
Spectre Declassified: Reading from the Right Place
at the Wrong Time

Basavesh Ammanaghatta Shivakumar , Jack Barnes , Gilles Barthe ,
Sunjay Cauligi , Chitchanok Chuengsatiansup , Daniel Genkin

Sioli O’Connell , Peter Schwabe , Rui Qi Sim , Yuval Yarom

Georgia Institute of Technology, Atlanta, United States
IMDEA Software Institute, Madrid, Spain

MPI-SP, Bochum, Germany
Radboud University, Nijmegen, The Netherlands
The University of Adelaide, Adelaide, Australia

Abstract—Practical information-flow programming languages
commonly allow controlled leakage via a declassify construct—
programmers can use this construct to declare intentional leakage.
For instance, cryptographic signatures and ciphertexts, which are
computed from private keys, are viewed as secret by information-
flow analyses. Cryptographic libraries can use declassify to make
this data public, as it is no longer sensitive.

In this paper, we study the interaction between speculative
execution and declassification. We show that speculative execution
leads to unintended leakage from declassification sites. Concretely,
we present a PoC that recovers keys from AES implementations.
Our PoC is an instance of a Spectre attack, and remains effective
even when programs are compiled with speculative load hardening
(SLH), a widespread compiler-based countermeasure against
Spectre. We develop formal countermeasures against these attacks,
including a significant improvement to SLH we term selective
speculative load hardening (selSLH). These countermeasures
soundly enforce relative non-interference (RNI): Informally, the
speculative leakage of a protected program is limited to the existing
sequential leakage of the original program. We implement our
simplest countermeasure in the FaCT language and compiler—
which is designed specifically for high-assurance cryptography—
and we see performance overheads of at most 10%. Finally,
although we do not directly implement selSLH, our preliminary
evaluation suggests a significant reduction in performance cost
for cryptographic functions as compared to traditional SLH.

I. INTRODUCTION

Cryptographic software can be vulnerable to devastating
side-channel attacks, allowing malicious parties to recover
cryptographic keys from observing the timing behavior of
programs. A common means to limit such attacks is to
follow the cryptographic constant-time policy, which states
that programs do not leak confidential data through an
ideal model of cache-based timing side-channels. However,
writing efficient constant-time cryptographic software is no-
toriously hard [25]. The challenges of writing constant-time
cryptographic software are partially alleviated by dedicated
verification or mitigation frameworks. One example of such
a framework is FaCT [14], a security enhancing compiler
that transforms typable programs into constant-time programs.
The FaCT compiler features a constrained information-flow

1 public uint8 otp_and_decode(
2 secret uint8 m,
3 secret uint8 otp) {
4

5 secret mut uint8 c = m;
6 for (uint8 i from 0 to 8) {
7 c ^= (otp & (1 << i));
8 }
9

10 public uint8 d = declassify(c);
11 return decode[d];
12 }

Listing 1: One-time pad into table-based decoder. Skipping the
for loop (due to misspeculation) directly leaks the secret m.

type system with formal guarantees, but these guarantees have
a limited scope: First, they only hold for programs without
declassification. In practice, however, cryptographic software
must be able to release information that is technically typed
secret, such as encrypted ciphertexts or verification checks,
in a secure way. Second, FaCT only considers a sequential
model of execution. Unfortunately, modern platforms implement
aggressive optimizations such as speculative execution—the
root of the recent and devastating Spectre attacks [27]. Prior
work studies declassification and speculative execution in
isolation; see [40] for a survey on declassification and [16]
for an overview on Spectre countermeasures. However, we are
not aware of any work that studies the interactions between
declassification and speculative execution.

Unfortunately, we show that the interaction between declas-
sification and speculative execution can cause unintentional
leaks. This is demonstrated by the FaCT program in Listing 1.
In this program, a secret message m is encrypted by repeatedly
performing a bitwise one-time pad; the resulting ciphertext c
is fed into a table-based decoder. Since the ciphertext depends
on the secret message, it is also typed secret. For the FaCT
compiler to accept this program, c must be declassified before
it is fed to the decoder, as array indices can leak to an attacker

1753

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Basavesh Ammanaghatta Shivakumar. Under license to IEEE.
DOI 10.1109/SP46215.2023.00011

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

35
5

(e.g., via the cache). Assuming one-time pads are uniformly
distributed, it is easy to see that the program does not leak:
Indeed, the ciphertext is uniformly distributed and independent
from secrets, and thus the leakage is also independent of secrets.

On the other hand, if the program in Listing 1 were to
somehow bypass the loop, it would trivially leak m via c. Such a
scenario is clearly impossible during sequential execution; how-
ever, under adversarial speculative execution, an attacker with
control over branch predictions can cause the loop condition to
mispredict, skipping the loop body entirely. In fact, this attack
is notably different from prior Spectre attacks: Existing Spectre
attacks use speculation to bypass safety checks, allowing
attackers to leak data from unintended locations, i.e., out-
of-bounds memory or type-confused structures. Conversely, the
attacker described here leaks values from intended locations—
the value c in Listing 1 is explicitly declassified, after all—but
before these locations are fully secure. In other words, the
leakage happens due to reading from the right place (within
bounds) but at the wrong time (before it should be public).

FaCT’s formal security guarantees cannot capture or prevent
these speculative attacks. To remedy this gap, we ideally want
the speculative behavior of cryptographic software to reflect
the existing (sequential) security guarantees that frameworks
like FaCT provide. One such method of “hardening” programs
against adversarial speculation is speculative load hardening
(SLH) [13]: Informally, SLH protects programs by masking the
values of speculatively executed loads, ensuring memory safety
even during speculative execution. Unfortunately, applying SLH
to Listing 1 does not offer any protection, as the attack does
not depend on unsafe loads from misspeculated addresses.

We define the undesirable interaction between declassifi-
cation and speculative execution in terms of a formal threat
model (§III), and we define a simple language, semantics,
and type system (§IV) to analyze this new vulnerability. To
protect vulnerable programs, we formalize security in terms of a
property called relative non-interference (RNI) and we develop
an “ideal” speculative semantics for which well-typed programs
are RNI (§V). We realize this idealized semantics by developing
two program transformations: Selective speculative load hard-
ening (selSLH), an optimization over SLH, which only masks
values speculatively loaded into publicly-typed variables; and
masked declassification, which masks values declassified during
speculation. These countermeasures simulate the idealized
semantics during adversarially controlled speculative execution
of a program—well-typed programs transformed with these
countermeasures thus satisfy RNI. We also briefly consider
other countermeasures which combine (selective) SLH and add
speculation fences before declassification.

We evaluate the simplest form of our countermeasure—SLH
with fenced declassification—by modifying the FaCT com-
piler (§VI). We find that the overhead of our countermeasure on
the FaCT cryptographic benchmarks is under 10%. In addition,
we heuristically evaluate the performance savings of selSLH
over SLH by comparing the number of public- and secret-
typed loads in different cryptographic routines. Our results
show that selSLH can reduce the number of masked loads in

these programs by 80% or more.
Finally, we demonstrate the practical importance of RNI and

our theoretical model (§VII): We develop a proof-of-concept
(PoC) attack against a FaCT implementation of AES. Even
when this implementation is compiled with SLH, our PoC can
recover the cryptographic keys. We further demonstrate PoC
attacks against two implementations of AES from OpenSSL.

We have made all software associated with this paper,
including the PoC attack against AES code, the FaCT bench-
marks, and the heuristic analysis of selSLH, available online
at https://github.com/0xADE1A1DE/Spectre-Declassified.

II. BACKGROUND

A. Microarchitectural channels

Modern processor microarchitectures aim to improve the
performance of software, usually by predicting the future
behavior of programs. For example, data caches in the processor
store data that a program has recently accessed, allowing them
to exploit temporal and spatial locality in software. Similarly,
a processor’s branch predictors monitor conditional jumps that
the software executes, aiming to predict whether or not future
jumps will be taken and what the destination address will be.
Although the state of the microarchitecture does not affect the
computation results, it does affect the program performance.
Consequently, a program that monitors its own performance,
e.g., by measuring the time it takes to perform certain opera-
tions, can deduce the state of the microarchitecture. Moreover,
because the state of the microarchitecture is determined by
program execution, monitoring the microarchitecture will leak
information about past execution. Microarchitectural side-
channel attacks exploit these information leaks: An attacker
can monitor the microarchitectural components it shares with
a victim program to determine the victim’s behavior [21].

Microarchitectural attacks have exploited a variety of mi-
croarchitectural components, including data caches [29, 31, 47,
49], branch predictors [1, 20], translation lookaside buffers [22],
and return address stacks [17]. These attacks have devas-
tating consequences for the security of software—including
breaking cryptography [1, 31, 49], performing keystroke
monitoring [23], reversing machine-learning models [48], recon-
structing databases [41], and fingerprinting websites [42, 43].

Of particular relevance to cryptographic code are cache
attacks, which can determine which memory addresses a victim
program has accessed. For example, in a FLUSH+RELOAD [49]
attack, the attacker evicts a monitored memory location from
the cache before the victim program executes. After the victim
finishes running, the attacker measures the time to access the
previously evicted memory location. If the victim accessed the
monitored location, then the location will have been cached,
and the access time will be short. Otherwise, the contents of
the memory location will have to come from the the memory,
and the access time will be long.

B. Spectre attacks

Modern processors use speculative execution as a means
to improve performance. Under speculative execution, the

1754

processor fetches and executes instructions before knowing if
these computations are required rather than waiting for the
results of preceding computations. A simple case of speculative
execution is for branching statements: Instead of waiting for the
result of a branch condition, the processor may use a branch
predictor to guess which path will be taken and then execute
the predicted branch. Later, it will check whether the branch
predictor was correct, rolling back execution if this was not the
case. The rollback mechanism ensures that architectural effects
remain correct—e.g., registers and other architectural states
are reset to the initial point of misspeculation. However, the
microarchitectural state, like the cache, is not rolled back. As a
consequence, speculative execution can leak data that would be
protected under sequential (non-speculative) execution. Attacks
that exploit these predictors are known as Spectre attacks [27].

1 void access(public uint8[] array,
2 public uint64 index) {
3 if (index < len array) {
4 public uint8 res = array[index];
5 leak(res);
6 }
7 }

Listing 2: A FaCT program vulnerable to the basic Spectre-
PHT attack. The function checks that the index refers to an
item within the array before it accesses the array with the
index, leaking the result.

Listing 2 shows a program snippet that is vulnerable to a
basic Spectre attack. Because this style of attack targets the
processor’s pattern history table—which is responsible for
branch predictions—it is termed a Spectre-PHT attack [12].
The snippet in Listing 2 ensures that all memory accesses
are within the bounds of the input array. Under a sequential
execution model, this snippet succeeds at its goal: If an out-
of-bounds index is provided, the condition on line 3 will be
false and the access will not be executed. Under a speculative
execution model, however, it is possible for the body of the
branch to be executed before the branch condition—even if the
condition is ultimately revealed to be false. As these values
are obtained from incorrect speculation, any execution that
depends on them will eventually be rolled back. However,
an attacker can encode these values into the cache (or other
microarchitectural state) before the rollback, allowing them to
use a side-channel such as FLUSH+RELOAD to recover the
value. We refer the reader to the literature for a more extensive
account of Spectre attacks [12].

