
Precise Detection of Kernel Data Races with Probabilistic Lockset Analysis

Gabriel Ryan, Abhishek Shah, Dongdong She, Suman Jana
Columbia University

Abstract—Finding data races is critical for ensuring security in
modern kernel development. However, finding data races in the
kernel is challenging because it requires jointly searching over
possible combinations of system calls and concurrent execution
schedules. Kernel race testing systems typically perform this
search by executing groups of fuzzer seeds from a corpus and
applying a combination of schedule fuzzing and dynamic race
prediction on traces. However, predicting which combinations
of seeds can expose races in the kernel is difficult as fuzzer
seeds will usually follow different execution paths when ex-
ecuted concurrently due to inter-thread communications and
synchronization.

To address this challenge, we introduce a new analysis for
kernel race prediction, Probabilistic Lockset Analysis (PLA)
that addresses the challenges posed by race prediction for
the kernel. PLA leverages the observation that system calls
almost always perform certain memory accesses to shared
memory to perform their function. PLA uses randomized
concurrent trace sampling to identify memory accesses that
are performed consistently and estimates the probability of
races between them subject to kernel lock synchronization.
By prioritizing high probability races, PLA is able to make
accurate predictions.

We evaluate PLA against comparable kernel race testing
methods and show it finds races at a 3× higher rate over 24
hours. We use PLA to find 183 races in linux kernel v5.18-rc5,
including 102 harmful races. PLA is able to find races that have
severe security impact in heavily tested core kernel modules,
including use-after-free in memory management, OOB write
in network cryptography, and leaking kernel heap memory
information. Some of these vulnerabilities have been overlook-
ing by existing systems for years: one of the races found by
PLA involving an OOB write has been present in the kernel
since 2013 (version v3.14-rc1) and has been designated a high
severity CVE.

1. Introduction

Data races are a source of serious security vulnerabilities
in the OS kernels–many recent data-race-based exploits
resulted in privilege escalation [2], denial of service [8], and
leaking protected memory [4, 6]. Recent work has demon-
strated that even races that appear unexploitable might be
deterministically triggered by an attacker [30]. Moreover,
even when data races do not immediately result in security
vulnerabilities, they cause severe bugs that lead to memory
corruption and undefined behavior [1, 31].

Given their security and reliability implications, testing
for and identifying data races is critical for modern kernel
development. However, testing for data races is challeng-
ing both in theory and practice: finding data races is NP-
hard [38] because data races only occur under specific
concurrent execution schedules, which are exponential in
the number of executed instructions. As a result, in practice,
many races are not identified until they cause a crash or
security vulnerability in released code [27].

In general, there are two widely used approaches to
search for races in arbitrary concurrent programs: schedule
exploration searches by executing many different sched-
ules [18, 37, 51], while dynamic race prediction reasons
about possible reschedulings of memory accesses subject to
synchronization to trigger races based on a single concurrent
execution trace [20, 34, 43, 48]. However, these approaches
reason exclusively about rescheduling the thread execution
order. When testing the kernel, the memory accesses and
synchronization operations are determined by which system
calls are executed. Identifying a race then requires finding
the correct combination of both system calls and execution
schedule under which the race occurs.

Kernel Data Race Detection. Kernel race testing systems
therefore apply schedule exploration and dynamic race pre-
diction to the kernel by using a two step process: they
first select a combination of fuzzer seeds composed of
systems calls from a fuzzer corpus, guided by either alias
analysis [22, 25] or a coverage metric for concurrent ex-
ecutions [26, 50], and then test the combined seeds with
schedule exploration and dynamic race prediction.

However, predicting which memory accesses can race
between different combinations of seeds is challenging:
alias analysis of shared memory accesses suffers from high
false positive rates and does not account for kernel syn-
chronization, while concurrent coverage metrics only pro-
vide indirect guidance for selecting seed combinations to
test. Moreover, due to inter-thread communications seeds
may follow different execution paths and perform different
memory accesses when executed concurrently, making any
prediction based on a previous execution traces even more
error prone. As a result the vast majority of concurrent tests
are wasted because races either do not occur or are allowed
based on kernel concurrency semantics.

Our Approach. In this paper, we introduce a new approach
to predict races between combinations of seeds in a corpus
that addresses each of these challenges in kernel race pre-
diction: we only predict races where kernel synchronization

2086

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Gabriel Ryan. Under license to IEEE.
DOI 10.1109/SP46215.2023.00144

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

36
6

is violated and racing is not allowed, and we account for
changing execution paths when seeds are executed together,
even if we have not observed those particular seeds execut-
ing together before. This allows us to predict races accu-
rately and efficiently test a corpus for races, with provable
bounds on the false positive rate under mild uniformity
assumptions.

Our approach is based on three observations about kernel
system call memory access behavior: (i) Stable memory
accesses. While most memory accesses performed a system
call change on each execution, a small subset of memory
accesses form a stable set, which the system call must make
to perform its intended function (e.g., a file read must access
the relevant file inode), regardless of which other system
calls are executing concurrently. Memory accesses in the
stable set will almost always occur when the system call
is executed (see Section 3.2 for a more precise definition).
(ii) Memory accesses in the stable set must be guarded by
mutual exclusion synchronization (locks) or allowed to race,
since multiple system calls can perform them concurrently.
(iii) Sparse lock interactions. Kernel concurrency design
favors using a small number of common locks for any shared
memory, so the number of distinct locksets for accesses to
a common address are almost always small, even when the
number of accesses is large.

Probabilistic Lockset Analysis. Based on these observa-
tions, we introduce Probabilistic Lockset Analysis (PLA): a
new analysis for kernel race prediction that identifies mem-
ory accesses in the stable set and performs synchronization
aware race prediction on them. PLA works by estimating
the probability that two seeds can execute racing memory
accesses concurrently subject to lock synchronization. It
estimates probabilities of memory accesses with regard to
other concurrent programs, execution schedules, and vari-
ation in the execution context. Therefore, races involving
memory accesses that are unlikely to happen concurrently
will have low probability, while races involving memory
accesses in stable set will have high probability, and these
predictions can always be refined to higher precision by
taking more samples.

Unlike lockset analysis defined in the dynamic race
prediction literature [52], which relies on happens-before
relations derived from inter-thread communications to make
precise race predictions, PLA is able to make precise race
predictions by estimating the probabilities of seeds perform-
ing concurrent memory accesses. This allows PLA to make
accurate race predictions based on independently collected
execution traces sampled from each seed in a corpus, instead
of testing each seed combination and execution schedule
individually, which would require a potentially exponential
number of executions. To scale to large corpuses of fuzzer
seeds, PLA’s design exploits the intrinsic sparsity of inter-
thread communications and locksets in the kernel: on aver-
age, less than 1% of memory accesses are performed with
high probability, and the vast majority of these accesses
only share a small number of distinct locksets (< 100,
see Section 5.6). This allows PLA to check each pair of

unique locksets on each shared memory address for locking
violations, while still scaling linearly in the number of
memory accesses processed. In practice, PLA easily scales
to analyzing billions of memory accesses for races.

PLA works in three steps: First, PLA executes each seed
in the corpus concurrently with other randomly selected
seeds and schedules to estimates the probability of the seed
performing memory accesses with specific locksets. Next,
PLA identifies lockset violations on shared memory accesses
by checking for non intersecting locksets. Finally, PLA esti-
mates the joint probability of memory accesses with locking
violations occurring concurrently. For each prediction, PLA
generates a hypothesized concurrent execution schedule that
causes the two memory accesses to race. Each prediction can
then be efficiently checked by executing the relevant seeds
according to the hypothesized schedule.
Result Summary. We use PLA to find 183 distinct races in
linux kernel v5.18-rc5, of which 102 are harmful, and show
in a comparative 24 hour evaluation that it finds races at a
rate 3× greater than other comparable kernel concurrency
testing systems. PLA is effective at identifying hard-to-
find races in core kernel modules that have severe security
impact: including use-after-free in memory management,
OOB write in network cryptography, and leaking kernel
heap memory. One of these races found by PLA that causes
an OOB write has been present in the kernel since 2013
(version v3.14-rc1) and has been designated a high severity
CVE [9].

In summary, this paper makes the following contribu-
tions:

1) We introduce Probabilistic Lockset Analysis (PLA), a
new race prediction method for the kernel that lever-
ages probabilistic reasoning to predict races from cor-
puses of fuzzer seeds. PLA is fast and accurate, easily
scaling to billions memory accesses. We provide an
open source release of PLA1.

2) We compare PLA against other kernel race testing
systems on a benchmark seed corpus and show it finds
more than 3× as many races in a 24 hour period.

3) We use PLA to find 183 races in the kernel, including
102 harmful races with security implications, one of
which in the kernel networking cryptography has re-
mained undetected for nearly 10 years and has been
designated a high severity CVE.

4) Finally, we derive rigorous error bounds on false pos-
tive rates for PLA’s probabilistic race predictions, and
show empirically PLA’s trace sampling is able to pre-
dict memory accesses with high accuracy.

2. Background

In this section we first formulate the problem of race
prediction on the kernel and discuss its challenges. We then
describe current approaches to race prediction used on the
kernel and their limitations.

1. www.github.com/gryan11/PLA

2087

static int global_handle = 0;

void nf_newtable(struct net *net)
{
mutex_lock(net->mutex);
table = nft_lookup(net);
...

table->h = ++global_handle;
...

mutex_unlock(net->mutex);
}

(a) Function with racing global variable update.

thread 1:

sock_sendmsg(sock=sock1)

 ...

 nf_newtable(net=net1)

 mutex_lock(net1->mutex)

 table1 = nft_lookup(net1)

 table1->h = ++global_handle thread 2:

 sock_sendmsg(sock=sock2)
 ...

 nf_newtable(net=net2)
 mutex_lock(net2->mutex)
 table2 = nft_lookup(net2)
 table2->h = ++global_handle

(b) Execution schedule with racing memory accesses on handle.

Figure 1: Simplified example of race found by PLA in net/netfilters/. The race occurs on the global variable global_handle
shown in 1a, which can be concurrently modified by multiple threads when passed different net structs (which each have different
per-thread net->mutex). 1b shows an execution schedule and the associated pair of unsynchronized memory accesses used to identify
the race.

r0 = socket$nl_netfilter(0x10, 0x3, 0xc)
sendmsg$NFT_BATCH(r0, &(0x7f0180)=

{0x0, 0x0, @NFT_MSG_NEWTABLE={0x20, 0x0,
0xa, 0x801})

Figure 2: Simplified kernel fuzzer seed used to trigger the race
shown in Figure 1. The seed opens a socket and then sends a
message that executes the nf_newtable function.

