
Scaling JavaScript Abstract Interpretation to Detect and Exploit Node.js
Taint-style Vulnerability

Mingqing Kang, Yichao Xu, Song Li†#, Rigel Gjomemo‡,
Jianwei Hou∗#, V.N. Venkatakrishnan‡, and Yinzhi Cao

Johns Hopkins University, †Zhejiang University,
‡University of Illinois Chicago, ∗Renmin University of China
{mkang31, yxu166, yinzhi.cao}@jhu.edu, songl@zju.edu.cn,
{rgjome1, venkat}@uic.edu, and houjianwei@ruc.edu.cn

Abstract—Taint-style vulnerabilities, such as OS command
injection and path traversal, are common and severe software
weaknesses. There exists an inherent trade-off between analysis
scalability and accuracy in detecting such vulnerabilities. On
one hand, existing syntax-directed approaches often make
compromises in the analysis accuracy on dynamic features
like bracket syntax. On the other hand, existing abstract
interpretation often faces the issue of state explosion in the
abstract domain, thus leading to a scalability problem.

In this paper, we present a novel approach, called FAST,
to scale the vulnerability discovery of JavaScript packages via
a novel abstract interpretation approach that relies on two
new techniques, called bottom-up and top-down abstract inter-
pretation. The former abstractly interprets functions based on
scopes instead of call sequences to construct dynamic call edges.
Then, the latter follows specific control-flow paths and prunes
the program to skip statements unrelated to the sink. If an end-
to-end data-flow path is found, FAST queries the satisfiability
of constraints along the path and verifies the exploitability to
reduce human efforts.

We implement a prototype of FAST and evaluate it against
real-world Node.js packages. We show that FAST is able
to find 242 zero-day vulnerabilities in NPM with 21 CVE
identifiers being assigned. Our evaluation also shows that
FAST can scale to real-world applications such as NodeBB
and popular frameworks such as total.js and strapi in finding
legacy vulnerabilities that no prior works can.

1. Introduction
Taint-style vulnerability [1]–[3] is a common type of

software weakness where an adversary-controlled source in-
put reaches a sensitive sink function without being sanitized,
e.g., injection of third-party code from a source into a sink.
Examples of such vulnerabilities are OS command injection
(where an adversary injects OS commands into the sink),
path traversal (where an adversary injects path fragments to
access unauthorized resources), and arbitrary code execution

#. The two authors contribute to the paper when they are either studying
or exchanging at Johns Hopkins University.

(where an adversary injects and executes JavaScript). Taint-
style vulnerabilities often lead to severe consequences like
server hijacking and information leaks.

The detection of taint-style vulnerabilities requires dis-
covering data flows from attacker-controlled sources to sen-
sitive sinks. The classic syntax-directed static approach is to
first construct call and control-flow graphs and then generate
and track data flows following control-flow paths. While
scalable for some languages, this approach is challenging
especially for JavaScript—a prototype-based language with
many dynamic features—due to the inherent tradeoff be-
tween analysis scalability and accuracy. One of the major
issues of existing approaches (with several variations man-
ifested in prior works [4]–[7]) is that the dynamic features
of JavaScript often introduce call edges that cannot be re-
solved without contexts. Examples of such dynamic features
include but are not limited to function calls related to bracket
syntax with string concatenation and function pointer lookup
based on variables defined in a closure. As a result, these
approaches may often miss a large number of call edges that
are not explicitly visible statically. That is, syntax-directed
approaches achieve scalability with compromised analysis
accuracy on call edges.

To deal with this problem, one popular research direc-
tion [8]–[12] is to use abstract interpretation, which ab-
stractly simulates execution for dynamic call edges. Specif-
ically, abstract interpretation stores call contexts, including
dynamic ones in the abstract domain, e.g., a lattice or a
graph, so that they can be fetched for call edge resolution.
However, while abstract interpretation accurately resolves
dynamic call edges with call contexts in the abstract do-
main, one major challenge is scalability: the corresponding
code (e.g., those containing vulnerability) may not even be
reached within a reasonable amount of time. For example,
according to our experiments, ODGen [8] fails to finish
analyzing more than 50% of Node.js packages of more than
2K Lines of Code (LOC) and that number jumps to 90%
of Node.js packages of more than 60K (LoC) even given
enough time (24 hours). Fundamentally, existing JavaScript
abstract interpretations [8]–[12] explore all program state-

11059

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Mingqing Kang. Under license to IEEE.
DOI 10.1109/SP46215.2023.00140

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

35
2

ments, e.g., all conditional branches, thus being prone to
state explosion in the abstract domain. That is, the number
of objects in the abstract domain may be exponential when
several conditional statements are embedded.