III. THREAT MODEL

We distinguish between the theoretical threat model, which
we use to prove the correctness of our countermeasure, and
the practical threat model, which instantiates our theoretical
threat model and which we use for our case study.

Our theoretical analysis is inspired by standard models for
reasoning about side-channel leakage: We assume a co-located
attacker whose goal is to coerce the victim program into leaking

sensitive data. The attacker can use the public interface of the
victim and can observe the victim’s control flow and memory
trace, but cannot otherwise execute code in the victim context
and cannot directly read or write the victim’s memory or
registers. The attacker can, however, influence and observe
the microarchitectural state of the victim program. Following
the standard Spectre-PHT threat model [15, 24], we allow the
attacker full control over the prediction of conditional branches.

Our model makes two additional conservative assumptions
regarding unsafe memory accesses and declassified values: First,
we assume that if the victim program makes an out-of-bounds
access, the target address can be arbitrarily controlled by the
attacker; this allows us to abstract over the memory layout
of the victim program. Second, we assume that the attacker
immediately observes declassified values. These conservative
assumptions lead to a stronger notion of security that is not
tied to specific architectural models.

Our case study is carried out in an instantiation of this
attack model, inspired by Patrignani and Guarnieri [32]. In this
instantiation, the attacker program invokes a victim function,
which has access to secret data; however, the attacker is not
allowed to directly access these secrets, even during misspecu-
lated execution. This limitation can be enforced, e.g., through
instrumentation [30, 45] or hardware mechanisms [26, 44, 46].
For our case study, we do not use such enforcing mechanisms;
instead, our attacker simply does not make any such accesses.

IV. SEMANTICS AND TYPING

For the theoretical analysis, we analyze programs in terms
of a core imperative while-language. We give our language a
semantics that handles speculative execution and a simple type
system for security labels.

A. Language syntax

We present the formal syntax of our language in Figure 1.
Our language is a while-language with speculation fences and
explicit declassification. For simplicity, we assume that memory
can only be accessed through fixed-size arrays. Our language
also features (constant-time) conditional expressions, which
we use for our countermeasures (see Section V-C).

We let v P V range over values, x P X range over registers,
and a P A range over arrays. We assume all values are either
integers or booleans and we let |a| denote the size of array a.
The state of a program during execution is then given by the
tuple xc, ρ, µ, by: The program, c P Com, is the next command
(or sequence of commands) to execute. The register map, ρ :
X Ñ V , maps register names to values; we write JeKρ for
evaluating expression e with the register mapping ρ, and we
write ρrx :“ vs to update register x with value v. The memory,
µ : A ˆ V á V , maps addresses—pairs of array names and
valid indices—to values; given i P r0, |a|q, we write µrpa, iqs
to retrieve the value at index i in array a and µrpa, iq :“ vs
to update the array a at index i with value v. Finally, the
speculation flag, b, is a Boolean value; we set b to J when
the program is misspeculating.

1755

e P Expr ::“ v value
| x register
| oppe, . . . , eq operator
| e ? e : e conditional expression

c P Com ::“ skip empty, do nothing
| c; c sequence
| x :“ e assignment
| x :“declassify e declassification
| x :“ ares load from array a offset e
| ares :“ e store to array a offset e
| if t then c else c conditional
| while t do c while loop
| fence fence

Figure 1: Syntax of programs.

B. Speculative semantics

Formally, we model speculative execution as an instrumented
adversarial semantics inspired by [8, 15]. This style of
semantics departs from classic semantics by using explicit
observations to model side-channel leakage and adversarial
directives to model adversarial control over branch prediction
and out-of-bounds accesses.

One-step execution of programs is given by a labeled
transition relation between states:

xc, ρ, µ, by
o
ÝÝÑ
d
xc1, ρ1, µ1, b1y

The directive d and observation o are taken from the following
syntaxes:

d P Dir ::“ step | force | load a, i | store a, i
o P Obs ::“ ‚ | read a, v | write a, v | branch b | decl v

Each observation o represents a potential leak of information
in the standard constant-time model [7].1 The read a, v
and write a, v observations, respectively, capture information
that is leaked via the cache or other memory side-channel
attacks [43, 49]. Similarly, the branch b observation captures
information an attacker can recover from the control flow of
the program, such as through port contention [2] or instruction
cache analysis [1, 20]. In addition, we include an observation
decl v that immediately leaks any explicitly declassified values,
as we conservatively assume that the attacker can learn any
declassified information.

The adversarial directives d allow our modeled attackers to
control the speculative behavior of a program during execution.
For example, to represent an attacker that causes a conditional
branch to misspeculate, we have the attacker supply the
directive force, which forces the program down the wrong
branch. Similarly, when a program is about to perform an
unsafe load or store, we conservatively allow the attacker to
control the address that is read from (or written to) with the
directive load a, i (resp. store a, i). Otherwise, the attacker

1For simplicity, we assume that instructions have no data-depending timing.

supplies the directive step, which simply executes the program
as per the usual semantics.

We provide our execution rules in Figure 2. Our rules are
similar to usual semantics for a simple while-language: Rules
rSEQ-SKIPs and rSEQs allow empty commands and command
sequencing, while rule rASSIGNs evaluates a given expression e
using the register file ρ and updates the register x accordingly.
We describe in detail our divergence from usual semantics:
Conditional branching. Conditional branches (rule rIFs) eval-
uate their branch expression t, continuing down the associated
branch. The value of the condition is leaked to the attacker via
the observation branch JtKρ. While loops (rule rWHs) proceed
similarly, leaking the loop condition on each iteration. We
also allow the attacker to force conditional branches and while
loops to misspeculate the result of their respective conditions
(rules rIF-Ss and rWH-Ss). When the attacker issues the
directive force instead of step, these rules cause execution
to proceed down the incorrect branch. Accordingly, we update
the speculation flag b to J to signal that we have misspeculated.
Because the force directive always forces the incorrect path,
we know that b “ J if and only if we have diverged from
sequential execution.
Memory operations. All memory operations in our semantics
are given as indices into discrete arrays. For safe accesses
(rules rLDs and rSTs) where the evaluated index JeKρ is in-
bounds for a, we leak the memory address via observation
read a, JeKρ (resp. write a, JeKρ). We assume all programs
are memory-safe during sequential execution. However, if a
program has misspeculated, an attacker may coerce the program
into performing unsafe memory operations (rules rLD-Us and
rST-Us). If, during a misspeculated memory operation, the
index e is out-of-bounds (that is, JeKρ R r0, |a|q), then we
conservatively allow the attacker to specify where the out-
of-bounds address leads. In this case, the attacker issues the
directive load a1, i (resp. store a1, i) to pick the address that
will be loaded from (or stored to)—this may use a different
array entirely, but must be valid (i.e., i P r0, |a1|q).
Speculation barriers. Modern processors include speculation
barrier instructions that halt execution and wait for all
speculation to properly resolve. We model speculation barriers
in our language with the fence command (rule rFENs), which
only allows execution to continue if the current execution has
never misspeculated (that is, b “ K). Otherwise (if b “ J), we
let execution become stuck.
Declassification. Declassified assignment (rule rDECLs)
is semantically similar to regular assignment. However, we
explicitly leak the value of the expression e to the attacker via
the observation decl JeKρ.

The following lemma summarizes key structural properties
of execution:

Lemma 1. If xc, ρ, µ, by o
ÝÝÑ
d
xc1, ρ1, µ1, b1y then:

‚ If b “ J then b1 “ J.

‚ If b “ K and b1 “ J then d “ force.

‚ If d “ load a, v or store a, v then b “ J.

1756

ρ1 “ ρrx :“ JeKρs

xx :“ e, ρ, µ, by
‚

ÝÝÑ
step

xskip, ρ1, µ, by
rASSIGNs

JeKρ P r0, |a|q ρ1 “ ρrx :“ µrpa, JeKρqss

xx :“ ares, ρ, µ, by
read a,JeKρ

ÝÝÝÝÝÝÝÑ
step

xskip, ρ1, µ, by

rLDs

JeKρ R r0, |a|q i P r0, |a1|q ρ1 “ ρrx :“ µrpa1, iqss

xx :“ ares, ρ, µ,Jy
read a,JeKρ

ÝÝÝÝÝÝÝÑ
load a1,i

xskip, ρ1, µ,Jy

rLD-Us

JeKρ P r0, |a|q µ1 “ µrpa, JeKρq :“ Je1Kρs

xares :“ e1, ρ, µ, by
write a,JeKρ

ÝÝÝÝÝÝÝÑ
step

xskip, ρ, µ1, by

rSTs

JeKρ R r0, |a|q i P r0, |a1|q µ1 “ µrpa1, iq :“ Je1Kρs

xares :“ e1, ρ, µ,Jy
write a,JeKρ

ÝÝÝÝÝÝÝÑ
store a1,i

xskip, ρ, µ1,Jy

rST-Us

xc1, ρ, µ, by
o

ÝÝÑ
d

xc11, ρ
1, µ1, b1y

xc1; c2, ρ, µ, by
o

ÝÝÑ
d

xc11; c2, ρ
1, µ1, b1y

rSEQs

xc1, ρ, µ, by
o

ÝÝÑ
d

xskip, ρ1, µ1, b1y

xc1; c2, ρ, µ, by
o

ÝÝÑ
d

xc2, ρ
1, µ1, b1y

rSEQ-SKIPs

xif t then cJ else cK, ρ, µ, by
branch JtKρ

ÝÝÝÝÝÝÑ
step

xcJtKρ , ρ, µ, by

rIFs

xif t then cJ else cK, ρ, µ, by
branch JtKρ

ÝÝÝÝÝÝÑ
force

xc␣JtKρ , ρ, µ,Jy

rIF-Ss

cK “ skip cJ “ c;while t do c

xwhile t do c, ρ, µ, by
branch JtKρ

ÝÝÝÝÝÝÑ
step

xcJtKρ , ρ, µ, by

rWHs

cK “ skip cJ “ c;while t do c

xwhile t do c, ρ, µ, by
branch JtKρ

ÝÝÝÝÝÝÑ
force

xc␣JtKρ , ρ, µ,Jy

rWH-Ss

xx :“declassify e, ρ, µ, by
decl JeKρ

ÝÝÝÝÝÑ
step

xskip, ρrx :“ JeKρs, µ, by

rDECLs

xfence, ρ, µ,Ky
‚

ÝÝÑ
step

xskip, ρ, µ,Ky
rFENs

Figure 2: One-step (adversarial) semantics.