2.1. Problem Definition

We use the standard definition of a data race: two
memory accesses to the same address can be scheduled
on different threads to happen concurrently, and at least
one of the accesses is a write [16]. Figure 1 shows the
unsynchronized access pair and schedule for a race found by
PLA in net/netfilters. The race occurs on a global
variable handle highlighted in 1a that is guarded by mutex
in a net struct. The memory access pair and their respective
system calls are shown in 1b, along with an execution
schedule that will cause the two memory accesses two race.
Since the function can be called concurrently with two
different net structs (and therefore, two different mutexes),
the global handle variable can be concurrently updated by
two different threads, causing the netfilter table handles to
be inconsistent (e.g., two table may receive the same handle
value).
Racing Schedules. In order for a race to occur, there must
be a execution schedule that performs a pair of accesses to
the same memory address concurrently – lack of synchro-
nization between accesses is a necessary but not sufficient
condition for a data race. Even when there is no explicit syn-
chronization between two shared memory accesses, inter-
thread communications can make data races infeasible. This
can cause kernel race prediction approaches that do not
explicitly reason about schedules (e.g., by only checking for
aliased memory accesses) to make large numbers of false
positive race predictions.

For example, the two methods shown in Figure 3 demon-
strate a common lockless message passing pattern in the

thread 1: thread 2:
--------------------- ---------------------

1
2 msg1->data = data1;
3 WRITE_ONCE(msg,msg1);
4 // ----------- happens before ---------------
5 msg2 = READ_ONCE(msg);
6 data2 = msg2->data;

Figure 3: Lockless message passing pattern commonly used in
kernel. Thread 1 and thread 2 can both access the same aliased
data field, but the pointer exchange from line 3 to line 5 imposes
a happens-before relation between the two memory accesses on
lines 2 and 6. Therefore, there is no execution schedule where the
accesses can race. Alias analysis will generate a false positive race
prediction on these accesses, but a dynamic race predictor using
happens-before analysis will correctly identify there is no race.

kernel (memory barriers have been omitted for clarity). In
lockless message passing, a struct (in this case msg1) is
first populated with relevant data and then a pointer to the
struct sent to another thread via a shared pointer (in this case
msg). Although thread 1 and thread 2 both access the same
aliased data field without synchronization, thread 2 cannot
access the data field unless thread 1 has already written
the struct address to the shared pointer msg. This makes
any execution schedule that attempts to perform the thread
1 data write and thread 2 data read concurrently infeasible.

In contrast, the accesses to shared pointer msg can race
in Figure 3, but this is expected and allowed during kernel
message passing and the READ_ONCE and WRITE_ONCE
macros indicate the two accesses are allowed to race.
Kernel Fuzzer Seeds. In practice, kernel concurrency test-
ing systems typically operate on corpuses of kernel fuzzer
seeds, each of which is composed of a sequence of system
calls which operate on hardcoded parameter values and
return values or pointers passed to previous system calls.
Figure 2 shows an example syzkaller fuzzer seed that trig-
gers the race shown in Figure 1. Kernel concurreny testing
systems generate corpuses of kernel fuzzer seeds by either
running a single threaded fuzzer and maximizing branch

2088

coverage [22, 25], or using concurrency specific coverage
metrics [26, 50].
Problem Formulation. Based on the common usage of ker-
nel fuzzer seeds in concurrency testing, we define the whole
corpus race testing problem as following: given a corpus of
kernel fuzzer seeds, identify data races in the corpus, where
each data race comprises (1) two unsynchronized accesses
to the same memory address, (2) two (or more) fuzzer
seeds that perform the predicted accesses when executed
concurrently, and (3) an execution schedule that executes
both accesses concurrently.
Challenges. Kernel race testing has two properties that make
it extremely challenging:

1) Exponential search space. For any given corpus size
and bounded execution length, there is an exponential
number of possible seed combinations and execution
schedules that can potentially expose races. For k seeds
executing n instructions, each instruction in the sched-
ule is selected from one of the k seeds, so there are
O(kn) possible schedules. Moreover, for a corpus P,
there are

(|P|
k

)
possible seed combinations.

2) Unpredictable execution behavior. Kernel seeds will
follow different execution paths and perform different
memory accesses on each execution due to changing
background processes and environment, even when ex-
ecuted from a fixed image, so any analysis based on
independently observed execution traces will be highly
error prone.

2.2. Kernel Race Prediction Approaches

Recent kernel concurrency testing systems use two types
of analysis to identify races, however, both approaches miss
many kernel races due to the two challenges in kernel race
prediction:

1) Dynamic race prediction makes predictions based on
observed concurrent execution traces. It is precise (no
false positives), but cannot efficiently search the ex-
ponential space of seed combinations and execution
schedules for races.

2) Alias analysis efficiently makes predictions between
independently observed traces that contain accesses to
common memory addresses, but makes overwhelming
numbers of false positive predictions due to the unpre-
dictable kernel execution behavior and not checking if
aliases are synchronized (e.g., covered by a common
lock).

We discuss the tradeoffs made by these approaches here and
provide precise definitions in Appendices A and B.
Dynamic Race Prediction. Dynamic race prediction used in
kernel testing typically combines happens-before analysis,
which reasons about ordering dependencies such as the
message passing shown in Figure 3 to avoid false positive
predictions, with lockset analysis, which identifies locking
violations such as the non-overlapping mutexes bug shown
in Figure 1. When used together, hybrid happens-before
lockset analysis can make precise race predictions (no false

positives), but can only reason about one concurrent trace
at a time, because the happens-before ordering used in the
analysis is derived from the observed trace. In practice this
means testing systems based on dynamic race prediction
will miss many races because they must search directly over
the exponential space of seed combinations and execution
schedules (See Section 5.2).
Alias Analysis. In contrast, alias analysis does not directly
search over seed combinations and schedules, but indepen-
dently checks for accesses to the same memory address
either statically [25] or dynamically [22]. This avoids the
scalability issues of dynamic race prediction, but causes
extremely high false positive rates. These false positives
occur because either the aliases are spurious (two observed
accesses appear to access the same memory address but
cannot do so concurrently, see Figure 3), or the aliases
are synchronized (e.g., mutually locked). Therefore, testing
systems using alias analysis will miss many races because
they will waste most of their test executions on false positive
race predictions (see Section 5.2).

3. Methodology

In this paper, we introduce Probabilistic Lockset Anal-
ysis (PLA), a new approach to kernel race prediction for
the kernel that incorporates the advantages of both dy-
namic race prediction and alias analysis while avoiding their
shortcomings. Like alias analysis, PLA makes predictions
across independently observed traces, allowing it to scale
linearly in the number of corpus seeds and memory accesses.
However, like dynamic race prediction, PLA makes accurate
predictions by taking kernel synchronization and schedule
dependencies into account when making predictions.

3.1. PLA Overview

PLA’s design is based on three observations about the
memory accesses performed by system calls. (1) System
calls must make certain memory accesses to shared memory
to perform their intended function. These memory accesses
form a stable set that will be performed with high prob-
ability, regardless of any concurrently executing syscalls
and how they are scheduled. (2) Memory accesses in the
stable set must guarded by mutual exclusion (i.e., locks)
or allowed to race, since multiple system calls can perform
them concurrently. (3) Locking interactions in the kernel
are sparse, so the number of unique locksets for a common
kernel memory address will almost always be small (we
confirm this empirically in Section 5.6).

PLA leverages these three observations to perform pre-
cise race predictions between independently observed traces.
Since memory accesses in the stable set are performed with
high probability for any concurrent schedule, it can make
accurate race predictions between stable set accesses without
first executing the seeds together to apply happens-before
analysis. Since memory accesses in the stable set must
be guarded with mutual exclusion, PLA is able to check
synchronization based on commonly held locks. Finally,

2089

Probability Estimation

p1
p2
.
.
.

pn

...

L1 L2

L2 L3

L1 L3

Trace Collection Aggregation Pairwise Analysis

Seed Corpus
Execution Traces Stable Set

...

L1

L2

......

Shared
Accesses

Unique
Locksets

Lockset
Intersections

L3 ...

Figure 4: PLA’s workflow. PLA collects traces independently from each seed in the corpus to identify its stable set of memory accesses.
It then groups all memory accesses first by memory address and then by unique locksets, and performs pairwise intersections on the
aggregated locksets. This procedure is linear in both the number of corpus seeds and individual memory accesses in the traces, allowing
it to scale to large corpuses and traces.

PLA exploits the sparsity of kernel locking by performing
precise pairwise lockset analysis on the distinct locksets
associated with each memory address.
PLA Workflow. Figure 4 provides a high level summary
of PLA’s workflow. PLA first executes each seed in the
corpus concurrently with other randomly selected seeds
and schedules. It then identifies high probability memory
accesses (the stable set) in each set of seed traces and
aggregates them based on common memory addresses. Each
set of stable memory accesses is then grouped by their
locksets, and potentially racing access pairs are identified
with pairwise lockset analysis and prioritized based on their
joint probability. For each race prediction, PLA generates a
hypothesis execution schedule that can be executed to check
for feasibility. We formally describe PLA’s analysis below.
PLA vs. Lockset Analysis. Lockset analysis can suffer
from very high false positive rates, so it is usually applied
as a hybrid race predictor with happens-before analysis.
However, happens-before analysis must observe a concur-
rent execution trace between two threads to derive happens-
before constraints, so it requires at least O(n2) executions
to test each pair of seeds in a size n corpus (Section 2.2). In
contrast, PLA is able to make precise race predictions be-
tween two threads without observing their communications
by representing each memory access with a random variable
and estimating the probability that two memory accesses
can be performed concurrently. Since each random variable
is estimated by independently sampling traces from each
input, this only requires O(n) traces for n seeds. Figure
5 illustrates the difference between PLA and hybrid race
prediction when run a corpus of fuzzer seeds.

