary that implements the
following strategy. It first chooses two target tokens T0, T1
and server SL = SR passes them to the experiment. Then,
it runs honest registrations with oracle Left, oracle Right,
and the oracle Challenge for token T0. It then samples some
random cid, and submits it during authentication interactions
with these three oracles, using the same challenge M . All
oracles will return valid signatures. Assuming that these
are deterministically computed or reveal the public key, the
adversary can simply compare the public keys to link. This
attack would not be possible if cid’s were authenticated, e.g.
using a MAC. In this case, we are confident that one could
prove medium unlinkability.

6. Defining Global Key Revocation

A useful feature that FIDO2 currently does not sup-
port is a means of revoking keys of a comprised token.
Informally, we want to give the user the option to revoke
its keys globally, without accessing all the servers which
her token is registered to one by one. In this section, we
focus on formally defining syntax and security for global
key revocation. Then, in the next section we show a way to
add this feature to FIDO2 using BIP32 key derivation.

In short, we define a global revocation mechanism as two
algorithms that are associated with PLA. Intuitively, these
should be understood as follows. First, when a user starts
using its token T ∈ T , it also obtains a revocation key rk,
which is extracted from the long-term key msk using some
algorithm Revoke, and should be stored externally, e.g. on
a piece of paper. Recall from Definition 14 that when token
T registers at a server S ∈ S, the server stores a credential
cred for this token in its state. If the user wants to revoke
its key, it publishes rk. We do not further specify how the
user publishes rk. However, we assume that all servers peri-
odically scan for published revocation keys rk. Whenever a
new revocation key is published, the server (with identity
idS) runs an algorithm CheckCred(idS , cred, rk) for each
credential cred = rcs[cid] in its registration context. If this
algorithm accepts then the credential is considered revoked.

Definition 4 (Global Key Revocation). A PlA PLA =
(Gen,Reg,Auth) satisfies global key revocation if there are
algorithms Revoke,CheckCred with the following syntax:

• Revoke(msk) takes as input a master secret key msk and
outputs a revocation key rk.

• CheckCred(idS , cred, rk) takes as input a server identity
idS , a credential cred and a revocation key rk and outputs
a bit b ∈ {0, 1}.

Further, the algorithms should be complete in the following
sense: For all msk ∈ Gen(par), parties T and S, sets
Rinit, Rbetw of tuples (cid, cred) the following experiment
outputs 1 with probability 1:

1) Run steps (1)-(3) from the experiment in Definition 15.
2) Run rk ← Revoke(msk) and b ← CheckCred(idS , cred,

rk). Return b.

Clearly, the above definition is easily satisfied if we
make algorithm CheckCred always output b = 1. This is
not what we aim for. Instead, we need a security notion that
ensures that only the owner of msk can revoke keys that
are stored on an honest server. In the security experiment
we define, the adversary gets arbitrary access to token and
server oracles. Then, it has to choose two partnered oracles
corresponding to a registration. It gets the corresponding
credential and has to output a revocation key to revoke
it. Intuitively, this means that it tries to revoke an honest
registration, with which it can arbitrarily interfere.

Definition 5 (Revocation Soundness). Let PLA =
(Gen,Reg,Auth) be a PlA. Consider an algorithm A and
the following experiment rev-soundAPLA:

• Setup. For each token T ∈ T , a key is generated by
running mskT ← Gen(par).

• Online Phase. A gets access to oracles Start,Challenge,
Complete as in Definition 1.

• Output Phase. A outputs tuples (T ∗, iT∗) and (S∗, iS∗).
If the oracle Complete(πiS∗ ,0S∗ , ·, ·) has never been
queried, the experiment returns 0. Otherwise, the ex-
periment returns cred∗ to A, where cred∗ is the
credential that oracle Complete(πiS∗ ,0S∗ , ·, ·) added to
rcsS∗ . Then, A outputs rk∗. The experiment outputs 1
if and only if πiT∗ ,0T∗ and πiS∗ ,0S∗ are partnered and
CheckCred(idS∗ , cred

∗, rk∗) = 1.

We define the advantage of A in rev-soundAPLA as

AdvArev-sound,PLA := Pr[rev-soundAPLA = 1].

Even for globally revoked keys impersonation should be
impossible, in case a server does not update its state in time.
Therefore, we extend the notion of impersonation security.

Definition 6 (Impersonation Security - GR). Let PLA =
(Gen,Reg,Auth) be a PlA. We consider the experiment
given in Definition 2 with the following modification, and
call the resulting experiment Imp-GRAPLA: After generating
mskT for each T ∈ T , the experiment also generates
rkT ← Revoke(mskT) for each T ∈ T . Then, {rkT }T∈T

1499

is given to algorithm A as an additional input. We define
the advantage of an algorithm A in the experiment as

AdvAImp-GR,PLA := Pr[Imp-GRAPLA = 1].

For unlinkability, it is clear that all keys of a token can
be linked once the revocation key is published. Thus, in
our modified unlinkability experiment, the adversary gets all
revocation keys except the ones for the challenge tokens. As
our scheme only satisfies the weak version of unlinkability
with global revocation, we only define this. The medium
and strong version can be defined analogously.

Definition 7 (Unlinkability - GR). Let PLA =
(Gen,Reg,Auth) be a PlA. We consider the experiment
wUnl given in Definition 3 with the following modification,
and call the resulting experiment wUnl-GRAPLA: After
generating mskT for each T ∈ T , the experiment also
generates rkT ← Revoke(mskT) for each T ∈ T . Then,
when A outputs T0, T1 and SL, SR in Phase 2, the
experiment gives {rkT }T∈T \{T0,T1} to A. The rest of the
experiment is as in wUnl. We define the advantage of an
algorithm A as

AdvAwUnl-GR,PLA := |Pr[wUnl-GRAPLA = 1]− 1/2|.

7. BIP32 Passwordless Authentication

In this section, we show how to instantiate FIDO2 using
ECDSA with the BIP32 key derivation [31]. The resulting
scheme, denoted by bip32PA supports global key revocation.