The first item states that there is no way for b to reset
to K once it has been set; we purposefully do not model
speculative rollback, as it is unnecessary when considering all
possible execution paths as in our analysis [8]. The second
item states that the only way for b to become J (i.e., for
execution to misspeculate) is through the force directive. Thus
every execution follows sequential semantics up until the point
of misspeculation (if any). The last item states that unsafe
accesses can only happen after the program has misspeculated.

Typing

Γpeq ď Γpxq

Γ $ x :“ e
rASSIGNs

Γpeq “ L Γpaq ď Γpxq

Γ $ x :“ ares
rLDs

Γpeq “ L Γpe1q ď Γpaq

Γ $ ares :“ e1
rSTs

Γptq “ L Γ $ c1 Γ $ c2

Γ $ if t then c1 else c2
rIFs

Γptq “ L Γ $ c

Γ $ while t do c
rWHs

Γ $ c1 Γ $ c2

Γ $ c1; c2
rSEQs

Γpxq “ L

Γ $ x :“declassify e
rDECLs

Figure 3: Standard constant-time typing with declassification.

Complete executions. We let xc, ρ, µ, by O
ÝÑ
D
Ñ xc1, ρ1, µ1, b1y de-

note the labeled reflexive-transitive closure of single-step execu-
tion. Moreover, we write xc, ρ, µ,Ky óOD when xc, ρ, µ,Ky O

ÝÑ
D
Ñ

xskip, ρ1, µ1, b1y or xc, ρ, µ,Ky O
ÝÑ
D
Ñ xfence, ρ1, µ1,Jy: The first

case corresponds to a complete execution that has terminated
and the second to a misspeculated execution that has become
stuck. When execution remains entirely sequential, i.e., all direc-
tives are step, we write xc, ρ, µy óO instead of xc, ρ, µ,Ky óOD.

C. Typing environment and speculation

We assume that every register and array is tagged with a
security level. For simplicity, we only consider the lattice of
security levels L ď H , where H is secret data and L is public
data: Public values can be treated as secret, but not vice versa
(unless explicitly declassified). Other choices of security lattices
are possible, but are not considered in this paper. Additionally,
we do not consider arrays with mixed sensitivity—arrays are
either entirely public or entirely secret.

We use Γ to denote the static typing environment; Γpxq
and Γpaq represent the security levels of registers x and
arrays a respectively. We extend Γ to expressions by defining
Γpeq “ maxxPVarspeq Γpxq, where Varspeq is the set of variables
contained in e.

We present our typing rules in Figure 3. As usual, we
allow public values to be assigned to secret variables, but
not vice-versa: Rule rASSIGNs specifies Γpeq ď Γpxq for
x :“ e to be well-typed. Rules rLDs and rSTs enforce similar
constraints. In addition, memory and control-flow commands
use constant-time typing rules [14, 15]: Array indices must
be public pΓpeq “ L in rules rLDs and rSTsq, since memory
addresses are leaked to the attacker during execution. Similarly,

1757

control flow can only depend on public branching conditions
pΓptq “ L in rules rIFs and rWHsq since branch conditions
are also leaked. Finally, explicit declassification (rule rDECLs)
allows secret values to be assigned to public variables with no
constraints on the type of e.

Under this type system, well-typed programs (without
declassification) are secure under standard execution, since any
leakage observations can only be of public values. We formalize
this claim using the standard notion of low-equivalence:

Definition 1 (Low equivalence). For a well-typed program
Γ $ c, we have pρ1, µ1q „ pρ2, µ2q iff ρ1pxq “ ρ2pxq for
every x P X such that Γpxq “ L and µ1paq “ µ2paq for every
a P A such that Γpaq “ L.

Lemma 2. Given a well-typed program c, if c is declassify-
free and pρ1, µ1q „ pρ2, µ2q and xc, ρ1, µ1y óO1 and
xc, ρ2, µ2y ó

O2 then O1 “ O2.

Lemma 2 states that if two sequential executions of a program
have low-equivalent initial states—i.e., that they agree on
all public values—then they will have identical observation
traces. An attacker thus cannot recover any secret information.
However, under speculative execution, this no longer holds:
Even if a program is well-typed, an attacker can force the
program down misspeculated paths to reveal secret information.

The program in Listing 2 demonstrates this exact scenario:
Sequentially, the program can only access (and leak) the public
values from array. However, if the attacker can control the
value of index and forces the branch on line 3 to misspeculate,
they can leak any arbitrary value from memory—including
secret values from elsewhere in the program.

A more subtle problem is that attackers can cause unintended
declassification, as seen in Listing 1. Sequentially, the masking
result c is declassified only after being properly masked. Even
though this result is leaked via the access to table, the
attacker normally only learns the final obfuscated value. How-
ever, if the attacker forces the loop condition to misspeculate
(and thus skip the loop body entirely), the result c that gets
declassified and leaked is exactly the original secret input m.

V. RELATIVE NON-INTERFERENCE

Broadly speaking, it is a standard practice to model security
policies as information-flow policies. These policies can be
direct or relative: While direct policies enforce an explicit
notion of security (e.g., “secret-typed data should not leak”),
relative policies enforce security in terms of existing behavior
(e.g., “regardless of type, speculative execution should not
leak more information than sequential execution”) [16]. Direct
policies offer stronger guarantees than relative policies, but
cannot always be achieved.

In the classic sequential setting, most security policies
enforce non-interference: Informally, non-interference states
that an attacker cannot distinguish between two executions
of the same program that use different secret inputs (but
identical public inputs). However, simple non-interference is
insufficient for programs that use declassification, as an attacker
can trivially distinguish traces with declassified secret values.

Instead, we frame our security policy as a relative property.
Concretely, we evaluate the speculative security of a program
relative to its sequential behavior; during speculative execution,
a program should not reveal more information to an attacker
than it would have sequentially. We formalize this property as
relative non-interference (RNI).

A. Relative non-interference

We define relative non-interference (RNI) as a relative
policy which contrasts the speculative and sequential leakage
observations of a program. Our notion is inspired by prior
speculative non-interference properties [16, 24] and is a form
of robust declassification [50] in the speculative domain.

Definition 2. A program c is RNI iff for every pair of executions
xc, ρ1, µ1,Ky ó

O1

D and xc, ρ2, µ2,Ky ó
O2

D such that pρ1, µ1q „

pρ2, µ2q we have:

O˚
1 “ O˚

2 ùñ O1 “ O2

where xc, ρ1, µ1,Ky ó
O˚

1

D˚ (resp. O˚
2) and D˚ is the longest

prefix of D that does not contain the directive force.

Formally, RNI requires that for every sequence of directives
D, given any pair of executions of program c from equivalent
states, if the resulting traces O1 and O2 are equal up to the first
force directive (i.e., the point of first misspeculation) then the
traces must remain equal for the remainder of the execution.

As we see in Listings 1 and 2, well-typed programs can still
fail to satisfy RNI. However, given a well-typed program c, we
can transform it into a program c1 that not only satisfies RNI,
but remains sequentially equivalent to c: Under sequential
execution, c1 will produce the same output and the same
sequence of observations as c. We formalize this transformation
in two steps: We first define an idealized semantics and show
that well-typed programs satisfy RNI under this idealized
semantics. Then, we show that the idealized semantics can be
implemented by a program transformation.

B. Idealized semantics

The idealized semantics protects instructions that would
speculatively leak secrets—namely, declassify and load instruc-
tions. We find, however, that load instructions which operate
on secret arrays (i.e., Γpaq “ H) do not need to be protected:
Regardless of adversarial misspeculation, the result of a secret
load remains typed secret, and thus cannot be leaked from
a well-typed program. As a result, to create the idealized
semantics, we only need to modify the original semantics in
the following two ways:

‚ Public loads: The target register is updated with a default
value when the speculation flag is set to true.

‚ Declassify: The target register is updated with a default
value when the speculation flag is set to true.

We formalize the idealized semantics in Figure 4 with
a new step relation xc, ρ, µ, by

o
Ýá
d

xc1, ρ1, µ1, b1y and we
write complete executions of the idealized semantics as
xc, ρ, µ, by ÛO

D xc1, ρ1, µ1, b1y. As before, we omit b and D
when considering a sequential execution of the program.

1758

JeKρ P r0, |a|q ρ1 “ ρrx :“ µrpa, JeKρqss

xx :“ ares, ρ, µ,Ky
read a,JeKρ

ÝÝÝÝÝÝÝá
step

xskip, ρ1, µ,Ky

rLDs

Γpaq “ H JeKρ R r0, |a|q

i P r0, |a1|q ρ1 “ ρrx :“ µrpa1, iqss

xx :“ ares, ρ, µ,Jy
read a,JeKρ

ÝÝÝÝÝÝÝá
load a1,i

xskip, ρ1, µ,Jy

rLD-Us

Γpaq “ L ρ1 “ ρrx :“ 0s

xx :“ ares, ρ, µ,Jy
read a,JeKρ

ÝÝÝÝÝÝÝá
step

xskip, ρ1, µ,Jy

rLD-PROTs

ρ1 “ ρrx :“ JeKρs

xx :“declassify e, ρ, µ,Ky
decl JeKρ

ÝÝÝÝÝá
step

xskip, ρ1, µ,Ky

rDECLs

ρ1 “ ρrx :“ 0s

xx :“declassify e, ρ, µ,Jy
decl 0

ÝÝÝá
step

xskip, ρ1, µ,Jy
rDECL-PROTs

Figure 4: Selected rules for idealized semantics.

We can now show the sequential equivalence of the original
and idealized semantics:

Lemma 3 (Sequential quivalence of semantics). Well-typed
programs have equivalent sequential leakage and functional
behavior under both semantics:

xc, ρ, µy óO xc1, ρ1, µ1y iff xc, ρ, µy ÛO xc1, ρ1, µ1y.

The proof of the lemma is by inspection of the semantic rules
for single-step execution followed by induction on the length
of the complete execution.

Next, we show that well-typed programs are RNI under
idealized semantics:

Proposition 1 (RNI with idealized semantics). If $ c then c
is RNI under the idealized semantics.

We prove this proposition via two unwinding lemmas [37]—one
each for sequential and speculative execution.

Lemma 4 (Unwinding lemma for sequential execution). Let
d “ step, force. If $ c, then for every pair of execution steps:

xc, ρ1, µ1,Ky
o1
Ýá
d
xc1

1, ρ
1
1, µ

1
1, b

1
1y

xc, ρ2, µ2,Ky
o2
Ýá
d
xc1

2, ρ
1
2, µ

1
2, b

1
2y

we have:

pρ1, µ1q „ pρ2, µ2q ^ o1 “ o2

ùñ pρ1
1, µ

1
1q „ pρ

1
2, µ

1
2q ^ c1

1“c
1
2 ^ b1

1“b
1
2.

The unwinding lemma for sequential execution considers two
single-step executions with the same directive and observation,
and shows that the respective register maps and memories
remain equivalent. We present the full proof in Appendix A.

