
Limits of I/O Based Ransomware Detection: An Imitation Based Attack

Chijin Zhou∗, Lihua Guo∗, Yiwei Hou∗, Zhenya Ma∗, Quan Zhang∗,
Mingzhe Wang∗, Zhe Liu†, and Yu Jiang∗�

∗BNRist, School of Software, Tsinghua University, Beijing, China
†Computer Science and Technology, NUAA, Nanjing, China

Abstract—By encrypting the data of infected hosts, crypto-
graphic ransomware has caused billions of dollars in financial
losses to a wide range of victims. Many detection techniques
have been proposed to counter ransomware threats over the
past decade. Their common approach is to monitor I/O be-
haviors from user space and apply custom heuristics to dis-
criminate ransomware. These techniques implicitly assume that
ransomware behaves very differently from benign programs in
terms of heuristics. However, when we investigated the behav-
ior of benign and ransomware programs, we found that the
boundary between their behaviors was blurred. A ransomware
program can still achieve its goal even though it follows the
behavior patterns of benign programs. In this paper, we aim
to explore the limits of ransomware detection techniques that
based on I/O behaviors. To this end, we present ANIMAGUS, an
imitation-based ransomware attack that imitates behaviors of
benign programs to disguise its encryption tasks. It first learns
behavior patterns from a benign program, and then spawns
and orchestrates child processes to perform encryption tasks
behaving the same as the benign program. We evaluate its
effectiveness against six state-of-the-art detection techniques,
and the results show that it can successfully evade these
defenses. We investigate in detail why they are ineffective
and how ANIMAGUS is different from existing ransomware
samples. In the end, we discuss potential countermeasures and
the benefits that detection tools can gain from our work.

1. Introduction

Cryptographic ransomware is designed to encrypt the
data of infected hosts and demand payment from victims
for decryption. It has been widespread and caused the loss
of billions of dollars [1] and even human lives [2]. Over the
past decade, research on ransomware has gained significant
traction in academia and industry. As ransomware spreads,
researchers collect a large number of ransomware samples
to conduct analysis on its behaviors [3], [4], evolution [5],
[6], and payment transactions [7].

Similar to traditional malware defense, the best way
to fight against ransomware is to detect and terminate it.
Therefore, many detection techniques [8], [9], [10], [11],
[12], [13], [14] have been proposed in the past decade.

�. Yu Jiang is the corresponding author.

Their typical approach is monitoring I/O behaviors from
user space and applying their custom heuristics to discrimi-
nate malicious behaviors. They usually consider several key
features to detect if a process is malicious. For example,
some of them [9], [10], [11], [13] consider the number of
read/write/delete operations performed and the entropy of
buffers written by the process as part of their key features.
The rationale is that a ransomware program rapidly performs
a number of operations to encrypt files or erase original
contents, and often writes high-entropy buffers to files due
to the nature of encryption algorithms.

These detection techniques implicitly assume that ran-
somware behaves very differently from benign programs
regarding their custom features. Based on that, one can
adopt a rule-based or machine learning-based approach to
detect malicious behaviors. For example, Redemption [10]
manually assigns weights to its custom features and calcu-
lates the overall malice score for every process at runtime;
ShieldFS [9] trains a random forest model based on its
custom features and then applies the model at runtime
to discriminate malicious behaviors. Similarly, many other
detection techniques leverage their proposed features and re-
port perfect (i.e., 100%) detection accuracies and negligible
false positive rates on existing ransomware samples [5].

The assumption, however, does not necessarily hold
because ransomware and benign programs can behave very
similarly. Take the feature of read/write/delete operation
as an example. If the number of these operations per-
formed by a program exceeds a given threshold, it will be
marked as malicious. However, benign programs like the
compressor or compiler can also perform a large number
of these operations within a short interval. On the other
hand, a ransomware program can split its short-duration
encryption tasks and run these subtasks intermittently. This
makes it more difficult to discriminate ransomware pro-
grams although increases the total time of encryption tasks.
Therefore, although existing heuristics seem to delineate
behavior boundaries between the benign and the malicious,
ransomware programs can still cross the boundary and
perform attacks. Existing detection techniques [9], [10],
[11] realize this issue and leverage some combined features
to mitigate it, but this idea has limited effect on making
ransomware attacks infeasible.

We investigated the I/O behaviors of benign and ran-
somware programs and observed that their patterns may
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overlap. We first analyzed existing ransomware samples and
broke down their I/O behaviors to files into three patterns:
(1) Read-Write: a file is accessed by a read operation and
then accessed by one or more write operations without any
delete operation; (2) Read-Delete: a file is accessed by a
read operation and then deleted from disks; and (3) Only-
Write: a file is accessed by one or more write operations
without any read or delete operation. We regard these three
patterns as building blocks of ransomware attacks because
they can be combined to encrypt a file. For example, a
ransomware program can overwrite a file with encrypted
data using Read-Write pattern; or the program can delete
a file and write an encrypted version to another file using
a combination of Read-Delete and Only-Write patterns. We
then investigated widely-used benign programs and analyzed
their dynamic I/O behaviors. An interesting observation is
that many of their accesses to files also conformed to these
three patterns. For example, during a ten-minute execu-
tion, FireFox accessed 1,095 files in Read-Write pattern,
63 files in Read-Delete pattern, and 1,495 files in Only-
Write pattern. This observation indicates that ransomware
and benign programs may behave similarly. In other words,
a ransomware program can still achieve its encryption goal
even though it follows the same I/O behavior patterns as
benign programs. Since detection techniques rely heavily
on I/O behaviors, an attack that imitates benign programs
may fail these techniques.

In this paper, we propose an imitation-based ransomware
attack to help existing detection techniques realize the limits
of their feature engineering. The limits do not imply the in-
effectiveness against existing ransomware. Instead, we argue
that these limitations stem from the fact that the customized
features used by these techniques may not be necessary
for ransomware attacks. Even though a combination use of
features is able to discriminate all existing ransomware, an
attacker can still craft an exception as long as the features
are not necessary. As a proof of concept, our proposed attack
is designed to imitate behaviors of benign programs in order
to disguise its encryption tasks.

The attack consists of two modules: benign behavior
analysis and attack orchestration. Before any attack begins,
the benign behavior analysis module abstracts a behavior
template from real-world I/O behaviors. It first runs a benign
program to collect fine-grained behaviors. Next, it analyzes
the I/O behaviors of each file to check if they match one
of the three patterns. As a result, it generates a behavior
template for future attacks. During attacks, the attack or-
chestration module acts in the same behavior pattern as
the behavior template and encrypts files. It first queries file
metadata from the victim’s filesystem. Next, it orchestrates
encryption tasks by considering both the metadata and the
template and emits a list of instructions for each subprocess.
Finally, it spawns subprocesses according to the template,
and the subprocesses follow their own instruction list to
access files and write encrypted data.

We implement a prototype of the proposed attack, re-
ferred to as ANIMAGUS, and evaluate its effectiveness
against six state-of-the-art detection techniques, including

Kaspersky Total Security [15], 360 Total Security [16],
Windows Defender [17], ShieldFS [9], Unveil [8] and Re-
demption [10]. Results show that although these techniques
can identify malicious behaviors of existing ransomware
samples, our attack can still elude them. We investigate in
detail why the detection techniques are ineffective and how
ANIMAGUS is different from existing ransomware samples.
In the end, we discuss the potential countermeasures and
the benefit that existing techniques can gain from our work.

This paper makes the following contributions:
• We identify limits of existing ransomware detection tech-

niques. Their I/O behavior-based detection classifiers may
be ineffective, because a ransomware program can behave
similarly to benign programs while still achieving its
encryption goal.

• We design and implement ANIMAGUS, an imitation-based
ransomware attack, as a proof of concept. It first learns
a behavior template from a benign program and then
orchestrates subprocesses to execute encryption tasks dur-
ing its attack. The relevant artifacts will be available at
https://github.com/ChijinZ/Animagus.

• We evaluate the proposed attack. Our experimental results
highlight that the attack can imitate various benign pro-
grams and successfully elude existing defense techniques.

2. Background and Related Work

2.1. Cryptographic Ransomware Attack

Cryptographic Ransomware is a malware category that
encrypts infected hosts’ files and demands a ransom pay-
ment for the decryption of the files. This type of extortion
is imposed by exploiting the victim’s fear of losing valuable
data or locking up critical resources. It has impacted not
only servers and personal computers but also all compu-
tational systems, including smartphones, IoT/CPS devices,
and many others [18]. The victims span not only ordinary
end-users, but also governments and business organizations
in almost all sectors [5]. Due to its notoriety, ransomware
has gained significant traction in academic research as well
as in industry. Many research efforts are paid to analyze
its behaviors [3], [4], [19], evolution [5], [6], payment
transactions [7], and social impacts [20].

Powered by modern hybrid cryptosystem [21], attackers
can ensure that victims cannot decrypt locked files without
the decryption key. In a ransomware attack, an attacker
first generates an asymmetric public-private key pair on
their own command and control (C&C) server. Next, on the
victim’s machine, the ransomware code generates a unique
symmetric key for each file, called session key, and encrypts
each file using the session key. In the end, every session
key is encrypted with the attacker’s public key and left
together with the encrypted file contents. After receiving
ransom payments, the attacker first decrypts the session
key using the private key, and then decrypts files using the
corresponding session key.