7.1. Scheme Description

We give a description of our scheme bip32PA. Then, we
also explain how it can support global revocation.
ECDSA Signatures. We recall the ECDSA signature
scheme and its key-prefixed variant. The system parameters
par of the scheme contain a group G of prime order p with
generator g ∈ G. Let H ′ : {0, 1}∗ → Zp be a random oracle.
We denote the scheme by SIGH′ = (Gen,Sig,SRerand,
PRerand,Ver) and its key-prefixed variant as SIGkpH′ . We first
describe key generation and randomization. Key generation
and rerandomization are as follows:
• Gen(par) : Sample sk←$ Zp, pk := gsk. Return (sk, pk).
• SRerand(sk, ρ ∈ Zp) : Return sk′ := sk+ ρ.
• PRerand(pk, ρ ∈ Zp) : Return pk′ := pk · gρ.
Next, let us explain signing and verification. Signing and
verifcation makes use of algorithms Sigint,Verint that are
used internally. For the purpose of this work, we can treat
these as a black box. For details, see [9]. Using these
algorithms, signing (i.e. algorithm Sig(sk,m)) is as follows:
1) Set pm := m ((pk,m) for the key-prefixed variant).
2) Compute z := H ′(pm).
3) Return σ ← Sigint(sk, z).
Verification computes z in the same way and runs
Verint(pk, σ, z). Looking ahead, the fact that pm is hashed

will allow the reductions in our proof to map key-prefixed
messages to messages prefixed with a server identifier.
Key Generation. Let us describe how master secret keys
msk are generated for our scheme bip32PA. The key consists
of an ECDSA key pair (sk0, pk0), a so called chaincode
ch and a seed seed. Looking ahead, the chaincode and the
public key pk0 can later be used to revoke keys, and the
seed seed will be used to derive randomness for signing.
Concretely, the components of the key are generated as
sk0 ←$ Zp, pk0 := gsk0 , ch ←$ {0, 1}λ, seed ←$ {0, 1}λ and
we set msk := (sk0, pk0, ch, seed).
Registration and Authentication. Registration and au-
thentication follow the WebAuthn specification. Thus, they
are very similar to the protocols described in Section 5.
Formally, we present protocols Reg and Auth in Figure
2. Let us describe the differences between bip32PA and
the existing schemes. The most important difference is
how keys are derived during registration and authentication.
Namely, the token defines cid := Ĥ(seed, idS) using a
random oracle Ĥ : {0, 1}∗ → {0, 1}λ. Then, it derives
a randomness ρ := Ĥ(pk0, ch, idS). This randomness is
used to rerandomize the pair (sk0, pk0) to a new keypair,
i.e. sk := SRerand(sk0, ρ) and pk := PRerand(pk0, ρ).
As in the scheme kdfPA, the server stores cid, pk during
registration and the key sk is used to sign challenges.

Let us give a brief explanation of the design choices
made here. Implementing the signing process in a prov-
ably secure way that is compatible with existing server
implementations is non-trivial. This is because provable
security with respect to randomized keys for ECDSA is only
known for the key-prefixed version and for one signature per
message [9]. To support multiple signatures per message,
one idea is to let the token choose a random nonce and
append it to messages. As we do not want to change the
protocol on the server side, we can not rely on such random
nonces. Instead, we derandomize the signing process by
deriving the random coins used for signing a message m
as Ĥ(seed,m). It remains to avoid key-prefixing, as this
would also require changing verification on the server side.
Here, we makes use of the fact that with high probability, the
mapping from server identities to public keys is injective.
Therefore, prefixing with server identities (which is already
done in WebAuthn) is as good as prefixing with public
keys. To make this idea work, we need to ensure that for
each server, there is a fixed public key, which explains the
definition of cid. As cid is deterministically derived from
idS , each registration on the same server will be associated
with the same public key. This is also the reason why the
scheme only achieves weak unlinkability.
Global Revocation. The advantage of the BIP32 key deriva-
tion compared to existing schemes is global key revocation,
as defined in the previous section. We present algorithms
Revoke and CheckCred for our scheme bip32PA. Algorithm
Revoke(msk) is given as follows:
1) Parse (sk0, pk0, ch, seed) := msk.
2) Return rk := (pk0, ch).
Algorithm CheckCred(idS , cred, rk) is as follows:

1500

(cid, Rr)← rresp(msk = (sk0, pk0, ch, seed), idS ,Mr) :

cid := Ĥ(seed, idS)

sk := SRerand(sk0, Ĥ(pk0, ch, idS))

pk := PRerand(pk0, Ĥ(pk0, ch, idS))

m := (H(idS), cid, pk,Mr), coins := Ĥ(seed,m)

σ := Sig(sk,m; coins), Rr := (pk, σ)

Ra ← aresp(msk = (sk0, pk0, ch, seed), idS , cid,Ma) :

if cid 6= Ĥ(seed, idS) : abort

sk := SRerand(sk0, Ĥ(pk0, ch, idS))

m := (H(idS),Ma), coins := Ĥ(seed,m)

σ := Sig(sk,m; coins), Ra := σ

Figure 2. The WebAuthn registration (left) and authentication protocol (right) for our new variation bip32PA. Functions Vt, Vs, and algorithms
rcomm, acomm, rchall, achall, rcheck, acheck are given as in Figure 1.

1) Parse (pk0, ch) := rk and pk := cred.
2) Run pk′ := PRerand(pk0, Ĥ(pk0, ch, idS)).
3) Return 1 if pk = pk′. Otherwise, return 0.

7.2. Revocation Soundness and Unlinkability

Next, we show revocation soundness and unlinkability of
bip32PA. We postpone the formal proofs to the full version
[30], and give proof intuitions here.

Revocation Soundness. We show revocation soundness.
Recall that this means that only the owner of a token can
revoke its keys. Our result is summarized in the following
statement.

Lemma 5. Let A be an adversary in the revocation sound-
ness game of bip32PA. Assume that A makes at most QĤ
queries to oracle Ĥ and at most QC queries to oracle
Challenge. Then we have

AdvArev-sound,bip32PA ≤
QĤ · |T |+Q2

Ĥ
+ 1 +QC ·QĤ

2λ
.

Proof Intuition. In the experiment, the adversary first in-
structs a token T ∗ with key mskT = (skT∗,0, pkT∗,0, chT∗ ,
seedT∗) and a server S∗ to interact in a registration. Then, it
gets the resulting credential cred∗ = pk, and has to output
a revocation key rk∗ = (pk∗0, ch

∗). The adversary breaks
revocation soundness, if CheckCred(idS∗ , cred

∗, rk∗) = 1,
i.e. if pk = PRerand(pk∗0, Ĥ(pk∗0, ch

∗, idS∗)). To show that
this is infeasible, we first argue using the entropy of chT∗
that the adversary will not output rk∗ = (pkT∗,0, chT∗).
Then, we guess the registration interaction of interest and
embed an independent public key pk into this registration.
We can do this by programming random oracle Ĥ accord-
ingly. With this, winning the game reduces to solving the
following isolated problem: Given a key pair (sk, pk) and
access to a random oracle H̃ , find pk′ and ch such that
pk = PRerand(pk′, H̃(pk′, ch)). This problem is statisti-
cally hard to solve, as we show in the full version [32].

Unlinkability. We show unlinkability in presence of global
revocation. We obtain the following result.

Lemma 6. Let A be an adversary in the weak unlinkability
with global revocation game of bip32PA. Assume that A

makes at most QĤ , QH queries to random oracles Ĥ,H ,
respectively. Then we have

AdvAwUnl-GR,bip32PA ≤
4 ·QĤ + 2 · |T |2

2λ
+
Q2
H

22λ
.