Lemma 5 (Unwinding lemma for idealized speculative execu-
tion). If $ c then for every pair of execution steps:

xc, ρ1, µ1,Jy
o1
Ýá
d
xc1

1, ρ
1
1, µ

1
1,Jy

xc, ρ2, µ2,Jy
o2
Ýá
d
xc1

2, ρ
1
2, µ

1
2,Jy

we have:

ρ1„ρ2 ùñ o1“o2 ^ ρ1
1„ρ

1
2 ^ c1

1“c
1
2

The unwinding lemma for speculative execution considers two
executions with the same directive and shows preservation
of equivalence for register maps and observations. Again, we
present the full proof in Appendix A.

With these two lemmas, we can now prove Proposition 1:
Proof. W.l.o.g. we can decompose the two executions as:

xc, ρ1, µ1,Jy
O1:o1
ÝÝÝá

D1
Ýá xc1

1, ρ
1
1, µ

1
1,Ky

O1
1

ÝÝá
D2
Ýá xfence, ρ1

1, µ
1
1,Ky

xc, ρ2, µ2,Jy
O2:o2
ÝÝÝá

D1
Ýá xc1

2, ρ
1
2, µ

1
2,Jy

O1
2

ÝÝá
D2
Ýá xfence, ρ1

2, µ
1
2,Ky

where D1 “ stepn :: force and D “ D1 :: D2. Assume that
O1 “ O2. By repeated applications of Lemma 4, it follows that
the instructions and the memories before executing the force
step are equivalent. Since force executes on a public branching
instruction, the two force steps leak the same observations,
i.e., o1 “ o2, and hence by one final application of Lemma 4
we conclude that c1

1 “ c1
2 and that pρ1

1, µ
1
1q „ pρ1

2, µ
1
2q. By

repeated applications of Lemma 5, we conclude that O1
1 “ O1

2,
and hence O1 :: o1 :: O1

1 “ O2 :: o2 :: O1
2, as desired.

C. Program transformation

To implement the idealized semantics, we define a concrete
program transformation LcM. We present the transformation
rules in Figure 5. Our transformations make the misspeculation
flag b concrete, instrumenting programs to track this value in
a (unique) architectural register b̃. In particular, we update b̃
when entering a branch or a loop body and after exiting a
loop. We use b̃ to implement the selective SLH and masked
declassify countermeasures, which respectively protect memory
loads and declassification statements.

SelSLH, or selective speculative load hardening, masks the
results of public memory loads against b̃. Hence if b̃ is J—i.e.,
the program has misspeculated—then the result of the load
becomes 0. However, selSLH explicitly does not transform
secret loads; this is an improvement over traditional SLH,
which masks all loads. SelSLH is particularly relevant for
cryptographic programs since such programs mainly operate
on secret data: The intuition is that secret loads already handle
sensitive data, and thus our typing rules already protect any
data from these loads from leaking. Interestingly, this means
selSLH benefits from “over-labeling” inputs as secret (as long
as the program remains well-typed), as this allows us to further
reduce the number of transformation sites. We present some
preliminary results of the potential savings in Section VI-C.

Masked declassification is an even simpler mitigation: At
every declassify statement, we mask the result against b̃.

1759

Lx :“ eM “ x :“ e
Lares :“ e1M “ ares :“ e1

Lx :“ aresM “ x :“ ares;x :“ b̃ : 0?x , Γpxq “ L
Lx :“ aresM “ x :“ ares , Γpxq “ H

Lx :“declassify eM “ x :“ e;x :“ b̃ : 0?x

Lif t then c1 else c2M “ if t then pb̃ :“ t?b̃ : J; Lc1Mq else pb̃ :“ t?J : b̃; Lc2Mq

Lwhile t do cM “ while t do pb̃ :“ t?b̃ : J; LcMq; b̃ :“ t?J : b̃
Lc1; c2M “ Lc1M; Lc2M

Figure 5: Selective SLH and masked declassification countermeasures. Transformation of loads is predicated on the type of x.

Just as with selSLH, if the program has misspeculated, the
result becomes 0, thus preventing transient values from being
improperly declassified.

Finally, we prove that our transformation properly imple-
ments the idealized semantics: Given a program c, the ideal
execution of c agrees with the execution of the transformed
program LcM. We present the formal definition of agreement as
Lemma 7 in Appendix A and state the correctness here in a
simplified form:

Lemma 6 (Implementation of idealized semantics, simplified).
The following are equivalent:

‚ xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

‚ xLcM, ρrb̃ :“ bs, µ, by óOD xc
1, ρ1rb̃ :“ b1s, µ1, b1y

The lemma is proved by induction on the length of execution.
Although we focus on selSLH and masked declassification,

in practice developers may be forced to fall back to alternatives.
In particular, without compiler support for public/secret type
information, we must conservatively mask every array access.
Similarly, it is not feasible to implement masked declassification
without proper compiler support. In this case, we can instead
use fenced declassification: Instead of masking the result of
declassification, we insert a fence instruction before each
declassify statement—fences prevent misspeculated execution
from proceeding, so unintended values cannot be declassified.
Although less efficient, these alternative countermeasures are
still sound: We can easily define corresponding idealized
semantics and transformations for each combination of coun-
termeasures; the proofs of these countermeasures proceed in
exactly the same way.

VI. IMPLEMENTATION AND EVALUATION

We evaluate the performance of SLH and fenced declas-
sification using FaCT [14], a domain-specific framework for
writing efficient constant-time cryptographic routines. FaCT
is an ideal target for implementing our countermeasures:
The FaCT language already supports information-flow typing
and declassification, and the FaCT compiler uses the LLVM
compiler infrastructure, which already supports SLH.

A. FaCT implementation

FaCT is a framework for writing efficient constant-time code.
The framework consists of two components: The FaCT lan-

Table I: Case study summary: Lines of code in FaCT and uses
of declassify (#D).

Case study LoC #D

libsodium secretbox 1068 1
curve25519-donna-c64 342 1
OpenSSL record validate 91 1
OpenSSL MEE-CBC 219 1

guage, a domain-specific language supported by an information-
flow type system; and the FaCT compiler, which generates
efficient constant-time code. In order to ease programming,
FaCT explicitly allows secret-dependent control flow. The FaCT
compiler uses type-directed transformations to remove any
potential timing leaks; the resulting programs are constant-time
and well-typed in a system similar to Figure 3.

The FaCT distribution includes ports of code from several
well-known cryptographic libraries, including the secretbox
authenticated encryption suite from libsodium [19]; the donna-
c64 implementation of the Curve25519 elliptic-curve primi-
tive [28]; and SSLv3 and TLS packet verification code from
OpenSSL [33]. We provide an indication of the size of each
port and the number of declassify statements in Table I.

Implementing SLH and fenced declassification required two
modifications to the FaCT compiler:
‚ We modified code generation to insert a fence instruction

before each declassification. Concretely, our implementa-
tion inserts the llvm.x86.sse2.lfence LLVM intrinsic before
changing the security label.

‚ We upgraded FaCT’s backend to LLVM 11 to make use of
LLVM’s -mspeculative-load-hardening option.

B. Performance evaluation

Our performance evaluation uses the case studies from FaCT.
We made the following modifications to their benchmarks:
‚ We collect measurements in terms of CPU cycle counts and

report the median and quartiles of repeated measurements..
This is a standard practice to eliminate outliers due to system
interrupts.

‚ We declassify the outputs of Curve25519 and secretbox
encryption. This is not required by the FaCT type system,
but it reflects that the outputs of Curve25519 public-key
generation and of secretbox authenticated encryption are
indeed public, and must be safe even if leaked by the caller.

1760

Table II: Benchmarks summary: Lower quartile, median, and upper quartile for each implementation.

Implementation Cpucycle counts: P25, P50, P75

FaCT (plain) FaCT w/ SLH FaCT w/ SLH+Fence

donna 1.96e5 1.96e5 1.96e5 2.13e5 2.13e5 2.13e5 2.13e5 2.13e5 2.13e5
secretbox ref enc 2.03e3 2.03e3 2.03e3 2.20e3 2.20e3 2.20e3 2.23e3 2.23e3 2.23e3
secretbox ref dec 2.93e3 2.93e3 2.93e3 3.12e3 3.12e3 3.12e3 3.14e3 3.14e3 3.15e3
secretbox vec enc 1.93e3 1.93e3 1.94e3 2.04e3 2.04e3 2.04e3 2.07e3 2.07e3 2.07e3
secretbox vec dec 2.83e3 2.83e3 2.83e3 2.97e3 2.97e3 2.97e3 2.98e3 2.98e3 2.98e3
mee 256mb 2.31e9 2.31e9 2.31e9 2.31e9 2.31e9 2.31e9 2.32e9 2.33e9 2.33e9
mee 1gb 9.22e9 9.23e9 9.23e9 9.25e9 9.27e9 9.29e9 9.32e9 9.34e9 9.37e9
mee 4gb 3.68e10 3.69e10 3.69e10 3.70e10 3.70e10 3.71e10 3.71e10 3.72e10 3.73e10
ssl3 256mb 3.09e9 3.10e9 3.10e9 3.09e9 3.10e9 3.10e9 3.11e9 3.12e9 3.12e9
ssl3 1gb 1.23e10 1.23e10 1.24e10 1.24e10 1.24e10 1.24e10 1.24e10 1.24e10 1.25e10
ssl3 4gb 4.95e10 4.95e10 4.96e10 4.95e10 4.96e10 4.96e10 4.98e10 4.99e10 4.99e10

Figure 6: Median of FaCT with SLH and SLH+Fence miti-
gations over unmodified FaCT in Curve25519 donna-c64 and
libsodium’s secretbox. We omit quartiles as the measurement
variance was negligible.

We measured each case study with unmodified FaCT, FaCT
with LLVM’s SLH enabled, and FaCT with both SLH and
fenced declassification. We used a machine with an Intel i7-
9700K CPU and 64GB RAM; this CPU does not feature
hyperthreading and we disabled the TurboBoost feature for
consistency. We present our results in Figures 6 and 7 and we
report the absolute cycle counts in Table II. We find that the
overhead introduced by SLH is significant, but the additional
overhead introduced by fenced declassification is very small:
In cryptographic software, declassification is required, although
rare, and usually only upon the final output. The OpenSSL
benchmarks in Figure 7 show a smaller overhead compared
to the libsodium benchmarks in Figure 6; this is because the
OpenSSL benchmarks are much less CPU-bound.

C. Performance of selSLH

Implementing selSLH requires major changes to the LLVM
compiler—including implementing a security type system for
the LLVM IR—and is out of scope for this paper. Instead, we
estimate selSLH’s improvement over standard SLH by classify-

Figure 7: Median overhead of FaCT with SLH and SLH+Fence
mitigations over unmodified FaCT in OpenSSL operations, with
upper and lower quartiles displayed.

ing memory loads: We analyzed the reference implementation
of ChaCha20 [9], as an example of a primitive that has a
public variable input length; the donna-c64 implementation
of scalar multiplication on Curve25519 [28], as an example
of a primitive with all inputs and outputs of fixed length;
and the reference implementation of the Ed25519 public-key
signature scheme [10], as an example of a higher-level API. We
compiled all implementations with gcc-10.2 and optimization
flags -fomit-frame-pointer -march=native on a
machine with an Intel i7-6500U CPU.