The lifecycle of ransomware attacks can be general-
ized into four phases: (1) Infection: the attacker delivers
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Figure 1: Three types of ransomware’s encryption tasks. (a)
ransomware overwrites the target file with encrypted data.
(b) ransomware first reads the file, and then deletes it and
writes encrypted data to another file. (c) ransomware first
reads the target file, and then smashes it with random data
filled and writes encrypted data to another file.

ransomware to a victim system; (2) Communication: the
ransomware connects to its C&C server to obtain neces-
sary information (e.g., encryption keys); (3) Execution: the
ransomware performs encryption tasks to lock files of the
victim system; (4) Extortion: the ransomware notifies the
victim and urges payment by displaying a ransom note. Once
attacked, victims can only follow the ransom note to get
their files back. A ransom note usually includes instructions
on how to purchase cryptocurrencies, e.g., Bitcoin, and
ransom addresses that victims are expected to pay into [7].
In terms of infection and communication, ransomware is
similar to traditional malware, which has been well studied
by previous work [22], [23], [24], [25], [26], [27].

In this paper, we focus on the execution phase because
it is when actual malicious actions take place. During the
phase, a ransomware attack should read file contents, per-
form cryptographic operations, write encrypted information,
and most importantly, erase the original content. Therefore,
a ransomware attack has many interactions with the victim’s
filesystem. Figure 1 presents three types of ransomware’s
encryption tasks summarized by previous studies [8], [14].
An encryption task is defined as a sequence of operations
for encrypting a file. Note that these operations can be
performed by multiple processes. To erase the original con-
tent of a file, ransomware either deletes the file directly
(Figure 1b), or messes up the content (Figure 1a and 1c).
In the former case, file contents might not be wiped out
from the disk; thus, victims have a chance to recover their
files without paying the ransom. However, file contents are
securely erased in the latter case, which makes recovery
almost impossible without the assistance of the attacker.

2.2. Detection of Cryptographic Ransomware

Ransomware detection techniques can be categorized
as static and dynamic analysis. Traditional static malware
detection techniques such as binary feature engineering [28]
and signature matching [29], [30] have also been applied to
ransomware detection. Nevertheless, some studies [31] have

shown that obfuscation tricks can evade the static analysis.
Therefore, studies on ransomware detection [8], [9], [10],
[11], [12], [13], [14] pay more attention to dynamic analysis.
Among all detection techniques, the I/O behavior is the
most widely used characteristic since ransomware performs
malicious actions on the victim’s file system [5]. So a
common approach is monitoring I/O behaviors from user
space and applying their custom strategies to discriminate
malicious behaviors.

A detection tool typically considers several key features
to help detect malicious I/O behaviors. There are six fea-
tures widely used in detection tools: (1) Write Entropy:
data encrypted by ransomware usually follows a random
distribution due to the nature of encryption algorithms, thus
resulting in high entropy values; (2) File Type Coverage:
ransomware generally accesses a large number of files
of specific types within a short time interval; (3) Direc-
tory Traversal: ransomware greedily traverses the filesys-
tem looking for target files; (4) Read Files: ransomware
must read from lots of files; (5) Write Files: ransomware
must write encrypted data to a large number of files; (6)
Delete Files: ransomware may delete original files to erase
data. Each detection tool also has its own unique proposed
features to further improve detection accuracy. With these
features, a tool can adopt a rule-based or machine learning-
based approach to check if a process behaves maliciously.
For example, Redemption [10] manually assigns weights
to features and calculates overall malice score for every
process at runtime; ShieldFS [9] collects a large number
of I/O behaviors from benign programs and ransomware to
train a random forest model as a classifier, and then applies
the classifier at runtime to check malicious behaviors. Many
detection strategies reported a perfect (i.e., 100%) detection
accuracy with a negligible false positive rate [5].

3. Attack Overview

3.1. Threat Model

Our attack uses the same threat model described in
previous research on ransomware [10], [11], [14]. We only
focus on the execution phase of ransomware attacks in this
paper. So we assume that our malicious code is running on
victim systems. This can happen in several scenarios, e.g.,
our program is directly started by the victim, delivered by a
drive-by download attack, or installed via a malicious email
attachment. How to get victim systems infected is out of our
research scope. We also assume that our malicious code has
privileges to access files like any other user-level programs
such as text editors, media players and web browsers. We
make no further assumptions about victim systems, which
means that the operating systems are trusted and have any
ransomware detection tools pre-installed. In addition, we
assume that encryption algorithms, e.g., AES, are reliable,
so that encrypted data cannot be brute-forced in a reasonable
amount of time. Overall, this will be a realistic threat model.
It minimizes the requirements for a ransomware attack: the
malicious code only has access to files. An attacker does
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not need elevated privileges to run as administrator and run
in kernel mode like a malicious kernel driver would.

Attack goal: The goal of our attack is to encrypt desired
files, e.g., images and documents, on victim systems. We
consider an attack successful when it encrypts all desired
files on the victim system without being detected by existing
ransomware detection tools. In addition to encryption, our
program should also be able to decrypt encrypted files after
the attack.

3.2. Motivation

The encryption tasks of ransomware have been well
studied and summarized by previous work [8], [14]. As
Figure 1 shows, the encrypted data can be either overwritten
into the original file or rewritten into a new file. Meanwhile,
the original file is erased by direct deletion or by overwriting
it with other data. We conclude that the ransomware will
access the file in one of the following three exploitable
patterns:

• Read-Write: a file is accessed by a read operation and
then accessed by one or more write operations without
any delete operation;

• Read-Delete: a file is accessed by a read operation and
then deleted from disks;

• Only-Write: a file is accessed by one or more write
operations without any read or delete operation.

We regard these three patterns as building blocks of ran-
somware attacks because they can be combined to encrypt a
file. For example, a ransomware program can overwrite a file
with encrypted data (as Figure 1a) using Read-Write pattern;
the program can also delete a file and write an encrypted
version to another file (as Figure 1b) using a combination
of Read-Delete and Only-Write patterns; or the program
can smash file contents and write an encrypted version to
another file (as Figure 1c) using a combination of Read-
Write and Only-Write patterns. For simplicity, we omit
other I/O operations such as opening, querying directory
information, and querying file metadata, because they are
less critical in ransomware attacks and detection.

We first investigated I/O behaviors of ten widely-used
benign programs, including web browsers (Microsoft Edge,
FireFox and Chrome), document editors (WPS Office and
Microsoft Office), file compressors (7Zip and WinRAR),

TABLE 1: The number of files accessed in each pattern
during ten minutes of regular use of benign programs.

Program # files accessed in # files accessed in # files accessed in
Read-Write pattern Only-Write pattern Read-Delete pattern

MS Edge 252 517 61
FireFox 1,095 1,495 63
Chrome 254 459 39

WPS Office 33 106 44
MS Office 28 78 181

7Zip 0 197 3,831
WinRAR 9 482 777

Golang-go 191 450 164
Rustc 78 1,569 733

Visual Studio 93 162 837

...\Profiles\...\cookies.sqlite

...\cache2\entries\1AB29

...\storage\...\sqlite-journal

...\Profiles\...\index.log

[..., (r, proc1), ..., (w, proc1), (w, proc2), ..., (w, proc3), ...]

[..., (r, proc4), ..., (w, proc4), ..., (w, proc4), ...]

[..., (r, proc1), ..., (r, proc1), ..., (d, proc1)]

[..., (w, proc2), ..., (w, proc2), ..., (w, proc4), ...,]

.   .   .

Proc 1
spawn

file access

Proc 1, 2, 3, 4, ...
spawn

file access

...\package\...\file1.doc

...\package\...\file2.ppt

...\package.zip.001

...\package.zip.002

[(r, proc1), (r, proc1), (r, proc1),  ..., (d, proc1)]

[..., (w, proc1), ...,(w, proc1), ...]

[..., (w, proc1), ...,(w, proc1), ...]

.   .   .

Only-WriteRead-DeleteRead-Write

[(r, proc1), (r, proc1), (r, proc1),  ..., (d, proc1)]

Figure 2: Demonstration of how the three exploitable pat-
terns exist in I/O behaviors of FireFox and 7Zip.

compilers (Golang-go and Rustc), and integrated develop-
ment environments (Visual Studio). We collected behaviors
by running each program for ten minutes with real-world
workloads, e.g., using browsers to randomly visit websites,
using document editors to randomly open and edit some
.doc files, and using file compressors to pack and unpack
archives. TABLE 1 presents the statistics of these programs’
I/O behaviors. Although they behaved quite differently, they
all accessed a number of files in three exploitable patterns.
Figure 2 demonstrates I/O behaviors of FireFox and 7Zip.
When users visit websites, FireFox will access a large
number of files, such as cookies, caches and logs, etc. A
total of 3,281 unique files were accessed in ten minutes of
normal use. Among them, 1,095 files, 1,495 files and 63 files
can be regarded as accessed in Read-Write, Read-Delete,
and Only-Write patterns, respectively. For example, accesses
to cookie.sqlite and cache files follow Read-Write pattern;
accesses to log files follow Only-Write pattern. 7Zip, on the
other hand, does not access files in Read-Write pattern. Most
of the time, it only reads file contents and stores compressed
data to its output archive files. It also deletes files if users
enable the delete-after-compression flag.

We then collected 232 ransomware samples from public
repositories [32], [33], [34] and investigated their I/O behav-
iors. We observe that ransomware behave quite differently
from benign programs, and it can be identified using some
naive features like access frequency and entropy of written
buffers. Ransomware samples tend to greedily encrypt files
within a short period, and write many high-entropy buffers
to files. For example, a sample of WannaCry, an infamous
ransomware family, wrote buffers to 22,037 files in 152.45
seconds and over 70% of written buffers were considered
high-entropy. Everything they perform, while designed for
the efficiency of encryption, makes them different from
benign programs and is very easy to detect.