Ideally, the best solution for the state explosion problem
would be to abstractly interpret only the subset of state-
ments having control- or data-dependency with the taint-
style sink. In this ideal case, abstract interpretation would
follow control-flow paths from sources to sinks, skipping
unrelated conditional branches or it would follow data-flow
paths to skip statements unrelated to the sink. However,
while intuitively simple, the challenge of this solution is
that it requires accurate control- or data-flow graphs, which
can only be built by abstract interpretation itself. Therefore,
for Javascript and similar languages with dynamic features,
there exists a ‘chicken-and-egg’ problem: first, the construc-
tion of an accurate control-flow graph, let alone a data-
flow graph, needs abstract interpretation due to dynamic call
edges. However, a scalable abstract interpretation approach
that skips branches unrelated to the taint-style sinks, needs a
control-flow graph with dynamic call edges and a data-flow
graph.

Putting aside the accuracy-scalability tradeoff, another
major challenge facing existing JavaScript static analysis
is asynchronous function calls—especially those involving
Promise [13], a relatively new yet popular feature, which
was introduced in ES6 (2015) and used by 23% of randomly
selected 10K NPM packages. The main reason is that a
then function depends on where the corresponding Promise
object is resolved. If the resolution is in a synchronous
function, the then function is invoked immediately after
definition; by contrast, if the resolution is in an asyn-
chronous function like setTimeout callback, the then
function is invoked after the callback function. Currently,
none of the existing approaches are able to deal with this
new feature.

In this paper, we describe a novel system, called FAST
(Fast Abstract Interpretation for Scalability), to detect and
exploit JavaScript taint-style vulnerabilities. FAST tackles
the scalability-accuracy tradeoff by scaling existing abstract
interpretation via two new techniques—bottom-up abstract
interpretation and top-down abstract interpretation. Specif-
ically, the bottom-up abstract interpretation constructs a
control-flow and call graph including asynchronous edges
introduced via Promise, and an intra-procedural data-flow
graph. FAST’s novelty in this step is to follow function
scopes instead of call sequences (as prior work does) for
abstract interpretation. This enables FAST to efficiently
analyze a function from the beginning to the end only once,
rather than repeating the analysis once per function call. Ad-
ditionally, to capture JavaScript’s complexity of function call
resolution, FAST constructs a novel functional dependency
graph (FDG) that describes how functions create, resolve, or
trigger the execution of other functions. FDG enables FAST
to accurately and efficiently resolve function calls until all
the needed information (e.g., function pointers) is available
and annotated.

Top-down abstract interpretation constructs an inter-

procedural data-flow graph following specific control-flow
and data-flow paths. The insight is that FAST only analyzes
a subset of statements that are related to the next function in
the control-flow graph, called an intermediate sink, along the
control-flow path. That is, the top-down abstract interpreta-
tion prunes the program and only analyzes statements with
control- and data dependencies on the possible taint-style
sink, making it scalable compared with traditional abstract
interpretation.

After discovering vulnerable paths to taint-style sinks,
FAST verifies whether the vulnerability is exploitable via
symbolic constraint solving. Specifically, FAST annotates
each object in the abstract domain with a symbol, converts
the annotated structure together with object relations to
constraints, and asks a solver to determine whether such
constraints can be satisfied. If satisfiable, FAST generates an
exploit for further human verification; otherwise, FAST tries
another control-flow path and repeats the top-down abstract
interpretation until all paths are exhausted.

We implemented a prototype of FAST as a flow-,
context-, and path-sensitive abstract interpretation tool in
detecting taint-style vulnerabilities. Our evaluation shows
that FAST detects 242 zero-day, exploitable vulnerabilities
on Node.js packages that cannot be detected by state-of-
the-art detectors. We responsibly disclosed all the zero-
day vulnerabilities to the developers and have obtained 21
CVE identifiers. At the same time, we compare FAST with
ODGen and CodeQL [7], [8], two state-of-the-art Javascript
vulnerability detectors, and show that FAST is scalable
in detecting 10 out of 13 vulnerabilities in large Node.js
packages or applications (e.g., Content Management Sys-
tems) with more than 10K Lines of Code while ODGen
detects none. FAST is also able to automatically generate
exploits for about half of the detected vulnerabilities (true
and false positives combined), which significantly reduces
human efforts in vulnerability confirmation.