For our evaluation, we modified the Pitchfork analysis
tool [15], which uses symbolic execution to verify binaries for
sequential (and speculative) constant-time. More importantly
for us, Pitchfork propagates the security types of values through
execution by using the initial types of any inputs and global
data. We instrumented Pitchfork to classify and count each
load it encounters during sequential execution.

With selSLH, the security type of inputs has a direct impact
on performance, as secret values do not need to be protected
by SLH mitigations. For our evaluation, we declare all inputs

1761

Table III: Counts of public and secret loads of various
cryptographic routines. We report the percentage reduction
of mitigations that selective SLH would provide as compared
to traditional SLH.

Impl. # public # secret # total SLH saved

ChaCha20 (512 B) 192 766 958 79.96%
ChaCha20 (1024 B) 384 1,518 1,902 79.81%
donna-c64 2,054 43,663 45,717 95.51%
Ed25519 keypair 14,103 348,878 362,981 96.11%
Ed25519 sign 12,200 349,221 361,421 96.62%
Ed25519 verify 1,127 65,409 66,536 98.31%

to be secret unless they must be public to be well-typed (i.e.,
values that get leaked during normal execution). For example,
while the fixed basepoint of Curve25519 in donna-c64 is public
in principle, declaring it as secret is not unsound, and results
in fewer public loads.

We present our results in Table III. Our experiments show
that for typical cryptographic code, we can indeed safely
and soundly omit the majority of SLH protections. In the
ChaCha20 implementation, for example, nearly 80% of the
loads are for secret data, and thus need not be protected by
SLH; the remaining loads access public pointers and loop
counters spilled to the stack (and must remain protected). For
the donna-c64 Curve25519 implementation and the Ed25519
signature functions, the savings reach more than 95%—selSLH
is able to remove nearly all SLH protections. Although
these measurements do not translate directly to performance
improvements, they serve as a useful indication of how much
performance selSLH can recover from the overhead of standard
SLH mitigation.

VII. CASE STUDY: AES
Section V demonstrates that interactions between declas-

sification and speculative execution may breach the security
guarantee of a program. In this section we demonstrate some
of the risks that this may cause in realistic scenarios. We inves-
tigate declassification in the common case of AES encryption,
where declassification is required to allow transmitting the
ciphertext. We demonstrate that due to speculative execution,
the ciphertext may be declassified too early leading to disclosure
of an improperly encrypted message. We leave a description
of how to recover a key from such messages to Appendix B.

More specifically, we look at an implementation of AES
written in FaCT that uses the AES-NI instruction set to perform
the encryption rounds. Successive rounds are implemented as
straight-line code with two branches that exit early after ten
or twelve rounds to allow for the different key lengths of
AES. We further look at two implementations that are part of
OpenSSL: The default implementation, which uses AES-NI,
and a machine-independent version that uses T-tables.

A. AES Background

The Advanced Encryption Standard (AES) is a symmetric
block-cipher, operating on 128-bit block size using keys of size

128, 192, or 256 bits. AES follows a substitution-permutation
network design whose construction consists of multiple rounds
to produce a ciphertext.
AES Round Overview. The 128-bit AES state is written as
a 4ˆ 4 byte matrix and in each round transformed through 4
operations: SubBytes, ShiftRows, MixColumns and Add-
RoundKey. The final round (10, 12, or 14 depending on
the key size) does not perform MixColumns. The SubBytes
operation replaces each byte by another byte according to a
predefined lookup table. ShiftRows circularly rotates row i
to the left by i. MixColumns is a linear transformation of
the columns with bytes interpreted as elements of GFp28q.
AddRoundKey performs an exclusive-or with a round key.
Note that SubBytes is the only non-linear transformation.
AES-NI. The Advanced Encryption Standard instruction
set (AES-NI) is an extension of the x86-64 instruction set,
which implements the steps of the AES encryption. It offers
both better performance and enhanced security than software
implementations. For AES encryption, AES-NI supports two
main instructions: AESENC, which performs a full AES round
consisting of SubBytes, ShiftRows, MixColumns, and Add-
RoundKey, and AESENCLAST, which performs SubBytes,
ShiftRows, and AddRoundKey for the last round.

B. PoC Attack Overview

The high-level idea behind the attack is to train the branch
prediction unit (BPU) to speculatively exit the AES implemen-
tation after performing fewer rounds than required. We flush
the key length from the cache then invoke the encryption. The
BPU predicts which branches to take in the implementation
and by extension predicts how many rounds to apply. Because
it takes time for the processor to retrieve the key length from
the memory, the processor does not immediately detect the
misprediction, allowing the code to return speculatively to
the attacker, who then leaks the ciphertext via a cache-based
covert channel. At some later time, the processor retrieves the
correct number of rounds and squashes all of the mispredicted
execution, including any later execution of the attacker. It
then restarts execution from the first mispredicted branch,
completing the correct number of rounds. However, squashing
instructions does not revert any changes made to the cache.
This allows an attacker to measure the state of the cache using
the FLUSH+RELOAD attack [49] and retrieve the partially
encrypted ciphertext.

C. PoC Attack on AES

We begin with a description of our PoC attack on Listing 3.
The aes_round and aes_final_round functions are
backed by compiler intrinsics that replace the functions with the
AESENC and AESENCLAST instructions. The key variable
contains the full key expansion along with the number of
rounds that needs to be performed.
Step 1: Branch Predictor Training. Our goal in this attack is
to train the branch history buffer, which predicts the conditions
of conditional branches, to abort the encryption early, allowing
the attacker to leak the ciphertext of a reduced-round AES that

1762

1 export void unrolled_fact (secret uint64[2] plaintext,
2 public mut uint64[2] ciphertext, mut AES_KEY key) {
3 secret mut uint64<2> state = load_le(plaintext);
4 secret mut uint64<2> rd_key = load_le(view(key.rd_key, 0, 2));
5 public uint32 rounds = uint32(key.rounds);
6 assume(rounds < 15);
7 state = state ^ rd_key; rd_key = load_le(view(key.rd_key, 2, 2));
8 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 4, 2));
9 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 6, 2));

10 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 8, 2));
11 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 10, 2));
12 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 12, 2));
13 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 14, 2));
14 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 16, 2));
15 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 18, 2));
16 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 20, 2));
17 if (rounds > 10) {
18 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 22, 2));
19 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 24, 2));
20 if (rounds > 12) {
21 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 26, 2));
22 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 28, 2));
23 }
24 }
25 state = aesenclast(state, rd_key);
26 store_le(ciphertext, declassify(state));
27 }

Listing 3: FaCT implementation of unrolled AES encryption. The aesenc and aesenclast functions are compiler intrinsics
that map to the AESENC and AESENCLAST x86 instructions.

can be cryptanalyzed to recover the key. Listing 4 shows the
pseudocode of the attack. It starts by creating two keys, one
which trains the BPU and one which emulates a secret key the
attacker does not have access to. We repeatedly call encrypt
using the training key, training the BPU to predict false for
the condition on line 17 in Listing 3. This causes encrypt
to exit after applying ten rounds. We note that in practice, an
attacker can use other means to train the BPU. In particular,
the attacker can rely on aliasing in the BPU, using a branch
that the attacker controls to train prediction within encrypt.

1 function attack() {
2 training_key = create_aes128_key();
3 secret_key = create_aes192_key();
4

5 for (int i = 0; i < 127; i++) {
6 encrypt(plaintext, training_key);
7 }
8

9 flush(secret_key.rounds);
10 ciphertext = encrypt(plaintext, secret_key);
11

12 sidechannel_send(ciphertext);
13

14 return sidechannel_recv();
15 }

Listing 4: Pseudocode of our attack on AES. For clarity, we
show training and victim execution as separate steps. In practice,
our code does both of these steps in the same loop, using
constant-time select to switch between inputs.
Step 2: Triggering Misspeculation. After training the branch
predictor, we flush the field key.rounds from the cache. The
field controls the branches on lines 17 and 20 of Listing 3

which determine the number of rounds to apply. Thus, flushing
it from the cache delays the evaluation of these branches
until the field is retrieved from memory. In the meanwhile,
the processor uses the false prediction for the condition in
line 17, as trained earlier, and proceeds speculatively along the
mispredicted execution path. This delay is necessary to allow
the speculative execution to perform the final round (Listing 3,
line 25) and return to the attacker code, which leaks the reduced-
round ciphertext through a microarchitectural side channel
(Listing 4, line 12). Eventually, the processor will retrieve
key.rounds from the memory, perform the comparisons for
the conditions, detect that the branch was mispredicted, squash
the ensuing speculative execution, and resume execution with
the correct true condition in line 17. However, by this time,
the reduced-round ciphertext has already leaked through the
side channel.

Step 3: Recovering the Reduced-Round Ciphertext. Finally,
execution once again returns from encrypt and control flows
to sidechannel_recv. This function acts as the receiver
of the side channel and receives the reduced-round ciphertext
from the transiently executed sidechannel_send. We im-
plement sidechannel_recv using FLUSH+RELOAD [49],
a cache side-channel that can determine if a particular address
has been accessed. We leak the incorrect ciphertext one byte at a
time, by selecting a byte and using it to access a 256-page array.
We can then check which of the 256 pages has been accessed
to recover one byte of the reduced-round ciphertext from the
previously squashed execution. This process is repeated for
each of the 16 bytes of the reduced-round ciphertext. We note
that multiple side channels have been demonstrated in the

1763

context of transient-execution attacks [4, 11, 35, 36], and the
choice of channel is not limited to FLUSH+RELOAD.
Attack Accuracy. We test two victims. The first uses a
default LLVM back-end for code generation and the second
uses LLVM with SLH enabled. We repeat the attack 1 000 times
with each victim, each time recording whether the reduced-
round ciphertext is recovered correctly. On average the attack
succeeds with a probability of 95% irrespective of the victim.

D. PoC Attack on OpenSSL AES

We further demonstrated leakage from two AES implemen-
tations provided in OpenSSL. The first implementation uses
T-tables for implementing the round function and the second
uses AES-NI. The T-table implementation follows the same
general structure of the FaCT implementation in Listing 3, but
uses precomputed tables for performing the round function.
The T-table implementation is known to be vulnerable to cache
attacks [31], but our PoC does not exploit this vulnerability;
we use the same strategy (and leakage channel) described
previously. The PoC works as expected when SLH is disabled—
enabling SLH prevents the leak, since SLH poisons the table
accesses executed in the last round.

The second implementation we test is the default OpenSSL
implementation for computers that support AES-NI. The
implementation, which is written in x86-64 assembly, uses the
AESENC instruction in a loop, and then invokes AESENCLAST
for the last round. To determine the number of iterations,
the implementation uses the value of key.rounds. Our
PoC trains the loop to stop after one iteration, resulting in
a two-round encryption. We only test this implementation
without SLH, because LLVM SLH does not apply to assembly
code. Appendix B describes how to recover the key from the
information we obtain.