In summary, we observe that benign programs execute
a number of operations that can be used as building blocks
for ransomware attacks. This indicates that a ransomware
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Benign Behavior Analysis

Behavior Collection

Exploitable Pattern Analysis

Attack Ochestration

Encryption Task Scheduling

Encryption Task Execution

read file
metadata

 Encryption Tasks

Online AttackOffline Preparation

 proc 1

 proc 2

      ...

Behavior TemplateBenign Program

Figure 3: Overall design of our attack. During the offline preparation phase, the benign behavior analysis module first collects
dynamic I/O behaviors of a benign program and then analyzes the access pattern of each file. As a result, it abstracts a
behavior template from the behaviors. During the online attack phase, the attack orchestration module reads file metadata
from the infected victim system, receives the behavior template, and then schedules encryption tasks based on them. Finally,
our attack program spawns subprocesses to execute encryption tasks, behaving the same as the benign program.

program can still achieve its encryption goal even though it
follows I/O behavior patterns of benign programs. Existing
ransomware programs have not taken this into consideration,
making them easy to spot. Since existing detection tech-
niques rely heavily on I/O behaviors, an attack that imitates
benign programs’ behaviors has the opportunity to elude
these techniques.

3.3. Imitation-Based Attack

Motivated by the above observation, we propose an
imitation-based ransomware attack, which imitates behav-
iors of benign programs to disguise its encryption tasks. It is
designed to help existing techniques fine-tune their heuris-
tics. We define the imitation here as a transformation from a
sequence of collected benign behaviors B = ⟨bi(fi)⟩i∈[1,N ]

to the one B′ = ⟨b′i(f ′
i)⟩i∈[1,N ] that implicitly contains

encryption tasks on victim files V . Each behavior bi(fi) is an
I/O operation to a file fi. The benign behaviors are collected
during an offline preparation phase; the transformed ones
are used to guide an online ransomware attack on the
victim system. We define a file f in benign behaviors as
an exploitable file if the access sequence ⟨bj(f)⟩bj∈B to the
file conforms to the three exploitable patterns. Exploitable
files need to be combined to establish encryption tasks.
For example, Read-Delete and Only-Write exploitable files
should be combined to an encryption task, so that the
attack program can read contents from a victim file and
delete it, and then write encrypted contents into another
file. Therefore, some of exploitable files will not be used to
establish encryption tasks if no combinable files are left. We
define T as a set of exploitable files used in encryption tasks.
Our imitation strategy is to follow the same I/O sequence
as benign behaviors while replacing the accesses to files in
T with encryption operations to victim files. Formally, the
transformation rule is

trans(bi(fi)) =

{
bi(di) if fi /∈ T

b′i(vi) if fi ∈ T

where vi ∈ V is one of the files on the victim system to be
encrypted; di ∈ D is a dummy file that is aimlessly created

and accessed by our program on the victim system; b′i is
an I/O operation, slightly different from bi, but ensures the
access ⟨b′j(v)⟩b′j∈B′ to encrypt the file or erase original con-
tents for every v ∈ V . Take Read-Write exploitable pattern
as an example. If the access sequence to an exploitable file
reads all contents by process p1 at time t1, writes 1,024
bytes with entropy etp2 by process p2 at time t2, and writes
4,096 bytes with entropy etp3 by process p3 at time t3, then
our program will access a victim file in a similar way and
at similar intervals, but will write encrypted data to the file.
In this way, we can ensure that our attack program achieves
encryption goals while performing I/O accesses similar to
those of a benign program.

4. Attack Design

In this section, we detail the design of the proposed
attack. As shown in Figure 3, it consists of two main mod-
ules: a benign behavior analysis module to collect imitable
behaviors, and an attack orchestration module to perform
encryption tasks. The first module runs on the attacker’s
C&C server before any attack begins, and the second module
runs on victim systems to achieve the ransomware’s goal.

We consider the whole process in two phases: the offline
preparation phase and the online attack phase. During the
offline preparation phase, the benign behavior analysis mod-
ule first collects real-world I/O behaviors by running benign
programs. To obtain fine-grained I/O information, it collects
behaviors from a custom kernel driver. Next, it analyzes the
access behaviors of each file to check if the access matches
one of the exploitable patterns. Finally, it outputs a behavior
template for future attacks. During the online attack phase,
the attack orchestration module first requests the behavior
template from the C&C server and reads file metadata on the
victim system. Next, it schedules encryption tasks according
to the template and spawns subprocesses to execute them.
Finally, the subprocesses access files according to the task.
Below we detail the design of these two modules and
ultimately demonstrate how victims’ files are encrypted.
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Time Proc Operation File Extra Info

T0 + 0 P1 QUERY
INFO

F1 Null

T0 + 12 P1 QUERY
INFO

F2 Null

T0 + 14 P2 QUERY
INFO

F2 Null

T0 + 20 P2 OPEN F2 mode: ALL_ACCESS

T0 + 25 P2 READ F2 buff len: 4096

T0 + 30 P2 WRITE F2 buff len: 1024

entropy: 5.67 

.   .   .

F2 
(Read-Write)

Read by P2

Written by P2

Written by P1

...

...

Figure 4: An example of behavior template. It mainly in-
cludes a series of records with placeholders and a list of
file placeholders accessed in one of the exploitable patterns.
Placeholders (highlighted in red) will be instantiated with
concrete values during online attacks.

4.1. Benign Behavior Analysis

This module runs on the attacker’s C&C server before
any attack begins. The goal is to learn a behavior template
from a benign program to facilitate heavily-disguised online
attacks. As Figure 4 shows, a behavior template mainly
includes two parts: (1) a series of records with placeholders,
each indicating how and when a process accesses a file;
and (2) a list of file placeholders accessed in one of the
exploitable patterns. In addition, it also includes minor infor-
mation such as the hierarchy of processes. After receiving a
behavior template, a ransomware program can instantiate the
template by assigning concrete values to placeholders based
on the victim system’s environment. Two sub-components
are responsible for the behavior template generation: (1)
Behavior Collection for collecting real-world behaviors of
benign programs and abstracting behavior templates from
them; and (2) Exploitable Pattern Analysis for analyzing
access behaviors of each file to check if they match one of
the exploitable patterns.

Behavior Collection. There are many approaches for
collecting behaviors of running programs, for example, Pro-
cess Monitor [35] on Windows and strace [36] on Linux.
However, they are not flexible enough for our scenario
because fine-grained information such as entropy of written
buffers can not be obtained. Therefore, we develop the
behavior collection part as a kernel driver and intercept the
message sent to the disk device, which offers more compre-
hensive I/O information than existing tools. On Windows, all
I/O requests sent to device drivers by user-space processes
are packaged in the format of I/O request packets (IRPs).
We thus intercept these IRPs from user-space processes
and log necessary information in our kernel driver. Other
information like hierarchies of processes are also recorded
to help the imitation during attacks. After collecting IRPs,
the behavior template will thus be abstracted from the IRPs.
The processes in the IRPs are grouped by their process IDs
and replaced with placeholders. In the same way, files are
grouped and replaced by their file paths. Finally, a series
of records with placeholders are generated, each indicating

Encryption info

Instructions for Processes

Proc 1
Time Opcode Operands

t1 OPEN f1

t2 READ f1

t3 OPEN f2

t4 WRITE f2,idx1,etrp1

t5 WRITE f2,idx2,etrp2

t6 CLOSE f1

t7 OPEN f3

t8 WRITE f3,idx3,etrp3

t9 DELETE f4

t10 WRITE f2,idx4,entrp4

... ... ...

Proc 2

... ... ...

. . .

Executor Proc 1

Encryption Task Execution

read metadata

read  
file content

File System

File 
. . .

proc 1

schedule tasks

C&C Server

get  behavior template and encryption key

write 
encrypted buffer

delete 
file

Controller Proc

Encryption Task Scheduling

spawn processes according to tasks

proc 1 proc 2 proc 3 proc 1 proc 3

Figure 5: Demonstration of online attack. At first, the main
controller process obtains necessary information (step ① and
②), and schedules encryption tasks based on the received
behavior template (step ③). Next, It spawns subprocesses in
chronological order and assigns an instruction list to each
(step ④). Finally, the subprocesses access files following
their own instruction list and thus encrypt files (step ⑤).

how and when a process accesses a file.
Exploitable Pattern Analysis. As explained in Sec-

tion 3.2, a file used by ransomware is necessarily accessed
in one of the three exploitable patterns, i.e. Read-Write,
Read-Delete and Only-Write. Combining these exploitable
patterns can establish an encryption task to a file. However,
if collected behaviors do not include enough files accessed
in the exploitable patterns, our malicious code cannot imitate
those behaviors and perform encryption tasks. Therefore, we
analyze the access behaviors of each file in the collected
IRPs to check if the access pattern matches one of the
exploitable patterns. Note that the three exploitable patterns
are mutually exclusive, and thus access behaviors of a file
can only be categorized into one of the patterns. Besides,
the access behaviors of a file may come from different
processes. For example, F2 is accessed by P1 and P2
in Figure 4. After the pattern matching, we check if the
number of exploitable files exceeds a threshold. If there are
few exploitable files, we consider that this benign program
cannot be used as an imitation target for our attacks.