We make the following contributions in the paper:

• We propose a two-phase abstract interpretation ap-
proach, which generates a control-flow graph in the first
phase to guide the second phase for an efficient analysis.
• We implement a prototype, open-source static tool,
called FAST, to detect taint-style vulnerabilities.
• Our evaluation shows that FAST significantly outper-
forms state-of-the-art vulnerability detection tools in re-
ducing false negatives.

2. Motivation and Challenges
In this section, we describe the challenges in analyzing

realistic JavaScript packages and motivate FAST’s design.

2.1. A Motivating Example
Figure 1 contains a simplified version of an utility

Node.js application that we will use to describe the problem
and then illustrate our approach. The code compresses files
under a given path using a selected algorithm.

Specifically, the compress function, called in Line 51,
receives in input several options, including the name of

21060

1 // util.js
2 const childProcess = require("child_process");
3 const logger = require("./logger");
4 function promisify(fn) {
5 return function (arg) {
6 return new Promise(function executor(resolve,reject){
7 fn(arg, function cb(err, res) {
8 if (err != null) return reject(err);
9 resolve(res);

10 });
11 });
12 };
13 }
14 function execProcess(method){
15 return promisify(childProcess[method]);
16 }
17 async function deflate(options) {
18 const flush_pending = (strm) => {
19 const s = strm.state;
20 // let f(n) = 2*nˆ2,

↪→ after k iterations, there are fˆk(n) objects
21 let len = s.pending; // n objs
22 if (len > strm.avail_out)
23 len = strm.avail_out; // 2*n objs
24 strm.avail_out -= len; // 2*nˆ2 objs
25 };
26 for (;;){ // ... k*k iterations
27 while (...) { //... k iterations
28 flush_pending(strm); // ...
29 }
30 }
31 }
32 async function compress(options) {
33 switch (options.alg) {
34 case ’zip’:
35 return await deflate(options);
36 case ’xz’:
37 var command = ["xz", "--stdout", "-k"];
38 if (!options.path)
39 command.push("data");
40 else
41 command.push(options.path);
42 command = command.join("")
43 logger.log(‘xz, ${command}‘);
44 return await execProcess("exec")(command);
45 }
46 }
47 module.exports = function Util() { };
48 module.exports.prototype.compress = compress;
49 // exploit code, under attacker control
50 const Util = require(’util.js’);
51 (new Util()).compress({ ’alg’: ’xz’, ’path’: ’; touch

↪→ exploit #’ });

Figure 1: A motivating example with a command injection
vulnerability (the function pointer at Line 7 is the sink).

the compression algorithm (options.alg) and the path
of the file to compress (options.path). Based on the
value of (options.alg), the function executes lines 34–
35 or 37–44. In the latter path, it builds a command from
the options and dispatches that command to be executed
in Line 44. This path is vulnerable to Operating System
(OS) command injection, allowing an adversary to execute
arbitrary OS commands.

The code utilizes a popular promisify function (Lines
4–13), which converts an asynchronous function (e.g.,
childProcess.exec) to return a Promise object. The
vulnerable data flow starts from options.path (stored as
part of Line 32 as the source) to the command object at Line
44, and then ends up as the function parameter arg of the
sink function at Line 7. The exploit code of this vulnerability
(generated by FAST and verified manually) is shown at

S
c
a
la

b
ili

ty

AccuracyLow

High

High

Syntax-directed

static analysis

Ideal Analysis

Abstract

interpretation

This Work

(FAST)

(e.g., ISSTA’21

and ACSAC’19)

(e.g., USENIX’22 and

ESEC/FSE’21)

Adding

abstract

dom
ain

Figure 2: A visualization of accuracy-scalability trade-off in
static JavaScript vulnerability detection.

Lines 49–51, which are under attacker control and where
an adversary may inject an OS command string instead of
a legitimate path as the options.path property.

2.2. Vulnerability Detection Challenges
We describe two major challenges in detecting and con-

firming this taint-style vulnerability. They are i) accuracy-
scalability trade-off, and (ii) vulnerability validation.

2.2.1. Challenge I: Accuracy-Scalability Trade-Off
An ideal, static JavaScript vulnerability detection

method should be both scalable and accurate. Neverthe-
less, in practice, real-world JavaScript vulnerability detec-
tion tools have to balance the trade-off between analysis
accuracy and scalability. This trade-off is depicted in Fig-
ure 2. Current approaches are located either on the left top
corner (scalable but less accurate) or the right bottom corner
(accurate but less scalable) in Figure 2.