3.2. PLA Definitions and Error Bounds

Tuple Notation. We make extensive use of tuples and
denote named elements of a tuple with dot notation. For
a tuple x = (a, b), we refer to element a as x.a.
Fuzzer Seeds and Corpus. We refer to a kernel fuzzer
seed as p where each seed is drawn from a corpus P.
PLA’s current implementation uses two seeds at a time, so

Hybrid Dynamic Race Prediction on Corpus: Probabilistic Race Prediction on Corpus:

Figure 5: High level comparison of PLA to hybrid race prediction
running on a corpus P of n seeds. The happens-before check on
two accesses HB(αi, αj , T) used in hybrid race prediction requires
a trace T , so each pair of seeds must be checked individually,
requiring O(n2) traces to check combinations of 2 threads. In
contrast, PLA estimates the probability of races based on random
indicator variables for each access Aα, which can be independently
estimated for each seed from O(n) sampled traces T. See Section
3.2 for precise definitions of traces, α, and Aα.

to simplify notation we assume PLA is operating on two
seeds {p1, p2} in this section. However, PLA can be used
with any number of concurrent threads.
Access Locksets. When performing probabilistic lockset
analysis, we operate on instruction, address, lockset tu-
ples called access-locksets, denoted α. Each access-lockset
is uniquely identified by its executing seed p, instruction
pointer ip, memory address m, operation type op ∈ {r, w},
and the set of held locks when they executed:

α = (p, ip,m, op, lockset)

Two seeds, p1 and p2, can be executed concurrently
according to a schedule s to obtain the set of access-locksets
that appear in its execution trace.

trace(p1, p2, s) = {α1, α2, ...}

We describe the procedure for constructing access-locksets
from traces in Section 3.3.1. For the remainder of the
section, we refer to access-locksets simply as accesses or
memory accesses.
Probabilistic Access-Locksets. The memory accesses that
are performed by a given seed p will vary depending on the

2090

concurrent seed, execution schedule s, and any changes to
the kernel environment (e.g., background processes).

Therefore, we represent the occurrence of α in an exe-
cution trace of p with indicator random variable Aα:

Aα =

{
1 if α ∈ trace(p1, p2, s)

0 otherwise

We can estimate the likelihood of a seed performing a
particular access-lockset (i.e., Aα = 1) by executing it
concurrently with other seeds and schedules. This can be
thought of as drawing independent samples of the random
variable Aα, where each execution produces a sample A

(i)
α .

When sampling we assume each random variable is inde-
pendent of the other variables. This allows us to estimate
probabilities efficiently:

P [Aα = 1 | p1 = p] ≈ 1

N

N∑
i

A(i)

where N is the number of samples, and p1 = p denotes that
we fix the first seed in trace(p1, p2, s) to p, and p2 and s
are uniformly sampled from a corpus and set of schedules
respectively.
Stable Set. We define the stable set of a seed p with regard
to a stability threshold β as the set of accesses S where:

S =
{
α : P[Aα = 1|p1 = p] > β

}
Making predictions on the stable set drastically reduces the
cost of PLA’s analysis (since only a small proportion of
accesses are stable, see evaluation in Section 5.5) and makes
it more accurate, since any pair of stable accesses are likely
to have a feasible concurrent schedule (see evaluation in
Section 5.3).
Probabilistic Races. Given two accesses α1 and α2 to
a common address, we consider two memory accesses as
probabilistically racing with stability threshold β if the
following condition is met:

α1.lockset ∩ α2.lockset = ∅ ∧ α1, α2 ∈ S (1)

Witness Schedule. Given two accesses α1 and α2 that
satisfy Eq. 1 and their respective seeds p1 and p2, PLA
generates a witness schedule s that will execute the two
accesses concurrently with high probability. Since α1 and
α2 are estimated to be executed with high probability for
any schedule, PLA generates a schedule in which α1 and
α2 execute concurrently by ordering instructions from p1 up
to α1 first, followed by instructions from p2 up to α2.
Race Predictions. A full race prediction is composed of
two racing accesses, their respective seeds, and the witness
schedule to trigger the race:

PLA-race-prediction := (α1, α2, p1, p2, s) (2)

PLA’s predictions can be quickly checked by executing
p1 and p2 according to the witness schedule. If the schedule
is feasible, then the prediction is confirmed as a race and

the witness schedule can be used for reproduction and future
testing.
Error Bounds. We derive the following error bounds on
false positives and false negatives based on a threshold β.
The bound on false positives is stated as follows:

Theorem 1. For a threshold β, relative error bound
0 < δ < 1, and two access locksets α1 and α2 with
non-intersecting locksets and random variables Aα1 and
Aα2 sampled N times such that α1, α2, β satisfy Eq. 1
and P [Aα1 = 1 ∩Aα2 = 1] ≥ β, then with probability
e−δ2Nβ/(2−δ), the probability of a false positive is bounded
by:

P[Aα1 = 0 ∪Aα2 = 0] < 1− β(1 + δ)

See Appendix C for proof.
The bound on false negatives is similarly constructed:

Theorem 2. For a threshold β, relative error bound 0 <
δ < 1, and two access locksets α1 and α2 with non-
intersecting locksets and random variables Aα1 and Aα2

sampled N times such that α1 and α2 do not satisfy equation
1 and P [Aα1 = 1 ∩Aα2 = 1] < β, then with probability
e−δ2Nβ/2, the probability of a false negative is bounded by:

P[Aα1
= 1 ∩Aα2

= 1] < β(1− δ)

See Appendix D for proof.
In both cases, the probability of an error decreases expo-

nentially with the number of samples collected. This means
that probabilistic locksets can arrive at precise estimates of
the probability of races with relatively few samples, and we
find that in practice only four samples are needed to achieve
accurate predictions of access locksets (Section 5.5).

3.3. PLA: Algorithm Design

We perform PLA in three stages: 1) access lockset probabil-
ity estimation, 2) probabilistic lockset analysis, 3) coverage
guided race checking.
Design Optimizations. We apply three optimizations in the
design of PLA that allow it to scale to large corpuses:
(1) We apply the probabilistic race prediction threshold β
to access locksets immediately after sampling each input
before further analysis. (2) We perform an initial coarse
grained linear lockset analysis pass before applying pairwise
lockset analysis. (3) We select race predictions to test that
maximize the overall coverage of tested instructions while
minimizing the number of required tests. We evaluate the
impact of these optimizations in Section 5.4 and show
that ablating any one of them prevents PLA from scaling
effectively.

3.3.1. Probability Estimation. We use the following pro-
cedure to estimate access lockset probabilities for each seed
in the corpus. First, we collect a set of concurrent execution
traces for each seed p executed with randomly selected

2091

concurrent seed p′. For each p′, we concurrently execute
and trace p and p′ with two schedules, one where p starts
first, and on where p′ starts first. For each sample we count
if an access lockset is present in the trace but do not count
the number of occurrences, which would bias the probabil-
ity estimate towards frequently executed memory accesses.
Algorithm 1 describes the sample collection procedure. This
sampling procedure is not strictly uniform over the space of
possible schedules, but in practice still precisely estimates
stable access locksets (see evaluation in Section 5.5).

Algorithm 1 Access Lockset Construction.
Input: p1 ← Seed 1

p2 ← Seed 2
s ← Schedule

1: sample_accesses = {}
2: held_locks = {}
3: for t ∈ trace(p1, p2, s) do
4: if is_lock_acquire(t) then
5: held_locks = held_locks ∪ {t.lock_addr}
6: if is_lock_release(t) then
7: held_locks = held_locks\t.lock_addr
8: if is_memory_access(t) then
9: α = (t.ip, t.m, t.op, held_locks)

10: sample_accesses = sample_accesses ∪ α

11: return sample_accesses

For each access lockset α, we estimate the probability
P [Aα = 1 | p1 = p] based on the execution trace access
sets. We then filter the access locksets based on the race
prediction threshold β. Algorithm 2 describes the overall
procedure for probability estimation.

Algorithm 2 Access Lockset Probability Estimation.
Input: p ← Seed

P ← Seed Corpus
N ← Seed Sample Count
β ← Race Prediction Threshold

1: Mp = hashmap(default = ∅)
2: access_counts = hashmap(default = 0)
3: for i ∈ {1..N/2} do
4: p′ = choose_random(P)
5: for s ∈ {p_first, p′_first} do
6: sample_accesses = sample(p, p′, s) ▷ see Algorithm 1
7: for α ∈ sample_accesses do
8: access_counts[α] += 1

9:
10: for α ∈ access_counts do
11: if access_counts[α]/(N) ≥ β then
12: Mp[α.m] = Mp[α.m] ∪ {α}
13: return Mp

3.3.2. Whole Corpus PLA. Algorithm 3 describes the
overall procedure for PLA. First, probability estimation is
performed on the seeds in the test corpus and high proba-
bility access locksets are aggregated by memory address in
the map M. Then, PLA is applied to the access locksets for
each memory address in M.

The lockset analysis is applied in two stages. First, a
single linear pass computes the intersection of all locksets
associated with a given memory address. If the intersection

in empty, indicating the possibility of a race, a precise
pairwise check of each unique lockset associated with the
memory address determines which pairs of locksets have
null intersections. If a pair of locksets have a null inter-
section, the set of memory accesses associated with each
lockset is checked for possible races.

Algorithm 3 Whole Corpus PLA
Input: P ← Seed Corpus

N ← Seed Sample Count
β ← Race Prediction Threshold

1: M = hashmap(default = ∅)
2: for p ∈ P do
3: Mp = probability_estimation(p,P, N, β) ▷ see Algorithm 2
4: for m ∈ Mp do
5: M[m] = M[m] ∪Mp[m]

6:
7: Call = {}
8: Rall = {}
9: for m ∈ M do

10: if ∅ ̸=
⋂

α∈M[m] α.lockset then
11: Continue
12:
13: Cm =

(⋃
α∈M[m] α.ip

)
\Call

14: if Cm == ∅ then
15: Continue
16:
17: L = hashmap(default = ∅)
18: for α ∈ M[m] do
19: L[α.lockset] = L[α.lockset] ∪ {α}
20:
21: for each unique lockset1, lockset2 ∈ L do
22: if lockset1 ∩ lockset2 = ∅ then
23: accs1, accs2 = L[lockset1],L[lockset2]
24: Rnew1, Cnew1 = select_races(accs1, accs2, Cm)
25: Rnew2, Cnew2 = select_races(accs2, accs1, Cm)
26: ▷ see Algorithm 4
27: Call = Call ∪ Cnew1 ∪ Cnew2

28: Rall = Rall ∪Rnew1 ∪Rnew2

29: if Cm ⊆ Call then
30: break
31:
32: return Rall

3.3.3. Race Checking. When checking a predicted race,
we hypothesize a witness schedule that schedules the first
input seed up to the first memory access in the race, and
then preempts and schedules the second selected input to
cover all memory accesses predicted to race with the first
preempted memory access from the first input.

