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Abstract—Federated learning (FL) is an emerging technology
that allows participants to jointly train a machine learning
model without sharing their private data with others. How-
ever, FL is vulnerable to poisoning attacks such as backdoor
attacks. Consequently, a variety of defenses have recently been
proposed, which have primarily utilized intermediary states of
the global model (i.e., logits) or distance of the local models (i.e.,
L2−norm) with respect to the global model to detect malicious
backdoors in FL. However, as these approaches directly operate
on client updates (or weights), their effectiveness depends on
factors such as clients’ data distribution or the adversary’s
attack strategies. In this paper, we introduce a novel and
more generic backdoor defense framework, called BayBFed,
which proposes to utilize probability distributions over client
updates to detect malicious updates in FL: BayBFed computes
a probabilistic measure over the clients’ updates to keep track
of any adjustments made in the updates, and uses a novel
detection algorithm that can leverage this probabilistic measure
to efficiently detect and filter out malicious updates. Thus,
it overcomes the shortcomings of previous approaches that
arise due to the direct usage of client updates; nevertheless,
our probabilistic measure will include all aspects of the local
client training strategies. BayBFed utilizes two Bayesian Non-
Parametric (BNP) extensions: (i) a Hierarchical Beta-Bernoulli
process to draw a probabilistic measure given the clients’
updates, and (ii) an adaptation of the Chinese Restaurant
Process (CRP), referred by us as CRP-Jensen, which leverages
this probabilistic measure to detect and filter out malicious
updates. We extensively evaluate our defense approach on
five benchmark datasets: CIFAR10, Reddit, IoT intrusion
detection, MNIST, and FMNIST, and show that it can effec-
tively detect and eliminate malicious updates in FL without
deteriorating the benign performance of the global model.

1. Introduction
A machine learning framework is designed to learn from a
single fused data collected from multiple data sources. This
trainable data is comparable and homogeneous. However,
in practice, data is heterogeneous and segregated across
multiple decentralized devices. Learning a single machine
learning model by using this scattered data is complex
and challenging as it may disclose a user’s identifiable and
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protected information. Federated Learning (FL) overcomes
these drawbacks by enabling multiple distributed clients to
learn a global model in a collaborative fashion [23], [47].
For instance, multiple hospitals can participate in training
a global model for cancer classification without revealing
individual patients’ cancer records [21], [36], [46]. Sim-
ilarly, multiple smartphones could train together a word
suggestion model without sharing the individually typed
texts [24], or detect threats based on risk indicators [12].
In FL, each client locally trains a model on its private
dataset and sends the parameters of this local model to a
(global) server, which aggregates the different local mod-
els from the clients into a global model (see App. A for
more details). The server then responds by sending the
aggregated model to each client in a single training round.
By design, the global server is unaware of the training
process being done locally on each client; thus, it is also
susceptible to poisoning attacks from malicious clients.
Poisoning Attacks and Defenses. Previous works have
shown that FL is prone to poisoning attacks as a malicious
client (or clients) can inject malicious weights into the global
server model during training [2], [3], [4], [30], [37], [45]. As
a consequence, the performance of the global model on all
or some subsets of predictive tasks becomes degenerated.
In the so-called targeted poisoning (or backdoor) attacks,
the adversary’s goal is to cause well-defined misbehavior of
the global model on some trigger data points, i.e., predict a
specific class if a particular pattern is present in the input
data [3], [31], [42], [45].1 Our focus in this paper is to
mitigate such targeted backdoor attacks.

To detect/mitigate backdoor attacks, existing defenses
leverage either the models’ outputs (i.e., predictions on some
validation data2), intermediary states (i.e., logits) of the
models, and/or distance of the local models (i.e., L2−norm
or cosine) with regard to the global model, or pairwise
distances among the models. However, current defenses
have several shortcomings and are not sufficiently robust to
defend against different classes of backdoor attacks. For in-
stance, some defenses are bypassed when multiple different
backdoors are simultaneously inserted by different malicious
clients [37]. Other defenses clip weights and add noise to
negate the effect of malicious model updates, which reduces

1. In contrast, non-targeted poisoning attacks aim to deteriorate the
performance of the global model on all test data points [7].

2. As pointed out by Rieger et al., it is not realistic to assume validation
data to be present on the aggregation server [35].
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the benign performance of the global model [3], [26], [30],
[40], or they make specific assumptions such as (i) the adver-
sary inserts malicious updates (backdoors) in each training
round [14], or (ii) the adversary attacks only at the end of
the training [1], or (iii) the data of the benign clients having
the same distribution [27], [30], [48], or (iv) each benign
client must have a similar number of unique labels [35].

Moreover, current state-of-the-art defenses against back-
door attacks make several assumptions about the underlying
data and the adversary’s adopted strategies, as well as they
directly employ client weights during detection. In this con-
text, we encountered two main open challenges: First, how
can we compute an alternate, more generic, representation of
client weights (or updates), such as a probabilistic measure,
which will encompass all adjustments made to the updates
due to any local training strategy (by the clients). Second,
can we design an efficient detection/clustering algorithm
that can leverage such a probabilistic measure to effectively
filter out malicious updates in FL, without deteriorating
the benign accuracy of the global model. We intuitively
believe, and later empirically show, that designing a de-
tection algorithm with such a generic probabilistic measure
as one of its inputs provides several significant advantages
over existing defense solutions. First, different local client
training strategies will not affect the detection process at
the global server. Consequently, the defense mechanism’s
detection phase will remain agnostic about an adversary’s
attack strategies. Second, utilizing distributions over client
updates in the defense, instead of directly employing client
weights, makes the detection process uninfluenced by the
underlying local data distributions used for training.
Our Goals and Contributions. To tackle the challenges
outlined above, we present the design and implementation
of BayBFed, an unconventional and more general backdoor
defense for FL that is based on a probabilistic machine
learning framework. BayBFed comprises of two main mod-
ules. The first module computes a probabilistic measure of
the client weights that is governed by the posterior of the
Hierarchical Beta-Bernoulli process [41] (see Sect. 4). The
second module implements a detection algorithm which em-
ploys this probabilistic measure as an input to differentiate
malicious and benign updates. The main idea is to utilize a
probabilistic measure to determine the distribution of the
incoming local client updates. Additionally, in each FL
round, we compute the distribution of existing groups that
were assigned client updates (clusters) or a new group (client
updates can get assigned to a new group). Then, we compute
the (Jensen) divergence of these two distributions to detect
malicious updates and compute the selected client’s fit to an
existing or a new cluster. The detection algorithm (described
later) is mainly governed by the Chinese Restaurant Process
(CRP), except that it uses Jensen-Divergence to compute
clients’ fit to the clusters.

The only work in the literature that has employed sim-
ilar Bayesian Non-Parametric (BNP) models in the context
of FL is by Yurochkin et al. [49], where BNP models,
specifically the Beta-Bernoulli Process and the Indian Buffet
Process, are used to reduce the communication overhead be-

tween the global server and the clients. They accomplished
this by finding the common subset of neurons between the
local clients selected in a training round and combining
them to form a global model. In contrast to [49], we use
BNP models, specifically the Hierarchical Beta-Bernoulli
process and CRP, for designing a defense mechanism against
backdoor attacks in FL. We stress that [49] is vulnerable to
backdoor attacks, as malicious training updates can easily
be integrated into the global model.

To the best of our knowledge, this is the first work that
employs BNP modeling concepts to design an accurate and
robust defense against backdoor attacks in FL. Our main
contributions can be summarized as:
• We propose BayBFed, a novel generic defense framework

against backdoor attacks in FL that accurately and effec-
tively detects backdoors without significantly impacting
the benign performance of the aggregated model. Our
proposed defense is relevant in many adversarial settings
as, by design, the malicious update detection functionality
utilizes distributions of client updates and, thus, is unaf-
fected by any local client’s strategy.

• We take a new approach to the problem of mitigating
backdoor attacks in FL by employing non-parametric
Bayesian modeling in the design of the defense mech-
anism. To the best of our knowledge, existing defenses
mainly consider the model updates as a set of vectors and
matrices, and directly administer these weights to filter
out the malicious client updates [4], [14], [26], [27], [30],
[37]. Given the client weights, BayBFed first estimates
a probabilistic measure (such as the Beta posterior) that
accurately captures the variations in the clients’ weights
and then uses a novel detection technique based on the
Chinese Restaurant Process and Jensen-Divergence for
identifying the poisoned models.

• We extensively evaluate our framework on five benchmark
datasets: CIFAR-10, Reddit, MNIST, FMNIST, and a real-
world IoT network traffic dataset. We show that BayBFed
effectively mitigates different state-of-the-art as well as
adaptive attacks, and accurately and effectively detects
the backdoored models so that the benign performance
of the aggregated model is not degraded, thus providing
a significant advantage over state-of-the-art defenses.

2. Background and Intuition
Our approach is modeled in two steps. First, to determine
the probabilistic distributions of clients’ updates, we make
use of several statistical tools such as Beta Processes (BP),
Hierarchical Beta Processes (HBP), and Bernoulli Processes
(BeP). Second, to design our detection algorithm, we outline
an adaptation of the Chinese Restaurant Process (CRP),
called CRP-Jensen, to detect and filter out malicious up-
dates. Below, we briefly discuss the above two steps (see
more technical details in the Appendix):
Determining probabilistic measure for client updates. We
compute the probabilistic measure for each client selected in
an FL round to keep track of the adjustments made during
each update. For this, we first draw a baseline probabilistic
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measure, denoted by the baseline Beta Process (BP), which
is computed using the initial global model. Informally, a BP
quantifies a subset of points (measure). We use BPs in this
work to quantify the client updates and the global model by
creating distributions over them.