4.2. Attack Orchestration

This module is designed to conduct real cryptographic
ransomware attacks on victim systems. Figure 5 demon-
strates the procedure of our online attack. First, similar to
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other malware, our program communicates with its C&C
server. It obtains a behavior template and an encryption
key from the server. Second, it queries file metadata, i.e.,
the path and size of every victim file, from the victim’s
filesystem. Third, it schedules encryption tasks by consider-
ing both the metadata and the behavior template, and emits
a list of instructions for each subprocess. Fourth, it spawns
subprocesses following the same hierarchy of process as
the behavior template. Finally, the subprocesses follow their
own instruction list to access files and write encrypted data.

Our program randomly selects a certain percentage (e.g.,
50%) of blocks in a file to encrypt. Victims still cannot
decrypt locked files without a decryption key because (1)
the blocks are selected randomly, so the victims have no
way of knowing which parts are encrypted; and (2) it is
impossible to decrypt these blocks in a reasonable amount
of time because of the nature of modern ciphers. This en-
cryption strategy brings two main advantages. First, multiple
processes can synergistically encrypt the same file. Once
the blocks to encrypt have been determined, each process
can use a block cipher to independently encrypt the blocks
it is responsible for. Without this strategy, our program
cannot imitate a benign program with multiple processes.
Second, each process can write encrypted contents with
low entropy. Due to the nature of encryption algorithms,
encrypted data usually follow a random distribution and are
therefore high-entropy. However, if the buffer written each
time is a combination of encrypted and original contents,
then this buffer will not be highly randomized. Based on
this encryption strategy, our program can schedule multiple
processes to execute the encryption task. We will detail the
design of the scheduling and execution in the following
paragraphs.

Encryption Task Scheduling. Our program begins
making a plan for encryption after obtaining behavior tem-
plates and file metadata. Algorithm 1 presents this proce-
dure. The first thing is to combine exploitable files in the
behavior template to establish encryption tasks. The accesses
to exploitable files are categorized into three exploitable
patterns, i.e., Read-Write, Read-Delete and Only-Write. We
can combine them to establish two types of encryption tasks:
(1) Delete-Rewrite: our program can delete a file and write
an encrypted version to another file using the combination
of Read-Delete and Only-Write patterns; and (2) Overwrite:
our program can overwrite a file with encrypted data using
Read-Write pattern. Line 3-11 presents how our program
extracts encryption tasks from the behavior template. The
number of extracted encryption tasks is the number of files
our program is able to encrypt in one cycle. Our program
will run multiple cycles until all victim files are encrypted.

After establishing encryption tasks, our program assigns
a task to each victim file, and forms instruction lists for sub-
processes. This procedure is an instantiation of the behavior
template. In one cycle, given an encryption task, a file is
selected to match it (Line 18). The selection considers two
factors: the file size and the number of write operations in
the encryption task. Next, our program instantiates related
records of the behavior template for this encryption task

Algorithm 1: Encryption Task Scheduling
Input : Behavior template B

1 encryptTasks ← getEmptySet()
2 expFiles ← getExploitableFiles(B)
// extract Delete-Rewrite tasks

3 for rdExpFile in getReadDeleteFiles(expFiles) do
4 if not hasOnlyWriteFiles(expFiles) then
5 break
6 owExpFile ← popOnlyWriteFile(expFiles)
7 encryptTasks ∪ = {(rdExpFile, owExpFile)}
8 end
// extract Overwrite tasks

9 for rwExpFile in getReadWriteFiles(expFiles) do
10 encryptTasks ∪ = {(rwExpFile)}
11 end
12 while true do

// a mapping of a process to its instructions
13 M ← getEmptyMap()

// read a certain number of metadata from FS
14 F ← readFileMetadata(len(encryptTasks))
15 if isEmpty(F ) then
16 break

// assign an encrypt task to each file
17 for task in encryptTasks do
18 file ← popSuitableFile(F , task)
19 records ← getRecords(B, task)
20 instrs ← instantiate(records, file)
21 speedupReplay(instrs)
22 updateMap(M , Instrs)
23 end
24 waitForTaskExecution(M )
25 end

(Line 19-20). It replaces the file placeholders with the actual
file path. For example, if a file whose path is /home/file
matches an Overwrite task, then our program will obtain
all records related to the task’s Read-Write file placeholder,
and replace the placeholder with /home/file. Besides,
by modifying the execution time of each instruction, our
program can control subprocesses to replay the imitated
behaviors at a self-adjusting speed (Line 21). It adjusts the
speed according to the number of encryption tasks in order
to maintain a reasonable throughput during attacks. The
strategy of self-adjusting speed is detailed in Appendix A.3.
After the path replacement and the replay speedup, our
program generates a set of instructions for this encryption
task. The instruction aims to instruct a specific subprocess
when and how to access a specific file. Next, it spawns
subprocesses and waits for execution of encryption tasks to
complete (Line 24).

Encryption Task Execution. Based on instructions
scheduled by the controller process, subprocesses are
spawned and ready to access files. Note that processes
exchange necessary information through IPC channels, e.g.,
encryption key or file contents. Algorithm 2 presents how
each subprocess executes their instructions. First, a subpro-
cess requests an encryption key and cipher (e.g., AES256)
from the controller process (Line 1). Next, it executes its
instructions one by one. Every instruction has a timestamp
indicating when this instruction is supposed to be executed.
Therefore, before executing an instruction, it must wait until
the time is up (Line 3). If the instruction is a read operation,
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Algorithm 2: Task Execution of Each Process
Input : Instruction list of this process L

1 cipher, key ← requestEncryptionInfo()
2 for Inst in L do
3 waitUntil(Inst.time)
4 if Instr.Opcode == Read then
5 content ← readFile(Inst.file)
6 broadcastContent(Inst.file, content)
7 else if Instr.Opcode == Write then
8 content ← requestContent(Inst.file)
9 buf ← content[Inst.startIdx..Inst.endIdx]

// select blocks to keep buffer low-entropy
10 blocks ← selectBlocks(buf )
11 encptBlocks ← encrypt(cipher, key, blocks)
12 encptBuf ← injectBlocks(buf, encptBlocks)
13 writeFile(Inst.file, Inst.startIdx, encptBuf )
14 else
15 execute(Inst)
16 end

the subprocess will read the file and broadcast the file
contents (Line 4-6). If the instruction is a write operation,
the subprocess will write encrypted data to the file. It will
request file contents from other processes (Line 8), and get
a sliced buffer from the content according to the instruction
(Line 9). The subprocess will encrypt the sliced buffer and
write it back to the file. It first selects blocks to encrypt
from the buffer (Line 10-12). In this step, the number and
position of blocks are based on the entropy of the final
written buffer. It tries to keep the buffer low-entropy and
encrypt more blocks at the same time. After block selection
and encryption, the subprocess writes the buffer back to this
file (Line 13). If the instruction is another operation such as
open or delete, the subprocess will accordingly execute the
operation. In this way, each subprocess follows most of the
I/O behaviors of benign programs and encrypts the content
of victim files.

5. Evaluation

In this section, we evaluate the effectiveness and perfor-
mance of the imitation-based ransomware attack. Our goal is
to understand how this attack works under existing detection
tools, and how it is different from conventional ransomware
families. Section 5.1 describes our proof-of-concept imple-
mentation, and Section 5.2 details our experiment setup.
Section 5.3 and Section 5.4 investigates the effectiveness
of the attack at different settings. Section 5.5 analyzes the
throughput of the attack. Section 5.6 analyzes the robustness
of the attack against defense. Section 5.7 provides a case
demonstrating how this attack imitates benign programs.
In addition, we illustrate the ethical considerations of our
evaluation process in Appendix A.4.

5.1. Implementation

We implemented a prototype of the imitation-based at-
tack, referred to as ANIMAGUS. The behavior collection
in the benign behavior analysis module is implemented

with Windows filesystem minifilter driver framework [37] to
collect IRP-level I/O behaviors. This approach can collect
fine-grained information and is less likely to be shutdown by
ransomware. The whole attack orchestration module is im-
plemented in Rust code and leverages Tokio framework [38]
to deal with encryption tasks asynchronously. The approach
of encryption and decryption is detailed in Appendix A.1.
Regarding cipher, our implementation uses RSA2048 and
AES256 with ECB mode for simplicity. We use off-the-
shelf cipher implementation [39] instead of rolling a new
one. For each victim file, at least 50% of the contents are
encrypted. The detailed analysis on its undecryptability is
discussed in Appendix A.2. Unlike conventional malware
samples, our implementation does not use any anti-analysis
tricks or packing techniques because it is for research only
and not designed to propagate itself and blackmail others.

5.2. Experiment Setup

Environment. The experiments were conducted on a
desktop with a 16-core Intel i5-12600KF CPU (3.69 GHz)
and 32GiB of memory. Each ransomware attack runs on a
virtual machine that installed Windows 10 and is assigned
4 cores and 8GiB memory. All experiments were performed
according to guidelines [40] for malware experiments.

Imitated Target. We choose ten widely-used benign
programs, including web browsers (Microsoft Edge, FireFox
and Chrome), document editors (WPS Office and Microsoft
Office), file compressor (7Zip and WinRAR), compilers
(Golang-go and Rustc), and integrated development environ-
ment (Visual Studio), as our imitated targets to demonstrate
the adaptability of ANIMAGUS. We run each program for
ten minutes and collect their I/O behaviors. The statistics
of the exploitable patterns in these programs are shown in
TABLE 1. In Section 5.3, we choose FireFox as the default
imitated target for ANIMAGUS. We will investigate the
impact of target choice to attack effectiveness in section 5.4.

TABLE 2: Features of detection tools used in evaluation.