In order to check for races efficiently, we minimize the
number of individual race checks that need to be performed
and maximize the number of previously untested instruc-
tions covered by each requested race check (e.g., only 2
pairwise checks are necessary to confirm 4 racing memory
accesses, even though there are 4 possible pairs). Given the
set of all possible race predictions R, we select a subset
R on which to run race validation based on the following
optimization:

R = argmax
R

|cover(R)|min |R| : R ⊆ R

2092

Algorithm 4 Race Selection.
Input: accs1 ← Memory accesses predicted to race with accs2

accs2 ← Memory accesses predicted to race with accs1
Cm ← Max possible cover for address m
β ← Race Prediction Threshold

1: prog_ips = hashmap(default = ∅)
2: for α ∈ accs2 do
3: p = α.p
4: prog_ips[p] = prog_ips[p] ∪ {α.ip}
5:
6: Cnew, Rnew = {}, {}
7: for α ∈ accs1 do
8: if α.op == w then
9: p1 = α.p

10: P2 = all unique α2.p : α2 ∈ accs2
11: while True do
12: p2 = argmaxp2∈P2

(∣∣ prog_ips[p2] \Cnew

∣∣)
13: P2 = P2\p2
14: if maxP[α ∩ α2] : α2.p = p2 then
15: Break
16: Cupd = prog_ips[p2] ∪ α.ip
17: if |Cupd\Cnew| > 0 then
18: r = (p1, p2, α.ip, α.m)
19: Rnew = Rnew ∪ {r}
20: Cnew = Cnew ∪ Cupd

21: if Cnew == Cmax then
22: break
23:
24: return Rnew, Cnew

where cover denotes the set of instruction addresses in R.
In practice we build R directly during analysis and avoid
the cost of enumerating possible predicted race in R.

When two sets of conflicting memory accesses with non-
intersecting locksets are identified, we take each write access
and select a second input to test that will execute as many
conflicting accesses as possible with high probability (where
at least one of the predicted race probabilities must exceed
β). Algorithm 4 describes this procedure.

4. Implementation

We implement PLA in three main components: tracing
and probability estimation, lockset analysis and race predic-
tion, and watchpoint-based race checking.
Tracing. We perform tracing using the kernel event
ring buffer and modify the kernel concurrency sanitizer
(kcsan) [7] to record all memory accesses that it would
normally check for races using watchpoints. We additionally
record all lock events using the kernel’s built in lock tracing.
We base our tracing implementation on kcsan because
it incorporates rules to ignore memory accesses that are
marked with allowed-to-race macros such as READ_ONCE
or WRITE_ONCE. Racing is allowed for many kernel mem-
ory accesses, so ignoring these accesses greatly reduces
overhead and prevents predicting races that are benign [11].

When tracing we use a modified syzkaller [13] executor
that incorporates a barrier after initialization to execute
multiple seeds concurrently. We perform tracing on two
isolated CPUs, where each executor process is pinned to
a distinct CPU, and use a QEMU 6.2.0 VM (although any

VM system could be used). When collecting a trace, we first
refresh the VM to a fixed snapshot.
Probability Estimation. Access lockset probability estima-
tion is performed at the same time as tracing. The traces
from each seed are temporally stored in memory and then
immediately used to estimate the probabilities of its access
locksets. Since traces are much larger than the set of high
probability locksets, not writing them to disk greatly reduces
overhead. High probability access locksets are then grouped
by memory address and gathered from all sampled inputs.
This procedure follows a map-reduce paradigm, where trac-
ing and sampling is mapped to each input and results are
reduced into a common database of access locksets indexed
by memory address.
Analysis and Race Prediction. Analysis and race prediction
are performed in two parallel stages. First, the linear lock-
set analysis pass identifies memory addresses that contain
racing addresses. These racing memory addresses are then
grouped based on possible coverage (i.e., the set of in-
struction addresses of the accesses to the memory address).
Pairwise lockset analysis and coverage guided race selection
is then applied to the access locksets in each group of racing
memory addresses. Splitting the analysis into two stages and
grouping by coverage allows us to perform each analysis in
a fully parallel manner, while still minimizing the number
of individual race predictions that need to be checked for
full instruction coverage.

When checking pairwise lockset intersections, we set
maximum unique locksets threshold, and sample a subset
of the access locksets used in analysis when the number
of unique locksets exceeds the threshold. In evaluation we
set the unique locksets threshold to 1000, which we found
takes approximately 2.3 seconds to process. We found that
memory addresses with more than 1000 unique locksets
in their memory accesses are extremely rare, with only 14
observed out of thousands of racing memory addresses seen
in our evaluation (Section 5.6).
Race Validation. We confirm predicted races by executing
the generated witness schedule and obtain stack traces for
the race using preset watchpoints and the same modified
syzkaller executor and CPU configuration used in tracing.
Race predictions selected for validation are provided in the
form (p1, p2, w_ip, w_addr), where w_ip and w_addr are
the watchpoint instruction address and memory address,
and p1 is expected to execute the watchpoint with high
probability.

5. Evaluation

We address the following research questions in our
evaluation:

1) Security Testing Performance: Is PLA effective at
finding kernel data races that are harmful for kernel
security?

2) Comparison with other Approaches: How does prob-
abilistic lockset analysis compare to the race prediction
methods used by recent kernel concurrency fuzzers?

2093

3) Probabilistic Analysis and Accuracy: How accurate
are PLA’s race predictions, and how does PLA’s prob-
abilistic analysis compare to standard lockset analysis
when run on traces of a seed corpus?

4) Design Choices: How do each of the optimizations in
PLA’s algorithm design contribute to its performance?

5) Parameter Choices: How do the settings for β and
sample rate effect PLA’s performance?

6) Scalability: How well does PLA scale to large numbers
of memory accesses and lock events?

Evaluation Setting. All experiments are performed on an
Ubuntu 22.04 server with Ryzen Threadripper 2970WX
CPU and 128Gb of memory.

5.1. Security Testing Performance

Experimental Setup. We test Linux Kernel v5.18-rc5 and
run PLA on a corpus of 129 thousand syzkaller seeds
sourced from [22].

Table 1: Summary of races found by PLA categorized by kernel
subsystem. We count data races in terms of unique pairs of racing
instructions as well as unique number of variables. We classify a
race as harmful based on [50]. We provide a full listing of races
in Table 5 in Appendix E.

subsystem instruction pairs variables harmful variables

arch/x86 1 1 0
drivers/base 4 1 1
drivers/char 2 1 0
drivers/input 1 1 1
drivers/misc 1 1 1
drivers/net 3 1 1
drivers/pci 4 1 1
drivers/scsi 6 1 0
drivers/tty 21 8 5
fs 2 1 1
kernel 13 5 4
kernel/cgroup 2 1 1
kernel/events 1 1 1
kernel/time 4 1 0
mm 33 7 3
net/core 3 1 1
net/ipv4 8 3 3
net/llc 2 1 0
net/netfilter 2 1 1
net/unix 2 1 1
net/xfrm 50 4 4
security/keys 10 4 2
sound/core 8 5 3

Total 183 52 35

Results. Table 1 summarizes the results with full details
in Table 5 in Appendix E. PLA found 52 unique racing
variables and 183 unique racing pairs of instructions. As
prior work has counted data races based on either racing
variables or racing pairs, we provide both metrics. We use
the number of racing variables based on Krace [50] as well
as the number of unique racing pairs of instructions based
on Conzzer [26]. For a concrete example, race ID 48 from
Table 5 involves a single variable with races detected across
22 unique pairs of memory accesses, so the number of racing

variables is 1 and the number of unique racing pairs of
instructions is 22.

We classify the data races as harmful or benign based
on approach by Xu et al. [50]. Specifically, we declare a
race as benign if (i) reads and writes to a racing variable
involve different bits or (ii) involve kernel functions where
race conditions are acceptable (e.g., random or logging
subsystems). In total, we found 35 harmful racing variables
and 102 harmful racing instruction pairs. Out of the 35
variables with races, 4 cause memory corruption, 1 leads to
information leakage, 1 causes multiple initializations on a
data structure, and 29 cause undefined behavior (but with no
confirmed immediate security implications). We disclosed
the harmful races to Kernel developers and so far 56 races
over 9 variables have been patched and one CVE with high
(7.0) severity (CVE-2022-3028) has been allocated based on
our reports [9].

5.1.1. Case Studies. PLA finds data races in heavily-tested
core kernel subsystems. We detail two data races with
security implications below.
Out-of-bounds write in net/xfrm. Figure 6 shows how a
data race in networking cryptography algorithm manage-
ment can cause an out-of-bounds memory write vulnera-
bility. First, at (1), thread A allocates a buffer based on
the authentication algorithms list length, which is set to
the number of available algorithms in the list. Next, at (2),
a concurrent thread B executes the xfrm_probe_algs
function, which updates the availability of algorithms in the
list. However, the buffer size is not increased, so when thread
A continues executing at (3), it writes past the bounds of the
undersized buffer as it populates the buffer with the available
authentication algorithms. This results in an out-of-bounds
write vulnerability.

The authentication algorithms list buffer is sent over a
socket and therefore can be used as an information leak
primitive for kernel heap memory when it is instead over-
sized during the race (i.e., a concurrent thread decreases
the number of available authentication algorithms). This
vulnerability has been present in the Linux Kernel since
2013 (v3.14-rc1). We reported this vulnerability and it has
been patched and allocated a high severity CVE [9].
Use after free in mm. Figure 7 shows how a data race in the
kernel list of shared memory pages can cause a use after free
vulnerability. First, at (1), thread A inserts a newly added
memory page to the main list of shared memory pages.
However, inserting the new page to the list and setting its
flags is not atomic. This allows a concurrent thread B to
free the newly added memory page at (2). When thread A
continues executing at (3) and sets the flags of the page,
which was already freed, a use-after-free vulnerability will
occur. We have reported this vulnerability and it has been
patched.