A BP (A) is a stochastic process defined using two pa-
rameters: a concentration function c over some space Ω=R
and a base measure H; denoted as A∼ BP(c,H). In FL, the
base measure H can represent any distribution of the initial
global model (see Sect. 4), i.e., before the training starts,
and a concentration function c quantitatively characterizes
the similarity between the input base measure (H) and the
output random measure A (because of the distribution over
the random selection of elements in Ω). In this work, c
determines the similarity between the input and the output
distribution over Ω, and Ω is a space of initial global
model weights. The intuition here is to use this baseline BP,
called baseline BP prior, to form hierarchies of BP, called
hierarchical BP prior, for n different clients selected in the
first FL round, i.e., create n sub-BP from the baseline BP.

Informally, a prior is the previous knowledge of an event
before any new empirical data is observed and is typically
expressed as a probability distribution or random measure,
while a posterior is the revised or updated knowledge of
the event after considering the new data. Now, an HBP for
each client i is denoted as Ai ∼ BP(ci,A). In the subsequent
iterations of the FL, these priors (as computed above) will
be updated, based on the new client updates, to compute the
so-called BP posteriors, i.e., update the ci and Hi (Ai). In
this work, we have assumed the new client updates in each
round as the new data to update the previous knowledge of
the BP priors, i.e., to compute the BP posteriors.

In this work, we flatten updates for each client i to
a one-dimensional vector having l values, denoted as Wi.
We assume that each value in this vector is drawn from
a Bernoulli Process (BeP), given the client i’s BP random
measure Ai. Informally, a BeP is a stochastic process with
two possible outcomes: success or failure − we use it in
this work to show whether a client i’s update will have a
particular value (or not), given its BP random measure Ai.
In FL, each client updates its local model using the common
aggregated global model sent by the global server. Hence,
we postulate that each client update vector values are drawn
from its corresponding BP random measure Ai, using BeP.
Thus, a weight vector Wi for client i ∈ {1, ...,n} is charac-
terized by a Bernoulli Process, given as Wi|Ai ∼ BeP(Ai).
In other words, in Wi = {Wi,1,Wi,2, ...,Wi,l}, l denotes the
independent BeP draws over the likelihood function Ai.

Another reason to use BeP is that it has been shown in
the literature that the Beta distribution is the conjugate of
the Bernoulli distribution [6]. Hence, we do not have to use
the computationally intensive Bayes’ rule to compute the
posteriors. We keep updating the corresponding HBP (Ai)
for client i using the conjugacy of the BP and the BeP, as
given in [41]. The posterior distribution of Ai after observing

Wi is still a BP with modified parameters:

Ai|Wi ∼ BP

(
ci + l,

ci

ci + l
H +

1
ci · l

l

∑
l=1

Wi,l

)
(1)

Designing the backdoor detection algorithm. Next, we
briefly describe how we adapt the Chinese Restaurant Pro-
cess to detect malicious client updates. The CRP [39], [5],
[22] is an infinite (unknown number of clusters) mixture
model in which customers (client’s updates) are assigned
tables (clusters) in a restaurant. In the context of FL,
the clusters represent groups of incoming client updates.
The customer can either sit at the already occupied tables
(existing clusters) or at the new table (a new cluster is
created). Our main idea, as discussed earlier, is to uti-
lize a probabilistic measure to determine the distribution
of the incoming local client i’s update. In addition, we
also compute the distribution of the existing clusters of
updates plus the new cluster. Then, we compute the Jensen-
Divergence between client i’s update distribution and each
existing plus new cluster’s distribution. Informally, Jensen-
Divergence (or Jensen-Shannon Divergence) is a measure
of how similar two distributions are. In consequence, we
obtain a set of Jensen-Divergence values. We take the
maximum of this set to determine whether local client i is
malicious or not (intuition, as to why use maximum Jensen-
Divergence, is shown in Sect. 4). Based on this maximum
Jensen-Divergence value, we also determine the client i’s
update cluster assignment. After the cluster is determined,
we append the client i’s update to the selected cluster’s list
of client updates. Finally, we update the cluster’s parameters,
i.e., mean and standard deviation, using Chinese Restaurant
Process (CRP). This adaptation of the CRP is also referred
to by us as CRP-Jensen.

3. Adversary Model
Attack Objectives. The target system trains a Neural
Network (NN) f taking samples from a domain D as
input and returning predictions from the set L. The system
realizes a function f :D→ L. The goal of the adversary A
is to inject a backdoor into the aggregated model making
it predict a certain adversary-chosen label lA ∈ L for all
samples that contain the backdoor trigger, called the trigger
set DA ⊂ D. The success of this objective is measured
by calculating the accuracy for DA. The attack needs to
be stealthy to prevent the backdoor from being detected.
Therefore, A needs to ensure that the attack does not
affect the model’s performance on the benign main task,
i.e., changing the predictions of samples d ∈ D \DA. For
conducting such stealthy backdoor attacks, we assume that
A crafts poisoned model updates. A also needs to ensure
that the poisoned model updates are indistinguishable from
the benign model updates in terms of all the metrics that
the aggregation server may use to detect poisoned models.
As A knows the defense mechanism deployed on the server
side (see below), it suffices to make the poisoned model
updates indistinguishable from the benign model updates in
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Detection
Filter Malicious Updates

Figure 1: High-level overview of BayBFed.
terms of the metrics that are used by the defense mechanism.

Attacker’s Capabilities. We assume A to have the follow-
ing capabilities to achieve its objectives:
1. Controlling malicious clients: Aligned with existing
work [1], [30], [37], we assume A to fully control nA < n

2
clients where n is the total number of participants. In partic-
ular, A can arbitrarily manipulate the data and training pro-
cess of the malicious clients. Therefore, besides poisoning
the training data, A can freely adapt the hyperparameters of
the training process, and the loss function and can also scale
the model updates before sending them to the aggregation
server. A does not control the benign clients. Moreover, it
neither knows their training data nor their model updates,
although it can make a rough estimation of the benign model
updates by training a model using the benign training data
(i.e., without backdoors) of the malicious clients.
2. No control over the aggregation server. A has complete
knowledge of the global server’s aggregation operations,
including the deployed backdoor defenses. However, A
neither controls the server nor knows the parameters that are
calculated by the server at runtime and can only interact with
the server through the compromised clients. However, an
adaptive A can manipulate the model updates based on the
knowledge of the deployed backdoor defense at the global
server.

4. Design
In this section, we first discuss the requirements posed on
BayBFed due to the BNP nature of our defense. Then, we
outline the architecture of our BayBFed defense mechanism
and describe each component in detail.

4.1. Requirements
In BNP models, exchangeability (defined below) is a critical
requirement that must be satisfied by a certain sequence of
random variables to model different parameters such as pri-
ors and posteriors (see Sect. 2). Since, the detection module
(CRP-Jensen) takes client updates (Wi) as one of its inputs
and its l values are modeled by employing the Hierarchical
Beta-Bernoulli Process (HBBP), both the client updates, Wi
and it’s l values should satisfy the exchangeability property.
Informally, the exchangeability property (of a sequence of

random variables) states that the joint distribution of all the
random variables remains the same for any permutation of
random variables. Specifically, we identify the following two
key requirements that we will use in the design of BayBFed.
Requirement I. For the posterior computation, a flattened
client update vector is a sequence of random variables and
should be drawn from an exchangeable set of choices.

We consider that the l values in a client i’s update
vector Wi are drawn from an exchangeable set of choices.
The reason is, in Eq. 1, we only utilize the summation
of client i’s l update values to update the base measure
Hi. Hence, the order of the l values in client i’s update
will not affect the computation of Hi. Mathematically,
a sequence of random variables X1,X2, ...,Xl is called
an exchangeable sequence, if the distribution of
X1,X2, ...,Xl is equal to the distribution of Xπ1 ,Xπ2 , ...,Xπl
for any permutation (π1,π2, ...,πl). We consider
Wi = {Wi,1,Wi,2, ...,Wi,l} to be an exchangeable sequence
for the computation of Beta posterior in BayBFed.

Requirement II. For the detection algorithm employing
CRP-Jensen, each client update is a sequence of random
variables and should be drawn from an exchangeable set of
choices.

CRP is an infinite mixture model which is used to assign
data or samples to the mixtures (or clusters). The data or
samples are assumed to be drawn from an exchangeable set
of choices. Hence, irrespective of the order in which the
data arrives, their assignment to the mixtures or clusters
(i.e., their seating arrangement in CRP) is not affected.
In this work, we assign client i’s update Wi to a cluster
by employing CRP and Jensen-Divergence (JD). Thus, we
consider Wi to follow the exchangeability property. The
reason is that client i’s local training does not depend on
another client’s local training. Thus, permuting the client
updates Wi or changing the order of the incoming client
updates will not affect the output of the detection module.
Thus, in this work, we consider the incoming client updates
Wi, where 1 ≤ i ≤ n and n is the number of clients, as an
exchangeable sequence.

4.2. BayBFed Components
In this section, we describe in detail the two main technical
modules of BayBFed, i.e., the posterior computation module
and the detection module.

4.2.1. Posterior Computation. As briefly explained in
Sect. 2, we compute Beta posteriors (using a concentration
parameter and a base measure) to have a more generic
representation of the client’s weights, which can keep
track of all the changes made in the client updates. The
intuition here is to use the random measure parameters of
the previous round t − 1 (Beta prior), i.e., concentration
parameter (ct−1) and the base measure (Ht−1), and combine
them with client updates (W t

i ) in round t, to compute the
Beta posterior ct and Ht . This is done for each client i
selected in round t. Then, the updated base measure Ht
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Figure 2: Illustration of BayBFed’s design, showing its two modules: Posterior computation and CRP-Jensen.

is utilized in the detection module to filter the poisoned
updates. This process is repeated for the subsequent
iterations of FL, until the model converges. A high-level
overview of BayBFed’s architecture is depicted in Fig. 1.
Below, we outline a more detailed understanding of the
components of the posterior computation as shown in Fig. 2.