Proof Intuition. The proof is similar to the proof of vari-
ant kdfPA. Namely, we first argue that the adversary can
access the random oracles G1 := Ĥ(pkTj ,0, chTj

, ·, ·) or
G2 := Ĥ(seedTj

, ·) for the challenge tokens j ∈ {0, 1}
only indirectly via the oracles Left,Right and Challenge.
Then, we claim that the oracles Left and Challenge access
these prefixed random oracles on distinct inputs. As we have
perfect rerandomization of keys, this means that the keys
pk = PRerand(pkTj ,0, Ĥ(pkTj ,0, chTj

, ·, ·)) that tokens use
are independent, and the claim follows. To show the claimed
domain separation, we can not rely on entropy of the values
cid as we did for the variant kdfPA. Indeed, variant bip32PA
derives cid deterministically from the server identity idS .
However, as we consider weak unlinkability, this argument
is not necessary. Namely, for this specific scheme, credential
separation implies that the adversary never uses the same
server identity in both Challenge and Left,Right. Then, the
domain separation follows from the fact that Left,Right and
Challenge access the oracles G1 and G2 only on inputs that
contain the server identity.

7.3. Impersonation Security

As showing impersonation security with global revoca-
tion is technically the most interesting part of our analysis,
we dedicate this entire section to it. We will give an in-
tuitive overview of our analysis, and postpone the formal
definitions and proofs to the full version of the paper [32].
Unforgeability of Key-Prefixed ECDSA. The reader may
wonder why we can not follow the proof idea of variant
kdfPA and reduce to the euf -cma security of plain ECDSA.
To understand this, we have to recall that in the security
experiment, the adversary gets the revocation keys rkT =
(pkT,0, chT) for all tokens T , and a token computes the keys
pk that it uses via pk := PRerand(pkT,0, Ĥ(pkT,0, ch, idS)).
Therefore, the adversary knows a non-trivial correlation
between these public keys, which may allow to run some re-
lated key attack. To rule out this attack, the security notion of
unforgeability under honestly rerandomized keys (uf -hrk1)

1501

has been introduced [27], [9]. This notion is similar to
standard euf -cma, but in addition, the adversary gets access
to an oracle RandO that outputs uniform randomness ρ. An
adversary can also ask the signing oracle to sign a message
m using rerandomized keys skρ := SRerand(sk, ρ). In the
end, a forgery is also allowed to be for a rerandomization
of the public key that the adversary obtained. We have the
additional restriction that the signing oracle can be queried
at most once per pair (m, ρ). Das et al. [9] showed that the
key-prefixed variant of ECDSA satisfies this security notion.

Lemma 7 (informal, [9]). Let H : {0, 1}∗ → Zp be
a random oracle and SIGkpH be the key-prefixed ECDSA
signature scheme. Then, under suitable assumption, for each
efficient algorithm A, the advantage AdvA

uf -hrk1,SIGkp
H

is
negligible.

We could just use this result and obtain impersonation
security for the key-prefixed variant of bip32PA. As we aim
to avoid key-prefixing, we need to translate the above result
into a result for plain ECDSA.

Translation to Plain ECDSA. Our main insight is that
the proof by Das et al. still works if we prefix all signed
messages with some index idx, as long as there is a mapping
from idx to ρ, meaning that for each idx, we always use
the same ρ = ρidx. Then, in our scheme, we can use the
hash of the server identifier idS as idx. This works because
in WebAuthn, messages are always prefixed with the hash
of idS . However, to have this mapping also means that we
can not use different cid for the same idS , which explains
why we deterministically derive cid from idS .

We make this approach more formal by introducing a
variant uf -hrk-idx1 of the above security notion. In this
variant, oracle RandO takes as input an index idx and
always outputs the same ρidx for the same input idx. Then,
all signed messages are prefixed by idx in the signing oracle.
The final forgery also has to be prefixed with the correct
index. Then, we show that ECDSA without key-prefixing
satisfies this notion.

Lemma 8. Let H0 : {0, 1}∗ → Zp and H1 : {0, 1}∗ →
Zp be random oracles. Let SIGH1

be the ECDSA signature
scheme and SIGkpH0

be its key-prefixed variant as above. Let
A be an adversary in the game uf -hrk-idx1 for SIGH1

.
Assume that A makes at most QH1

queries to random oracle
H1, and at most QR queries to oracle RandO. Then there
exists an algorithm B with the same running time as A such
that

AdvAuf -hrk-idx1,SIGH1
≤ (QR +QH1

)2

2λ
+AdvB

uf -hrk1,SIGkp
H0

.

The idea of the proof is that the reduction can inter-
nally simulate random oracle H1(idx, ·) by random oracle
H0(pkidx, ·), where pkidx is given as PRerand(pk, ρidx).

Using this result, we can then show impersonation se-
curity with global revocation of bip32PA. This is done by
guessing the token T ∗ for which the adversary will forge

Scheme Registration Time [ms] Authentication Time [ms]

kdfPA 369.42 176.31
bip32PA 436.70 213.40

TABLE 2. EXECUTION TIME FOR bip32PA AND kdfPA AVERAGED
ACROSS 100 RUNS. FOR ALL MEASUREMENTS, WE INSTRUMENT THE
TOKEN TO NOT WAIT FOR USER TOUCH. THE STANDARD DEVIATION

FOR ALL MEASUREMENTS IS LESS THAN 6MS.

a signature, and then embedding the key given by the
uf -hrk-idx1 experiment as pkT∗,0. To see that we only
need to query the signing oracle once per pair (m, ρ), we
highlight that we derive the random coins for signing deter-
ministically in bip32PA. We obtain the following statement.

Lemma 9. Let A be an adversary in the impersonation with
global revocation game of bip32PA. Assume that A makes at
most QH , QĤ queries to random oracles H, Ĥ , respectively,
at most QS queries to oracle Start, and at most QC queries
to oracle Challenge. Then there exists an algorithm B with
the same running time as A such that A’s advantage in the
impersonation with global revocation game can be upper
bounded by

Q2
H + |S|2

22λ
+
Q2
S +QĤ · |T |

2λ
+ |T | ·AdvBuf -hrk-idx1,SIGH′

.

7.4. Evaluation

To show the practicality of bip32PA, we created a
prototype implementation and evaluated it on the FIDO2
compliant SoloKey token. The SoloKey firmware uses the
secp256r1 curve, is open source and can be uploaded to
a special version called Solo Hacker3. Additionally, we
evaluate the efficiency of the revocation process introduced
for bip32PA on a standard Macbook Pro with an Intel i7
processor @2,3 GHz with 4 cores and 16 GB of RAM. We
show that revoking even 220 (around one million) tokens
takes no more than 3 minutes on this personal computer. It
is worth noting that the revocation process is highly paral-
lelizable, and executing it on a server-based platform with
multiple cores will yield significantly better execution times.
We make the source code for our prototype implementation
publicly available4.
Token Implementation. We evaluate the on-token execution
time for registration and authentication of bip32PA and
compare it to the execution time of the kdfPA variant that
is implemented in the original firmware of SoloKey. The
results are presented in Table 2. Our prototype implementa-
tion of bip32PA is only around 1.2× as slow as the original
firmware implementation of kdfPA. The difference in exe-
cution time is around 40 ms in the case of authentication,
which will only negligibly influence the user experience.