5.2. Comparison with other Approaches

We evaluate PLA against other recent systems that target
data race detection in the kernel based on their ability

2094

Thread A

Thread B

3

1 Thread A

1 void compose_sadb_supported(){
2 int auth_len = len(aalgs_list);
3 char *ptr = alloc(auth_len); 1 void xfrm_probe_algs(){

2 for(i=0; i<len(aalgs_list); i++)
3 {
4 s = crypto_hash(aalgs_list[i]);
5 // increase len(aalgs_list)
6 if(s != aalgs_list[i].avail)
7 aalgs_list[i].avail = s;
8 }
9 }

2

4 for(i=0;i<len(aalgs_list);i++)
5 {
6 // Out of Bounds
7 ptr[i] = get_aalg(i)->desc;
8 }
9 }

Figure 6: A harmful data race in the net/xfrm kernel subsystem
involving the aalg_list[i].available variable (ID 48
in Table 5). The numbers (1), (2), (3) indicate the order of
events in the data race that leads to an out-of-bounds write
vulnerability.

Thread B

3

1 Thread A

1 void ksm_enter(mm_struct *mm){
2 mm_slot slot = alloc_slot();
3 add_slot_to_mm(mm, slot);
4 if(ksm_run & KSM_RUN_MERGE)
5 enqueue(mm_head, slot)

1 void run_store(){
2 ...
3 // set to UNMERGE
4 ksm_run = flags;
5 if(ksm & KSM_RUN_UNMERGE){
6 for(i=0;i<num_mms();i++){
7 if(mm->num_users == 0)
8 free(mm);
9 ...
10 }

2

Thread A

6 // Use After Free
7 mm->flags = MERGABLE;
8 }

Figure 7: A harmful data race in the mm kernel subsystem
(ID 14 in Table 5). This data race leads to a use-after-free
vulnerability.

efficiently find kernel races with a 24 hour time budget.

5.2.1. Evaluated Approaches. We evaluate against three
classes of approaches: Coverage guided concurrency fuzzers
with happens-before/lockset dynamic race predictors, alias-
analysis-guided race fuzzers, and standard fuzzers with
watchpoints.

1.) Concurrency fuzzers. Concurrency fuzzers combine
a concurrency coverage guided fuzzing with a hybrid
happens-before/lockset dynamic race predictor. Krace [50]
and Conzzer [26] are two recent kernel concurrency fuzzers.

Krace is open sourced [10], but the release does not
contain any documentation on usage. We attempted to run
krace but encountered errors with missing data files that
had been previously reported in issue #2 on the github
repository [3]. We emailed the Krace authors to report the
issue but did not receive a response. Conzzer has a binary-
only release available from [5]. We attempted to run Conzzer
but encountered several errors that were not addressed in the
provided documentation and could not be debugged without
access to source code. We emailed the Conzzer authors to
report the issue but did not receive a response.

Since we were unable to run either Krace or Conzzer,
we emulate a concurrency fuzzer based on Krace’s alias
coverage, which we refer to as Alias Fuzzer. We base Alias
fuzzer on the descriptions of Krace’s runtimes in [50] and
make optimistic assumptions about its performance (i.e., if
a race can be detected for given set of seeds, the fuzzer’s
race predictor will always identify it without errors).

2.) Targeted Race Fuzzers. Targeted race fuzzers select
seeds and schedules designed to trigger specific candidate
races predicted by alias analysis on a seed corpus. We
consider two targeted race fuzzers, Razzer [25] and Snow-
board [22]. Razzer identifies candidate races through static
alias analysis, while Snowboard identifies candidate races
dynamically by comparing memory accesses between traces,
and then performs additional concurrency fuzzing. We eval-
uate Snowboard because it is more recent (SOSP 2022),
incorporates both concurrency fuzzing and targeted race
checking, and supports current 5.x linux kernels (Razzer
only supports 4.x linux kernels).

3.) Fuzzing with Watchpoints. We additionally evaluate
against Syzkaller [13], a standard kernel fuzzer that per-
forms multithreaded fuzzing, using the kernel concurrency
sanitizer (kcsan) [7], a watchpoint-based data race detector
that is deployed for continuous linux kernel testing [12].

5.2.2. Experiment Design. Concurrency testing systems
perform two distinct tasks: input generation and concurrency
testing on those inputs. In this evaluation we measure con-
currency testing performance and control for input genera-
tion by running all evaluated systems on a fixed benchmark
corpus of 10,000 fuzzer seeds. We run each evaluated system
five times for 24hr on the benchmark corpus, and configure
each system to fully utilize the server cpu and memory.

For reported races on all evaluated systems races, we
filter to ensure the races occur in the executing seed pro-
cesses (kcsan will sometimes detect races in background
processes) and are not allowed by the linux kernel memory
model (Snowboard’s race detector can report races that
are actually allowed in the linux kernel). For PLA and
Snowboard, we include the time for tracing and analysis
of the corpus in the results. When evaluating Syzkaller, we
initialize it to use the benchmark corpus and disable new
seed generation/mutation so that it focuses exclusively on
concurrently executing the seeds in the benchmark.

5.2.3. Results and Discussion. Figure 8 shows race finding
results for the 24hr run on the 10k seed benchmark. On
average, PLA finds 164 races on the benchmark, Syzkaller
finds 43 races, Snowboard finds 21 races, and Alias Fuzzer
finds 15 races.

PLA’s ability to efficiently and accurately search over
the entire corpus to predict races is critical to its good
performance on this benchmark. Because it can effectively
prioritize high probability races, it finds many races quickly
(over 100 in less than an hour after completing its analysis)
and is able to able to quickly check predictions with a single
execution without resorting to schedule fuzzing.

2095

0 6 12 18 24
Runtime (hrs)

0

50

100

150

Ra
ce

s F
ou

nd
Races found on 10k benchmark

PLA
Snowboard
Alias Fuzzer
Syzkaller

Figure 8: Evaluation of races found over five 24hr runs on bench-
mark of 10k minimized seeds. On average, PLA finds 164 races in
total, Snowboard 21, Alias Fuzzer 15, and Syzkaller with Kcsan
finds 43.

Snowboard performs analysis on the corpus to identify
potential memory communications (PMCs), but unlike PLA
does not have any way to estimate if a communication is
feasible or potentially racy. As a result it must test many
more PMCs for each race found. Snowboard also performs
additional concurrency fuzzing based on each PMC, which
allows it to reach new states and potentially find additional
races, but reduces its throughput when testing. We also tried
running Snowboard’s fuzzing stage for a total of 24 hours
after it completed its analysis, but in that time it only found
two additional races.

The simulated Alias Fuzzer also only finds 15 races
on average in the benchmark, in spite of the optimistic
assumptions we used in its simulation. This result illustrates
the intrinsic hardness of searching a corpus of seed inputs for
races using concurrency fuzzing and dynamic race predic-
tion. In total the simulated fuzzer fuzzed 31,900 three seed
combinations (each of which exposed new alias coverage,
requiring the two minute race prediction check) for a total
of 95,700 input pairs searched. However, the total space
of possible input pairs for a 10,000 seed corpus is roughly
108/2, more than four orders of magnitude larger. At the
rate of the simulated Alias Fuzzer, which we believe to be
an optimistic estimate for running concurrency fuzzing and
race prediction based on the description in [50], so fully
fuzzing and running race prediction on all input pairs in the
corpus would take over a year!

Syzkaller with kcsan achieves the next best perfor-
mance on the benchmark after PLA, although it it has
performed poorly in prior evaluations on finding races in
filesystems [26] and finding specific races associated with
CVEs [25]. We hypothesize that Syzkaller’s good perfor-
mance on this benchmark is due to initialization with a
corpus of high quality seeds. Unlike other systems in the
benchmark, which test 2 or 3 concurrent inputs at a time,
Syzkaller runs 8 fuzzing processes on each vm and checks
for races between any of them with kcsan.

Table 2: Comparison of PLA with standard lockset analysis (Lock-
set) for accuracy predicting which observed memory accesses are
racing, analysis runtime, and number of tested predictions per race
found (Tests/Race) on benchmarks of 10 to 50 seeds. Because
accuracy is evaluated per-access but race predictions are made on
pairs of accesses, lockset analysis’s much lower accuracy leads
to millions of erroneous predictions. Each race found on the 50
seed benchmarks with lockset analysis requires approximately 6
days of checking predictions in our evaluation setting, compared
to roughly 10 seconds for PLA.

Seeds in Benchmark
Metric Approach 10 20 30 40 50

Accuracy PLA 0.997 0.992 0.990 0.989 0.989
Lockset 0.711 0.595 0.561 0.542 0.512

Runtime(s) PLA 0.7 2.3 4.3 6.8 10.0
Lockset 28.9 98.9 185.6 321.6 481.8

Tests/Race PLA 1.5 2.9 3.0 3.9 4.2
Lockset 8.1e+04 2.7e+05 5.1e+05 8.1e+05 1.2e+06

10 20 30 40 50
Seeds Analyzed

0

50

100

150

200

Ru
nt

im
e

(s
)

Effect of PLA ablations on runtime
PLA
PLA (no coverage optimization)
PLA (no early thresholding)
PLA (no two stage lockset)

Figure 9: Impact of ablations on analysis runtime averaged over
5 randomly sampled benchmarks. On benchmarks of 50 seeds,
ablations increase PLA’s runtime between 8.5× and 21× and cause
the analysis to scale superlinearly in the number of seeds.

5.3. Probabilistic Analysis and Accuracy

We evaluate PLA’s accuracy in predicting which ob-
served memory accesses in the traces are racing and com-
pare it to standard lockset analysis. We evaluate on five
randomly sampled benchmarks of 50 seeds, and evaluate
the scaling of each tested approach on subsets of 10 through
50 seeds from each benchmark set. We use relatively small
benchmarks for this study (compared to 10k seed benchmark
used in Section 5.2) because the extremely high error rates
of standard lockset analysis make testing it on even small
benchmarks prohibitively time consuming.
PLA vs. Lockset Analysis. Table 2 shows a comparison
of PLA with standard lockset analysis with averaged results
for analysis accuracy, analysis runtime, and test executions
required to find each observed race in the benchmark. The
results in Table 2 demonstrate how critical PLA’s probabilis-
tic reasoning is to achieving performance at a scale: when
all observed memory accesses are included in the analysis, a
significant proportion appear as spurious aliases that access
the same memory address in some traces with low prob-
ability, but cannot race when executed concurrently with

2096

Table 3: Impact of sample count (N) on accuracy and runtime. For
each N , the highest f1 accuracy achieved by varying β is shown.
Collecting more than 4 samples greatly increases sample collection
time with marginal accuracy improvements, therefore we use N=4
in all experiments.