Detection Tool Approach Techniques Available

Kaspersky Total Security hybrid all existing detection techniques ✓
360 Total Security hybrid all existing detection techniques ✓
Windows Defender hybrid all existing detection techniques ✓

Unveil rule-based I/O behavior inspection, pattern matching ✗
Redemption rule-based I/O behavior inspection, feature scoring ✗

ShieldFS ML-based I/O behavior inspection, crypto primitives
detection and file recovery ✓

Detection Tools. We choose six ransomware detection
tools to investigate the effectiveness of ANIMAGUS. There
are three production-level anti-ransomware softwares (i.e.,
Kaspersky Total Security [15], 360 Total Security [16] , and
Windows Defender [17]) and three state-of-the-art research
tools of ransomware detection (i.e., Unveil [8], ShieldFS [9],
and Redemption [10]). Their features are presented in TA-
BLE 2. The three production-level tools do not detail their
techniques, so we assume they apply all existing detection
techniques. Our evaluation uses the latest version of the
three production-level tools as of 1st August 2022. The
authors of Unveil and Redemption do not release their tools,
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so we implemented the two tools from scratch based on their
research papers. The authors of ShieldFS provided a virtual
machine with ShieldFS installed, and we thus use the virtual
machine to conduct experiments.

Ransomware Families. To investigate how our at-
tack is different from conventional ransomware, we col-
lect 232 ransomware samples from public repositories such
as theZoo [32], VirusShare [33], and the dataset used in
ShieldFS [9]. These samples are identified by VirusTotal
API [34] into ten recently-active ransomware families, in-
cluding WannaCry, Avoslocker, XData, TeslaCrypt, Bitman,
Vobfus, Dalexis, Yakes, Koxic and phobos. We ensure that
samples used in our experiments are alive and capable of
encrypting files on victim systems. The behavior difference
between ANIMAGUS and these ransomware samples will be
investigated in Section 5.3.

Victim Files. We randomly select 1,000 victim files from
Govdocs1 [41]. The file extensions of victim files include
pdf, jpg, doc, xls, ppt, rtf, sql, txt. A ransomware
sample tends to encrypt all files with these extensions in
the victim system. The impact of the number of victim files
on the performance of ANIMAGUS will be investigated in
Section 5.4.

5.3. Attack Effectiveness

We evaluated ANIMAGUS against six ransomware detec-
tion tools to investigate its effectiveness. FireFox is chosen
here as the default imitated target for ANIMAGUS. We will
investigate the impact of target choice to attack performance
in section 5.4. We placed the collected 1,000 victim files
into each virtual machine and then conducted ransomware
attacks on these machines. For a fair comparison, we ensure
every attack experiment is distributed the same resources (4
cores and 8GiB memory). TABLE 3 is an overall result
showing whether a ransomware program can successfully
encrypt all files under different ransomware detection tools.

Evaluation Against Detection Tools. As we can see,
although the six ransomware detection tools are able to
detect and terminate most existing ransomware early on their
attacks, ANIMAGUS can still encrypt all victim files with-
out being detected. The reason why ANIMAGUS successful
eludes the detection tools is that all the I/O behaviors of
ANIMAGUS imitate the collected real-world behaviors of the
imitated benign program (i.e., FireFox in this experiment).
The major difference is the accessed file paths. In the
collected behaviors, FireFox reads and writes a number of
cache files and cookies; while in our attack, ANIMAGUS
reads and writes a number of victim files acting the same
as FireFox. This makes detection tools very difficult to tell
the difference between them.

The two rule-based detection tools, i.e., Unveil and Re-
demption, cannot tell the difference based on their heuristics.
Unveil observes the entropy of written buffers to see if a pro-
gram writes many high-entropy buffers to files. It assumes
that ransomware writes many encrypted buffers, which are
highly-randomized because of the encryption algorithms’
nature. However, as described in Section 4.2, the buffer of

TABLE 3: Attack result of ANIMAGUS and traditional
ransomware against existing detection tools. ANIMAGUS
without imitation is referred as ANIMAGUS−.

Program v.s. Detection Tools
Kaspersky 360 Defender Unveil Redemption ShieldFS

ANIMAGUS ✓ ✓ ✓ ✓ ✓ ✓
ANIMAGUS− ✗ ✗ ✗ ✓ ✗ ✗

WannaCry ✗∗ ✗∗ ✗∗ ✗ ✗ ✗
Avoslocker ✗∗ ✗∗ ✓ ✓ ✓ ✗

XData ✗∗ ✗∗ ✗∗ ✓ ✓ ✗
TeslaCrypt ✗∗ ✗∗ ✗∗ ✗ ✗ ✗

Bitman ✗∗ ✗∗ ✗∗ ✗ ✗ ✗
Vobfus ✗∗ ✗∗ ✗∗ ✓ ✓ ✗
Dalexis ✗∗ ✗∗ ✗∗ ✗ ✓ ✗
Yakes ✗∗ ✗∗ ✗∗ ✗ ✗ ✗
Koxic ✗∗ ✗∗ ✗ ✓ ✓ ✗
phobos ✗∗ ✗∗ ✗∗ ✓ ✗ ✗

✓: attack successfully; ✗: be detected; ∗: be detected as soon as it started.

each ANIMAGUS’s write operation only contain a small part
of encrypted blocks and the rest is the original contents.
Therefore, the entropy of each written buffer remains low.
In addition to entropy, Unveil also customizes a set of I/O
sequence patterns to assist its detection. For example, one
pattern is that ransomware reads a low-entropy buffer from
a file, then writes a high-entropy buffer to a new file, and
finally deletes the original file. However, the I/O sequence
of ANIMAGUS is the same as the imitated benign program.
Therefore, Unveil cannot detect ANIMAGUS based on the
entropy of written buffers and its custom I/O sequence
patterns. Redemption, on the other hand, calculates a mal-
ice score for each process based on its custom features.
The features include entropy of written buffers, length of
overwritten buffers, number of delete operations, number
of directories traversed, types of accessed files, and access
frequency. Redemption empirically assigns weights to these
features and calculates scores for processes based on the
weights. If the score of a process exceeds a custom threshold
(i.e., 0.12 in its paper), then the process is determined to
be malicious. In terms of all these features except for the
accessed file types, ANIMAGUS behaves similarly to the im-
itated benign program. However, the feature of accessed file
types was assigned a relatively low weight in Redemption
to reduce the false positive rate because benign programs
such as document editors and media players also need to
access a wide range of file formats. As a result, the malice
score of ANIMAGUS is similar to that of FireFox, which is
far less than its threshold.

ShieldFS, a ML-based detection tool, also fails to detect
ANIMAGUS. It trains a random forest model based on its
custom features to discriminate malicious behaviors. The
features used include the number of traversed directories,
the number of read files, the number of written files, the
number of renamed files, the number of accessed files’
types, and the average entropy of written buffers. We cannot
directly investigate why ShieldFS did not detect ANIMAGUS
because the authors did not release its kernel driver nor its
trained model. Fortunately, the authors provided the raw
training dataset, which contains 185,140,123 IRPs of 383
ransomware samples and 2,245 benign programs. We trained
a decision tree [42] model based on the dataset and regarded
the model as an alternative to ShieldFS to facilitate our
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Figure 6: Decision tree trained with ShieldFS’s raw data.
The color of each node is corresponding to the training data
passed through the node, yellow denotes benign programs,
green denotes ransomware samples. Arrows denote the deci-
sion paths of the tree processing the IRPs of each program.

in-depth analysis. The way we calculate feature values for
each program in the dataset is consistent with ShieldFS.
The feature values of each program are normalized by the
number of IRPs. We used 80% of the data for training
and 20% for testing. After being trained, the model reports
0.9891 F1-score on testing set. Figure 6 is a visualization
of shallow layers of the trained decision tree. The node
denotes the feature used to make the decision, and the edge
denotes the decision threshold of the feature. As we can
see, it treats the number of renamed files, the number of
directories traversed, and the average written entropy as
more important criteria for decision making. In terms of
these features, ANIMAGUS behaves similarly to the imitated
benign program. Therefore, as the red arrow denotes, the
tree considers ANIMAGUS as a benign program. As a result,
although the ML-based approach can identify the difference
between benign programs and conventional ransomware
samples, ShieldFS cannot detect ANIMAGUS.

The three production-level detection tools, i.e., Kasper-
sky Total Security, 360 Total Security, and Windows De-
fender, also fail to detect ANIMAGUS. We cannot profoundly
analyze how they detect ransomware because they did not
detail their techniques. According to our experiments, the
three tools are good at static and sandbox analysis. Before
being executed, all the ransomware samples used in our
evaluation are quickly detected by the three tools based
on the malware signatures. We can only manually put
these samples into the whitelists of the tools to make them
executable. However, the samples except for Avoslocker
were terminated as soon as they started. This is probably
because the tools perform sandbox analysis before executing
the samples. In terms of static analysis, the signature of
ANIMAGUS is not recorded in their databases, and thus
the tools cannot detect ANIMAGUS statically. In terms of

dynamic analysis, the three tools may take a similar strategy
to the research tools described above. As a result, they are
unable to detect ANIMAGUS.