3https://solokeys.com/collections/all/products/solo-hacker/
4Code available here: https://anonymous.4open.science/r/bip32PA

1502

Global Revocation in Practice. We discuss how services
can practically implement revocation. Recall that given the
revocation key rk (computed using Revoke), the relying
party with identity idS can verify using CheckCred if the
key corresponds to a credential cred. The way we mod-
eled global revocation, the knowledge of rk only allows
an adversary to link credentials created by the same token
and does not allow for impersonation attacks. Thus, users
can generate the revocation key during a setup phase and
securely extract it from the token to store it, e.g., on a piece
of paper as a QR code. A straightaway way to implement
the revocation mechanism is to use an approach similar to
certificate revocation lists (CRLs) [33]. The relying party
downloads a size B blocklist with revocation keys of re-
voked tokens and uses the CheckCred algorithm against an
internal database containing N unique credentials cred. The
complexity of this algorithm is B ·N , making it somewhat
inefficient for services with many users (big N). Like in the
case of CRLs, the relying party can download the list via
delta updates and only periodically run this check. However,
in the case of freshly registered tokens, the relying party
must check the revocation status for all elements on the
blocklist. For a more in-depth analysis of how to efficiently
implement the update, storage, and operation of such a
revocation list, we refer to the literature on CRLs.

We will now look at how to optimize the revocation
process in the case of bip32PA. The revocation key contains
(pk0, ch) and the CheckCred algorithm computes the public
key pk′ := PRerand(pk0, Ĥ(pk0, ch, idS)) and compares
pk′ against the credential, which in this case is also a
public key pk. In other words, the relying party recom-
putes the public key the revoked token used for registra-
tion, and checks it against the provided public key. There
are two observations here that will provide an improve-
ment to the direct approach to revocation described above.
Firstly, for each entry on the blocklist, the corresponding
public key pk′ can be computed once and used against
the whole database of the relying party. Secondly, since
we compare public keys, we can use a binary search in-
stead of comparing the recomputed public key pk′ with
every element in the database. The mechanism will look
as follows, assuming a presorted database. For each revoca-
tion key rk := (pk0, ch) on the blocklist, first recompute
pk′ := PRerand(pk0, Ĥ(pk0, ch, idS)) using the identity
idS and then run a binary search on internal database.
The complexity of this mechanism is B times the cost of
PRerand and O(B · log(N)) times the cost of comparing
public keys (done via BigInteger comparison). It is worth
noting that the relying party can store the precomputed
public keys and use them in case of new registrations. It
can then check the status of a newly registered token with
O(log(B)) public key comparisons.

To evaluate its efficiency, we created a prototype imple-
mentation of the revocation mechanism described above. We
designed a basic function that simulates just one revocation
key checking. It generates the public key pk′ by reusing the
PRerand function from our bip32PA token implementation.

Size B 218 220 222 224

Time [s] 44 175 699 2761

TABLE 3. EXECUTION TIME FOR bip32PA REVOCATION AVERAGED
ACROSS 100 RUNS. WE ASSUME THE SIZE OF THE RELYING PARTY’S
DATABASE TO BE N = 240 AND THE BLOCKLIST SIZE TO BE B. THE
STANDARD DEVIATION FOR ALL MEASUREMENTS IS LESS THAN 5S.

Then it simulates a binary search by performing log(N)
comparisons of the public key pk′ with a random public
key. During each test, we execute this simple function B
times. It is easy to see that this process is highly paralleliz-
able, and we used this in our prototype implementation.
We divided the work across T = 16 threads. Further
increasing this number did not significantly improve the
mechanism’s efficiency on our test platform. However, ex-
ecuting this mechanism on a server-oriented platform can
make use of this parallelization even more. We executed
and computed the average of 100 test for parameters N ∈
{230, 232, 234, 236, 238, 240} and B ∈ {218, 220, 222, 224}.
It is worth noting that the binary search only constituted
around 1 second in total for all cases of N . Thus, we can
practically use our revocation mechanism with even bigger
database sizes. Due to this reason, in Table 3 we present the
results only for N = 240. Checking the revocation status
of around 1 million (∼ 220) revocation keys takes only
about 3 minutes on this personal computer platform. The
relying party can check smaller lists of size 218 = 262144
in less than a minute. It is easy to see that this revocation
mechanism is practical. As we mentioned above, blocklists
can be provided periodically, and we can realistically assume
that they will probably not exceed 220 entries.

8. Conclusion

We analyzed the WebAuthn protocol in FIDO2 with a
focus on its real-world use cases and adapted the existing
security models accordingly. We showed that privacy (un-
linkability) of the protocol is not immediately guaranteed by
the specification if keys are stored externally as in common
implementations. To solve this issue we introduced the first
formal security definition to capture privacy. Our results can
be used as a guideline for token vendors. As an important
example, we observed that in the case of key-wrapping the
underlying encryption scheme must provide an anonymity
property, i.e. ciphertexts created using the same key must be
unlinkable to each other. We also introduced the notion of
global key revocation and gave the first formalization of this
property. Finally, we have shown that BIP32 key derivation
can be used to obtain an efficient token implementation that
supports global key revocation and is fully compatible with
existing server implementations.

References

[1] “Client to Authenticator Protocol (CTAP),” https://fidoalliance.org/
specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-
v2.0-ps-20190130.pdf, 2019, [Online; accessed 14-January-2022].

1503

[2] “Web Authentication: An API for accessing Public Key Creden-
tials,” https://www.w3.org/TR/webauthn/, 2020, [Online; accessed 14-
January-2022].

[3] M. Barbosa, A. Boldyreva, S. Chen, and B. Warinschi, “Provable
security analysis of FIDO2,” in CRYPTO 2021, Part III, ser. LNCS,
T. Malkin and C. Peikert, Eds., vol. 12827. Virtual Event: Springer,
Heidelberg, Aug. 2021, pp. 125–156.

[4] N. Bindel, C. Cremers, and M. Zhao, “FIDO2, CTAP 2.1, and We-
bAuthn 2: Provable security and post-quantum instantiation,” Cryp-
tology ePrint Archive, Report 2022/1029, 2022, https://eprint.iacr.org/
2022/1029.

[5] I. B. Guirat and H. Halpin, “Formal verification of the w3c
web authentication protocol,” in Proceedings of the 5th Annual
Symposium and Bootcamp on Hot Topics in the Science of
Security, ser. HoTSoS ’18. New York, NY, USA: Association
for Computing Machinery, 2018. [Online]. Available: https://doi-
org.simsrad.net.ocs.mq.edu.au/10.1145/3190619.3190640

[6] M. Kepkowski, L. Hanzlik, I. Wood, and M. A. Kâafar, “How
not to handle keys: Timing attacks on FIDO authenticator
privacy,” CoRR, vol. abs/2205.08071, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2205.08071

[7] Yubico, “Yubikey U2F Key Generation,” 2020, [Online; accessed
14-January-2022]. [Online]. Available: {https://developers.yubico.
com/U2F/Protocol details/Key generation.html}

[8] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel,
“Is FIDO2 the kingslayer of user authentication? A comparative
usability study of FIDO2 passwordless authentication,” in 2020 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press,
May 2020, pp. 268–285.