Baseline Beta Process (BP). The first step is to create an
initial or baseline BP (A) before any FL training starts.
The goal is to use this baseline BP to create the sub-Beta
priors using the HBP, for the clients selected in the first
training round. In our experiments (as discussed later in
Sect. 6), we initially choose a random baseline of c = 5
and continuously update it based on the posteriors of client
updates. Further, we choose a base measure H =N (µp,σp)
with µp equal to the mean of the flattened initial global
model and σp equal to the standard deviation of the
flattened initial global deviation, i.e., populating A with
the initial global model weights. We assume that the data
points (client updates) are normally distributed for the
above mean and standard deviation computation.

Hierarchical Beta process (HBP). The next step is to
create hierarchies of the baseline BP for the clients selected
in the first round. For a client i selected in round t, HBP is
used to define its BP as At

i ∼ BP(ct
i,A). In our experiments,

before the training starts, we assign the same base measure
of H to each client selected in the first training round, and
concentration parameters (for each client) are computed
as random variables of a Poisson process with parameter
c. The Poisson process [18] creates randomized point
patterns, and that is why we employ it to compute random
concentration parameters (ct

i) for each client i. After the

first round, each client’s concentration and base measure
gets updated according to Eq. (1).

Bernoulli Process (BeP). In this work, BeP is defined
as the draw of an exchangeable sequence of weights,
W t

i = {Wi,1,Wi,2, ...,Wi,l}, given the concentration parameter
ct

i and the base measure Ht
i , i.e., Beta prior. This means the

l-dimensional vector update of a client is considered to be
the l independent BeP. Given the client update W t

i at time t,
we use Eq. (1) to obtain the Beta posterior of round t. The
computed Beta posterior (ct

i and Ht
i ) over client i’s update is

integrated into the following detection module to determine
whether incoming W t

i is malicious or not.

4.2.2. Detection Module. In this module, we design a
variation of the CRP, called CRP-Jensen, to filter the poi-
soned updates sent by malicious clients (see Sect. 2). CRP-
Jensen ensures that all malicious updates are detected (and
removed) without limiting the benign performance of the
target global model. The intuition here is to integrate the
updated base measure (Ht ) to compute the p distribution of
updated client weight, W t

i,up, as shown in Eq. (2). Further, we
compute a q distribution across the updated client weight,
W t

i,up, for the existing clusters of the client updates or a new
cluster (client update, W t

i , can get assigned to a new cluster).
Then, we compute a set of JD between the client i’s p and
each cluster’s q, obtaining a set (length: number of existing
clusters + 1) of JD values for each client i.

Next, we compute the maximum value (Maxi
JD) of this

set and accordingly decide the cluster assignment for the
corresponding clients. In the experiments (see Sect. 6),
we show that this value (Maxi

JD) varies significantly
for malicious and benign updates. Thus, based on these
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acquired maximum JD values, we filter out the malicious
updates and perform the aggregation operation on the
remaining benign client updates to obtain the global model
Gt . Below, we outline a more detailed understanding of the
components of the detection module as shown in Fig. 2.

Client weight update and measurement error. First, we
update each client’s local model using the cosine angular
distance (cos(W t

i ,G
t−1)) between the local model and the

global model. The intuition for doing this is to integrate the
effect of cos(W t

i ,G
t−1) into the weights. The reason is that

even though an adversary can manipulate the cosine angular
distance, the poisoned weights have to differ (slightly) from
the benign weights. Otherwise, the poisoned models will
predict the correct label rather than the backdoor target label
that A chooses. Therefore, to run an effective attack, A
needs to simulate the weights in the backdoor direction. For
the client’s model W t

i with l entries, where W t
i,k,up denotes

the element at index k, the updated client weights (W t
i,up)

are computed as:

W t
i,k,up =W t

i,k + cos(W t
i ,G

t−1) ∀k ∈ {0, . . . , l} (2)

In CRP, when a new sample is assigned to a cluster,
the total error or variance is computed as a combination
of two errors: the measurement error because of the new
sample, and the errors due to already assigned samples.
Thus, we compute the measurement error due to the new
client’s weight getting assigned to the specific cluster (in
each round), given as:

σwt
i
= dwt

i
· cos(W t

i ,G
t−1) (3)

where dwt
i

is the L2−norm between the global model in the
previous round Gt−1 and client i update in the current round
W t

i . Using the L2−norm as the measurement error has the
same reasoning above for using the cosine angular distance.
Even though an adversary can individually manipulate the
L2− norm and cosine distance, there is still a correlation
between the two that differs for the malicious and the
benign weights. We found the above connections, shown
in Eq. (2) and Eq. (3), using our extensive experimental
evaluations. We integrate W t

i,up and σwt
i

into the detection
module to effectively eliminate all the malicious updates.

Computation of p and q. We then compute the two
probability distributions p and q, and use JD to compute
their similarity. Here, we integrate the current round base
measure Ht to compute p distribution of client updates, such
that the detection phase of the defense is not affected by any
local client training strategy. Thus, in round t, we compute
each client’s p and each cluster’s q as given in Eq. (4) and
Eq. (5), respectively.

p =N (W t
i,up; µp,σp)

p = x+Ht ∀x ∈ p

p =N (p;1,W t
i,up) (4)

q =N (W t
i,up; µcl ,σcl ) (5)

Figure 3: p and q distribution value range for (i) the mali-
cious updates, (ii) the benign updates, and (iii) the clusters.

where, W t
i,up is the mean of W t

i,up and µp and σp are
the mean and the variance of the initial global model,
respectively. Ht is the updated round t base measure that is
given as ct−1

i
ct−1

i +l
Ht−1 + 1

ct−1
i ·l ∑

l
i=1 W t

i (see Eq. (1)). µcl and
σcl are the clusters’ mean and variance, respectively. Then
for each client i, we compute the JD of it’s p with each
cluster’s q.

Computation of Jensen-Divergence (JD). Next, we
compute the JD between each client’s p and each
cluster’s q. By computing the JD of each client i’s p
values with each cluster’s q values, we get a set of:
{(pi,q0) : jsi

0,(pi,q1) : jsi
1, ...,(pi,qnoc) : jsi

noc}. Then,
we compute Maxi

JD: max( jsi
0, jsi

1, ..., jsi
noc) to output the

assigned cluster of client i weights W t
i,up and to decide

whether it’s a malicious update or a benign update. Here,
noc is the total number of clusters formed yet.

Mean and standard deviation update. In the previous
step, we computed the client’s assigned cluster. Now, we
update the mean and the variance of that particular cluster
according to the equations:

µnew =
W t

i,upnkτk +µ0τ0

nkτk + τ0
(6)

σnew =
1

nkτk + τ0
+σ

2
wt

i
(7)

where, nk is the number of client updates already assigned
to it, τk represents the precision of the cluster, µ0 and τ0
represent the initial mean and the precision assumed for
the new clusters. σ2

wt
i

is the variance or the measurement
error introduced by the new addition of the client update
and is computed according to Eq. (3).
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Filtering and Aggregation. Finally, we examine the
patterns of the malicious updates based on the computed
Maxi

JD, which differs significantly from the benign updates.
We encountered two patterns of malicious updates Maxi

JD in
our experiments, as discussed later in Sect. 6: (i) the Maxi

JD
computed for malicious updates are much greater than that
for the benign updates, and (ii) the computed Maxi

JD values
for the malicious updates are similar to each other. For
pattern (i), we observed that the Maxi

JD value for benign
updates is less than the average of all the clients’ Maxi

JD
values (experimentally evaluated). Therefore, conditioned
on this observation, we filtered the malicious updates during
the detection phase of BayBFed. For pattern (ii), we check
if Maxi

JD of the incoming update is already present in the
set of computed Maxi

JD for the n clients; if yes, we do not
include the concerned malicious client’s update in the final
aggregation of updates to output the global model Gt .

Intuition for the filtering step. To understand the rela-
tionship between the computed maximum JD values Maxi

JD
(as outlined above) and the benign/malicious nature of the
updates, we conduct experiments utilizing a diverse set of
datasets (see Sect. 5). In these experiments, we illustrated
the Maxi

JD values for malicious and benign updates and
observed that Maxi

JD values of malicious and benign updates
differ significantly. Fig. 3 gives an intuition of why Maxi

JD
differs for the malicious and benign updates by examining
the range of p distribution values for the client updates
against the clusters’ q distribution values. In Fig. 3, the (i)
plot demonstrates the malicious update’s p values spanning
area, the (ii) plot demonstrates the benign update’s p values
spanning area, and the (iii) plot demonstrates the clusters’
q values spanning area, as observed from the experiments
conducted. As seen in these plots, the benign update’s p
values lie at a larger distance than the malicious update’s p
values (as the values in p are either equal to or very close to
zero). Thus, the distance between the p values of malicious
updates, and the q values of the clusters is greater than the
distance between the p and q values of benign updates. In
other words, JD (p (malicious update), q) > JD (p (benign
update), q). Hence, maximum JD is used as a metric to iden-
tify malicious updates and assign them to the new cluster.

4.3. BayBFed WorkFlow and Algorithms
BayBFed’s workflow and detection algorithm have been
outlined in Algorithms 1 and 2. Here, µ0 is the assumed
initial mean of the clusters and σ2

0 is the assumed variance
corresponding to mean µ0. σ2

wt
i

is the measurement error of
the client update W t

i and is computed as shown in Eq. (3).
Thus, total measurement error or the variance is computed
as shown in Eq. (7). If a new cluster is formed, it will
have a normal distribution with mean µ0 and the combined
variance of σ2

0 + σ2
wt

i
. The set {µ t

cl
, σ t

cl
} represents the mean

and standard deviations of the cl clusters at time t. We start
Algorithm 1 by looping through the number of rounds of FL
training as shown in line 2. In each round, we initialize an
empty array, Maxstored

JD = [], to store the Maxi
JD values of the

Algorithm 1 BayBFed’s workflow.
1: Input: µ0, σ2

0 , σ2
wt

i
, τ0 =

1
σ2

0
, τw = 1

σ2
wt

i

, noc.