Comparison with Conventional Ransomware. We col-
lected 232 samples of ten recently-active ransomware fam-
ilies to investigate how ANIMAGUS is different from them.
We randomly choose one sample from each family. This is
because samples of a family share an almost identical behav-
ioral pattern at runtime as demonstrated in Appendix B.4. As
we can see from TABLE 3, most of them were detected by
existing detection tools, while ANIMAGUS was not detected
by any of the tools. We take ShieldFS as an example to
show the difference between conventional ransomware and
ANIMAGUS from a defender’s point of view. As the blue
arrow in Figure 6 demonstrates, the WannaCry, one of the
most famous ransomware families, was quickly detected
based on the number of renamed files, the number of directo-
ries traversed, and the average written entropy. The reason
is that conventional ransomware samples tend to greedily
encrypt files and write a large number of high-entropy
buffers to files. ANIMAGUS, on the contrary, encrypts files
sporadically, disguised by normal behaviors. Compared to
conventional ransomware, ANIMAGUS has a higher chance
of success, although it takes more time to encrypt files.

Attack Without Imitation. We also conduct an ablation
study to investigate whether imitation improves the attack’s
effectiveness. We remove the imitation and orchestration
procedure from ANIMAGUS to make a new version, re-
ferred to as ANIMAGUS−. ANIMAGUS− keeps the same
encryption approach but randomly schedules encryption
tasks and spawns subprocesses for the tasks. As we can
see from TABLE 3, ANIMAGUS− was still detected by
most of the existing detection tools. There are several rea-
sons why ANIMAGUS− is easy to detect. First, the access
frequency of ANIMAGUS− is different from benign pro-
grams. ANIMAGUS− tends to spawn a few subprocesses and
rapidly encrypt files. Therefore, its access frequency is much
higher than benign programs. Second, all I/O behaviors of
ANIMAGUS− are for encryption. ANIMAGUS− would only
target victim files, while ANIMAGUS would also perform
some operations to “dummy” files in addition to victim files.
The comparison between ANIMAGUS and ANIMAGUS−

shows that imitating benign programs helps ANIMAGUS
disguise its encryption behaviors.

5.4. Impact of Imitated Targets

We investigated if existing detection tools can detect
ANIMAGUS that imitates different targets. The chosen tar-
gets are MS Edge, FireFox, Chrome, WPS Office, MS
Office, 7Zip, WinRAR, Golang-go, Rustc, and Visual Stu-
dio. First, we collected 6,000 runtime records of benign
behaviors by running each program with real-world work-
loads, e.g., using browsers to randomly visit websites, using
document editors to randomly open and edit some files, or
using file compressors to pack and unpack archives. Next,
we used the six detection tools to detect the collected benign
behaviors, the ransomware samples, and ANIMAGUS with
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different imitated targets. TABLE 4 shows the quantitative
detection results. Note that we cannot run Visual Studio,
Rustc, and Golang-go in the ShieldFS virtual machine, so
we omit them. From the table we can see, these tools achieve
quite low FNR when detecting ransomware. In contrast, they
get quite high FNR when detecting ANIMAGUS. This result
demonstrates that most tools successfully detect traditional
ransomware samples but cannot effectively detect most vari-
ants of ANIMAGUS. In particular, ANIMAGUSWinRAR can
be detected by Unveil and Redemption. This is because
the imitated behavior of WinRAR contains a fragment that
rapidly writes many high-entropy files. ANIMAGUS imitates
the behavior and gets detected. This shows that the imitated
target slightly impacts the effectiveness of ANIMAGUS. Be-
sides, the imitated target also impacts to attack throughput
as we present in Appendix B.1.

TABLE 4: Detection results of different detectors against
ANIMAGUS and traditional ransomware samples.

FPR v.s. ransomware v.s. ANIMAGUS
FNR FNR

Kaspersky 0.0% 0.0% 100.0%
360 0.0% 0.0% 100.0%

Defender 0.0% 10.0% 100.0%
Unveil 0.2% 50.0% 80.0%

Redemption 15.6% 50.0% 90.0%
ShieldFS 0.0% 0.0% 100.0%

5.5. Attack Throughput

One main disadvantage of ANIMAGUS is the time spent
in encryption. In order to disguise its encryption behaviors,
it is necessary to follow the same pattern as the imitated
benign program. Therefore, the time spent in encryption
depends on the exploitable file placeholders, i.e., accessed
files conforming to the three exploitable patterns in the
behavior template. The more encryption tasks in the be-
havior template, the more files ANIMAGUS can encrypt
within a certain time slot. Although ANIMAGUS controls
subprocesses to speed up the imitated behaviors, it is still
necessary to evaluate its overall throughput.

Figure 7 shows the comparison of encryption time be-
tween traditional ransomware and ANIMAGUS. The ran-
somware samples used here are in line with Section 5.3. The
ANIMAGUS used here are ten different versions, each imi-
tating a specific benign program (in line with Section 5.4).
The individual encryption times of ransomware samples
and ANIMAGUS are shown in TABLE 8 and TABLE 7
in Appendix B.1, respectively. On average, Animagus took
−17.21%, 10.45%, 55.30%, 46.42%, and 33.39% more time
to encrypt 200, 400, 600, 800, and 1, 000 files, respectively,
than traditional ransomware samples. Although ANIMAGUS
is slower, it is much more difficult to detect. According to
Figure 4, existing detection tools can easily detect these
ransomware samples; In contrast, detection tools get high
false negative rates (80%−100%) when facing ANIMAGUS.
Therefore, the encryption time of ANIMAGUS is not much
longer than that of traditional ransomware, but the attack
success rate is much higher.
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Figure 7: Time taken by ANIMAGUS and existing ran-
somware samples to encrypt different numbers of files.

5.6. Robustness Against Defense

It is important to investigate if one can construct a
simple rule to distinguish ANIMAGUS. By digging into
the implementation of ANIMAGUS, defenders may discover
some different behaviors between ANIMAGUS and imitated
programs. There are three fundamental differences, i.e., the
file types accessed, the scanning behavior, and dummy reads
and writes. We investigate if ANIMAGUS behaves much
different from benign programs.

We implemented detectors based on the three rules. To
evaluate the detectors, we collected 6,000 runtime records
of benign behaviors. The records are the same as the ones
used in Section 5.4. In addition, we also collected the
runtime records of different ANIMAGUS, each imitating one
of these benign programs. We oversampled the records of
ANIMAGUS to make the dataset balanced. We fine-tuned
thresholds of the detectors using these collected runtime
records. During the fine-tuning process, we consider a file
to be high-value if it is one of office files (e.g., doc, xls,
ppt, and pdf), program files (e.g., cpp, go, js, and rs),
picture files (e.g., jpg and png), or database files (e.g.,
db, sqlite, and sql). TABLE 5 presents the best F1-
score results of the detectors and corresponding TPR and
FPR. Figure 8 is the ROC curve of each detector. Overall,
they cannot effectively detect ANIMAGUS without incurring
a considerable FPR. Below we detail the feature engineering
of each detector and why they are ineffective.

TABLE 5: Detection results of three new detectors against
ANIMAGUS and benign programs. Presented are the best
results of fine-tuning each detector according to F1-score.

TPR FPR F1-score

file-type based detector 0.900 0.499 0.751
static scanning based detector 1.000 0.338 0.856

temporal scanning based detector 0.800 0.051 0.865
dummy-access based detector 0.600 0.966 0.468

In terms of the file-type based detector, we investigated
three file-type based metrics, i.e., the average number of
write/delete/rename operations on high-value files, the peak
frequency of write/delete/rename operations on high-value
files, and the average number of unique high-value files
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Figure 8: ROC of three detectors. The marker of each curve
denotes the best F1-score result.

written/deleted/renamed. We analyzed each metric on the
collected runtime records. Statistics are present in Figure 10
in Appendix B.2. From Figure 10 we can see, none of the
metrics can distinguish ANIMAGUS. This is because many
benign programs would also access file types commonly
targeted by ransomware. For example, browsers would fre-
quently write data to many database files; Editors would
write contents to text or program files; Compressors would
delete the original files if the delete-after-compression flag
is enabled; Rustc, in particular, would rapidly write data to
more than 500 .rs files when downloading external crates.
On the other hand, ANIMAGUS not only accesses high-value
files, but also performs dummy reads and writes to non-high-
value files. Figure 12 in Appendix B.2 demonstrates the per-
centage of accessed high-value files out of all accessed files
for each program. We can see that 42.44% of files that AN-
IMAGUS accesses are high-value, which cannot distinguish
ANIMAGUS. After feature engineering, we implemented a
detector based on the number of write/delete/rename on
high-value files and fine-tuned its threshold. With its best
F1-score result, it gets 0.900 TPR and 0.499 FPR.

In terms of the scanning based detector, we investigated
three scanning based metrics, i.e., the average number of
scanning operations, the peak frequency of scanning oper-
ations, and the average number of unique folders scanned.
We analyzed each metric on the collected runtime records
and statistics are present in Figure 11 in Appendix B.2.
Overall, none of the metrics can distinguish ANIMAGUS.
This is because many benign programs would also scan a
large amount of folders. For example, compressors would
rapidly traverse folders that need to be packed; Visual Studio
would rapidly traverse the folders of target projects and
folders containing external libraries or .h files; MS Office
would scan folders containing fonts, caches, or metadata.
On the other hand, ANIMAGUS only scans a few folders to
target a certain number of victim files in each cycle (see
Line 14 in Algorithm 1), which makes it difficult to detect.
In addition to static scanning metrics, we also investigate if
ANIMAGUS can be detected by a temporal scanning feature.
Figure 12 in Appendix B.2 presents scanning frequency in
the first ten seconds of different programs. We can see that
many benign programs would also scan many folders in
their initial phase. After feature engineering, we used the
peak frequency of scanning operations as the rule of the
static scanning based detector, and used the percentage of
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Figure 9: Imitation process of ANIMAGUSFireFox. The data
used here is from the actual collected IRPs. The behavior
difference is highlighted in green.

scanning operations in the initialization phase to all scanning
operations as temporal the scanning based detector. We fine-
tuned their thresholds. With their best F1-score results, the
static detector achieves 1.000 TPR and 0.338 FPR and the
temporal detector achieves 0.800 TPR and 0.051 FPR.