Samples Collected (N): 2 4 8 16

F1 Score for Best β: 0.72 0.87 0.87 0.93
Sample Time/Input: 15s 30s 60s 120s

one another. This causes the analysis runtime to increase
drastically and severely reduces the accuracy of the analysis.
Since even a small number of seeds perform millions of
distinct memory accesses, this results in over 1.2 million
incorrect race predictions on average for each race found
with standard lockset analysis on the 50 seed benchmarks,
compared to 4.2 for PLA.
PLA Accuracy on 10k Seed Benchmark. We also evaluate
PLA’s accuracy on the 10k seed benchmark used for the
systems comparison evaluation in Section 5.2 and find that it
runs in 34 minutes, identifies racing instructions with 89.9%
accuracy, and requires 12.1 tests on average for each race
observed in the benchmark.

5.4. Design Choices

We evaluate three of the design optimizations in PLA
with ablations: early probability thresholding, two stage lin-
ear and pairwise lockset analysis, and coverage optimization
in race checking. Figure 9 shows the average analysis run-
time of PLA with each of the ablations on the 5 benchmark
sets (the ablations do not effect the accuracy of PLA’s race
predictions, only runtime). While removing early threshold-
ing has the largest impact on runtime (21× slower than PLA
on 50 seeds on average), ablating coverage optimization or
two stage linear and pairwise lockset analysis also incurs a
significant performance penalty (11× and 8.5× slower on
average, respectively). Moreover, each PLA ablation scales
superlinearly while PLA’s runtime scaling is linear, so all of
PLA’s design optimizations are critical to achieving scalable
runtimes on large real world corpuses of thousands of seeds.

5.5. Impact of Parameter Choices

Parameter Choices. PLA’s performance is governed by two
parameters: β, the threshold at which access locksets are
included in the analysis, and N , the number of samples
collected for each input. We evaluated PLA’s accuracy in
identifying stable access-locksets while varying the N and
β parameters on the seed benchmarks used in Section 5.2.
We tested sample counts of N=2, 4, 8, 16 and varied β from
0.0 to 1.0 in increments of 0.1 for N=8 and N=16, and
increments of 0.5 and 0.25 for N=2 and N=4, respectively.

Table 3 shows the f1 accuracy for best-performing β
setting and sample collection time for each tested N . We
found that increasing the samples collected beyond N=4
only achieves marginal accuracy improvements while sig-
nificantly increasing sample collection time, therefore we

Table 4: Input sizes and runtimes for PLA on 10k inputs.

Stage Inputs Runtime

Sampling 10 billion trace events 3.5 hr
Memory Mapping 380 million access locksets 19 min
Linear Lockset Analysis 380 million access locksets 12 min
Pairwise Lockset Analysis 3.4 million access locksets 135 sec
Race Prediction Checking Per 140 predictions 60 sec

use N=4 and the associated best β=0.5 setting for all
experiments. See Appendix F for detailed results.

5.6. Scaling

Benchmark Corpus Runtime. We evaluate PLA’s ability
to scale to large number’s of memory accesses based on
the corpus of 10k inputs used in Section 5.2. As described
in Section 4, PLA works in 3 states: tracing and sampling,
race prediction analysis, and race checking. Table 4 shows
a breakdown of the runtimes and input sizes for each stages
in PLA’s pipeline. PLA spends most of its time collecting
traces, which is slow due to the large size of traces. Subse-
quent stages (memory mapping, linear lockset analysis), are
much faster because they operate on fewer inputs.

The numbers in Table 4 illustrate that two design opti-
mizations in PLA (Section 3.3) are absolutely critical to its
performance: 1.) Applying probability thresholding during
initial trace collection reduces the number of events that
must handled by the subsequent, more expensive, stages of
the analysis by a factor of over 100. 2.) Applying coarse
grained linear lockset analysis before running the more
precise but expensive pairwise lockset analysis reduces the
access locksets that must be processed by pairwise lockset
analysis by another factor of 100. Without these two opti-
mizations, running PLA on the same corpus would take at
least six days instead of four hours.
Pairwise Lockset Analysis Scaling. Since pairwise lockset
analysis has a quadratic term for the number of unique
locksets on a single address, we also investigate the run-
time of PLA relative to locksets and the distribution of
unique locksets in the test corpus. For 1000 unique locksets,
pairwise lockset analysis takes 2.3 seconds, but over 200
seconds for 10000 unique locksets, as shown in Figure 10a.
Therefore, when the access locksets for a single address
have more than 1000 unique locksets, we perform pairwise
lockset analysis on a sample of the locksets (Section 4.

We found that only a very small number of memory
addresses with lock violations have more than 1000 locksets.
Figure 10b summarizes these results. We found that out of
3511 memory addresses predicted to be involved in races,
only 14 had more than 1000 unique locksets. As has been
noted in prior work [32], harmful data races usually involve
rarely accessed memory, and all of the harmful races we
found involved infrequently used memory addresses.

6. Related Work

Dynamic Race Prediction Dynamic race prediction iden-
tifies possible data races based on concurrent program ex-

2097

10 100 1000 10000
Number of Locksets

0

50

100

150

200

Ru
nt

im
e

(s
ec

)

Sampling
Threshold

PLA Processing Time

(a) PLA processing time with re-
spect to number of locksets.

<10 <100 <1000<10000
Max Locksets Per Address

0

500

1000

1500

2000

Oc
cu

re
nc

es

Sampling
Threshold

Histogram of Locksets Per Address

(b) Distribution of max number of
locksets per address.

Figure 10: Lockset runtimes and statistics. Sparsity in lock inter-
actions in the kernel means that only a few distinct locksets are
used for the vast majority of shared memory addresses as shown
in 10b.

ecution traces. Happens-before methods reason about par-
tial orders on traces based on Lamport’s happens-before
relation on interthread communications to predict races
soundly [20, 24, 29, 35]. Extensive work has focused on de-
veloping weakened partial orders that soundly predict more
races from a trace [28, 33, 34, 39, 41, 46], or using SMT
reductions, which are sound and complete with regard to the
observed trace but limited in scalability [23, 42, 45, 48, 49].
Lockset analysis is a form of dynamic race prediction
that performs an intersection over all held locks for each
memory access to a given address, and alerts if the in-
tersection is null, but suffers from high false positive
rates [16, 43]. Therefore, many race predictors such as
RaceTrack and Goldilocks combine happens-before and
lockset analysis to make precise lockset-based race pre-
dictions [17, 19, 40, 47, 52]. These methods are also limited
to operating on one concurrent trace a time in order to
infer happens-before ordering constraints, which limits their
scalability. In contrast, PLA uses lockset analysis with prob-
abilistic predictions to make precise race predictions over
large corpuses of independently sampled seed execution
traces.
Schedule Exploration. Schedule exploration methods
search for races by systematically executing many different
schedules, either by enumerating schedules bounded by a
preemption count [36, 37], sampling a distribution of sched-
ules [15, 53], fuzzing with a concurrency specific coverage
metric [51], or performing targeted exploration of schedules
based on static alias analysis [44] These approaches operate
on one fixed concurrent program at a time, while PLA is
designed to identify races between a large corpus of seed
programs in the kernel.
Kernel Testing. Many concurrency testing approaches have
been applied to the kernel such as random watchpoints with
delays on memory accesses [18] and schedule exploration
by sampling a distribution of schedules [21]. Targeted race
fuzzers either static or dynamic alias analysis combined with
dynamic tracing to identify possible races between input
seeds, which it then combines for targeted fuzzing of the
possible races [22, 25]. Concurrency fuzzers use a concur-
rency specific coverage metric to guide schedule fuzzing in
conjuction with dynamic race predictors to detect observed

races [26, 50]. PLA differs from existing kernel testing
systems in that it performs race prediction over an entire
corpus of seed programs subject to lock synchronization,
and uses probabilistic prediction to accurately identify and
prioritize races.

7. Limitations and Future Work
PLA targets races involving operations that are performed
for most concurrent schedules and occur with high prob-
ability, but will ignore schedule-dependent races that only
occur for specific schedules, since these will appear with
low probability in PLA’s sampling. This trade-off allows
PLA to be both fast and accurate when performing analysis
over billions of trace events, but means that PLA will not
find schedule-dependent races, which can still potentially be
exploited by attackers.

This naturally begs the question: is it possible to extend
PLA to target schedule dependent races, while retaining the
benefits in accuracy and scalability from PLA’s probabilistic
approach? We believe the answer to this question is yes: the
probability of a memory access can also be conditioned on
specific partial orderings on the execution schedule (con-
ceptually, a probabilistic happens-before analysis). However,
identifying and sampling relevant partial orders on schedules
is much more challenging, because the space of possible
partial orders on the schedule is exponential. We intend to
explore this in future work.

8. Conclusion
We introduce Probabilistic Lockset Analysis (PLA), a

form of race prediction analysis specifically designed to
address the inherent challenges in predicting races in the
kernel. PLA samples execution traces to estimate the prob-
ability of races between seeds in a fuzzer corpus, and can
resolve predictions with greater precision by taking more
samples. We use PLA to find 183 races in core kernel
modules and show in an evaluation of kernel race testing
methods that PLA finds races at more 3× the rate of
comparable systems. Although PLA’s design is motivated
by and applied to kernel race prediction, its approach can
potentially be applied to testing any system that processes
each input on a separate thread or process. We intend to
explore applications of PLA’s approach to testing other
concurrent applications in future work.

Acknowledgements
We thank our shepherd and the anonymous reviewers for
their constructive and valuable feedback. Gabriel Ryan is
supported by an NDSEG Fellowship, and Abhishek Shah is
supported by an NSF Graduate Research Fellowship. This
work is supported partially by NSF grant CNS-21-54874; an
NSF CAREER award; a Google Faculty Fellowship; and a
Google ASPIRE award. Any opinions, findings, conclusions,
or recommendations expressed herein are those of the au-
thors, and do not necessarily reflect those of NSF, NDSEG,
or Google.

2098

References

[1] Kernel panic due to race condition. https://access.redhat.com/
solutions/1593553, 2015.

[2] Dirty cow (cve-2016-5195). https://dirtycow.ninja/, 2016.

[3] Krace github issue number 2. https://github.com/sslab-gatech/krace/
issues/2, 2020.

[4] Race condition in macos kernel (cve-2021-1782). https://nvd.nist.gov/
vuln/detail/CVE-2021-1782, 2021.