[9] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi, “The exact security
of BIP32 wallets,” in CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna,
and E. Shi, Eds. ACM, 2021, pp. 1020–1042. [Online]. Available:
https://doi.org/10.1145/3460120.3484807

[10] A. Alam, K. Krombholz, and S. Bugiel, “Poster: Let history not repeat
itself (this time) - tackling WebAuthn developer issues early on,” in
ACM CCS 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds.
ACM Press, Nov. 2019, pp. 2669–2671.

[11] D. Chakraborty and S. Bugiel, “simFIDO: FIDO2 user authentication
with simTPM,” in ACM CCS 2019, L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, Eds. ACM Press, Nov. 2019, pp. 2569–2571.

[12] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anonymous credentials,” in
CRYPTO 2002, ser. LNCS, M. Yung, Ed., vol. 2442. Springer,
Heidelberg, Aug. 2002, pp. 61–76.

[13] D. Boneh and H. Shacham, “Group signatures with verifier-local revo-
cation,” in ACM CCS 2004, V. Atluri, B. Pfitzmann, and P. McDaniel,
Eds. ACM Press, Oct. 2004, pp. 168–177.

[14] J. Camenisch, M. Drijvers, and J. Hajny, “Scalable revocation
scheme for anonymous credentials based on n-times unlinkable
proofs,” in Proceedings of the 2016 ACM on Workshop on Privacy in
the Electronic Society, WPES@CCS 2016, Vienna, Austria, October
24 - 28, 2016, E. R. Weippl, S. Katzenbeisser, and S. D. C.
di Vimercati, Eds. ACM, 2016, pp. 123–133. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2994625

[15] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and
D. Rizzo, “True2F: Backdoor-resistant authentication tokens,” in 2019
IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2019, pp. 398–416.

[16] N. Frymann, D. Gardham, F. Kiefer, E. Lundberg, M. Manulis, and
D. Nilsson, “Asynchronous remote key generation: An analysis of
yubico’s proposal for W3C WebAuthn,” in ACM CCS 2020, J. Ligatti,
X. Ou, J. Katz, and G. Vigna, Eds. ACM Press, Nov. 2020, pp. 939–
954.

[17] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol. 4, no. 3, pp. 161–174, Jan. 1991.

[18] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication
and authenticated key exchanges,” Designs, Codes and Cryptography,
vol. 2, no. 2, pp. 107–125, Jun. 1992.

[19] L. Law, A. Menezes, M. Qu, J. A. Solinas, and S. A. Vanstone,
“An efficient protocol for authenticated key agreement,” Des. Codes
Cryptogr., vol. 28, no. 2, pp. 119–134, 2003.

[20] B. A. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of
authenticated key exchange,” in ProvSec 2007, ser. LNCS, W. Susilo,
J. K. Liu, and Y. Mu, Eds., vol. 4784. Springer, Heidelberg, Nov.
2007, pp. 1–16.

[21] D. Chaum and E. van Heyst, “Group signatures,” in EUROCRYPT’91,
ser. LNCS, D. W. Davies, Ed., vol. 547. Springer, Heidelberg, Apr.
1991, pp. 257–265.

[22] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group
signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions,” in EUROCRYPT 2003, ser.
LNCS, E. Biham, Ed., vol. 2656. Springer, Heidelberg, May 2003,
pp. 614–629.

[23] I. Teranishi, J. Furukawa, and K. Sako, “k-Times anonymous authen-
tication (extended abstract),” in ASIACRYPT 2004, ser. LNCS, P. J.
Lee, Ed., vol. 3329. Springer, Heidelberg, Dec. 2004, pp. 308–322.

[24] Ö. Dagdelen and M. Fischlin, “Security analysis of the extended
access control protocol for machine readable travel documents,” in
ISC 2010, ser. LNCS, M. Burmester, G. Tsudik, S. S. Magliveras,
and I. Ilic, Eds., vol. 6531. Springer, Heidelberg, Oct. 2011, pp.
54–68.

[25] J. Brendel and M. Fischlin, “Zero round-trip time for the extended
access control protocol,” in ESORICS 2017, Part I, ser. LNCS, S. N.
Foley, D. Gollmann, and E. Snekkenes, Eds., vol. 10492. Springer,
Heidelberg, Sep. 2017, pp. 297–314.

[26] N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder,
and M. Simkin, “Efficient unlinkable sanitizable signatures from
signatures with re-randomizable keys,” in PKC 2016, Part I, ser.
LNCS, C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang,
Eds., vol. 9614. Springer, Heidelberg, Mar. 2016, pp. 301–330.

[27] P. Das, S. Faust, and J. Loss, “A formal treatment of deterministic
wallets,” in ACM CCS 2019, L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, Eds. ACM Press, Nov. 2019, pp. 651–668.

[28] P. Rogaway and T. Shrimpton, “A provable-security treatment of the
key-wrap problem,” in EUROCRYPT 2006, ser. LNCS, S. Vaudenay,
Ed., vol. 4004. Springer, Heidelberg, May / Jun. 2006, pp. 373–390.

[29] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in EUROCRYPT 2000,
ser. LNCS, B. Preneel, Ed., vol. 1807. Springer, Heidelberg, May
2000, pp. 139–155.

[30] L. Hanzlik, J. Loss, and B. Wagner, “Token meets wallet: Formaliz-
ing privacy and revocation for FIDO2,” Cryptology ePrint Archive,
Report 2022/084, 2022, https://eprint.iacr.org/2022/084.

[31] B. Wiki, “Bip32 proposal,” 2018. [Online]. Available: {https:
//en.bitcoin.it/wiki/BIP 0032}

[32] Anonymous, “Token meets Wallet - Full Version.” [Online]. Avail-
able: https://anonymous.4open.science/r/bip32PA/FullVersion.pdf

[33] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” Internet Requests for
Comments, RFC Editor, RFC 5280, May 2008. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5280.txt

[34] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A block-
cipher mode of operation for efficient authenticated encryption,” in
ACM CCS 2001, M. K. Reiter and P. Samarati, Eds. ACM Press,
Nov. 2001, pp. 196–205.

[35] J. Jonsson, “On the security of CTR + CBC-MAC,” in SAC 2002,
ser. LNCS, K. Nyberg and H. M. Heys, Eds., vol. 2595. Springer,
Heidelberg, Aug. 2003, pp. 76–93.