2: for each round till the model converges do
3: Initialize an array to store Maxi

JD in each round, Maxstored
JD =

[].
4: for i 1 ← to n do
5: Draw any client update W t

i .
6: Compute dwt

i
and cos(W t

i ,G
t−1) .

7: Update σ2
wt

i
← dwt

i
· cos(Wt,i,Gt−1) and compute W t

i,up.
8: if noc == 0 then
9: Assign c0←W t

i .
10: Update µnew and σnew with, nk = 1.
11: end if
12: for cl ← to noc+1 do
13: Compute p and q.
14: Compute the JD by p and q and store the values.
15: Decide the cluster, ci according to Maxi

JD.
16: Append Maxi

JD to Maxstored
JD .

17: if cl,i = cl then
18: Update W t

i assigned cluster, {µ t
cl

, σ t
cl
} according to

cl,i = cl .
19: else
20: Increment: noc = noc+1, a new cluster is formed.
21: Set cl,i = noc and assign W t

i to it. Append this new
cluster to the vector of non-empty clusters.

22: end if
23: end for
24: end for
25: Call DetectFilter(), fcp = DetectFilter(Maxstored

JD ).
26: Perform FedAV G(fcp) and update the global model.
27: end for

clients. n clients are selected for the training, and we loop
through each client i (line 4) to determine its cluster. We then
compute W t

i,up and σwt
i

according to equations (2) and (3),
respectively (lines 7). If noc= 0, then it’s the first round, and
the first client is assigned to the first cluster (line 9), and
accordingly, this new cluster’s µnew and σnew are updated
(line 10). If noc ̸= 0, then for each existing cluster plus the
new one (line 12), we do the following: first, we compute
p and q (line 13), second, we compute the JD of each
client’s p and each cluster’s q (line 14), third, we compute
the maximum of the obtained JD set (Maxi

JD) and decide
the assigned cluster (line 15) according to this value, and
finally append it to the array Maxstored

JD (line 16). Either the
client will be assigned to one of the already formed clusters
(line 17) or it will be assigned to a new cluster (lines 20,21).
After each FL round, Algorithm 2 (DetectFilter()) is called
which takes input Maxstored

JD (line 25) and returns the filtered
client updates, fcp. FedAV G(fcp) (defined in Appendix A)
algorithm is then performed to aggregate the filtered client
updates and finally update the global model.

5. Experimental Setup

We employ the machine learning framework PyTorch to
conduct our experiments and use the existing defenses [4],
[14], [37], [27], [48], [25], [30] as baseline models to com-
paratively analyze the performance of BayBFed. Aligned
with previous work on backdoor attacks [1], [3], [30], we
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Algorithm 2 Detection and Filter Algorithm, DetectFilter.
1: Input: Maxstored

JD containing Maxi
JD values, total clients, n

2: Output: Filtered client updates
3: Initialize an array to store filtered client updates in each round,

Wf iltered = [].
4: Compute Maxavg

JD = sum(Maxstored
JD )/n

5: for i = 1 to n do
6: if Maxi

JD not in Maxstored
JD then

7: Wf iltered .append(W t
i )

8: end if
9: if Maxi

JD < Maxavg
JD then

10: Wf iltered .append(W t
i )

11: end if
12: end for
13: Return Wf iltered

use the attacks provided by Bagdasaryan et al. [3] and Wang
et al. [42] to implement the Constrain-and-Scale and Edge-
Case backdoor attacks. Below, we provide the configurations
of the different datasets and the accuracy and precision
metrics we use to evaluate the performance of BayBFed.
Datasets. To show the generality of our results and the
representative nature of BayBFed across models/data from
different domains, we evaluate the proposed defense mecha-
nism by designing two attacks (see Tab. 1) on three popular
FL applications: (i) image classification, (ii) word predic-
tion, and (iii) IoT network intrusion detection. To facilitate
an equitable comparison of BayBFed with state-of-the-art
backdoor attack approaches [3], [30], we align the datasets,
setups, and NN architectures employed in our comparative
evaluation with the ones used by these research efforts.
Image Classification (IC): We use the popular benchmark
datasets MNIST, FMNIST, and CIFAR-10 in our experi-
ments. As these datasets are frequently used for evaluating
FL and backdoor attacks and defenses [3], [8], [14], [15],
[16], [20], [23], [27], [30], [35], [42], [43], [44], [13], [34],
it enables us to perform an equitable comparative analysis
of our approach with other state-of-the-art approaches in the
literature. All three consist of samples belonging to one out
of ten classes, handwritten digits in the case of MNIST,
articles of clothing in the case of FMNIST, and objects
(airplanes, cars, birds, etc.) in the case of CIFAR-10. The
CIFAR-10 dataset consists of 50K training and 10K test
images, while MNIST and FMNIST datasets each consist of
60K training and 10K test images. As the NN architecture, a
light-weight version of Resnet-18 is used for CIFAR-10 [3],
a simple CNN is used for MNIST [8], and a three-layer fully
connected NN with relu activations is used for FMNIST.
Word Prediction (WP): To evaluate BayBFed for a complex
Natural Language Processing (NLP) application such as
word prediction, we use the Reddit dataset consisting of
all posts from November 2017. Aligned with the work of
Bagdasaryan et al., we considered each author’s posts as
a local dataset and only the 50K most frequent words. A
Long Short-term Memory (LSTM) model is used to predict
the next word [3].
Network Intrusion Detection (NIDS): Further, we evaluate
BayBFed for the FL-based NIDS DÏoT [29] system using
four real-world network traffic datasets, kindly shared with

TABLE 1: Backdoor Accuracy (BA) and Main Task Ac-
curacy (MA) of BayBFed compared to two state-of-the-art
attacks. All values are represented as percentages.

Attacks Dataset No Defense BayBFed
BA MA BA MA

Constrain-and-Scale [3]
Reddit 100.0 22.6 0.0 22.6

CIFAR-10 100.0 90.5 0.0 92.2
MNIST 43.0 96.5 0.0 96.0

FMNIST 71.0 85.5 2.0 85.3
IoT-Traffic 100.0 100.0 0.0 100.0

Edge-Case [42] CIFAR-10 33.16 88.42 4.02 82.82

us by Nguyen et al. [29], [30] and Sivanathan et al. [38].
The datasets consist of network traffic of multiple smart
home and office settings. Aligned with previous work [30],
[35], we converted the network packets into symbols based
on their features, such as source and destination ports,
protocols, and flags. To simulate a distributed FL setting,
we split the dataset into 100 local datasets, each consisting
of symbols between 2K and 3K, which were extracted
from the network packets. The NN is trained to predict
the next probabilities for each possible symbol (network
packet). The NN consists of 2 Gated-Recurrent-Unit layers
followed by a fully connected linear layer, as defined by
Nguyen et al. [29].
Evaluation metrics. We compute four metrics to estimate
the accuracy and precision of BayBFed.
True Positive Rate (TPR): This metric specifies how ac-
curately the defense is able to detect the poisoned model
updates. The total number of correctly identified poisoned
updates are called True Positives (T P) and the number of
poisoned model updates discerned as benign model updates
are called False Negatives (FN). Thus, T PR = T P

T P+FN .
True Negative Rate (TNR): This metric determines how
accurately the defense is able to detect the benign model
updates. The total number of correctly identified benign
model updates are called True Negatives (T N) and the
number of benign updates discerned as poisoned updates
are called False Positives (FP). Thus, T NR = T N

T N+FP .
Backdoor Accuracy (BA): This metric is used to measure the
accuracy of the model on the triggered inputs. Specifically, it
measures the fraction of triggered samples where the model
predicts the adversary’s chosen label.
Main Task Accuracy (MA): This metric is used to measure
the accuracy of the model on its benign main task. It
represents the fraction of benign inputs for which the model
provides correct predictions.

6. Experimental Results
Next, we empirically illustrate the effectiveness of BayBFed
against two state-of-the-art attacks [3], [42] and compare its
efficacy against various state-of-the-art defense mechanisms.
Further, we show how Maxi

JD varies for the malicious and
benign model updates. Finally, we demonstrate the robust-
ness of BayBFed for various adversarial attack parameters
and sophisticated backdoor injection strategies.

6.1. Overall Performance
Attack Strategies. The effectiveness of BayBFed against
two state-of-the-art model poisoning attacks, the Constrain-
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and-Scale [3] and the Edge-Case backdoor [42] is shown
in Tab. 1. As we have assumed that an adversary can
fully control the malicious clients (and thus the code on
the clients), he is not restricted or constrained in terms of
the employed attack strategy. In addition to attacks during
training, our adversary can also adopt a runtime strategy to
make the attack more stealthy.