On one hand, the accuracy of existing approaches is
hindered by JavaScript’s large number of dynamic features
that strongly depend on runtime values and are challenging
to determine statically without call contexts [5], [14]. These
include function calls related to Promise resolution and re-
jection, heavy use of function pointers to call functions, and
callbacks that depend on function pointers. In our example
(Figure 1), such features are manifested in three locations:
(i) the function pointer fn at Line 7, (ii) the object lookup at
Line 15, and (iii) the asynchronous execution of the callback
function at Line 7. First, it is challenging to resolve fn
statically because fn is defined as the function parameter
in the closure of promisify. Second, the resolving of
childProcess[method] depends on the function pa-
rameter method at Line 14, which is passed to the function
at Line 44 as a string. Lastly, although the callback function
cb is registered at Line 7, the asynchronous function is only
executed at Line 44 when await is waiting for all promises
to be settled. In fact, classic static analysis [4] cannot resolve
either fn (Line 7) or childProcess[method] (Line
15), leading to missing call edges in the control-flow graph
and thus false negatives in the detection.

On the other hand, several approaches use abstract in-
terpretation, which mimics execution of the code in an
abstract domain [8], [10] to deal with the dynamic fea-
tures of JavaScript. However, improved analysis accuracy
naturally comes with degraded scalability. More specifically,

31061

20K 21K 22K 23K 24K 25K 26K
Lines of Code

P
er

ce
nt

ag
e

of
 P

ac
ka

ge
s

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%

Figure 3: The percentage of packages that ODGen cannot
scale to analyze vs. Lines of Code (LoC). When the LoC
exceeds 64,000 (i.e., 26 K), over 90% of packages have
the scalability issues under the analysis of ODGen. Note
that we consider ODGen fails to scale the analysis for a
given package if the code coverage stays stable for over ten
minutes and the analysis does not finish.

abstract interpretation often suffers from the issue of object
explosion. That is, the number of involved objects may
increase exponentially, leading to a large amount of space to
store objects and excessive amount of time to determine each
object afterwards. Let us use the deflate function (Lines
17–31) in Figure 1 as an example to describe the scalability
issue. The listed code is refactored from C/C++ code, which
flushes pending outputs as much as possible. Let us assume
that each iteration of the embedded loop (Lines 26–30) has
n objects. The number of objects becomes 2n2 after the
flush_pending function call because the abstract inter-
pretation stores all the possibilities of conditional statements
(Line 22). Then, 2n2 becomes the new n in another iteration,
leading to an exponential increase of objects.
Scalability Challenge of Abstract Interpretation. We per-
form two experiments to better understand this scalability
problem. First, we analyze Node.js packages with a state-of-
the-art abstract interpretation tool, namely ODGen [8], and
show the percentage of Node.js packages with the scalability
issue as the Line of Code (LoC) increases. Specifically, we
consider that an analysis of a given Node.js package has a
scalability issue if the code coverage stays stable for over
ten minutes and the analysis does not finish. Note that we
believe that this is a reasonable estimation of the scalability
issue as the ODGen paper adopts 30 seconds as the timeout
value threshold.

Figure 3 shows the percentage of Node.js packages
having a scalabilty issue vs. LoC. The percentage clearly
increases from around 10% with under 1,000 LoC to over
90% with more than 64K LoC. The results show that while
ODGen—the state-of-the-art abstract interpretation tool on
JavaScript—is capable of analyzing many NPM packages
especially those with less than 1K LoC, it cannot scale to
big packages when LoC is large.

Second, we identify several code patterns that are dif-
ficult to analyze using abstract interpretation, based on
manual, empirical analysis of Node.js packages that ODGen
fails to scale. In other words, the existence of such patterns

TABLE 1: Percentage of Node.js Packages with Certain
Hard-to-analyze Patterns for Abstract Interpretation

Pattern % Packages

Recursive calls (including indirect ones) 17.62%
Embedded loops 10.13%
Loops + binary operation 29.40%
Loops + conditional statement 27.39%
Loops + conditional expression 8.82%
Loops + boolean OR operation 11.68%
Conditional statement/expression + binary operation 53.74%

Source Code Attack
Dictionary

I: Control Flow
Path Generation

Bottom-up
Abstract

Interpretation

Control Flow
Graph Search

II: Data Flow
Path Generation

Top-down
Abstract

Interpretation

Data Flow
Graph Search

Type Inference

Constraint
Conversion

III: Exploit
Generation

Constraint Solver

Code Generation

CFG,
entry
points

Pre-defined
sources and sinks

CF
pa

th
s DFG

constraints

values

Vulnerabilities Exploits

DF path
s

AST

AST Generation

Figure 4: System architecture diagram

will significantly increase the total number of objects. Then,
we follow an approach (which is similar to prior work [15])
and measure the percentage of Node.js packages that has
the corresponding pattern. Table 1 shows the percentage
of packages with such patterns in randomly-selected 10K
packages. Many code patterns, such as the combination of
loops and binary operations, are very popular, which further
motivates the design of FAST.