1504

Appendix A.
Preliminaries

Notation. We denote by z ← A(x) the execution of al-
gorithm A on input x and with output z. If we want to
make the random coins ρ of algorithm A explicit, we write
z := A(x; ρ) instead. We write y ∈ A(x) to indicate that y
is a possible output of A on input x. By r ←$ S we mean
that r is chosen uniformly at random over the set S. We will
use [n] to denote the set {1, . . . , n}. By λ, we denote the
security parameter. Throughout the paper, we assume public
parameters par are given implicitly to all algorithms.

Signatures. We recall the standard notion of digital signa-
tures. We also introduce rerandomizable signature schemes
[26], [27] and the corresponding security notion.

Definition 8 (Digital Signature Scheme). A digital signature
scheme is a tuple of algorithms SIG = (Gen,Sig,Ver) with
the following properties.
• The randomized key generation algorithm Gen takes as

input parameters par. It outputs a keypair (sk, pk).
• The randomized signing algorithm Sig takes as input a

secret key sk and a message m. It outputs a signature σ.
• The deterministic verification algorithm Ver takes as input

a public key pk, a signature σ, and a message m. It
outputs 0 (reject) or 1 (accept).

We say that a digital signature scheme is correct if for all
(sk, pk) ∈ Gen(par) and all messages m ∈ {0, 1}∗ we
have Prσ←Sig(sk,m)[Ver(pk, σ,m) = 1] = 1. We assume that
secret keys are chosen uniformly at random and there is an
algorithm ToPK that maps secret keys to public keys.

Definition 9 (Unforgeability under Chosen Message At-
tacks). Let SIG = (Gen,Sig,Ver) be a signature scheme and
consider the experiment euf -cmaASIG defined as follows:
• Setup. The experiment generates (sk, pk) via (sk, pk) ←
Gen(par). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracle
SignO, which takes as input a message m and returns the
signature σ ← Sig(sk,m).

• Output Phase. When A returns (m∗, σ∗), the experiment
returns 1 if Ver(pk, σ∗,m∗) = 1 and m∗ was not queried
to SignO. Otherwise, it returns 0.

We define the advantage of A in euf -cmaASIG as
AdvAeuf -cma,SIG := Pr[euf -cmaASIG = 1].

Definition 10 (Rerandomizable Signature [26], [27]). A
rerandomizable signature scheme is a tuple of algo-
rithms SIG = (Gen,Sig,SRerand,PRerand,Ver), where
(Gen,Sig,Ver) is a digital signature scheme, and algorithms
SRerand,PRerand have the following properties.
• The deterministic secret key rerandomization algorithm
SRerand takes as input a secret key sk and a string ρ. It
outputs a rerandomized key skρ.

• The deterministic public key rerandomization algorithm
PRerand takes as input a public key pk and a string ρ. It
outputs a rerandomized key pkρ.

Moreover, we require that for all (sk, pk) ∈ Gen(par),
key pairs (skρ, pkρ) generated as ρ ←$ {0, 1}λ, skρ :=
SRerand(sk, ρ), and pkρ := PRerand(pk, ρ) are identically
distributed to key pairs generated via (sk′, pk′)← Gen(par).

Symmetric Primitives. Here, we recall the definition of
symmetric key encryption that is both authenticated and
anonymous. For the definition of security, we follow [28].
For simplicity of exposition, we choose to leave nonces
implicit, leading to a potentially weaker notion. We note
that this notion is satisfied using the OCB mode of operation
[34] or the CCM mode of operation [35].

Definition 11 (Symmetric Key Encryption Scheme). A sym-
metric key encryption scheme (SKE) with length function
ν : N→ N is a tuple of algorithms SKE = (Gen,Enc,Dec)
with the following properties.
• The randomized key generation algorithm Gen takes as

input parameters par. It outputs a secret key sk.
• The randomized encryption algorithm Enc takes as input

a secret sk and a message m. It outputs a ciphertext c ∈
{0, 1}ν(|m|).

• The deterministic decryption algorithm Dec takes as input
a secret key sk and a ciphertext c. It outputs either ⊥ or
a message m.

Definition 12 (Authenticated Anonymous Security for
SKE). Let SKE = (Gen,Enc,Dec) be a symmetric key
encryption scheme with length function ν. For an algorithm
A and a bit b ∈ {0, 1}, consider the following experiment
anon-authASKE,b:
• Setup. The experiment generates a key sk ← Gen(par)

and initializes a map L[·].
• Online Phase. The adversary A is run on input par with

oracle access to oracles EncOb,DecOb, which are defined
as follows.
– EncO0(m): Return c← Enc(sk,m).
– DecO0(c): Return m := Dec(sk, c).
– EncO1(m): Sample a ciphertext c ←$ {0, 1}ν(|m|) uni-

formly at random, define L[c] := m and return c.
– DecO1(c): If L[c] 6=⊥, return L[c]. Else, return ⊥.

• Output Phase. The adversary outputs a bit b′. The exper-
iment outputs b′.

We define the advantage of A against authenticated
anonymous security of SKE as AdvAanon-auth,SKE :=∣∣∣Pr[anon-authASKE,0 = 1]− Pr[anon-authASKE,1 = 1]

∣∣∣ .
Definition 13 (Pseudorandom Function). Let `1 =
`1(λ), `2 = `2(λ) ∈ N. Consider a efficiently computable
function PRF : {0, 1}λ × {0, 1}`1 → {0, 1}`2 , an algorithm
A, a bit b ∈ {0, 1}, and the following experiment prfAPRF,b:
• Setup. The experiment samples K ←$ {0, 1}λ and initial-

izes a map F [·].
• Online Phase. The adversary A is run on input par

with oracle access to oracle EvalOb, which is defined as
follows.
– EvalO0(x ∈ {0, 1}`1): If F [x] 6=⊥, return F [x]. Else,

sample F [x]←$ {0, 1}`2 and return F [x].

1505

– EvalO1(x ∈ {0, 1}`1): Return PRF(K,x).
• Output Phase. The adversary outputs a bit b′. The exper-

iment outputs b′.
We define the advantage of A against the
pseudorandomness of PRF as AdvAprf ,PRF :=∣∣∣Pr[prfAPRF,0 = 1]− Pr[prfAPRF,1 = 1]

∣∣∣ .
Appendix B.
Formal Syntax, Completeness, and Partnering

Definition 14 (PlA). A passwordless authentication scheme
(PlA) is a tuple PLA = (Gen,Reg,Auth) with the following
properties:
• The randomized key generation algorithm Gen takes as

input parameters par. It outputs a master secret key msk.
• The registration protocol Reg given as a tuple of algo-

rithms (rchall, rcomm, rresp, rcheck).
– The randomized registration challenge generation algo-

rithm rchall takes as input a server identity idS and
outputs a challenge value c and a state st.

– The deterministic registration command creation algo-
rithm rcomm takes as input a server identity idS and
a challenge value c and outputs a message Mr.

– The randomized registration response algorithm
rresp takes as input a master secret key msk, a server
identity idS and a message Mr and outputs and cre-
dential identifier cid and a response Rr.