As can be seen in Tab. 2, BayBFed functions opti-
mally against Constrain-and-Scale attacks by filtering out
all poisoned updates (BA = 0%). At the same time, the
MA remains approximately equal to the benign setting MA.
It should be noted that if the MA is less than 100%,
misclassifications of the model can be counted in favor of
the backdoor, especially if the model wrongly predicts the
backdoor target. As already pointed out by Rieger et al. [35],
this phenomenon primarily occurs for image scenarios with
pixel-based triggers. It causes the BA to be slightly higher
than 0% for backdoor-free models. In the case of an Edge-
Case attack, the BA before the attack and after BayBFed
integration is 11.22% and 4.02%, respectively. However,
without defense, the BA achieves 33.16%.
Baseline Models. We compare BayBFed against seven
state-of-the-art defense mechanisms present in the litera-
ture: Krum [4], FoolsGold [14], Auror [37], AFA [27],
DP [48], Median [25] and FLAME [30]. We implement
the Constrain-and-Scale attack against all the defenses and
compare the output statistics in terms of the BA and MA. As
illustrated in Tab. 2, BayBFed outperforms all these defense
mechanisms. These results show that the existing defense
mechanisms either lack the precision in removing all the
poisoned updates or limit the MA of the global model.
Further, these defense mechanisms perform accurately when
specific assumptions about the data and attack scenarios are
satisfied. For instance, in the case of Krum [4], which selects
a single model as an aggregated model, a poisoned model
is chosen when an attacker circumvents Krum. Therefore,
the aggregated model is entirely replaced by a poisoned
model, achieving 100% BA. Similarly, another defense
FoolsGold [14], is effective for the highly non-IID Reddit
dataset but fails when their clients have similar data. It
should be noted that BayBFed achieved a TPR and TNR
of 100% in all three scenarios.
Impact on the MA. For the IC application CIFAR-10
dataset, we observe that the Constrain-and-Scale attack
lowers the MA from 92.6% (FedAVG without attack) to
90.5% (FedAVG). Krum, FoolsGold, Auror, DP, and Median
techniques achieve a MA of 56.7%, 52.3%, 26.1%, 78.9%,
and 50.1%, respectively, which is considerably lower than
the benign setting MA. In contrast, BayBFed has a MA of
92.2%, which shows that it works significantly better for IC
applications. For the WP application, Krum and DP have a
decreased MA of 9.6% and 18.9%, compared to the highest
MA of 22.6%. In this case as well, BayBFed performs much
better and achieves a MA of 22.6%. For the IoT-Traffic
dataset, every defense has decreased MA. In this case, even
small drops in MA need to be avoided due to the nature of
this application. The reason is due to the high number of
network packets in this scenario; even a small number of

TABLE 2: Backdoor Accuracy (BA) and Main Task Ac-
curacy (MA) of BayBFed compared to state-of-the-art de-
fenses for the Constrain-and-Scale attack. All values are
represented as percentages.

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.6 - 92.6 - 100.0
No Defense 100.0 22.6 100.0 90.5 100.0 100.0
Krum [4] 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold [14] 0.0 22.5 100.0 52.3 100.0 99.2
Auror [37] 100.0 22.5 100.0 26.1 100.0 96.6
AFA [27] 100.0 22.4 0.0 91.7 100.0 87.4
DP [3] 14.0 18.9 0.0 78.9 14.8 82.3
Median [48] 0.0 22.0 0.0 50.1 0.0 87.7
FLAME [30] 0.0 22.3 0.0 91.9 0.0 99.8
BayBFed 0.0 22.6 0.0 92.2 0.0 100.0

false alerts will annoy the user, causing them to ignore the
alerts. For example, the defense technique FLAME results in
a drop of 0.2%, which causes 2 out of every 1000 packets to
be misclassified. As a result, when a high amount of network
packets is sent, the user will receive a high number of alerts.
It should be noted BayBFed recognizes all benign and ma-
licious models correctly (T PR = 100% and T NR = 100%)
in all three scenarios, thus, comparatively performing better
than the other defense mechanisms such as FLAME. For
example, FLAME excludes benign models; in the NIDS sce-
nario, FLAME wrongly excludes 17 benign models, which
might be problematic in the case of highly non-IID data.
Backdoor updates removal. Krum and Auror fail to re-
move poisoned updates in all three applications, as these
defenses exhibit a BA of 100%. FoolsGold eliminates all
the poisoned updates in the Reddit dataset (BA = 0.0%).
However, it fails to remove them in the CIFAR-10 and IoT-
Traffic datasets, as it achieves a BA of 100% in those cases.
For the AFA defense, it works accurately for CIFAR-10
(BA = 0.0%) but is ineffective for the Reddit (BA = 0.0%)
and IoT-Traffic (BA = 0.0%) datasets. In contrast, BayBFed
significantly outperforms these defenses as it can remove
poisoned updates (BA = 0.0%) for all the datasets.

Next, we discuss the impact of two critical experimen-
tal parameters on each of the considered applications and
datasets in this paper: poisoned model rate (PMR) and
degree of non-IID data. PMR represents the fraction of nA
malicious clients per total clients n. Thus, PMR = nA

n . non-
IID represents the percentage of non-IID data at each client.
A non-IID value of 0 means that the data is independently
and identically distributed, non-IID = 1.0 implies that the
data of different clients differ significantly and are distin-
guishable. For the IC application, we simulate experiments
for both non-IID degrees and PMR (see Sect. 6.2). However,
for the Reddit and the IoT datasets, changing the non-
IID degree is not meaningful since this type of data has
a natural distribution, as every client obtains data from
different Reddit users or traffic chunks from different IoT
devices. Thus, we only simulate experiments for different
PMR for these two datasets. We will also show the impact of
these two parameters on Maxi

JD for each client (see Sect. 4)
and prove that it differs significantly for the benign and
poisoned updates.
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Figure 4: Effect of different non-IID rates on the maximum Jensen-Divergence (Maxi

JD) for CIFAR-10 dataset.
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Figure 5: Effect of different PMR rates on the maximum Jensen-Divergence (Maxi

JD) for the CIFAR dataset.

6.2. BayBFed Statistics for CIFAR-10
In this section, we evaluate the impact of non-IID rate and
PMR on the CIFAR-10 dataset. First, we demonstrate the
trend of Maxi

JD for both the malicious and benign clients
with respect to each of these parameters. Then, we illustrate
the impact of non-IID rate and PMR on BayBFed’s perfor-
mance by quantifying different metrics as stated in Sect. 5
and also compare it against the no defense scenario.
Illustration of Maxi

JD. The impact of the degree of non-IID
data and PMR on Maxi

JD for each client is shown in Fig. 4
and Fig. 5, respectively. We select a total of 30 (n= 30)
clients for both the non-IID and PMR experimental analysis.
For non-IID analysis, we test non-IID ∈ {0.0,0.5,1.0} and
set PMR= 0.2. Thus, the number of malicious clients equals
6 (nA = 6). For PMR analysis, we test PMR∈{0.2,0.3,0.5},
i.e., when nA equals 6, 9, and 15 and set non-IID = 0.7. As
illustrated in Fig. 4 and Fig. 5, the Maxi

JD value for benign
clients differs significantly from that of malicious clients.
Hence, BayBFed easily filters out all the malicious client
updates, achieving a BA of zero while keeping the MA of
the global model intact.
Effect of the degree of non-IID Data. To study the impact
of non-IID data on BayBFed, we conduct experiments for
the Constrain-and-Scale attack on the CIFAR-10 dataset.
Following recent work [42], [11], [35], [30], we prepare
the non-IID data by varying the number of images assigned
to a particular class for each client. Precisely, we form 10
groups corresponding to the ten classes of CIFAR-10. Then,
clients in each group are allocated a fixed fraction of images,
depending on the non-IID degree of that group’s label, while
allocating the remaining images to each client randomly.
Mainly, for non-IID = 0.0, the samples of all clients followed
the same distribution and were chosen randomly from all
classes. However, for non-IID = 1.0, the samples of each
client were only chosen from the samples belonging to the
main class of this client. Fig. 6a compares the impact of
the degree of non-IID data in terms of BA and MA for
the plain FedAVG without defense (No Defense BA, No
Defense MA) and the impact on BayBFed (BA, MA). Fig. 6a
also shows the computed T PR and T NR for BayBFed in

this setting. As one can observe, we obtain T PR = 100%,
indicating BayBFed achieved BA = 0, i.e., all the poisoned
models were detected and filtered out before the aggregation.
In addition, BayBFed achieved T NR = 100%, indicating
it correctly identified all the benign updates, thus getting
approximately MA = 92.2% for all the non-IID rates.
Effect of different PMR rates. Fig. 6b shows the impact of
different PMR rates on BayBFed. We consider PMRs of 0.2,
0.3, 0.4, and 0.5. Hence, nA equals 6, 9, 12, and 15. We use
the same metrics that we used for non-IID rates to evaluate
BayBFed against different PMRs. In this experiment, we
achieve results similar to the ones we obtained for different
non-IID rates. This demonstrates that BayBFed is efficient
and accurate in eliminating all the poisoned updates for dif-
ferent data distributions while keeping the benign accuracy
of the model intact.

6.3. BayBFed Statistics for WP
This section evaluates the impact of PMR on the Word
Prediction application. First, we demonstrate the trend of
Maxi

JD for both the malicious clients and the benign clients.
Then, we illustrate the impact of PMR on BayBFed’s perfor-
mance by quantifying different metrics as stated in Sect. 5
and also compare it against the no defense scenario.
Illustration of Maxi

JD. In this setting, we also select 30
clients who can participate in each training round, and
demonstrate the impact of varying PMR values (0.2,0.3,0.5)
on the clients’ Maxi

JD. As outlined in Fig. 7, the Maxi
JD

values of malicious and benign client updates differ signifi-
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Figure 6: Impact of the poisoned model rate PMR = nA

n and
non-IID rate on BayBFed for the IC application.
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Figure 7: Effect of different PMR rates on the maximum Jensen-Divergence (Maxi

JD) for the Reddit dataset.
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Figure 8: Effect of different PMR rates on the maximum Jensen-Divergence (Maxi

JD) for the IoT-Traffic dataset.

cantly. Thus, BayBFed accurately identified all the poisoned
updates, achieving a BA = 0.0% and MA = 22.6%.
Effect of different PMR rates. Next, we evaluate the
effectiveness of BayBFed, compared against no defense BA
and MA, for different PMR values (0.2,0.3,0.4,0.5). The
results of this experiment are shown in Fig. 9a. These
results indicate that BayBFed obtained a T PR= 100% and a
T NR = 100%, for all PMR values. Moreover, it successfully
identified all the poisoned and benign updates for different
PMR values and achieved a BA = 0% and the highest
possible MA of benign setting, i.e., MA = 22.6%.