2.2.2. Challenge II: Vulnerability Validation
The second challenge is how to validate a detected vul-

nerability as a true positive. Specifically, current approaches,
e.g., those adopted by ODGen [8] and Nodest [10], report a
vulnerability if there exists a data flow between a source and
a sink, and then rely on human efforts to filter false positives,
e.g., those with eventual explicit or implicit sanitization.
For example, the ODGen authors can only inspect a small
portion (i.e., less than 10%) of their reported vulnerabilities
due to the total amount of manual work that is needed.

It is challenging to automatically validate vulnerability
with exploit generation. Let us take a look at our motivating
example in Figure 1. Such validation requires precise mod-
eling of control-flows, e.g., the switch case at Line 36 and
the if statement at Line 38, and data-flows, e.g., arg at
Line 7, which is command at Line 44 and composed at Line
42, as constraints. Then, the validation needs to ensure that
all the control-flow constraints can be satisfied and the data-

41062

flow allows the injection of third-party code, particularly OS
commands in this example.

2.3. Threat Model
Our threat model considers all taint-style vulnerabili-

ties [1]–[3] are in scope, i.e., those that can be modeled
as one taint flow from a source (e.g., an object related to
user inputs) and a sink (e.g., a sensitive built-in function).
This threat model is the same as some prior works, such
as Synode [4] and Nodest [10]. Specifically, we consider
the following vulnerability types in the evaluation: (1) OS
Command Injection, (2) Path Traversal, and (3) Arbitrary
Code Execution. Note that some vulnerabilities, such as
prototype pollution and internal property tampering, are out
of scope of the paper, because they cannot be modeled by
one taint flow.

3. Solution Overview
We show an overview of FAST’s architecture in Fig-

ure 4. FAST has three stages: (i) control-flow path genera-
tion that uses bottom-up abstract interpretation to construct
the control-flow graph and find a path between entry points
and sink function(s), (ii) data-flow path generation that
uses top-down abstract interpretation to generate accurate
and informative data-flow paths following a control flow
path from Stage (i), and (iii) exploit generation to convert
data-flow paths into constraints and solve the constraints for
exploit generation.

Now, we explain how FAST tackles the aforementioned
two challenges in Section 2.2 using our motivating example.
[Scalability] Bottom-up and and top-down abstract in-
terpretation. First, the bottom-up abstract interpretation
performs an intraprocedural analysis of each function scope
without following interprocedural paths. This strategy avoids
heavy-weight analysis following inter-procedural call edges.
Second, the top-down abstract interpretation prunes state-
ments based on control- and data-dependencies, thus skip-
ping statements leading to state explosion. Intuitively, since
the sink of our motivating example is at Line 7, which
depends on Line 44, our two-phased abstract interpretation
avoids the second phase from analyzing the function de-
flate by skipping the case branch at Line 34–35, thus
scaling the analysis.

Let us explain these two phases in detail using our
motivating example (Figure 1). Figure 5 illustrates the first
phase of the analysis of the example, bottom-up abstract
interpretation. FAST pushes all functions in the current
scope into a stack in Step (1) while abstractly interpret-
ing statements in the current scope and interacting with
the abstract domain (i.e., Object Dependence Graph [8]).
FAST creates call graph nodes for each function defined in
the scope, e.g., promisify and the anonymous function
(Line 5) in Step (2), and links functions together based
on call relations, e.g., the anonymous function and the
Promise constructor in Step (3). Calls that cannot be
resolved are dealt with by delaying such resolution until
all the information is available. In particular, FAST uses
functional dependency graphs (FDG), a novel representation

of dependencies between function calls, to capture resolution
information. For instance, FAST creates an unresolved look-
up path, e.g., LP1 in Step (4) and LP2 in Step (5), waiting
for a variable like a function parameter to be instantiated in
the abstract domain. Finally, when the variable method in
execProcess is instantiated in Step (6) as a string “exec”,
FAST uses this information to resolve LP2 as a call to
childProcess.exec. We describe FDGs in more detail
in the next section. The result of the bottom-up abstract
interpretation is a control-flow, data-flow, and call graph.