– The deterministic registration check algorithm rcheck
takes as input a state st, a credential identifier cid and
a response Rr and outputs a bit b ∈ {0, 1} and a
credential cred.

• The authentication protocol Auth is given as a tuple of
algorithms (achall, acomm, aresp, acheck).
– The randomized authentication challenge generation al-

gorithm achall takes as input a server identity idS and
outputs a challenge value c and a state st.

– The deterministic authentication command creation al-
gorithm acomm takes as input a server identity idS and
a challenge value c and outputs a message Ma.

– The randomized authentication response algorithm
aresp takes as input a master secret key msk, a server
identity idS , a credential identifier cid, and a message
Ma and outputs a response Ra.

– The deterministic authentication check algorithm
acheck takes as input a state st, a registration context
rcs, a credential identifier cid and a response Ra and
outputs a bit b ∈ {0, 1}

Algorithms rchall, rcheck, achall, acheck are executed by
servers, rcomm, acomm are executed by clients, and
rresp, aresp are executed by tokens.

Definition 15 (Completeness of PlA). We say that a PlA
PLA = (Gen,Reg,Auth) with Reg = (rchall, rcomm, rresp,
rcheck) and Auth = (achall, acomm, aresp, acheck) is com-
plete, if for all msk ∈ Gen(par), parties T and S, sets
Rinit, Rbetw of tuples (cid, cred), the probability that the
following experiment outputs 0 is 0:

1) Let rcs be a key-value table. For each (cid, cred) ∈ Rinit,
set rcs[cid] := cred.

2) Run the registration protocol Reg of T at S, as follows:

(c, st)← rchall(idS),Mr ← rcomm(idS , c),
(cid, Rr)← rresp(msk, idS ,Mr),
(br, cred)← rcheck(st, cid, Rr).

If br = 0, output 0. Otherwise, set rcs[cid] := cred.
3) For each (cid, cred) ∈ Rbetw, set rcs[cid] := cred.
4) Run the authentication protocol Auth of T at S, which

is as follows:

(c, st)← achall(idS),Ma ← acomm(idS , c),
Ra ← aresp(msk, idS , cid,Ma),
ba ← acheck(st, rcs, cid, Ra).

5) Return ba.
We assume that cid derived in Step 2 is not in the list Rbetw.

Definition 16 (Session Identifiers and Partnering). Let PLA
be a PlA and consider the oracles from Definition 1.
Let Vt be a function that takes as input the transcript
tri,jT = (idS , cid,M,R) that a token T ∈ T observes in an
oracle call to Challenge(πi,jT , ·, ·, ·), and outputs a bitstring
Vt(tr

i,j
T). Similarly, let Vs be a function that takes as input

the transcript tri,jS = (c, cid, R) that a server S ∈ S
observes in oracle calls to Start(πi,jS),Complete(πi,jS , ·, ·),
and outputs a bitstring Vs(tr

i,j
S). We assume that these

functions are specified by PLA.
We say that handles πi,jT and πi

′,j′

S are partnered if the
following hold:

(j = 0⇐⇒ j′ = 0) ∧ Vt(tri,jT) = Vs(tr
i′,j′

S).

Appendix C.
Omitted Proofs for Existing Implementations

C.1. Omitted Proofs For Key Derivation Function

Proof of Lemma 3. We show the statement via a sequence
of games. For each game Gi, we denote the probability that
Gi outputs 1 by pri. We note that games G1,G2 are taken
verbatim from the proof of Lemma 1.
Game G0: This game is the real medium unlinkability
game. Recall that at the beginning of this game, a
master secret key mskT ←$ {0, 1}λ is generated
for each token T ∈ T . The adversary A gets
access to oracles Start,Challenge,Complete. Then,
it outputs two tokens T0, T1 and servers SL, SR.
Afterwards, it also gets access to oracles Left,Right,
which internally run Challenge(πib,jbTb

, idSL
, ·, ·) and

Challenge(π
i1−b,j1−b

T1−b
, idSR

, ·, ·), respectively. By definition,
we have

AdvAmUnl,kdfPA =

∣∣∣∣pr0 − 1

2

∣∣∣∣ .
1506

Game G1: This game is as G0, but we introduce a bad
event and let the game abort if it occurs. Consider the lists
Lrlr and Lrch as in the definition of the unlinkability game.
Game G1 aborts if there is a collision, i.e. Lrlr ∩ Lrch 6= ∅.
Recall that the values cid is sampled uniformly at random,
and |Lrlr| ≤ 2. Therefore, we have

|pr0 − pr1| ≤
2QC
2λ

.

Game G2: This game is as G1, but we change the way
the secret signing keys sk used in queries of the form
Challenge(πi,jT , idS , cid, ·) or queries to Left and Right are
derived. This is similar to the proof of impersonation
security. Recall that before they were derived as sk :=
PRF(mskT , (cid, idS) for each token T ∈ T . Now, we in-
troduce an initially empty map KT [·] for each token T ∈ T .
Then, whenever G1 would compute sk as above, game G2

first checks if KT [cid, idS] is already defined. If it is not,
it samples a secret key sk uniformly at random, and sets
KT [cid, idS] := sk. In any case, it uses sk := KT [cid, idS]
to continue. As in the proof of impersonation security, we
can use the pseudorandomness of PRF in |T | hybrid steps
to bound the distinguishing advantage between G1 and G2.
To subsequent hybrids are shown to be close via a straight-
forward reduction B, and we get

|pr1 − pr2| ≤ |T | ·AdvBprf ,PRF.

Game G3: This game is as G2, but we split the map KTb

into two maps. To recall, Tb is the challenge token used in
oracle Left. In game G3, instead of having one map KTb

that is used in Challenge(πi,jTb
, ·) and Left, we now only use

KTb
in Challenge(πi,jTb

, ·), and a separate independent map
KL[·] in oracle Left. It follows from credential separation
and the bad event that we ruled out in G1 that this is only a
conceptual change. Namely, the change can only be noticed,
if the game accesses both KTb

[cid, idS] and KL[cid, idS] for
some (cid, idS). By definition of oracle Left, this means that
S = SL, and therefore credential separation applies. We get

pr2 = pr3.

Game G4: This game is as game G3, with a similar change
as the previous one but for oracle Right and token T1−b.
Namely, we split the map KT1−b

into two maps. The map
KT1−b

is used in Challenge(πi,jT1−b
, ·) and a map KR[·] is

used in oracle Right. Similarly as above, we get

pr3 = pr4.

We highlight that the steps from G2 to G4 would not
be correct if we tried to prove strong unlinkability. This is
because in this case, A would be allowed to come up with
some fresh cid and submit it to oracle Left and Challenge,
which react consistently in G2 and inconsistently in G3.

Finally, we see that the behavior of oracles Left and
Right in game G4 and thus A’s view is independent of the
bit b. Thus, we have pr4 = 1/2. This shows the claim.