6.4. BayBFed Statistics for NIDS

This section evaluates the impact of different PMR rates on
the NIDS application. Here, we randomly select 60 clients
who can participate in each training round. It should be
noted that since NIDS models have a lesser number of pa-
rameters, training time is reduced. Thus, we evaluated more
clients than WP and IC models/applications. However, we
set the same PMR in all scenarios. Hence, it did not impact
the experimental results (except for the experiments where
we considered different PMRs). The number of benign and
malicious clients varies based on the selected PMR value,
specifically, for PMR values 0.2, 0.3, 0.4, and 0.5, nA is 12,
18, 24, and 30, respectively. First, we demonstrate the trend
of Maxi

JD for both the malicious and benign clients and then
illustrate the impact of PMR on BayBFed compared to the
no defense scenario.
Illustration of Maxi

JD. Fig. 8 illustrates the impact of
different PMR values on Maxi

JD for each client. This plot
illustrates the sequence of Maxi

JD for the poisoned updates,
and one can observe that they are equal and different from
benign updates. By employing this pattern of the Maxi

JD,
BayBFed was accurately able to filter out all the poisoned
updates, thus, attaining a BA of 0%.
Effect of different PMR rates. Next, we compute the
T PR, T NR, BA, and MA metrics to evaluate the effec-
tiveness of BayBFed compared against the no defense BA
and MA, for different PMR values. Results for this set
of experiments are shown in Fig. 9b. By using the com-
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Figure 9: Impact of the poisoned model rate PMR = nA

n on
the evaluation metrics.

puted maximum Jensen-Divergence values for each client,
BayBFed is able to achieve T PR = 100%, T NR = 100%,
BA = 0%, and MA = 100%. Hence, BayBFed performs
optimally for the NIDS application as well.

6.5. BayBFed Statistics for FMNIST and MNIST
Further, we evaluate the impact of different non-IID and
PMR rates on the FMNIST and MNIST datasets. We used
the same setup that we used for the CIFAR-10 dataset
(see Sect. 6.2). In all the experiments with FMNIST and
MNIST, Maxi

JD values of malicious and benign client up-
dates differ significantly, as observed for CIFAR-10. Thus,
BayBFed accurately identified all the poisoned updates,
achieving a BA of 0%. For detailed FMNIST and MNIST
results, please refer to App. D and App. E, respectively.

6.6. Effect of Other Factors on BayBFed
Next, we conduct additional experiments with BayBFed by
varying four other parameters: (i) number of clients (hence,
the number of malicious clients), (ii) backdoor injection
strategies, (iii) poisoned data rates (PDR), and (iv) client
order. Additionally, we also assess the trade-off between
model accuracy and defense evasion for an adaptive attacker.
PDR represents the fraction of injected poisoned data in the
overall poisoned training dataset. Our goal in conducting
these experiments is to show that BayBFed is robust against
these factors in detecting backdoor attacks in FL.
Number of clients. In this experiment, we evaluate the
impact on the performance of BayBFed by varying the
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number of clients, thus, the PMR. The results are outlined
in Fig. 10. In each round, we select a random number of
clients ranging from 40 to 90. We conduct this experiment
for the IC (Fig. 10a) and NIDS (10b) applications. In both
cases, BayBFed achieved a BA of 0%, thereby showing that
it is effective in eliminating all the backdoors compared to
the no defense scenario.
Different injection strategies. An adversary (A) can inject
multiple backdoors at the same time in order to make the
backdoor more difficult to detect, thus making the poisoned
models harder to distinguish from benign ones in non-
IID scenarios. We perform four experiments for the NIDS
application, where each client is trained to inject 1 to 4
backdoors. Existing work [35] has shown that the attack
efficiency significantly reduces as the number of backdoors
increases, and we observed the same pattern during our
experiments. Hence, four backdoors were considered a good
number (of backdoors) that provided reasonable attack ef-
ficiency. Our evaluations show that BayBFed was able to
defend against and mitigate all the introduced backdoors
effectively, thus achieving a 0% BA.
Different Poisoned Data Rates (PDR). In this experiment,
we consider an adversary that is capable of poisoning the
data to launch backdoor attacks. We evaluate this attack
on the CIFAR-10 and IoT-Traffic dataset for three different
values of PDR: 0.05, 0.1, and 0.5, i.e., 5%, 10%, and
50% of the training dataset is poisoned. For the CIFAR-10
dataset, we set n = 30 and PMR = 0.2, and for the IoT-
Traffic dataset, we set n = 100 and PMR = 0.3. In both
these scenarios, BayBFed is successful in eliminating all the
backdoors, obtaining a BA of 0% and achieving an average
MA of 92.4% for the CIFAR-10 dataset and 100% for the
IoT-Traffic dataset.
Client Order. To verify that the client updates are ex-
changeable, we conducted an experiment for the CIFAR-10
dataset, where the models were randomly shuffled. However,
the shuffling did not affect the results, as we got BA = 0%
and MA = 92.5%. These results are intuitive because ir-
respective of the order in which the client updates arrive
at the detection module of BayBFed, it does not affect the
computation of Maxi

JD, which is eventually used to identify
the poisoned updates.
Adaptive attacks. BayBFed assumes that A knows the
backdoor defense deployed at the global server (see Sect. 3).
Thus, A can constrain the training process to make Ht

inconspicuous, by using its benign data to estimate a benign
model and thus, p and Ht . However, A cannot estimate q as
this requires knowing parameters that the server calculates
on run-time. Thus, an adaptive attacker can only work with
Ht to launch backdoor attacks against such defense. In this
setting, we conducted experiments for the CIFAR-10, by
updating the loss function of A using the base measure for
the anomaly evasion loss term [3] according to the equation:

L= αLclass +(1−α)LBM (8)

Lclass captures both the BA and the MA, and LBM captures
the defense mechanism dependency on the base measure.
We conducted three experiments with α (determines the
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Figure 10: Impact of the number of clients on BayBFed vs
No Defense for different datasets.

trade-off between model accuracy and evasion from defense
mechanism) values as 0.0, 0.5, and 1.0. For α = 0.0, A sac-
rifices the model accuracy to evade the defense mechanism,
for α = 0.5, A is equally trading off the model accuracy and
defense mechanism evasion, while for α = 1, A is more con-
cerned about the model accuracy than evading the defense
mechanism detection. For α = 1, BayBFed achieved a BA
of 0%, MA of 92.33%, T PR = 1 (T P = 10 and FN = 0),
and T NR = 0.95 (T N = 19 and FP = 1). However, as we
decreased α to 0.5, BayBFed was effective in detecting and
filtering an adaptive attacker’s model updates. For α = 0.5,
BayBFed obtained a BA of 0%, MA of 92.25%, T PR = 1,
and T NR = 1. For α = 0, BayBFed obtained a BA of 0%,
MA of 92.14%, T PR= 0 (T P= 0 and FN = 10), and T NR=
0.85 (T N = 17 and FP = 3). Hence, an adaptive adversary
can evade detection at the cost of model accuracy. However,
the non-detected models do not have any overall impact
on the efficacy of BayBFed as the BA is always zero. In
summary, our experiments show that BayBFed is successful
in defending against an adaptive adversary who has working
knowledge of BayBFed deployed at the global server.

7. Security Analysis
This section provides a security analysis to corroborate that
BayBFed can neutralize backdoors by modeling the defense
mechanism using BNP modeling concepts. We explain why
our defense works and justify its effectiveness. To bypass
our defense, an adversarial client (A) has to ensure that
BayBFed cannot distinguish between malicious and benign
model updates. Below, we present three mechanisms through
which A can hide the backdoors from BayBFed. First, A can
vary the fraction (PMR) of malicious clients, i.e., A can ei-
ther reduce the PMR and make the attack less suspicious, or
increase the PMR to keep the attack successful while making
the models less suspicious. Second, A can limit the poison
data rate (PDR) for each adversarial client, i.e., instead of
poisoning the entire dataset, A could partially poison the
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dataset. Finally, A can utilize an adaptive attack strategy,
such as adding regularization terms (i.e., defense evasion) to
the objective function of the training process (see Sect. 6.6).
A sophisticated A with the working knowledge of BayBFed
(has access to the previous round base measure Ht−1) could
select a sweet spot between the model accuracy and the
evasion from BayBFed. As a result, the poisoned models
are still similar to the benign models.

In all the above cases, we have demonstrated that
BayBFed successfully detected all the malicious updates.
The reason being BayBFed computes an alternate, more
generic representation of the client updates, i.e., a probabilis-
tic measure that encompasses all the adjustments made to
the client updates due to any local client’s training strategy.
Hence, the detection module that takes this probabilistic
measure as one of its inputs correctly identifies all the
malicious updates without being affected by any local client
training strategies. In addition, we also integrate the effect of
cos(W t

i ,G
t−1) and L2−norm (Eq. 2 and Eq. 3) in the clients’

model updates and the computation of error introduced
by the client weight. The rationale is that even though A
makes sure the distribution of malicious updates does not
deviate from benign ones, A cannot fully manipulate the
cos(W t

i ,G
t−1) or L2− norm. The reason being A aims to

simulate the global model in the backdoor direction. This
ensures that any changes the strategic A makes utilizing
advanced hiding techniques cannot bypass BayBFed. We
also empirically verified the effectiveness of BayBFed using
state-of-the-art (CIFAR-10, MNIST, and FMNIST) and real-
world (IoT) datasets and successfully demonstrated that
A cannot conduct backdoor attacks while simultaneously
bypassing our defense mechanism. Therefore, BayBFed is
robust and resilient against backdoor attacks.