E. Attack Practicality

The proof-of-concepts we present in this section serve
to show that ignoring declassification can result in leakage
from otherwise protected code. Several aspects may make our
attacks difficult in practice. Specifically, while intra-process
isolation is an active research area [26, 44, 46], some real-world
applications seem to be moving in the opposite direction [34].
To perform the attack across process boundaries, the attacker
will have to overcome branch predictor flushing in modern
processors and to find a leaky gadget that leaks the mispredicted
declassified values. The former could be achieved through
confused deputy attacks [5] and the latter through automated
search of vulnerable gadgets [11]. We leave implementing these
to future work.

VIII. RELATED WORK

Robust Declassification. Relative non-interference is closely
related to robust declassification2 [50]. Robust declassifica-
tion requires that active attackers—formalized as adversarial
transition steps—do not observe any more information from

2In their setting, “declassification” corresponds to all leakages, not just
explicit decl observations.

a program than passive attackers. Although the definition of
robust declassification predates Spectre attacks by nearly two
decades, it can be instantiated to our setting: The labeling of
registers and arrays in our setting corresponds to their lattice
of security domains, and their equivalence classes of states
at each transition step are represented by our sequences of
observations O. Passive attackers correspond to sequential
executions limited to step transitions, while active attackers
correspond to speculative executions governed by adversarial
directives d P Dir. Under this framework, robust declassification
states that if the sequential execution of any two initial states
produces equivalent observations, then the speculative traces
must produce equivalent observations as well.

Information Flow and Constant-time. There is a significant
body of work on information flow and declassification, see
e.g., [38, 40]. Sabelfeld and Myers [39] introduce delimited
information release, and show how it can be enforced by a
classic information-flow type system. We model security of
countermeasures in a spirit that is close to delimited release.
However, their formal definition only considers sequential
semantics, whereas our definition contrasts sequential and
speculative semantics. In addition, we reason about leakage,
whereas (as is common for information-flow type systems)
they reason about equality of outputs.

There is a growing body of work that uses type systems and
static program analyses to enforce that programs are constant-
time; see [6] for a recent survey. However, these works either do
not consider or do not provide guarantees for declassification.
The only exception is [3], which supports public outputs, a form
of declassification that is required by cryptographic libraries,
e.g., to disclose the length of a string. However, [3]’s focus on
declassification is complementary to ours: They show how to
relax the verification algorithm so that leaks that do not reveal
more than the public output are not considered insecure; their
relaxation allows for more efficient code to be written. Our
work provides instead a means to protect against unintended
leakage caused by speculative execution.

Speculative Semantics. There is a growing body of
work that applies language-based techniques to reason about
security under speculative execution; see [16] for a recent
survey. Our adversarial semantics is inspired by [15] and
by [8]; however, we refine their adversarial directives: Attackers
in their semantics explicitly specify which direction each
branch speculates, e.g., with directives like force J, and so
may not always misspeculate. In contrast, our force directive
always takes the incorrect branch, letting us easily delineate
misspeculated execution and simplify our proofs. In addition,
our semantics differs from [8] in its treatment of unsafe
memory accesses: Indeed, the semantics of [8] immediately
aborts execution and leaks the complete memory whenever an
unsafe access is performed. Their semantics is thus too coarse
for reasoning about the security of our countermeasure (or
speculative load hardening). In contrast, our semantics resolves
unsafe memory accesses with adversarial directives.

Prior semantics serve as the basis for defining security

1764

of applications under speculative execution. These specula-
tive security properties fall into two categories: Direct and
relative properties [16]. Direct notions, such as speculative
constant-time [15], are specified as 2-trace non-interference
hyperproperties, and prevent (explicitly typed) secret data from
leaking to an attacker. Relative notions, such as speculative
non-interference (SNI) [24] and trace property-dependent
observational determinism (TPOD) [18] instead simply prevent
an attacker from learning more information than they would
sequentially. These properties are thus typically specified in
terms of four traces—two speculative traces for the leakage
trace of the program, and two sequential traces to determine
the baseline leakage to compare against. Our security property,
RNI, is also a form of relative property; however, we require
only two execution traces in our definition. As a result, it is
stronger than 4-trace properties such as SNI: If a program
satisfies RNI then it satisfies SNI. In addition, RNI explicitly
handles declassification; we are not aware of any prior work
that explicitly connects relative notions with declassification.

Blade [45] is an automated tool that eliminates speculative
leaks via hardening loads or inserting fences. Their approach
views secret inputs as sources and observations as sinks, and
applies classic graph algorithms to infer where protections
must be inserted. Their approach is evaluated on WebAssembly
implementations of cryptographic algorithms.

Patrignani and Guarnieri [32] study the security impact of
compiler transformations and countermeasures in a model of
speculative execution. They propose two criteria, called robust
speculative safety (RSS) and robust speculative non-interference
(RSNI), and evaluate proposed (both theoretical and deployed)
countermeasures w.r.t. these criteria. One main difference
with our work is that they emphasize robust compilation, i.e.,
properties that are preserved even when the program is linked
with arbitrary code. Robustness is an important concern but is
not considered in our work. Another key difference is that our
language features an explicit construct with declassification;
this construct is essential in our setting to capture programmer’s
intent, but not considered in [32].

IX. CONCLUSION

We showed that, despite current defenses like SLH, attackers
can exploit speculative execution and its interaction with
declassification to leak sensitive cryptographic information—
we demonstrate these attacks concretely against various im-
plementations of AES. We developed a formal framework
to capture speculative declassification and its pitfalls and to
define our formal security property relative non-interference.
We further proved that our proposed countermeasures, fenced
declassification and selective SLH, soundly enforce RNI
without imposing a significant performance overhead.

Our preliminary evaluation suggests that selSLH is itself of
independent interest and can drastically reduce the overhead
of protecting programs against Spectre attacks as compared
to traditional SLH. One potential direction for future work is
to implement selSLH in an existing compiler framework to

build an efficient, formally verified cryptographic library that
achieves the guarantees offered by RNI.

ACKNOWLEDGEMENTS

This research was supported by the Air Force Office of
Scientific Research (AFOSR) under award number FA9550-
20-1-0425; an ARC Discovery Early Career Researcher Award
(project number DE200101577); an ARC Discovery Project
(project number DP210102670); the Blavatnik ICRC at Tel-
Aviv University; the CONIX Research Center, one of six
centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA; the Deutsche Forschungsge-
meinschaft (DFG, German research Foundation) as part of
the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972; the Euro-
pean Commission through the ERC Starting Grant 805031
(EPOQUE); the National Science Foundation under grant CNS-
1954712; and gifts from AMD, Google, Intel, and Qualcomm.

REFERENCES

[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, pages 225–242, 2007. doi:
10.1007/11967668_15. 2, 4

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In IEEE SP, pages 870–887, 2019. doi: 10.1109/SP.2019.00066.
4

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying constant-time implementations. In
USENIX Security, pages 53–70, 2016. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/almeida. 12

[4] Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared memory.
In SAC, pages 1944–1951, 2019. doi: 10.1145/3297280.3297470. 12

[5] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano
Giuffrida. Branch history injection: On the effectiveness of hardware
mitigations against cross-privilege Spectre-v2 attacks. In USENIX
Security, 2022. https://www.usenix.org/system/files/sec22-barberis.pdf.
12

[6] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-
aided cryptography. In IEEE SP, pages 777–795, 2021. doi:
10.1109/SP40001.2021.00008. 12

[7] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel
Luna, and David Pichardie. System-level non-interference for
constant-time cryptography. In CCS, pages 1267–1279, 2014. doi:
10.1145/2660267.2660283. 4

[8] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin
Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe.
High-assurance cryptography in the Spectre era. In IEEE SP, pages
1884–1901, 2021. doi: 10.1109/SP40001.2021.00046. 4, 5, 12

[9] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop record
of SASC, volume 8, pages 3–5. Lausanne, Switzerland, 2008. https:
//cr.yp.to/chacha/chacha-20080120.pdf. 9

[10] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of cryptographic
engineering, 2(2):77–89, 2012. doi: 10.1007/s13389-012-0027-1. 9

[11] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting speculative execution through port con-
tention. In CCS, pages 785–800, 2019. doi: 10.1145/3319535.3363194.
12

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A systematic evaluation of transient execution attacks and defenses.

1765

In USENIX Security, pages 249–266, 2019. https://www.usenix.org/
system/files/sec19-canella.pdf. 3

[13] Chandler Carruth. Speculative load hardening – a Spectre variant #1
mitigation technique. LLVM documentation. https://llvm.org/docs/
SpeculativeLoadHardening.html. 2

[14] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S.
Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala,
and Deian Stefan. FaCT: a DSL for timing-sensitive computation. In
PLDI, pages 174–189, 2019. doi: 10.1145/3314221.3314605. 1, 5, 8

[15] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M.
Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-
time foundations for the new Spectre era. In Alastair F. Donald-
son and Emina Torlak, editors, PLDI, pages 913–926, 2020. doi:
10.1145/3385412.3385970. 3, 4, 5, 9, 12, 13

[16] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. SoK: Practical foundations for Spectre defenses. In IEEE
SP, pages 666–680, 2022. doi: 10.1109/SP46214.2022.9833707. 1, 6,
12, 13

[17] Anirban Chakraborty, Sarani Bhattacharya, Manaar Alam, Sikhar Patran-
abis, and Debdeep Mukhopadhyay. RASSLE: return address stack based
side-channel leakage. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021
(2):275–303, 2021. doi: 10.46586/tches.v2021.i2.275-303. 2

[18] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subra-
manyan. A formal approach to secure speculation. In CSF, 2019. doi:
10.1109/CSF.2019.00027. 13

[19] Frank Denis. libsodium. https://github.com/jedisct1/libsodium. 8
[20] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh.