The dummy-access based detector is difficult to imple-
ment. One reasonable observation is that ANIMAGUS would
not perform dummy access to high-value files. Besides, the
access pattern of dummy files may not be one of the three
exploitable patterns because ANIMAGUS would leverage as
many exploitable files as possible to schedule encryption
tasks. So one reasonable metric is the percentage of files
accessed in exploitable patterns among all accessed non-
high-value files throughout the lifetime of each program.
Figure 14 in Appendix B.2 presents the results. From the fig-
ure we can see, the average percentage is between 3.92% to
28.14% for benign programs, and 25.23% for ANIMAGUS.
After analysis, we implemented a corresponding detector
and fine-tuned its threshold. With its best F1-score result, it
gets 0.600 TPR and 0.966 FPR.

In summary, constructing a practical detection rules to
distinguish ANIMAGUS is non-trivial. Defenders must thor-
oughly investigate the runtime behaviors of ANIMAGUS and
perform heavy feature engineering to produce a useful rule.

5.7. Case Study

We present a case study on how ANIMAGUS exploits
behaviors of benign programs. Figure 9 illustrates the im-
itation process of ANIMAGUSFireFox. During the offline
preparation phase, it analyzes the collected behaviors and
identifies exploitable files. In this example, the access to
bwe.sql follows the Read-Write exploitable pattern. Dur-
ing the online attack phase, the program first follows the
same behavior as FireFox to query directory information
from the victim system. Next, it queries the metadata of each
file in the directory. Taking the 179.ppt as an example, the
program will know the size of this file from the metadata.
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After that, it starts scheduling encryption tasks. It maps an
exploitable file, i.e., the bwe.sql from the behaviors of the
imitation target, to the victim file, and injects encryption
tasks to the access sequence of the exploitable file. The
tasks are injected into some write operations of the access
sequence based on the number of write operations and the
file size. Finally, it assigns the tasks to subprocesses, and
the subprocesses access files on schedule.

As we can see from the figure, there are four main
differences in behaviors between ANIMAGUS and the pro-
gram it imitates. The first is the file path of each operation.
Every ANIMAGUS access operates on the actual file paths
on the victim system. The second is the additional operation
of query metadata. Once a list of files in a directory is
obtained, ANIMAGUS queries the metadata of these files.
This is because it needs to know the size of each file in order
to schedule encryption tasks. Note that most programs would
also query metadata of files after obtaining directory infor-
mation, so this cannot be a feature to identify ANIMAGUS.
The third is the length of read buffers. When encountering
an operation that reads the file for the first time, ANIMAGUS
reads the entire contents of the file. This is because it needs
to know the content before encrypting. The fourth is the
entropy of written buffers. The entropy inevitably differs
from the imitated behavior because the written contents are
different. ANIMAGUS tends to write low-entropy buffers
to disguise its encryption behavior. Except for the four
differences, ANIMAGUS behaves the same as the program.

6. Discussion

6.1. Countermeasures

In Section 5, we illustrate that it is difficult to dis-
criminate imitation-based ransomware attack if one only
considers I/O behaviors. Here we propose some potential
strategies to counter the attack.

Combine Multiple Techniques. In addition to access
to filesystem, a ransomware program would also connect
to its C&C server and/or performs encryption calculation.
Combining the analysis of the network activities and the
cpu/memory usage could offer a more precise detection
result. There are a few studies in this direction. For example,
Ransomspector [14] notices that many existing ransomware
samples tend to send packets to a large amount of dif-
ferent hosts. It thus considers this behavior as a detection
pattern. RWGuard [11] places hooks at the beginning of
the CryptoAPI library functions to monitor the invocation
activities. PayBreak [21], similar to RWGuard, places hooks
to CryptoAPI in order to obtain encryption keys. These ad-
hoc mitigations cannot make ransomware infeasible. ANI-
MAGUS neither sends packets to different hosts, nor does it
rely on CryptoAPI. However, combining all aspects of these
activities for hybrid analysis is promising. For example, one
can trace the real-time memory of a suspicious program to
see if it performs many encryption operations to a buffer
read from filesystem. This fine-grained analysis can counter
ANIMAGUS although it introduces considerable overhead.

Data Backup. There are many off-the-shelf backup
software options, such as OneDrive and Google Drive.
Unfortunately, recent studies [43] show that a small part
of ransomware can obtain OS kernel privilege to terminate
or destroy these backup programs. There are also some
studies [43], [44], [45], [46] try to develop a hardware-
assisted backup to fight against ransomware. Their key
insight is to isolate backup data from operating system, so
that ransomware cannot destroy backup data. However, they
could also introduce considerable time overhead or space
overhead without a solid detection technique. Backing up
files once a file is accessed suspiciously is a promising
strategy to counter the imitation-based ransomware attack.

6.2. Potential Benefit

Existing detection tools can leverage different versions
of ANIMAGUS as adversarial examples to improve their
detection. For example, Redemption can adjust the weights
of its features by studying ANIMAGUS IRP logs; ShieldFS
can take the logs as training data to retrain its model.
Besides, recently, several evaluation frameworks [47], [48]
were proposed to test the effectiveness of ransomware de-
tectors. These frameworks can also integrate ANIMAGUS as
an evaluation metric for a more thorough evaluation.

7. Conclusion

In this paper, we aim to explore the limits of ran-
somware detection techniques that leverage I/O behaviors to
discriminate malicious programs. To this end, we propose
an imitation-based ransomware attack that imitates benign
programs’ behaviors and disguises encryption tasks. It first
abstracts a behavior template from real-world benign I/O
behaviors. During online attacks, it acts in the same behavior
pattern as the behavior template and encrypts files. Our ex-
perimental results show that although current detection tools
can identify malicious behaviors of existing ransomware
samples, our attack can still successfully elude the tools.
We investigate in detail why the detection techniques are
ineffective and how ANIMAGUS is different from existing
ransomware samples. We highlight that the I/O-based de-
tection alone might not be sufficient to identify ransomware
and should be complemented by other analyses to achieve
better detection accuracies.
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Appendix A.
Implementation Details

A.1. Encryption and Decryption

We leverage a hybrid cryptosystem to encrypt files
similar to existing ransomware families. The cryptosystem
includes a asymmetric key generation algorithm K, an en-
cryption algorithm E and a decryption algorithm D. First,
our program generates a pair of asymmetric public-private
key on the C&C server:

(priv k, pub k)← K (1)
Next, during attacks, the program generates a unique session
key s k for each file, and encrypts the content M of each
file using the session key:

C1 = Es k(M) (2)
In the end, every session key is encrypted with the public
key and left together with the encrypted file contents:

C2 = Epub k(s k) (3)
The approach to decrypt a file is straight-forward. With
the private key, the victim can first decrypt the chunk of
encryption information appended to each encrypted file:

s k = Dpriv k(C2) (4)
Finally, our program uses the session key to decrypt con-
tents. In this way, it can recover all the locked files.

M = Ds k(C1) (5)
After a file is encrypted, a chunk of encryption in-

formation is appended to the file’s content as Figure 5
demonstrates. The encryption information indicates which
blocks are encrypted, which cipher we choose, and what
the encrypted session key is. There are a variety of options
for the cipher and the cipher mode. The cipher can be any
combination of a symmetric block cipher (such as AES256,
Blowfish and 3DES) and an asymmetric cipher (such as
RSA and DSA). The cipher mode can be ECB, CTR, CBC,
etc. We use RSA2048 and AES256 with ECB mode in our
prototype for the sake of simplicity.

A.2. Intermittent Encryption

Encrypting intermittent blocks is our indispensable de-
sign. Without this strategy, multiple processes are unlikely to
synergistically encrypt the same file and control the entropy
of each written buffer. Even so, there is still no way for
victims to decrypt locked files without a decryption key.
First, the blocks are selected randomly, and the victims
thus cannot know which parts are encrypted. Second, the
blocks are impossible to decrypt because of the nature of
modern ciphers. In the implementation of ANIMAGUS, we
ensure that at least 50% of the file contents are encrypted.
Therefore, for any file whose size is larger than 32 bytes, at
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least 128 Bit of its content will be encrypted by ANIMAGUS.
Even though the victim knows which bits are encrypted, it
will take at least 1018 years to recover the content.

TABLE 6: Recoverability of .mov files with different sizes
against different encryption rates.

0.01% 0.05% 0.10% 0.50% 1.00%

1M # H# H#   
5M # H# H#   
10M # H# H#   
30M # H# H#   
90M # H# H#   
150M # # H#   
210M # # #   
270M # # # H#  

#: playable; H#: not playable but recoverable;  : unrecoverable.

One may argue that some media files may have highly
redundant data, which makes encrypted files recoverable.
We conducted experiments on .mov files to investigate if
the encryption strategy can destroy media files. We choose
.mov because it is one of the most widely-used media
formats. After a file is encrypted, we measure if it is playable
and recoverable. The video player used here is QuickTime
Player, and the recovery tool is Wondershare Recoverit.
From TABLE 6 we can see, when the encryption rate is
0.10%, the encrypted file is recoverable. However, when the
encryption rate is 1.00%, the encrypted file is unlikely to be
recovered. Therefore, encrypting 50% of a file is enough to
destroy it.