C.2. Omitted Proofs For Key Wrapping

Proof of Lemma 2. We show the statement by presenting a
sequence of games Gi, where for each such game Gi the
probability that the game outputs 1 is denoted by Advi.
Game G0: This is the real impersonation game. At the
beginning of this game, every token T ∈ T is initialized
with a master secret key mskT ← Gen(par). Then, the
adversary gets access to oracles Start,Challenge,Complete.
By definition, we have

Adv0 = AdvAImp,kwrPA.

Game G1: We change the game as follows. The game is
as G0, but it aborts if for x 6= x′ we have H(x) = H(x′).
The images of H are sampled uniformly at random from
{0, 1}2λ, which implies that

|Adv0 −Adv1| ≤
Q2
H

22λ
.

Game G2: This game is as G2, but we introduce another
abort. To this end, consider the server-side oracles Start.
Recall that during the execution of such an oracle, a random
rs←$ {0, 1}≥λ is sampled. Game G2 aborts if the same rs
is sampled in two different invocations of the oracle Start.
Clearly, we have the bound

|Adv1 −Adv2| ≤
Q2
S

2λ
.

Game G3: In this game, we will no longer generate master
secret keys mskT for each token. Recall that these keys
are used in the previous games to encrypt signing keys
via cid ← Enc(mskT , (idS , sk)) in queries of the form
Challenge(πi,0T , idS , ·) (i.e. in registration) and to decrypt
such cid in queries of the form Challenge(πi,jT , idS , cid, ·),
j > 0 (i.e. in authentication). In game G2, we instead
hold an initially empty map L[·, ·]. In each registration
query Challenge(πi,0T , idS , ·) the value cid is now sam-
pled uniformly at random from {0, 1}ν∗ , and an entry
L[T, cid] := (idS , sk) is added. In each authentication query
Challenge(πi,jT , idS , cid, ·), j > 0, the entry (id, cid) :=
L[T, cid] is retrieved from the map instead of decrypting
cid, and it is used if it is defined. If it is undefined, the
oracle aborts its execution.

We can bound the distinguishing advantage between G2

and G3 using |T | intermediate hybrids. Namely, in hybrid
i, we apply the change to the first i tokens T ∈ T . For
each hybrid step we can give a straight-forward reduction B
from the anonymous authentication security of SKE. Thus,
we have

|Adv1 −Adv2| ≤ |T | ·AdvBanon-auth,SKE.

Now, if we take a look at G3, we see that each challenge that
the adversary gets via oracle Start and has to sign is unique.
Also, signing keys sk are only needed to sign, and not in
the plain anymore. Thus, similar to the proof of Lemma 1
we can build a reduction C from the euf -cma security of
SIG to bound Adv3. At a high level, the reduction guesses

1507

in which query of the form Challenge(πi,0T , ·) the adversary
obtained the public key, for which it forges a signature. We
have

Adv3 ≤ QC ·AdvCeuf -cma,SIG.

Proof of Lemma 4. We show the claim by presenting a
sequence of games Gi. For each game Gi, we denote the
probability that it outputs 1 by pri.
Game G0: This game is the real strong unlinkability game.
In this game, a key skT ← Gen(par) is generated for
each token T ∈ T . Then, the adversary A gets access
to oracles Start,Challenge,Complete and outputs tokens
T0, T1 and servers SL, SR. Afterwards, it also gets access
to oracles Left,Right, which run Challenge(πib,jbTb

, idSL
, ·, ·)

and Challenge(π
i1−b,j1−b

T1−b
, idSR

, ·, ·), respectively. By defini-
tion, we have

AdvAsUnl,kwrPA =

∣∣∣∣pr0 − 1

2

∣∣∣∣ .
Game G1: We change game G0 in the following way. In
the beginning, G1 samples T ∗0 , T

∗
1 ←$ T . Later, if T0 6= T ∗0

or T1 6= T ∗1 , the game returns a random bit. Otherwise, it
continues as G0 does. As A obtains no information about
T ∗0 , T

∗
1 until the potential abort, we have∣∣∣∣pr1 − 1

2

∣∣∣∣ = 1

|T |2

∣∣∣∣pr0 − 1

2

∣∣∣∣ .
Game G2: We change G1 in the following way. In G1,
whenever A starts a registration with token Tr, r ∈ {0, 1}
via oracles Challenge or Left,Right, a ciphertext cid is cre-
ated as cid := Enc(mskTr

, (idS , sk)). Furthermore, when A
starts an authentication interaction with token Tr, r ∈ {0, 1}
via oracles Challenge or Left,Right, it provides a ciphertext
cid, which is then decrypted as (id, sk) := Dec(msk, cid). If
Dec returns ⊥ or id does not match with the server identity
idS provided, the oracles abort. Otherwise, they continue
their execution using secret key sk.

Now, in game G2, we change this encryption and de-
cryption for the tokens T ∗0 , T

∗
1 that we guessed in G1. Note

that if G1 does not abort, we know that (T ∗0 , T
∗
1) = (T0, T1)

and these tokens are also used in oracles Left and Right.
Concretely, the game works as follows: Initially, two empty
maps L0[·], L1[·] are initialized. Then, in each registration
interaction with token T ∗i , i ∈ {0, 1} (including the ones
in oracle Left or Right) the value cid is sampled randomly
from {0, 1}ν∗ . Then, an entry Li[cid] := (idS , sk) is added.
Furthermore, in each authentication interaction with token
T ∗i , i ∈ {0, 1} (including the ones in oracle Left or Right),
where the adversary provides cid, we check if Li[cid] is
defined. If it is, we use it instead of decrypting cid. If it is
not defined, we abort this interaction. A direct reduction B
from the anonymous authentication security of SKE shows
that

|pr1 − pr2| ≤ AdvBanon-auth,SKE.

We note that now, the only dependence of A’s view on bit b
is the shared use of the maps L0, L1. Namely, the table Lb

is used by challenge oracles for token Tb and by the oracle
Left.
Game G3: Similar to game G2, but we partition map
Lbinto two tables: The first map, L′b, is used in oracle
Challenge for token Tb. The second map, LL is used in
oracle Left. The maps are used as before, and the difference
is that oracle Challenge never accesses LL and oracle Left
never accesses L′b.

We claim that the view of A does not change from
G2 to G3. To see this, note that A can only observe the
change, if the same cid is given out in registration twice
(once in Left,Right, and once in Challenge), or it sends a
value cid to one oracle in authentication (e.g. Challenge),
which was given out by the other oracle (e.g. Left) in
registration. The former only occurs with probability at most
2QC/|{0, 1}ν

∗ |, and the latter is forbidden due to (strong)
credential separation. It follows that

|pr2 − pr3| ≤
2QC
2ν∗

.

Game G4: This game is as G3, but we partition the map
L1−b into two tables L′1−b and LR. The change is similar
as above, and the same argument shows

pr3 = pr4.

We note that in G4, the view of A is independent of bit
b, which implies that pr4 = 1/2.

1508