Jump over ASLR: attacking branch predictors to bypass ASLR. In
MICRO, pages 40:1–40:13, 2016. doi: 10.1109/MICRO.2016.7783743.
2, 4

[21] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptogr. Eng., 8(1):1–27, 2018. doi: 10.1007/s13389-016-
0141-6. 2

[22] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections
with TLB attacks. In USENIX Security Symposium, pages 955–972,
2018. https://www.usenix.org/system/files/conference/usenixsecurity18/
sec18-gras.pdf. 2

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security Symposium, pages 897–912, 2015. https://www.usenix.org/
system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf. 2

[24] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In IEEE SP, pages 1–19, 2020. doi: 10.1109/SP40000.2020.00011.
3, 6, 13

[25] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar.
“They’re not that hard to mitigate”: What cryptographic library developers
think about timing attacks. In IEEE SP, pages 632–649, 2022. doi:
10.1109/SP46214.2022.9833713. 1

[26] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael
Franz. PKRU-Safe: Automatically locking down the heap between
safe and unsafe languages. In EuroSys, pages 132–142, 2022. doi:
10.1145/3492321.3519582. 3, 12

[27] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In IEEE SP, pages 1–19, 2019. doi:
10.1109/SP.2019.00002. 1, 3

[28] Adam Langley. curve25519-donna. https://github.com/agl/curve25519-
donna. 8, 9

[29] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015. doi: 10.1109/SP.2015.43. 2

[30] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,

Hovav Shacham, Dean Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security Symposium, pages
1433–1450, 2021. https://www.usenix.org/system/files/sec21-narayan.pdf.
3

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006. doi:
10.1007/11605805_1. 2, 12

[32] Marco Patrignani and Marco Guarnieri. Exorcising Spectres with secure
compilers. In CCS, pages 445–461, 2021. doi: 10.1145/3460120.3484534.
3, 13

[33] The OpenSSL Project. openssl. https://github.com/openssl/openssl. 8

[34] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation:
process separation for web sites within the browser. In USENIX Security,
pages 1661–1678, 2019. https://www.usenix.org/system/files/sec19-reis.
pdf. 12

[35] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan,
Dean M. Tullsen, and Ashish Venkat. I see dead µops: Leaking secrets
via Intel/AMD micro-op caches. In ISCA, pages 361–374, 2021. doi:
ISCA52012.2021.00036. 12

[36] Stephen Röttger and Arthur Janc. A Spectre proof-of-concept for a
Spectre-proof web. https://security.googleblog.com/2021/03/a-spectre-
proof-of-concept-for-spectre.html, 2021. 12

[37] John Rushby. Noninterference, transitivity, and channel-control security
policies. Technical Report CSL-92-02, SRI International, Computer
Science Laboratory, 1992. http://www.csl.sri.com/papers/csl-92-2/csl-92-
2.pdf. 7

[38] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE J. Sel. Areas Commun., 21(1):5–19, 2003. doi:
10.1109/JSAC.2002.806121. 12

[39] Andrei Sabelfeld and Andrew C. Myers. A model for delimited
information release. In ISSS, pages 174–191, 2003. doi: 10.1007/978-3-
540-37621-7_9. 12

[40] Andrei Sabelfeld and David Sands. Declassification: Dimensions and
principles. J. Comput. Secur., 17(5):517–548, 2009. doi: 10.3233/JCS-
2009-0352. 1, 12

[41] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled.
Database reconstruction from noisy volumes: A cache side-channel attack
on SQLite. In USENIX Security Symposium, pages 1019–1035, 2021.
https://www.usenix.org/system/files/sec21-shahverdi.pdf. 2

[42] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website fin-
gerprinting through the cache occupancy channel. In USENIX Security
Symposium, pages 639–656, 2019. https://www.usenix.org/system/files/
sec19-shusterman.pdf. 2

[43] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming
browser-based side-channel defenses. In USENIX Security Symposium,
pages 2863–2880, 2021. https://www.usenix.org/system/files/sec21-
shusterman.pdf. 2, 4

[44] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: secure, efficient
in-process isolation with protection keys (MPK). In USENIX Security
Symposium, pages 1221–1238, 2019. https://www.usenix.org/system/
files/sec19-vahldiek-oberwagner_0.pdf. 3, 12

[45] Marco Vassena, Craig Disselkoen, Klaus v. Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan.
Automatically eliminating speculative leaks from cryptographic code
with Blade. In POPL, pages 1–30, 2021. doi: 10.1145/3434330. 3, 13

[46] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn
Volckaert. You shall not (by)pass! practical, secure, and fast
PKU-based sandboxing. In EuroSys, pages 266–282, 2022. doi:
10.1145/3492321.3519560. 3, 12

[47] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In IEEE SP,
pages 888–904, 2019. doi: 10.1109/SP.2019.00004. 2

[48] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architectures.

1766

In USENIX Security Symposium, pages 2003–2020, 2020. https://www.
usenix.org/system/files/sec20-yan.pdf. 2

[49] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-
tion, low noise, L3 cache side-channel attack. In USENIX Security,
pages 719–732, 2014. https://www.usenix.org/system/files/conference/
usenixsecurity14/sec14-paper-yarom.pdf. 2, 4, 10, 11

[50] Steve Zdancewic and Andrew C. Myers. Robust declassification. In
CSFW, pages 15–23, 2001. doi: 10.1109/CSFW.2001.930133. 6, 12

APPENDIX A
ADDITIONAL PROOFS

Lemma 4 (Unwinding lemma for sequential execution). Let
d “ step, force. If $ c, then for every pair of execution steps:

xc, ρ1, µ1,Ky
o1
Ýá
d
xc1

1, ρ
1
1, µ

1
1, b

1
1y

xc, ρ2, µ2,Ky
o2
Ýá
d
xc1

2, ρ
1
2, µ

1
2, b

1
2y

we have:

pρ1, µ1q „ pρ2, µ2q ^ o1 “ o2

ùñ pρ1
1, µ

1
1q „ pρ

1
2, µ

1
2q ^ c1

1“c
1
2 ^ b1

1“b
1
2.

Proof. We prove that pρ1
1, µ

1
1q „ pρ1

2, µ
1
2q and c1

1 “ c1
2 and

b1
1 “ b1

2 by case analysis on the structure of c. The second and
third item are immediate to establish so we focus on the first.

‚ skip and fence are trivial as the memory and register maps
are left unchanged.

‚ x :“ e and Γpxq “ H . By assumption, pρ1, µ1q „

pρ2, µ2q. As Γpxq “ H , we have ρ1 „ ρ1
1 and ρ2 „ ρ1

2,
where ρ1

i “ ρirx :“ JeKρis. Hence by transitivity
pρ1

1, µ1q „ pρ
1
2, µ2q.

‚ x :“ e and Γpxq “ L. By assumption, pρ1, µ1q „ pρ2, µ2q.
The typing rule guarantees that Γpeq ď Γpxq and hence
Γpeq “ L. It follows that JeKρ1

“ JeKρ2
and hence that

ρ1
1 „ ρ1

2, where ρ1
i “ ρirx :“ JeKρis. Hence by transitivity

pρ1
1, µ1q „ pρ

1
2, µ2q.

‚ x :“ ares. By assumption, pρ1, µ1q „ pρ2, µ2q. The
typing rule guarantees that Γpeq “ L and Γpaq ď Γpxq.
Since pρ1, µ1q „ pρ2, µ2q, it follows that JeKρ1

“ JeKρ2
.

Moreover ρ1
1 „ ρ1

2, where ρ1
i “ ρirx :“ µirpa, JeKρiqss.

Hence by transitivity pρ1
1, µ1q „ pρ

1
2, µ2q.

‚ ares :“ e1 and Γpaq “ H . By assumption, pρ1, µ1q „

pρ2, µ2q. The typing rule guarantees that Γpeq “ L,
hence JeKρ1

“ JeKρ2
. Moreover µ1

1 „ µ1
2, where µ1

i “

µirpa, JeKρiq :“ Je1Kρis. Hence by transitivity pρ1, µ1
1q „

pρ2, µ
1
2q;

‚ ares :“ e1 and Γpaq “ L. By assumption, pρ1, µ1q „

pρ2, µ2q. The typing rule guarantees that Γpeq “ L
and Γpxq “ L, hence JeKρ1

“ JeKρ2
. Moreover

Je1Kρ1 “ Je1Kρ2 and hence µ1
1 „ µ1

2, where µ1
i “

µirpa, JeKρiq :“ Je1Kρis. Hence by transitivity pρ1, µ1
1q „

pρ2, µ
1
2q.

‚ x :“declassify e. By assumption, pρ1, µ1q „ pρ2, µ2q. The
first execution leaks JeKρ1

and the second execution leaks
JeKρ2 . Again by assumption, the two observations o1 and

o2 are equal, hence JeKρ1
“ JeKρ2

. Therefore ρ1
1 „ ρ1

2,
where ρ1

i “ ρirx :“ JeKρis. By transitivity pρ1
1, µ1q „

pρ1
2, µ2q.

‚ if t then c1 else c2 and d “ step. By assumption,
pρ1, µ1q „ pρ2, µ2q. The first execution leaks JtKρ1

and
the second execution leaks JtKρ2

. Again by assumption, the
two observations o1 and o2 are equal, hence JtKρ1 “ JtKρ2 ,
and so both executions take the same branch (correspond-
ing to JtKρi

). The memory and register maps are left
unchanged.

‚ if t then c1 else c2 and d “ force. By assumption,
pρ1, µ1q „ pρ2, µ2q. The first execution leaks JtKρ1 and
the second execution leaks JtKρ2 . Again by assumption, the
two observations o1 and o2 are equal, hence JtKρ1

“ JtKρ2
,

and so both executions take the same branch (correspond-
ing to ␣JtKρi

). The memory and register maps are left
unchanged.

‚ while t do c1 proceeds similar to if.

‚ c1; c2. The result follows from induction on c1 and c2.

Lemma 5 (Unwinding lemma for idealized speculative execu-
tion). If $ c then for every pair of execution steps:

xc, ρ1, µ1,Jy
o1
Ýá
d
xc1

1, ρ
1
1, µ

1
1,Jy

xc, ρ2, µ2,Jy
o2
Ýá
d
xc1

2, ρ
1
2, µ

1
2,Jy

we have:

ρ1„ρ2 ùñ o1“o2 ^ ρ1
1„ρ

1
2 ^ c1

1“c
1
2

Proof. By case analysis on the structure of c.

‚ skip is trivial.

‚ fence does not apply, since the rule requires b “ K.

‚ x :“ e and Γpxq “ H . By assumption, ρ1 „ ρ2. As
Γpxq “ H , we have ρ1 „ ρ1

1 and ρ2 „ ρ1
2, where ρ1

i “

ρirx :“ JeKρi
s. Hence by transitivity ρ1

1 „ ρ1
2.

‚ x :“ e and Γpxq “ L. By assumption, ρ1 „ ρ2. The
typing rule guarantees that Γpeq ď Γpxq and hence Γpeq “
L. It follows that JeKρ1

“ JeKρ2
and hence that ρ1

1 „ ρ1
2,

where ρ1
i “ ρirx :“ JeKρi

s.

‚ x :“ ares, Γpxq “ H , and JeKρ P r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L, hence
JeKρ1 “ JeKρ2 and the observations o1 and o2 coincide.
We also have ρ1 „ ρ1

1 and ρ2 „ ρ1
2, hence by transitivity

ρ1
1 „ ρ1

2 where ρ1
i “ rx :“ µirpa, JeKρi

qss.

‚ x :“ ares, Γpxq “ H , and JeKρ R r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L, hence
JeKρ1 “ JeKρ2 and the observations o1 and o2 coincide. We
also have ρ1 „ ρ1

1 and ρ2 „ ρ1
2 where ρ1

i “ rx :“ vis and
vi is chosen adversarially; hence by transitivity ρ1

1 „ ρ1
2.