Figure 6 illustrates the second phase of our approach,
top-down abstract interpretation of the compress function,
which operates on the control-flow graph built by the first
phase and interacts with an empty abstract domain separated
from the first phase. In particular, this phase first extracts
source-sink paths and then it builds a data-flow graph by
abstractly interpreting only the instructions that have de-
pendencies with the sink. In our example, FAST skips lines
34, 35, 39, and 43, which have no dependencies with the
sink. Avoiding such unnecessary abstract interpretation is a
key improvement of FAST over prior work.
[Vulnerability Validation] Constraint Solving. FAST gen-
erates exploits for a detected vulnerability from two-phased
abstract interpretation. Specifically, FAST first annotates all
object relations in the abstract domain and then extracts
control- and data-flow constraints for a constraint solver.
Lastly, FAST generates code as the exploit for the vulner-
ability validation.

Now, let us use our motivating example to explain the
process. Figure 7 shows the annotated object graph with
objects as nodes and relations as edges. Then, FAST can
directly extract control- and data-flow constraints from the
graph. Let us explain the details. Node i is the source and
Node j the sink. FAST extracts two types of constraints:
data- and control-flow. First, the data-flow constraint (shown
as “from the data flow path” in the graph) extraction is
a backward traversal of the graph from the sink j to i
with the string concatenation operation annotated on Node
j until the traversal reaches all the constants. Second, the
control-flow constraints (shown as “From condition A and
!B in the graph) are annotated on the edge of command.
Similarly, FAST traverses backward from Nodes A and
B to generate both constraints. After constraint extraction,
FAST combines all the constraints, asks a solver to provide
a solution, and generates exploits (Lines 47–51 in Figure 1).

4. Design
In this Section, we present the design details of FAST’s

three stages: (I) bottom-up abstract interpretation, (II) top-
down abstract interpretation, (III) exploit generation.

4.1. Stage I: Control-Flow Path Generation
The goals of this stage are the creation of a control-flow

graph (CFG) of the code and finding a control-flow path
between sources and sinks. The novelties of this stage are
as follows. First, FAST follows scopes to abstractly interpret
each function without following outgoing call edges. Sec-
ond, it annotates function call dependencies using a novel

51063

6 return new Promise(
 function executor
 (resolve, reject) {
7 fn(arg,
 function cb(err, res) {
 ...
10 });
11 });

14 function execProcess(method){
15 // simpilifed from
 child-process-promise
16 return promisify(
 childProcess[method]);
17 }

promisify

pop

anon. func.

push

5 return function (arg) {
6 return new Promise(
 function executor(...) {
 ...
11 });
12 };

anon. func.

pop

executor

push

executor

pop

cb

push

execProcess

pop
pop*

cb

pop*

compress

pop
pop*

Util

(2) (3) (4) (5) (6)

C
od

e
St

ac
k

anon. func.

Promise

executor

LP1

promisify
(LP1)

Name node
Object node

Functions in AST/CG

Obj. relations
Call edges

Potential look-up path (LP1 and LP2)
Real look-up path

*: not shown in this diagram

promisify

execProcess

deflate

compress

Util

(1) Running the file pushes these five functions into the stack.

Unresolved call

anon. func.

Promise

executor

LP1/LP2

promisify
(LP1)

execProcess
(LP2)

anon. func.

Promise

executor

LP1/LP2

promisify
(LP1)

compress

execProcess
(LP2)

childProcess.
exec

anon. func.

Promise

promisify

anon. func.

promisify

deflate

fn LP1
childProcess unresolved

property name
unresolved function

method

value from

exec

LP2

Lo
ok

-u
p

Pa
th

s

In
iti

al
 S

ta
ck

4 function promisify(fn) {
5 return function (arg) {
 ...
12 };
13 }

C
al

l G
ra

ph
 A

nn
ot

at
ed

w

ith
 L

oo
k-

up
 P

at
hs

32 async function compress(options){
 ...
44 return await execProcess(
 'exec')(command);
 ...
46 }

Figure 5: An illustration of bottom-up abstract interpretation using Figure 1 as an example (LP1 and LP2 are two lookup
paths of the function pointer fn at Line 7. LP2 is resolved at Step (6), leading to a function call to childProcess.exec.
Note that “Initial Stack” contains five functions that are in the file scope and pushed by FAST during initial scanning.)