[5] Conzzer binary release. https://oslab.cs.tsinghua.edu.cn/CONZZER/,
2022.

[6] Huawei kernel module race condition (cve-2022-31758). https://nvd.
nist.gov/vuln/detail/CVE-2022-31758, 2022.

[7] Kernel concurrency sanitizer. https://www.kernel.org/doc/html/latest/
dev-tools/kcsan.html, 2022.

[8] Kernel race exploit for denial-of-service (cve-2022-1652). https://
www.cvedetails.com/cve/CVE-2022-1652/, 2022.

[9] Kernel race exploit leading to information leak, memory corruption
(cve-2022-3028). https://nvd.nist.gov/vuln/detail/CVE-2022-3028,
2022.

[10] Krace open source release. https://github.com/sslab-gatech/krace,
2022.

[11] Linux kernel memory consistency model. https://github.com/torvalds/
linux/blob/master/tools/memory-model/Documentation/explanation.
txt, 2022.

[12] Syzbot reports. https://syzkaller.appspot.com/upstream, 2022.

[13] Syzkaller. https://github.com/google/syzkaller, 2022.

[14] Syed Mumtaz Ali and Samuel D Silvey. A general class of coeffi-
cients of divergence of one distribution from another. Journal of the
Royal Statistical Society: Series B (Methodological), 28(1):131–142,
1966.

[15] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and
Santosh Nagarakatte. A randomized scheduler with probabilistic
guarantees of finding bugs. ACM SIGARCH Computer Architecture
News, 38(1):167–178, 2010.

[16] Anne Dinning and Edith Schonberg. Detecting access anomalies in
programs with critical sections. In Proceedings of the 1991 ACM/ONR
workshop on Parallel and distributed debugging, pages 85–96, 1991.

[17] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: Ef-
ficiently computing the happens-before relation using locksets. In
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff,
editors, Formal Approaches to Software Testing and Runtime Veri-
fication, pages 193–208, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[18] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
10), 2010.

[19] Azadeh Farzan, P Madhusudan, and Francesco Sorrentino. Meta-
analysis for atomicity violations under nested locking. In Interna-
tional Conference on Computer Aided Verification, pages 248–262.
Springer, 2009.

[20] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and
precise dynamic race detection. In Michael Hind and Amer Diwan,
editors, Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009.

[21] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Brandenburg. Ski
Exposing kernel concurrency bugs through systematic schedule ex-
ploration. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 415–431, 2014.

[22] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.
Snowboard: Finding kernel concurrency bugs through systematic
inter-thread communication analysis. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pages
66–83, 2021.

[23] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal
sound predictive race detection with control flow abstraction. In
Proceedings of the 35th ACM SIGPLAN conference on programming
language design and implementation, pages 337–348, 2014.

[24] Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. Toward
integration of data race detection in dsm systems. Journal of Parallel
and Distributed Computing, 59(2):180–203, 1999.

[25] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding kernel race bugs through
fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 754–768. IEEE, 2019.

[26] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. Context-
sensitive and directional concurrency fuzzing for data-race detection.
2022.

[27] Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An empirical
analysis of vulnerabilities in openssl and the linux kernel. In 2016
23rd Asia-Pacific Software Engineering Conference (APSEC), pages
105–112. IEEE, 2016.

[28] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic
race prediction in linear time. ACM SIGPLAN Notices, 52(6):157–
170, 2017.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[30] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. Exprace:
Exploiting kernel races through raising interrupts. In Michael Bai-
ley and Rachel Greenstadt, editors, 30th USENIX Security Sympo-
sium, USENIX Security 2021, August 11-13, 2021, pages 2363–2380.
USENIX Association, 2021.

[31] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Shan Lu. A study of linux file system evolution. In 11th USENIX
Conference on File and Storage Technologies (FAST 13), pages 31–
44, San Jose, CA, February 2013. USENIX Association.

[32] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Lit-
erace: effective sampling for lightweight data-race detection. In
Michael Hind and Amer Diwan, editors, Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages
134–143. ACM, 2009.

[33] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. What
happens-after the first race? enhancing the predictive power of
happens-before based dynamic race detection. Proceedings of the
ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

[34] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan.
Optimal prediction of synchronization-preserving races. Proceedings
of the ACM on Programming Languages, 5(POPL):1–29, 2021.

[35] Friedemann Mattern. Virtual time and global states of distributed
systems. In Proc. Workshop on Parallel and Distributed Algorithms,,
1989.

[36] Madan Musuvathi, Shaz Qadeer, and Thomas Ball. Chess: A system-
atic testing tool for concurrent software. Technical Report MSR-TR-
2007-149, November 2007.

[37] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and
reproducing heisenbugs in concurrent programs. In OSDI, volume 8,
2008.

[38] Robert HB Netzer and Barton P Miller. What are race conditions?
some issues and formalizations. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(1):74–88, 1992.

2099

[39] Andreas Pavlogiannis. Fast, sound, and effectively complete dynamic
race prediction. Proceedings of the ACM on Programming Languages,
4(POPL):1–29, 2019.

[40] Eli Poznianski and Assaf Schuster. Efficient on-the-fly data race
detection in multithreaded C++ programs. In 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26
April 2003, Nice, France, CD-ROM/Abstracts Proceedings, page 287.
IEEE Computer Society, 2003.

[41] Jake Roemer, Kaan Genç, and Michael D Bond. Smarttrack: efficient
predictive race detection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 747–762, 2020.

[42] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah.
Generating data race witnesses by an smt-based analysis. In NASA
Formal Methods Symposium, pages 313–327. Springer, 2011.

[43] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas E. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411,
1997.

[44] Koushik Sen. Race directed random testing of concurrent programs.
In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 11–21, 2008.

[45] Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu. Maximal
causal models for sequentially consistent systems. In International
Conference on Runtime Verification, pages 136–150. Springer, 2012.

[46] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and
Cormac Flanagan. Sound predictive race detection in polynomial
time. In John Field and Michael Hicks, editors, Proceedings of
the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, pages 387–400. ACM, 2012.

[47] Francesco Sorrentino, Azadeh Farzan, and P Madhusudan. Penelope:
weaving threads to expose atomicity violations. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pages 37–46, 2010.

[48] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. Sym-
bolic predictive analysis for concurrent programs. In International
Symposium on Formal Methods, pages 256–272. Springer, 2009.

[49] Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta.
Trace-based symbolic analysis for atomicity violations. In Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 328–342. Springer, 2010.

[50] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data race fuzzing for kernel file systems. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1643–1660. IEEE, 2020.

[51] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam.
Maple: A coverage-driven testing tool for multithreaded programs.
OOPSLA ’12, page 485–502, New York, NY, USA, 2012. Association
for Computing Machinery.

[52] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient
detection of data race conditions via adaptive tracking. In Proceedings
of the twentieth ACM symposium on Operating systems principles,
pages 221–234, 2005.

[53] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. Partial order aware
concurrency sampling. In International Conference on Computer
Aided Verification, pages 317–335. Springer, 2018.

Appendix A.
Dynamic Race Prediction

Dynamic race prediction seeks to predict data races
based on a concurrent execution trace. A concurrent program
P is composed of a set of threads P = {p1, p2, ...} that

can be executed concurrently according to a schedule s to
generate a trace T :

trace(P ; s) = T

A trace T is composed of events (denoted e) that are
totally ordered by the schedule s:

T = [e1, e2, ...]

Each trace event e is a tuple composed of an executing
thread p, relevant memory or lock address m, and operation
type op (read, write, lock acquire, or lock release):

e = (p,m, op) op = r|w|acq|rel

We use a ∈ T and l ∈ T as shorthand for the memory
accesses or locks operations in a trace. Other synchroniza-
tion operations such as forks, joins, and barriers may also
be included in a trace. We avoid them here for the sake of
clarity.
Feasible Schedules. For a schedule to be feasible on a
program it must satisfy two ordering constraints: (i) thread
order, the instructions in each thread must be executed in
order and (ii) synchronization order, it must not violate the
order imposed by synchronization primitives in each thread
(e.g., a lock cannot be acquired twice without first being
released). We denote a feasible schedule for a program P
as feasP (s).
Concurrent Events. Two events are considered concurrent
in a schedule if their positions in the schedule are inter-
changeable: either can be executed at a given location with-
out violating either thread order or synchronization order.
We define two events as concurrent for a program P and
schedule s if exchanging their positions does not make the
schedule infeasible:

concurrentP (ei, ej , s) := feasP (exchange(ei, ej , s)),

ei, ej ∈ trace(P ; s)

where exchange indicates swapping two events in the sched-
ule.
Data Races. Two memory accesses are considered a conflict
if they are both memory accesses to the same address and
at least one is a write:

conflicting(ai, aj) := ai.m = aj .m ∧
(ai.op = w ∨ aj .op = w)

A pair of conflicting memory accesses in a trace is then con-
sidered a data race for a program P if they are concurrent
in the trace schedule:

raceP (ai, aj , s) := concurrentP (ai, aj , s)

∧ conflicting(ai, aj)

Predicted Races. We denote the set of synchroniza-
tion primitives that guard two memory accesses by sync,
where two accesses are considered unsynchronized if
sync(ai, aj) = ∅. Any predicted race will always be on
two unsynchronized events:

pred_race(ai, aj) =⇒ sync(ai, aj , s) = ∅

2100

0.0 0.2 0.4 0.6 0.8 1.0
Access Locksets FPR

0.0

0.2

0.4

0.6

0.8

1.0
Ac

ce
ss

 L
oc

ks
et

s T
PR

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Beta=0.5

samples = 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Beta=0.5

samples = 4

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Beta=0.4

samples = 8

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Beta=0.3

samples = 16

Figure 11: ROC curves for access lockset prediction using varying numbers of samples evaluated on 5 sets of 50 randomly selected seeds
with shown std. deviation. For each curve, the classification threshold parameter β giving the best performance is annotated based on F1
score.

0.0 0.2 0.4 0.6 0.8 1.0
Access Lockset Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

ss
 L

oc
ks

et
 C

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0
102

103

104

105

106

Beta=0.3

Access Lockset Frequencies (logscale)
Discarded
Used in Prediction

Figure 12: Distribution of access locksets probabilities shown with
log scale, where access locksets with probability exceeding β are
marked orange. The vast majority of access locksets (> 99.9%)
occur with very low probability (< 0.05%), therefore identifying
high probability access locksets is critical to making accurate race
predictions.