8. Related Works
Defense mechanisms (against backdoor attacks) in the litera-
ture can be broadly classified into two categories: detection-
based defense mechanisms [37], [14], [27], [9], [16],
[19], [20] and mitigation-based defense mechanisms [48],
[15], [33], [40], [43], [44]. Detection-based defenses detect
and filter the poisoned updates using similarity measures
between the poisoned and benign updates. In contrast,
mitigation-based defenses construct aggregation rules or add
noise to the updates to mitigate the poisoned updates which
are unbeknown to them.
Detecting backdoors. Detection-based defense mechanisms
in the literature include: Auror [37], Krum [4], AFA [27],
and FoolsGold [14]. However, these defense mechanisms
work only when certain conditions are satisfied. For exam-
ple, Auror and Krum only work for benign IID data. In
contrast, FoolsGold overcomes this assumption by assum-
ing the benign data is non-IID and that the manipulated
data is IID. In addition, these defense mechanisms can be
bypassed if an adversary restricts the malicious updates
within the valid range of benign updates distribution. In
summary, these defenses only work when certain condi-
tions are satisfied. On the contrary, BayBFed does not as-

sume anything about the distribution of local client’s data.
Thus, it works more effectively against such attacks.
Mitigating backdoors. Mitigation-based defenses include
rule-based aggregation mechanisms such as coordinate-wise
median and coordinate-wise trimmed mean [48], a two-
step aggregation algorithm that combines the Krum and
trimmed mean mechanisms [15], and RFA [33]. These de-
fense mechanisms determine a client update to be benign
if it lies within the scope of some aggregation rule. These
rules, however, can be easily bypassed if an adversary makes
sure its update is within the valid range of these rules. In
addition, these rules are computationally intensive. Differ-
ential privacy (DP) defense mechanisms [40], [43], [44],
[28] have also been designed to protect against backdoor
attacks. These defense mechanisms follow clipping of the
weights and additive noising [10], to limit the impact of the
adversarial updates. However, they also decrease the MA
simultaneously. Nguyen et al. [30] designed a defense to
limit the impact of noise on MA, however, the outlier de-
tection is prone to removing benign models, which reduces
the performance in non-IID scenarios. In comparison, the
BNP modeling and CRP-Jensen of BayBFed allow us to
effectively distinguish between benign and poisoned models.

9. Conclusion

This paper proposes BayBFed, a novel and more generic
probabilistic approach to defend against backdoor attacks
in Federated Learning. In contrast to existing defenses that
mainly consider models as a set of vectors and matrices [4],
[14], [26], [27], [30], [37] and operate directly on them,
BayBFed first computes a probabilistic measure over the
clients’ updates that encompass all the adjustments made in
the updates due to any local client training strategy. Then,
BayBFed employs a detection algorithm that utilizes this
probabilistic measure to detect and filter out malicious up-
dates. Thus, it overcomes several shortcomings of previous
backdoor defense approaches. BayBFed utilizes two exten-
sions of Bayesian non-parametric modeling techniques: the
Hierarchical Beta-Bernoulli Process to draw a probabilistic
measure given the clients’ model updates (or weights),
and a variation of the Chinese Restaurant Process, CRP-
Jensen, which is a clustering algorithm that can leverage
the probabilistic measure to detect and filter out malicious
updates. Our extensive evaluation with benchmark datasets
in different domains demonstrates that BayBFed can effec-
tively mitigate backdoor attacks in FL while preserving the
benign performance of the global model.
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Appendix A.
Federated Learning

Federated learning (FL) collaboratively learns a global
model G by iteratively aggregating the local model updates
sent by the n clients selected during each training round.
In each training round t, the global model server selects
a total of n clients and sends them a common aggregated
global model, Gt−1. Then, each client i ∈ {1, . . . ,n} locally
trains a local model W t

i , using its own local dataset Di. After
training the local model, each client i, sends the updated
model parameters to the global server to compute the next
stage global model, Gt . In this paper, we assume the global
server aggregates the local updates by utilizing Federated
Averaging (FedAVG) function [23], given as:

Gt =
n

∑
i=1

si

s
W t

i , where si = ||Di|| and s =
n

∑
i=1

si

FedAVG utilizes each client’s training dataset to com-
pute the latest global model. A malicious client (or clients)
can take advantage of this requirement by sending the
erroneous dataset size [42]. To eliminate this scenario, we
assume equal weights (si = 1/n) for all the clients. Such
an approach has also been adopted in previous research
efforts [3], [37], [45], [35].

Appendix B.
Background and Preliminaries

In this section, we provide brief technical background
knowledge on Bayesian non-parametric modeling and re-
lated concepts, which will be critical in understanding the
design of BayBFed.

B.1. Hierarchical Beta-Bernoulli Process (HBBP)

Next, we describe the concepts of the baseline Beta Process,
the Hierarchical Beta Process, and the Bernoulli Process,
which are used to compute the probabilistic measure.
Beta Process (BP). A Beta Process is a random discrete
measure on the countable infinitely drawn set of weights,
where each weight has a mass in the range (0,1) such
that the total mass sums to 1. A Beta Process uses a
concentration function c over some space Ω = R and a
base measure H to produce some random measure A, i.e.,
A∼ BP(c,H). Given the set Ω, informally, a measure is any
consistent assignment of sizes to (some of) the subsets of the
set. Depending on the application, the size of a subset may
be interpreted as either its physical size or the probability
that some random process will yield a result within the
subset. Formally, a measure is a function µ : Σ 7→ [0,∞],
where Σ is the σ -algebra (collection of subsets) of Ω.
A concentration function (c) quantitatively characterizes
the scatter of the values of a random variable. Thus, it
indicates the similarity between the input base measure
(H) and the output random measure (A). The base measure
H can represent any initial distribution (see Sect. 4). We
also call γ0 = H(Ω) the mass parameter. So, if H is a
normal distribution, then γ0 is a normal distribution of the
complete space Ω. Alternatively, A is a discrete measure
(discrete weights), represented by A = ∑ j a jδw j , where δ is
an indicator function. Thus, in order to draw an infinitely
countable set of points (a j,w j) → [0,1]×Ω needs to be
drawn. The probabilistic weights {a j}∞

j=1 are distributed
by a stick-breaking process: d j ∼ Beta(γ0,1), a j = ∏

j
k=1 dk.

In a stick-breaking process [32], there is a stick of length
of 1 and a j represents the probabilistic weight taken
from the remainder of the stick every time. w j are drawn
independently and identically distributed (IID) from the
normalized base measure w j ∼ H/H(Ω) with domain Ω.
Here, Beta(·) represents the beta distribution that is used
to model the continuous random variables in the range [0,
1]. This work assumes that Ω is simply a space of weights.
The objective here is first to draw a baseline Beta prior
(random discrete measure) using a Beta Process and then
use this prior (in a Hierarchical Beta Process, as explained
next) to draw the corresponding Beta priors for the n entities.

Hierarchical Beta Process (HBP). A Hierarchical Beta
Process (HBP) is used to create hierarchies of the baseline
Beta process when certain conditions are satisfied. Alter-
natively, from a pool of countable infinite sets of weights
of the BP, a subset of weights (under some conditions)
are drawn for each sub-Beta Process, creating hierarchies.
We can employ HBP to draw a discrete random measure
corresponding to each of the n entities based on the base-
line Beta Process prior [41]. Let us consider the following
rationale for the construction of the HBP. Suppose that
W Prior is a list of the n entities’ weight vectors, Now, we
assume that the prior for each entity i, W Prior

i is generated
by including weights, which have a specific cosine angular
distance, with respect to some base weight, wb (different for
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every entity). Thus, each W Prior
i is generated by including

h weights (w) independently with a probability ph
w specific

to the entity i. These probabilities form a discrete measure
Ai,h over the space of weights Ω, and we put a Beta Process
BP(ci,A) prior on Ai,h (Note: Ai,h is the same as Ai defined in
Sect. 2 of main paper). In summary, we have the following
Hierarchical Beta model:

Baseline Beta prior: A∼ BP(c,H)

Hierarchical Beta prior: Ai,h ∼ BP(ci,A) ∀1≤ i≤ n

The random measure A, thus, Ai,h, encodes the
probability that each entity possesses each particular
weight.

Bernoulli Process (BeP). A Bernoulli Process (BeP) is a
draw of weights from a space of total weights, given the
Beta Process random measure that encodes the probability
of selecting the weight in the draw. BeP is employed to
draw weights given the Hierarchical Beta priors computed
earlier. Thus, the subsets of points in the HBP prior Ai,h
are drawn using a BeP with input as the random measure
Ai,h. Each subset Wi for entity in i ∈ {1, ...,n}, having l
weights, is characterized by a Bernoulli Process such that
Wi|Ai,h ∼ BeP(Ai,h). Each subset can also be represented by
a discrete measure such that the points (bi,l ,wl)→ [0,1]×Ω,
forms Wi = ∑l bi,lδwl , where bi,l is the probabilistic weight
(success probability) given to wl , i.e., Pr(bi,l = 1) = ph

w, if
they are included in the subset Wi.

Conjugacy. It has been shown in the literature that the
Beta distribution is the conjugate of the Bernoulli distribu-
tion [6]. Hence, we do not have to use the computationally
intensive Bayes’ rule to compute the posterior distribution
of hierarchical random measures. It can be computed as
follows: Let Ai,h ∼ BP(ci,A), and let Wi|Ai,h ∼ BeP(Ai,h).
In Wi = {Wi,1,Wi,2, ...,Wi,l}, l denotes the independent BeP
draws over the likelihood function, Ai,h. By using the results
for HBP and BeP in [17], the posterior distribution of Ai,h
after observing Wi is still a Beta process with modified
parameters:

Ai,h|Wi ∼ BP

(
ci + l,

ci

ci + l
H +

1
ci · l

l

∑
l=1

Wi

)
(9)

Our motivation is to first draw a baseline Beta Process
random measure by drawing a countable infinitely set of
weights, such that their probabilistic weight sums to 1. Then,
we use this baseline Beta Process to form hierarchies of
Beta Process for n different entities. We do so by selecting
a subset of h weights from the total weights space for each
of the n entities. Then, for each of the n entities, we use
Bernoulli Process to draw l weights from the corresponding
hierarchical Beta Process weights space. Finally, we keep
updating the corresponding hierarchical Beta Process for
entity n using the conjugacy of the Beta Process and the
Bernoulli Process [6].