32

33
34
35
36
37
38
39
40
41
42
43
44
45

46

Control flow edge

Intra-procedure
data flow edge

Selected statements

usedef

async function compress(options) {
 ENTRY
 switch (options.alg) {
 case options.alg == 'zip':
 return await deflate(options);
 case options.alg == 'xz':
 var command = ['xz', '--stdout', '-k'];
 if (!options.path)
 command.push("data");
 else
 command.push(options.path);
 command = command.join(" ");
 logger.log(`xz, ${command}`);
 return await execProcess("exec")(command);
 }
 EXIT
}

Figure 6: An illustration of top-down abstract interpretation
of the compress of Figure 1 following control- and intra-
procedural data-flow path.

functional dependency graph (FDG), and generates accuracy
call graph based on FDG. Specifically, FDG delays the
challenging task of resolution of function calls until all the
information is available, e.g., the value of an unresolved
function pointer is passed as an argument of another function
call.

We now describe FDGs and how bottom-up abstract
interpretation creates FDG, call graphs and intra-procedural
control-flow graphs.

Functional Dependency Graph (FDG). A functional depen-
dency graph is a graph whose nodes represent functions
or function identifiers (e.g., pointers) and whose edges rep-

0

anonymous array

1 2

literal
“xz”

literal
“--stdout”

literal
“-k” algpath

literal “xz”

OP1

OP1

options

arg

OP1 == OP2 #25
result of case 'xz'

!OP1
#28 result of

!options.path

#31 OP1 + OP4 +
OP2 + OP4 + OP3

+ OP4 + OP5
AB

conditions
A and !B

command

conditions
A and !B

OP1

OP2

source

OP4

sink

O
P2

O
P3

d

e f g

a

i b

j

c

condition relations

3

literal “ ”
h

OP5

object node
x: variable used in constraints name node

name-object relation edge data flow edge
data flow path

sink object node

source object node

conditional sink object node
conditional data flow path

line number

Generated constraints

From condition A:
(= b c)
(= c "xz")

From condition !B:
(not (not ((not (= b "")))))

From the data flow path:
(= e "xz")
(= f "-k")
(= g "--stdout")
(= h " ")
(= j (++ (++ (++ (++ (++
 (++ e h) f) h) g) h) i))
(contains j "& touch exploit #")

x

Figure 7: Inter-procedural data-flow graph with control- and
data-flow constraints annotated of the motivating example.

resent different types of dependencies among those nodes.
Given two nodes v1 and v2 in the graph, an edge (v1, v2) rep-
resents the fact that v2 is resolvable after v1 is resolved with
a call edge. The FDG captures in a concise way the different

61064

ways in which JavaScript calls functions and the dependen-
cies between functions and function identifiers. This allows
FAST to accurately add call edges when the function identi-
fiers are resolved during abstract interpretation. In particular,
FAST uses the paths in the FDG to propagate the resolution
of function calls when the callee is known. For instance,
function executor in Figure 1 contains a function call
via a function pointer fn in Line 7. The function pointer
is passed as a parameter to function promisify, which
in turn is called by execProcess. FDG models a de-
pendency edge (called lookup dependency below) between
promisify/execProcess and executor. Then, when
another function calls promisify/execProcess, FAST
traverses dependency edges in FDG (i.e., Figure 8 (a)) to re-
solve fn and add corresponding call edges for executor.

We categorize FDG dependencies into four main types
covering all different scenarios in the ES6 specification [16].

• Lookup Dependency. A lookup dependency is caused
by a function pointer lookup (such as fn in Figure 1)
in a closure or an outer scope where the pointer is
used for invocation. These dependencies are represented
by edges labeled with lookup in Figure 8 (a). Gener-
ally, a lookup dependency is determined by a lookup
path (LP), which is defined as a series of lookups
like a1[a2][a3]...[ak]. A lookup path can be
a straight line or a compound structure where each
ak = b1[b2]...[bk]. We call a lookup path final
when all objects that variables like ak and bk point
to are either defined in a scope or passed as func-
tion parameters. Then, FAST creates a lookup depen-
dency between the function pointer location and the
functions with the parameters. For example, Line 15
of Figure 1 shows a relatively complex lookup path
childProcess[method] (which is also shown as
LP2 in Figure 5) where childProcess is defined in
an outer scope at Line 2 and method is passed as a
parameter at Line 14 of the execProcess function.
FAST then creates a lookup dependency between Line 7
of executor function and execProcess at Line 14.
• Callback Dependency. A callback dependency (called
a “trigger”) is caused by a callback function invoca-
tion, e.g., cb at Line 7 of Figure 1, where a function
is the parameter of another undecided or asynchronous
function call. That is the undecided or asynchronous
function triggers this callback function. If the former
is undecided, FAST will determine call edges after the
former is resolved just like Line 7 of Figure 1; if the
former is asynchronous, FAST puts the invocation of
latter callback after the former to the event queue of the
abstract interpreter because the callback is only registered
after the former’s execution.
• Return Dependency. A return dependency is caused by
an invocation of a function returned by another function.
Line 44 of Figure 1 shows such an example: The return
value of execProcess is invoked as a function at Line
44 with a parameter command. That is, FAST determines

fn (Line 7)

cb (Line 7)