A.3. Speed Up Replay

Algorithm 3 illustrates our speedup strategy during
execution task scheduling. Users of ANIMAGUS preset a
throughput control variable T before attacks. During attacks,
this speedup algorithm receives a list of encryption instruc-
tions from the encryption task scheduling module. Each
instruction contains information which instructs a specific
subprocess when and how to access a specific file. By
analyzing these instructions, we can know the number of
tasks and total encryption time contained in the instruction
list, and thus calculate a speedup rate using the throughput
control variable (Line 1-3). Next, we can modify the time
of each instruction according to the speedup rate and finally
speed up the whole attack process (Line 4-6).

Algorithm 3: Speed Up Replay During Scheduling
Input : A list of encryption instructions Instrs

Throughput control variable T
1 taskNum ← analyzeTask(Instrs)
2 totalTime ← analyzeTimeRange(Instrs)
3 speedUpRate ← T × totalT ime

taskNum
4 for Instr in Instrs do
5 Instr.time ← Instr.time / speedUpRate
6 end

A.4. Ethical Considerations

We consider ethics as a top priority when conducting
experiments. All experiments were conducted in a virtual en-
vironment and did not affect any real-world end-users. The
implemented prototype of the imitation-based attack does
not contain any functionalities of infection or propagation,
so it will not do harm to the public. We believe that the
experiment setup poses no ethical issues and is sufficient to
investigate the limits of I/O based ransomware detectors.

We are engaging in disclosure procedures with three
production-level detection providers, i.e., Kaspersky [15],
360 [16], and Windows Defender [17]. They have received
our prototype and are actively refining their strategies. Note
that production-level detectors also combine other malware
detection techniques, e.g., infection detection and static sig-
nature matching, to prevent large-scale spread of malware.
The idea of this paper only challenges the I/O based dynamic
analysis of these detectors. Therefore, as long as other
malware detection techniques are effective, even inspired
by this paper, cybercriminals cannot construct ransomware
to evade these production-level detectors.

For the interest of academia, we will release the proto-
type in a binary format. We make sure that the binary is only
usable in a specific virtual environment and cannot be re-
used as a submodule of any real-world attacks. Besides, we
will release the prototype only when the detection providers
can 100% defend against the imitation-based attack.

Appendix B.
Additional Experiment Results

B.1. Throughput of Individual Samples

We analyzed individual throughput of ANIMAGUS and
ransomware families. The results are shown in TABLE 7 and
TABLE 8. From TABLE 7 we can see, the attack throughput
of ANIMAGUS depends on imitated targets. The key factor
is the number of encryption tasks in each behavior template.
Behavior templates are extracted from runtime behaviors
of imitated targets. Some programs provide templates with
many encryption tasks, some do not. Users can adjust attack
time by choosing a suitable behavior template.

TABLE 7: Time spent by different versions of ANIMAGUS
in encrypting different numbers of files.

200 files 400 files 600 files 800 files 1000 files

ANIMAGUSFireFox 56s 112s 193s 254s 320s
ANIMAGUSMS Edge 226s 437s 644s 853s 1068s
ANIMAGUSChrome 273s 501s 731s 1011s 1279s

ANIMAGUSWPS Office 81s 110s 233s 323s 330s
ANIMAGUSMS Office 134s 234s 334s 397s 512s

ANIMAGUS7Zip 63s 125s 178s 262s 295s
ANIMAGUSWinRAR 54s 106s 159s 211s 265s

ANIMAGUSGolang−go 59s 117s 173s 232s 289s
ANIMAGUSRustc 63s 125s 186s 249s 306s

ANIMAGUSV isual Studio 89s 182s 272s 350s 431s
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(a) The number of write/delete/rename oper-
ations on the files with high-value types over
program lifetime (normalized by time).
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(b) The peak frequency of write/delete/re-
name operations on the files with high-value
types throughout program lifetime.
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(c) The number of unique high-value files
written/deleted/renamed over program life-
time (normalized by time).

Figure 10: Statistics of collected IRPs of different programs on three file-type based detection strategies.
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(a) The number of scanning operations over
program lifetime (normalized by time).
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(b) The peak frequency of scanning opera-
tions throughout program lifetime.
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(c) The number of unique folders scanned
over program lifetime (normalized by time).

Figure 11: Statistics of collected IRPs of different programs on three scanning based detection strategies.

TABLE 8: Time spent by ransomware samples in encrypt-
ing different numbers of files.

200 files 400 files 600 files 800 files 1000 files

WannaCry 58s 152s 195s 289s 301s
Avoslocker 34s 49s 55s 59s 161s

XData 159s 195s 226s 335s 496s
TeslaCrypt 151s 178s 196s 203s 541s

Bitman 129s 325s 330s 629s 742s
Vobfus 58s 96s 101s 160s 175s
Dalexis 109s 124s 131s 142s 152s
Yakes 173s 184s 207s 219s 227s
Koxic 109s 177s 182s 253s 297s
phobos 310s 348s 357s 548s 730s

B.2. Feature Engineering of New detectors

File-type based detector. We investigated three file-type
based metrics, i.e., the average number of write/delete/re-
name operations on high-value files over program lifetime,
the peak frequency of write/delete/rename operations on
high-value files over program lifetime, and the average
number of unique high-value files written/deleted/renamed
over program lifetime. We analyzed each metric on collected
runtime records. Figure 10 presents the overall statistics.
In Figure 10a, the average number of write/delete/rename
operations per second is between 0.20 to 24.15 for benign

programs, and 10.08 for ANIMAGUS. In Figure 10b, the
average peak frequency of write/delete/rename operations is
between 11.50 to 2386.00 for benign programs, and 195.00
for ANIMAGUS. In Figure 10c, the average number of
unique files written/deleted/renamed per second is between
0.89 to 23.52 for benign programs, and 4.68 for ANIMAGUS.
Figure 12 demonstrates the percentage of accessed high-
value files out of all accessed files for each program. We
can see that 42.44% of files that ANIMAGUS accesses are
high-value. Overall, it is difficult to distinguish ANIMAGUS
from benign programs by only looking at file-type based
metrics.
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Figure 12: The percentage of accessed high-value files out
of all accessed files throughout program lifetime.

Scanning based detector. We investigated three file-
type based metrics, i.e., the average number of scanning
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operations over program lifetime, the peak frequency of
scanning operations over program lifetime, and the average
number of unique folders scanned over program lifetime.
We analyzed each metric on collected runtime records.
Figure 11 presents the overall statistics. In Figure 11a,
the average number of scanning operations per second is
between 12.00 to 324.33 for benign programs, and 9.98 for
ANIMAGUS. In Figure 11b, the average peak frequency of
scanning operations is between 157.91 to 9165.00 for benign
programs, and 681.50 for ANIMAGUS. In Figure 11c, the
average number of unique folders scanned per second is
between 0.25 to 12.82 for benign programs, and 3.08 for
ANIMAGUS. In addition to static scanning metrics, we also
investigate if ANIMAGUS can be detected by a temporal
scanning feature. Figure 13 in presents scanning frequency
in the first ten seconds when running Visual Studio, 7Zip,
MS Edge, and ANIMAGUS. We can see that many benign
programs would also scan many folders in their initial phase.
Overall, it is difficult to distinguish ANIMAGUS from benign
programs by only looking at scanning based metrics.
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Figure 13: The number of scanning operations in the first
ten seconds of different programs’ lifetime.

Dummy-access based detector. We investigate the per-
centage of files accessed in exploitable patterns among all
accessed non-high-value files over program lifetime. We
analyzed this metric on the collected runtime records and
the statistics present in Figure 14. From the figure we can
see, the average percentage is between 3.92% to 28.14%
for benign programs, and 25.23% for ANIMAGUS. This
indicates that it is difficult to distinguish ANIMAGUS from
benign programs by only looking at Dummy-access patterns.

Fire
Fox

MS E
dg

e

Chro
me

WPS
 Offic

e

MS O
ffic

e
7Z

ip

WinR
AR

Gola
ng

-go Ru
stc

Vis
ua

l S
tud

io

Anim
ag

us

program name

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 (%

)

Figure 14: The percentage of files accessed in exploitable
patterns among all accessed non-high-value files throughout
program lifetime.

B.3. Visualization of Behavior Differences

We also investigate whether the differences make AN-
IMAGUS more like ransomware or not. We apply Principal
Component Analysis (PCA) to quantify the differences. We
choose the features of ShieldFS as the metrics. PCA is used
to transform the features into a two-dimensional space for
visualization. Figure 15 presents the visualization result. As
we can see, the behavior distance between ANIMAGUS and
its imitated benign program is much shorter than the one
between ANIMAGUS and ransomware samples. Therefore,
detection tools cannot make a correct decision on the basis
of the features.
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Figure 15: Visualization of behavior features of different
programs. The features used here are in line with ShieldFS.
The dimensionality reduction is performed by PCA.

B.4. Similarity of Ransomware Families

In section 5.3, we randomly choose one sample from
each family to conduct experiments. This is because samples
of a family share an almost identical behavioral pattern
at runtime. To prove it, we randomly chose four samples
from family Avoslocker and one sample each from fami-
lies Wannacry and Phobos. We evaluated the similarity of
their runtime I/O sequences using the Ratcliff-Obershelp
Algorithm. Figure 16 presents their similarity. The similarity
between four samples from Avoslocker ranges from 0.927
to 0.996. By contrast, the similarity between samples from
different families ranges from 0.484 to 0.757. This indicates
that samples from a family behave identically at runtime.
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Figure 16: Runtime behavior similarity of ransomware sam-
ples from different families.
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