B.2. Mixture modeling: Chinese Restaurant Pro-
cess (CRP)

The CRP [39], [5], [22] is a discrete-time stochastic process
in the probability theory that resembles the situation of
seating customers at tables in a Chinese restaurant with an
infinite number of circular tables, each with infinite capacity.
The first customer that arrives sits at the first table. The
following customers can either sit at the already occupied
tables or can choose to sit at the new table. This process
partitions the customers among tables. The results of this
process are exchangeable, meaning that the order in which
the customers arrive and sit does not affect the probability
of the final distribution. In CRP, we compute two probabil-
ities for table (cluster) assignment. The first probability is
the probability of the customer entering the restaurant and
sitting at the already occupied tables (clusters). The second
probability is the predictive probability of how well this new
customer fits the mean of already occupied tables (clusters).

B.3. Jensen-Shannon Divergence

Jensen-Shannon Divergence or Jensen-Divergence is used to
realize the distance between two distributions. Specifically, it
is computed by estimating the relative entropy between two
distributions. The entropy of a random variable X having
probability mass function P(x) is given as:

H(X) =−∑
x∈X

P(x)logbP(x) (10)

Jensen-Divergence is estimated using the Kullback-
Leibler divergence (KL-divergence). KL-divergence also
measures the distance between two distributions. However, it
is not symmetric and does not satisfy the triangle inequality.
Jensen-Divergence is an approach that improves upon the
KL-divergence, as it is symmetric and a smoothed version
of KL-divergence. KL divergence between two distributions
p and q is given as:

DKL(p||q) =
∫

∞

−∞

p(x)log
(

p(x)
q(x)

)
dx (11)

Jensen-Divergence between two distributions p and q is
given as:

JSD(p||q) = 1
2
(DKL(p||m)+DKL(q||m)) (12)

Appendix C.
Overview of Used Symbols

Table 3 contains an overview of the used symbols.

Appendix D.
BayBFed statistics for FMNIST

In this section, we evaluate the impact of non-IID rate
and PMR on the FMNIST dataset. First, we demonstrate
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Figure 11: Effect of different non-IID rates on the maximum Jensen-Divergence (Maxi
JD) for FMNIST dataset.
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Figure 12: Effect of different PMR rates on the maximum Jensen-Divergence (Maxi
JD) for the FMNIST dataset.
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Figure 13: Effect of different non-IID rates on the maximum Jensen-Divergence (Maxi
JD) for MNIST dataset.
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Figure 14: Effect of different PMR rates on the maximum Jensen-Divergence (Maxi
JD) for the MNIST dataset.

the trend of Maxi
JD for both the malicious and benign

clients with respect to each of these parameters. Then, we
illustrate the impact of non-IID rate and PMR on BayBFed’s
performance by quantifying different metrics as stated in
Sect. 5 and also compare it against the no defense scenario.

Illustration of Maxi
JD. The impact of the degree of non-IID

data and PMR on Maxi
JD for each client is shown in Fig. 11

and Fig. 12, respectively. We select a total of 30 (n= 30)
clients for both the non-IID and PMR experimental analysis.
For non-IID analysis, we test non-IID ∈ {0.0,0.5,1.0} and
set PMR= 0.2. Thus, the number of malicious clients equals
6 (nA = 6). For PMR analysis, we test PMR∈{0.2,0.3,0.5},
i.e., when nA equals 6, 9, and 15 and set non-IID = 0.7.
As illustrated in Fig. 11 and Fig. 12, the Maxi

JD value for
benign clients differs significantly from that of malicious
clients. Hence, BayBFed easily filters out all the malicious

client updates, achieving a BA of zero while keeping the
MA of the global model intact.

Appendix E.
BayBFed statistics for MNIST

In this section, we evaluate the impact of non-IID rate and
PMR on the MNIST dataset. First, we demonstrate the trend
of Maxi

JD for both the malicious and benign clients, with
respect to each of these parameters. Then, we illustrate the
impact of non-IID rate and PMR on BayBFed’s performance
by quantifying different metrics as stated in Sect. 5 and also
compare it against the no defense scenario.
Illustration of Maxi

JD. Impact of the degree of non-IID
data and PMR on Maxi

JD for each client is shown in Fig. 13
and Fig. 14, respectively. We select a total of 30 (n= 30)
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TABLE 3: Overview of symbols.
Symbol Description
BNP Bayesian non-parametric
HBBP Hierarchical Beta-Bernoulli Process
BP Beta Process
HBP Hierarchical Beta Process
BeP Bernouli Process
CRP Chinese Restaurant Process
f Neural Network (NN)
Beta(·) Beta distribution
Gt Global Model at time t
W t

i Local Model of client i at time t
Di Local dataset of client i
n Number of clients
nA Number of malicious clients
t FL training round
c Concentration function
Ω(R) Space of weights
H Base measure
A Beta Process random measure
γ0 Mass parameter
δ Indicator function
w j IID weights drawn from Ω(R) or from BP
a j Probabilistic weight assigned to w j
d j A stick-breaking process
W Prior List of the n client weight vectors
W Prior

i client i’s weight vector
h Weights drawn from BP to be included in W Prior

i

ph
w

Probability with which h weights are drawn from BP
to be included in W Prior

i
Ai,h or Ai HBP random measure for each client i having weights h
ci client i’s concentration function
BP(ci,A) HBP BP(ci,A) prior on Ai,h
wl IID weights drawn from HBP
bi,l probabilistic weight given to wl . Equal to ph

w
DKL(p||q) KL divergence between two distributions p and q
JSD(p||q) Jensen-Divergence between two distributions p and q
L Labels for samples from domain D
A Adversary
lA A chosen labels
DA trigger set of A
N Normal distribution
µp Mean of the flattened initial Gt

σp Standard deviation of the flattened initial Gt

W t
i,up Updated client weight at time t

Maxi
JD Maximum Jensen-Divergence

cos(Gt−1,W t
i )

Cosine angular distance between local model W t
i

and global model Gt−1
dwt

i
L2−norm between Gt−1 and W t

i
σwt

i
Measurement error due to the new client’s weight

W t
i,up Mean of W t

i,up
µcl Mean of the clusters
σcl Variance of the clusters
noc Total number of clusters formed yet
pi p distribution of client i
qnoc noc cluster q distribution

jsi
noc

Jensen-Divergence of noc cluster q distribution with
p distribution of client i

µnew Updated cluster’s mean
σnew Updated cluster’s standard deviation

nk
Number of clients update already assigned to a
particular cluster

τk Precision of the cluster
µ0 Initial mean for the new cluster
τ0 Initial Precision assumed for the new cluster
Maxstored

JD = [] Array of stored Maxi
JD

clients for both the non-IID and PMR experimental analysis.
For non-IID analysis, we test non-IID ∈ {0.0,0.5,1.0} and
set PMR = 0.2. Thus, number of malicious clients equals 6
(nA = 6). For PMR analysis, we test PMR ∈ {0.2,0.3,0.5},
i.e., when nA equals 6, 9, and 15 and set non-IID = 0.7.
As illustrated in Fig. 13 and Fig. 14, the Maxi

JD value for
benign clients differs significantly from that of malicious
clients. Hence, BayBFed easily filters out all the malicious
client updates, achieving a BA of zero while keeping the
MA of the global model intact.

Appendix F.
Additional adaptive attack

To implement an adaptive attack in which an adversary
makes small changes to client updates to keep the JD
divergences small, we increment the Poisoned Data Rate
(PDR) to demonstrate the increment in the client updates for
the CIFAR-10 dataset. We choose PDR to implement such
an adaptive attack because arbitrary increments in PDR will
also reflect the random increments in the client updates.
Then, we compute the T PR, T NR, BA, and MA metrics
to evaluate the effectiveness of BayBFed compared against
the no-defense BA and MA, for different PDR values. We
conduct experiments for three cases: a) PDR ∈ (0.1,0.75)
with an increment of 0.1, b) PDR ∈ (0.01,0.1) with an
increment of 0.01, and c) PDR ∈ (0.1,0.2) with an increment
of 0.01. Case a) demonstrates the impact of large PDR
increments on the metrics mentioned above. The BA with
no defense remains at zero for the initial PDR values of
0.01 and 0.1, and after that, it starts to increase. BayBFed
easily identified all the malicious updates, thus filtering out
all the malicious client updates, achieving a BA of zero while
keeping the MA of the global model intact. As we observed
in case a), the no-defense BA remains zero at PDR = 0.1
and starts to increase after that; we conducted two more
experiments for PDR ∈ (0,0.1) and PDR ∈ (0.1,0.2). The
reason is to analyze the BayBFed performance when PDR
increases. Case b) demonstrates the impact of very small
increments in PDR, and the no defense BA remains at zero
in this case. Nevertheless, BayBFed was correctly able to
identify all the malicious updates. In the case of c), the no
defense BA starts to increase from PDR = 0.11, and BayBFed
again correctly identified all the malicious updates, thus
achieving a BA of zero while keeping the MA of the global
model intact. This experimental analysis demonstrates that
even when a shrewd adversary makes small iterative changes
to PDR (in consequence, client updates), BayBFed works
efficiently by identifying all the malicious updates.
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