However, null synchronization is a necessary but not suffi-
cient condition for a race. If any schedule that triggers the
race would cause the program not to execute the relevant
memory accesses, then the race prediction is a false positive.
Feasible Races. For a predicted race to be feasible there
must be a feasible schedule under which the two events
still appear (i.e., P still executes the conflicting memory
accesses) and race with each other:

feas_raceP (ai, aj) := ∃s∗ : raceP (ai, aj , s∗) ∧ feas(s∗, P)

Task Definition. Dynamic race prediction seeks to predict
all feasible racing pairs of memory accesses in a trace from
program P executing a given schedule s:

input: program P, trace T

output: race prediction ai, aj , s
∗ (3)

Appendix B.
Dynamic Race Prediction Approaches

Happens Before Analysis. Happens before analysis uses
partial orders defined on memory accesses and synchroniza-
tion events to perform sound dynamic data race prediction

(i.e., predict only feasible races). When a race is predicted
between a pair of events a schedule and trace s∗, T ∗ must
also be found that preserves the read/write happens-before
relation in the observed trace T :

∀r ∈ T ∗ : last_write(r, T ∗) = last_write(r, T)

where last_write indicates the most recent write to a read
address of r in a trace.

Preserving the read-write partial order ensures that the
program will follow the same execution path for s∗ as the
original schedule s. This guarantees that predicted races will
be feasible, and has the additional benefit that s∗ can be
used as a witness schedule to reproduce the race. However,
happens-before analysis requires a reference trace T in order
to define a sound partial order.
Lockset Analysis. Lockset analysis ignores the order in the
observed trace and instead checks exclusively for commonly
held locks on each shared memory access. Ignoring ordering
makes lockset analysis complete but unsound. Any observed
memory accesses that can race will be predicted as races,
but the predicted races are not guaranteed to be feasible.

The lockset algorithm checks for commonly held locks
by performing an intersection over the held locks for each
memory access to a given address. It marks a memory access
a as potentially racing if the the following condition is met:

lockset_violation(a) :=
⋂
â∈T

lockset(â) = ∅ : â.m = a.m

where lockset indicates the set held locks by a thread when
a memory access was performed:

lockset(a) := {l : last_acql(a, T) > last_rell(a, T)}

and last_acql and last_rell indicate the most recent acq or
rel operation for a lock l and memory access a in trace T .

Lockset analysis is fast and scalable because it uses
cheap set intersections to perform its analysis. However, it
is also prone to extremely high false positive rates, and the
races it predicts cannot be checked automatically because it
does not generate a witness schedule s∗.

2101

Hybrid Happens-Before Lockset Therefore, lockset analy-
sis is usually used in conjunction with happens-before analy-
sis [17, 50, 52], which prevents false positives and generates
witness schedules for each predicted race.

Appendix C.
Theorem 1 Proof

Theorem 1 statement: For a threshold β, relative error
bound 0 < δ < 1, and two access locksets α1 and α2

with non-intersecting locksets and random variables Aα1

and Aα2
sampled N times such that α1, α2, β satisfy Eq.

1 and P [Aα1
= 1 ∩Aα2

= 1] ≥ β, then with probability
e−δ2Nβ/(2−δ), the probability of a false positive is bounded
by:

P[Aα1 = 0 ∪Aα2 = 0] < 1− β(1 + δ)

Proof. Let A be a random variable such that

A =

{
1 if Aα1 = Aα2 = 1

0 otherwise

and µ = E[A] < β and let δ̂ = β(1+δ)−µ
µ . Let Ai be sample

of A that is obtained by independently sampling Aα1 and
Aα2 . Then probability of the false positive rate exceeding
1− β(1 + δ) for Aα1 and Aα2 is given by:

P
[∑N

i Ai ≥ Nβ(1 + δ)
]
= P

[∑N
i Ai ≥ Nµ(1 + δ̂)

]
We apply the Chernoff bound [14] on µ and δ̂:

P
[∑N

i Ai ≥ Nµ(1 + δ̂)
]
≤ e−δ̂2Nµ/(2−δ̂)

From this we obtain a bound in terms of β and δ:

e−δ̂2Nµ/(2−δ̂) < e−δ2Nβ/(2−δ)

Appendix D.
Theorem 2 Proof

Theorem 2 statement: For a threshold β, relative error bound
0 < δ < 1, and two access locksets α1 and α2 with non-
intersecting locksets and random variables Aα1 and Aα2

sampled N times such that α1 and α2 do not satisfy equation
1 and P [Aα1 = 1 ∩Aα2 = 1] < β, then with probability
e−δ2Nβ/2, the probability of a false negative is bounded by:

P[Aα1
= 1 ∩Aα2

= 1] < β(1− δ)

Proof. Let A be a random variable such that

A =

{
1 if Aα1

= Aα2
= 1

0 otherwise

and µ = E[A] > β and let δ̂ = −β(1−δ)−µ
µ . Let Ai be

sample of A that is obtained by independently sampling

Aα1
and Aα2

. Then probability of the false negative rate
exceeding β(1− δ) for Aα1

and Aα2
is given by:

P
[∑N

i Ai ≤ Nβ(1− δ)
]
= P

[∑N
i Ai ≤ Nµ(1− δ̂)

]
We apply the Chernoff bound on µ and δ̂:

P
[∑N

i Ai ≤ Nµ(1− δ̂)
]
≤ e−δ̂2Nµ/2

From this we obtain a bound in terms of β and δ:

e−δ̂2Nµ/2 < e−δ2Nβ/2

Appendix E.
Data Races Found by PLA

Table 5 lists all of the races found by PLA in our
evaluation.

Appendix F.
Impact of Parameter Choices

We evaluate PLA’s access lockset classification accuracy
on seeds drawn from the benchmark corpus used in Section
5.2. For each seed, we vary the threshold parameter β
used to classify consistent access locksets and number of
samples used to estimate access lockset probabilities. We
then measure on a set of test samples whether the predicted
stable access locksets are present in each sample.

Figure 11 shows ROC curves that illustrate the tradeoff
in True Positive Rate (ratio of predicted access locksets
present in each test sample) and False Positive Rate (ratio of
predicted access locksets not present each test sample) when
varying the threshold parameter β for different numbers of
samples, based on 5 randomly selected seed benchmarks
used in 5.4. Standard deviations over the 5 seed benchmarks
are also shown. Increasing the number of samples allows
PLA to learn a better classifier with more consistent perfor-
mance (i.e., lower std. deviation), but at a cost of increased
sampling time, which we show in Section 5.6 is the most
time consuming stage of PLA. In practice when running
PLA we use 4 samples with β = 0.5, which provides a
good tradeoff between accuracy and runtime.
Access Lockset Distribution. Figure 12 shows PLA’s sam-
pling classification on the distribution of access locksets
probabilities, where access locksets with probability exceed-
ing β are marked orange. PLA is effective because the vast
majority of access locksets (> 99.9%) occur with very low
probability (< 1.0%), therefore only predicting races when
the relevant access locksets have high probability is critical
to making accurate race predictions without overwhelming
numbers of false positives.

2102

Table 5: Full Listing of Races found by PLA. Note that, for the variable column, we list the macro when LLVM instrumentation failed
to identify the corresponding source code variable.

ID subsystem variable number of instruction pairs category

0 kernel variable: ns->pid_allocated 1 harmful
1 kernel variable: nr_threads 1 harmful
2 kernel variable: lowest_to_date 1 harmful
3 kernel macro: pr_info_once 8 benign
4 kernel/time macro: printk_once 4 benign
5 kernel/cgroup variable: cgrp_dfl_visible 2 harmful
6 kernel variable: audit_cmd_mutex.owner 2 harmful
7 kernel/events variable: sysctl_perf_event_sample_rate 1 harmful
8 mm variable: pcpu_nr_populated 1 harmful
9 mm macro: pr_warn_once 21 benign

10 mm variable: h->resv_huge_pages 4 benign
11 mm variable: h->free_huge_pages 3 benign
12 mm variable: h->nr_huge_pages 2 harmful
13 mm variable: h->surplus_huge_pages 1 benign
14 mm variable: ksm_run 1 harmful
15 fs variable: loop_check_gen 2 harmful
16 security/keys variable: key_gc_next_run 2 harmful
17 security/keys variable: user->qnkeys 3 benign
18 security/keys variable: user->qnbytes 4 benign
19 security/keys variable: ns->persistent_keyring_register 1 harmful
20 arch/x86 macro: alternative_call_2 1 benign
21 drivers/pci variable: vga_arbiter_used 4 harmful
22 drivers/tty variable: vt_dont_switch 2 harmful
23 drivers/tty variable: shift_state 1 harmful
24 drivers/tty variable: kbd->ledflagstate 4 harmful
25 drivers/tty variable: kbd->kbdmode 6 benign
26 drivers/tty variable: kbd->default_ledflagstate 4 benign
27 drivers/tty variable: kbd->modeflags 2 benign
28 drivers/tty variable: do_poke_blanked_console 1 harmful
29 drivers/tty variable: want_console 1 harmful
30 drivers/char variable: last_value 2 benign
31 drivers/base variable: fw_fallback_config.loading_timeout 4 harmful
32 drivers/misc variable: context->notify 1 harmful
33 drivers/scsi macro: pr_err_once 6 benign
34 drivers/net variable: crc_force 3 harmful
35 drivers/input variable: input_devices_state 1 harmful
36 sound/core variable: card_requested[card] 2 harmful
37 sound/core variable: client_usage.cur 2 benign
38 sound/core variable: client_usage.peak 1 benign
39 sound/core variable: num_queues 2 harmful
40 sound/core variable: max_midi_devs 1 harmful
41 net/core variable: warned 3 harmful
42 net/llc variable: llc_ui_sap_last_autoport 2 benign
43 net/netfilter variable: table->handle 2 harmful
44 net/ipv4 variable: tcp_md5sig_pool_populated 1 harmful
45 net/ipv4 variable: challenge_timestamp 2 harmful
46 net/ipv4 variable: ca->flags 5 harmful
47 net/xfrm variable: idx_generator 3 harmful
48 net/xfrm variable: aalg_list[i].available 22 harmful
49 net/xfrm variable: ealg_list[i].available 21 harmful
50 net/xfrm variable: calg_list[i].available 4 harmful
51 net/unix variable: user->unix_inflight 2 harmful

2103