‚ x :“ ares, Γpxq “ L. By assumption, ρ1 „ ρ2. The
typing rule guarantees that Γpeq “ L, hence JeKρ1 “ JeKρ2

1767

and the observations o1 and o2 coincide. Moreover in
the idealized semantics, we have ρ1

i “ ρirx :“ 0s; thus
ρ1
1 „ ρ1

2.

‚ ares :“ e1. By assumption, ρ1 „ ρ2. The typing rule
guarantees that Γpeq “ L, hence JeKρ1

“ JeKρ2
and the

observations o1 and o2 coincide. The register map is left
unchanged.

‚ x :“declassify e. By assumption, ρ1 „ ρ2. In the idealized
semantics, both executions leak decl 0 and hence the two
observations o1 and o2 are equal. Moreover ρ1

i “ ρirx :“
0s; thus ρ1

1 „ ρ1
2.

‚ if t then c1 else c2 and d “ step. By assumption, ρ1 „
ρ2. The typing rule guarantees that Γptq “ L, hence
JtKρ1

“ JtKρ2
and the observations o1 and o2 coincide.

Both executions take the same branch, corresponding to
JtKρi

. The register maps are left unchanged.

‚ if t then c1 else c2 and d “ force. By assumption, ρ1 „
ρ2. The typing rule guarantees that Γptq “ L, hence
JtKρ1

“ JtKρ2
and the observations o1 and o2 coincide.

Both executions take the same branch, corresponding to
␣JtKρi

. The register maps are left unchanged.

‚ while t do c1 proceeds similar to if.

‚ c1; c2. The result follows from induction on c1 and c2.

The correctness of the transformation as stated in Lemma 6
is imprecise, because the transformed program performs
“administrative” steps to update the speculation flag. The
correctness is stated precisely using an erasure function | ¨ |
that takes as input a list of directives and a list of observations
of the same length, and filters out all entries that contain a ‚
observation. Formally, | ¨ | is defined inductively by the clauses:

|pϵ, ϵq| “ pϵ, ϵq
|pd :: D, ‚ :: Oq| “ |pD,Oq|
|pd :: D, o :: Oq| “ let pD1,O1q “ |pD,Oq|

in pd :: D1, o :: O1q if o ‰ ‚

Lemma 7 (Implementation of idealized semantics). If

xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

then there exists D1 such that

xLcM, ρrb̃ :“ bs, µ, by óO
1

D1 xc1, ρ1rb̃ :“ b1s, µ1, b1y

and |pD,Oq| “ |pD1, O1q|. Conversely, if

xLcM, ρrb̃ :“ bs, µ, by óO
1

D1 xLc1M, ρ1rb̃ :“ b1s, µ1, b1y

then there exists D such that

xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

and |pD,Oq| “ |pD1, O1q|.

Both implications are proved by induction on the length of
the execution. The base case is proved by inspection on the
semantics.

Definition 2 presents 2-trace RNI. We show that this is a
stronger property than the typical 4-trace hyperproperty for
speculative security.

Definition 3 (4-trace RNI). A program c is 4-trace RNI
iff for every pair of executions xc, ρ1, µ1,Ky ó

O1

D and
xc, ρ2, µ2,Ky ó

O2

D we have:

O1
1 “ O1

2 ùñ O1 “ O2

where xc, ρ1, µ1y ó
O1

1 (resp. O1
2) is a complete sequential

execution.

Lemma 8. If a program c satisfies 2-trace RNI, then it also
satisfies 4-trace RNI.

Proof. Suppose c satisfies 2-trace RNI. Let xc, ρ1, µ1,Ky ó
O1

D

and xc, ρ2, µ2,Ky ó
O2

D be two executions of c such that
xc, ρ1, µ1y ó

O1
1 and xc, ρ2, µ2y ó

O1
2 and O1

1 “ O1
2. Since O1

1

(resp. O1
2) is the sequential trace of c, any sequential prefix of

D will produce a prefix of O1
1 (resp. O1

2) when executed from
the same initial state. Thus for any sequential prefix D˚ and
xc, ρ1, µ1,Ky ó

O˚
1

D˚ and xc, ρ2, µ2,Ky ó
O˚

2

D˚ we have O˚
1 “ O˚

2 .
Fix D˚ as the longest sequential prefix of D. By assumption,
c satisfies 2-trace RNI, so O˚

1 “ O˚
2 ùñ O1 “ O2.

APPENDIX B
AES KEY RECOVERY

A. Further Background on AES

As described in Section VII-A, AES represents the state as a
4ˆ4 matrix of bytes. Each of these bytes represents an element
in GFp28q, with the reducing polynomial x8`x4`x3`x`1.
A byte with a value b “

ř7
i“0 bi2

i represents the polynomial
ř7

i“0 bix
i. Thus, for example, a byte value of 3 represents the

polynomial x` 1.
The MixColumns operation computes the product of the

state and the fixed matrix
»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

.

Thus, each output column is a linear transformation of the
input column. We note that MixColumns is the only AES
operation to provide diffusion between state bytes.

B. Key Recovery of Reduced-Round AES

In this section we describe how we recover keys from
messages disclosed by the attack described in Section VII.

A two-round AES consists of one internal round and one final
round. Recall that an internal round consists of the operations
SubBytes, ShiftRows, MixColumns, and AddRoundKey,
whereas the final round only consists of SubBytes, Shift-
Rows, and AddRoundKey. Hence, with the addition of the
key blinding step before the encryption, we have that for a
plaintext P , the reduced-round ciphertext is RRC “ k2 ‘
SRpSBpk1‘MC pSRpSBpk0‘P qqqqq, where ki is the round
key for round i.

1768

SR ˝ SB ˝ ARKpk0
q

plaintext

ARKpk1
q ˝ MC ARKpk2

q ˝ SR ˝ SB

output

Figure 8: The blue tiles represents bytes that are affected by fixing k00, k
0
5, k

0
10, k

0
15 of the first round key, k10 of the second

round key, and k20 of the third round key. The operations AddRoundKey, SubBytes, ShiftRows, MixColumns are shortened
to ARK,SB, SR,MC respectively.

We assume that the attacker knows P and recovers RRC
through the transient-execution attack. To recover the key,
we use a divide-and-conquer strategy. Specifically, we note
that the MixColumns operation, which is the only AES step
that mixes data between state bytes, only appears once in the
derivation of RRC . Consequently, diffusion across a two-round
AES is extremely limited, and each byte of the reduced-round
ciphertext depends on exactly four plaintext bytes. This is
depicted in Figure 8, where we see that plaintext bytes P0, P5,
P10, and P15 are the only plaintext bytes that affect RRC 0.

We can therefore split the keys to only those bytes that affect
a targeted ciphertext byte and recover them independently of
other key bits. For example, observing Figure 8, we see that
we need to determine the key bytes at the positions of the
shaded tiles for k0, i.e. k00 , k05 , k010, and k015. We further need to
recover the key bytes that affect RRC 0 in rounds 1 and 2, i.e.
k10 and k20 . A straightforward approach would be to brute force
these by first collecting a number of plaintexts and matching
reduced-round ciphertexts, and then rejecting a guess of key
bytes that does not match one or more of the pairs. However,
this requires guessing 48 bits for each quarter of the state, to
a total expected complexity of 250.

We can improve the attack complexity significantly by consid-
ering pairs of encryptions that agree on a byte. Assume we have
a pair of plaintexts P and P 1, such that for the corresponding
reduced-round ciphertexts we have RRC 0 “ RRC 1

0. For such
a pair, we can guess key bytes k00 , k05 , k010, and k015 and check
whether after the MixColumns step we get the same value
at state byte 0. We find that on average we need 6 pairs that
match on a byte in a column to recover the key bytes that
match the column. On average, we need to try 26 plaintexts
to find the required number of pairs. Finally, because we can
reuse the plaintexts to attack all columns, the total number of
plaintexts we need to encrypt is 31.

Brute forcing four key bytes requires at most 232 tries and
takes on the order of a few minutes on a typical laptop. Thus,
the total complexity of recovering k0 is 234 with 31 encryption
samples on average. For AES-128, k0 is identical to the master
key. For AES-192 and AES-256, we need to also recover k1.
Fortunately, having recovered k0, we can guess one byte each
of k1 and k2 and compare against the resulting byte of RRC .
Thus, with an additional complexity of 216 ¨ 16 “ 220 we
can recover the 16 bytes of k1. On average, we need to try 3
plaintexts to recover each byte of k1. The plaintexts used to
attack k0 previously can be reused. So, there are no additional

samples needed to find k1.

C. Related-Cipher Attack

We also consider the attack scenario where the attacker can
extend the number of rounds AES performs. For example, in
the case of AES-128, this can occur when we use a standard
AES-192 key for the training. The use of an AES-192 key
trains the branch predictor that AES is performed with 12
rounds. In practice, however, we find implementations access
precomputed round keys and that such accesses are protected
by SLH after misprediction. Nevertheless, we still present
the cryptanalysis of recovering the AES-128 key from a
hypothetical implementation that computes round keys on-
the-fly.

Let S denote the cipher state after performing nine rounds.
For simplicity, we also use S1 “ SRpSBpSqq. In the normal
execution of AES, the cipher now performs a final round to
calculate the ciphertext. Hence, the ciphertext is C “ k10‘S1.
Thus, if we can determine S1, we can find the round key k10.

Next, we note that when the cipher continues for two
additional rounds before the final round executes we get
C 1 “ k12 ‘ SRpSBpk11 ‘MC pSRpSBpk10 ‘MC pS1qqqqqq.
For the key recovery, we assume that memory is scrubbed
before it is used for key material. Consequently, in AES-128
the keys for rounds 11 and 12 are not initialized and remain 0.
We can, therefore, compute

Ĉ“SB´1
pSR´1

pMC´1
pk11 ‘ SB´1

pSR´1
pk12 ‘ C 1qqqqq

“k10 ‘MC pS1q

We now have C ‘ Ĉ “ pk10 ‘ S1q ‘ pk10 ‘MC pS1qq “

S1 ‘MC pS1q. Recall that for a state S1, we have

MC pS1q “

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

¨ S1.

Thus,

C ‘ Ĉ“S1 ‘MC pS1q

“S1 ‘

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

¨ S1 “

»

—

—

–

3 3 1 1
1 3 3 1
1 1 3 3
3 1 1 3

fi

ffi

ffi

fl

¨ S1

1769

Unfortunately, the matrix
»

—

—

–

3 3 1 1
1 3 3 1
1 1 3 3
3 1 1 3

fi

ffi

ffi

fl

is singular. Hence, we cannot invert it to find S1 from C ‘ Ĉ.
However, we find that for each of the columns of S1 there are
exactly 28 values that can satisfy the equation. Specifically, for
each column we can select a value for one of the bytes and
use the linear relationship between S1 and C ‘ Ĉ to determine
the other values of the column. For each combination of values
for the four columns of S1 we get a guess of k10. We can now
reverse the key expansion to get a guess of the key, and test
whether the guess is correct. Overall, we need to test 232 such
combinations, recovering the key in less than 10 minutes on a
typical laptop.

1770