Promise

(Line 6)

Line 44

await

callback

resolve

arrowFun2

Promise 1

arrowFun3

Promise 2

arrowFun6

arrowFun7

resolve

then

resolve

then

newanonymous

(Line 5)

new

new
main

arrowFun4

callback

main

Promise 1

constructor

arrowFun1

arrowFun2

arrowFun3

Promise 2

constructor

arrow

Fun5

arrow

Fun6

arrow

Fun7

arrow

Fun4

(a) Functional

Dependency Graph of

Motivating Example

(b) Functional

Dependency Graph of

Then-chain Example

(c) Call Graph of Then-chain Example

Functional Dependency Edge

Call Graph Edge

promisify

exec

Process

lookup

lookup

compress

ret

Function Node

Figure 8: An illustration of functional dependency graphs.

1 const myPrms = new Promise((resolve, reject) => { //
↪→ arrowFun1

2 setTimeout(()=>{ // arrowFun2
3 resolve("done");
4 }, 300)
5 });
6 myPrms.then(value => { // arrowFun3
7 setTimeout(()=>{}/*arrowFun4*/);
8 return new Promise((resolve, reject) => {// arrowFun5
9 setTimeout(()=>{ // arrowFun6

10 resolve(value);
11 }, 300)
12 })
13 }).then(value => { //arrowFun7
14 console.log(value);
15 });

Figure 9: An illustration of then chaining in Promise-
related call graph construction (The global scope of this
example is called “main” later in the paper).

the call edge of compress after execProcess is
analyzed.
• Promise Dependency. A promise dependency is caused
by a Promise object. FAST creates a special Promise
node in the functional dependency graph after the new
operation and a “new” edge between the node and the
creator function. The created Promise node has in-
coming dependencies from the functions that call re-
solve and reject and outgoing dependencies caused
by then. Note that await is syntactic sugar of the
then representation. That is, FAST will create a “then”
dependency edge to the statement immediately after the
await statement.

To better illustrate Promise dependencies, we also
show a then chain example in Figure 9. The example
creates a new Promise at Line 1 and then two then
functions that are chained together at Line 6 and Line
13. The example has seven arrow functions that are anno-
tated as comments in the figure. Figure 8 (b) shows the

71065

functional dependency graph of this then chain example.
The main scope creates Promise 1, which is resolved by
arrowFun2. Then, Promise 1 triggers the then func-
tion arrowFun3. arrowFun3 triggers arrowFun4 as an
asynchronous function and also creates another Promise
2. Promise 2 is resolved in arrowFun6 and triggers
arrowFun7.

Graph Creation. We describe how FAST uses bottom-up
abstract interpretation to generate functional dependency,
call edges, and intra-procedural control-flow edges, as well
as to resolve the dependencies. We describe the generation
based on different types of statements. A detailed algorithm
can also be found in Appendix A.

• Function calls. There are four types of function calls:
directly resolvable, pending, return-related, and callbacks
(parameter-related). FAST adds corresponding call or
dependency edges to the FDG based on the type. If the
function is immediately resolvable, e.g., a direct function
call, FAST adds the corresponding call edge. Otherwise,
FAST adds a dependency edge and waits for the depen-
dent function for adding a call edge.
• Function definitions. There are three types of function
definitions: callback, return function, and function ex-
pression. FAST pushes newly defined functions onto the
stack for further abstract interpretation. At the same time,
FAST also tries to resolve functions that are dependent
on the newly defined function. For example, if a function
is defined as a return value, FAST follows dependency
edges, finds its invocation location, and adds call edges.
• Promise-related statements. There are four types of
Promise-related statements: new, then, await, and re-
solve/reject. FAST adds dependency edges based on the
statement type. If the statement is a resolve/reject, FAST
will resolve the corresponding the corresponding Promise
and then trigger the “then” function if it is present.

Having captured all the dependencies between possible
function calls in the FDG, when FAST encounters depen-
dency edges, it is able to execute a resolve-and-trigger
strategy. In particular, once a single node is resolvable,
FAST will follow paths formed by dependency edges to
resolve all the pending call edges related to those paths.
Let us review our motivating example in Figure 1 and its
functional dependency graph in Figure 8 (a) again. When the
parameter value of execProcess becomes available in the
compress function, FAST resolves fn and then cb and
then the Promise and await in a chain. Similarly, if we look
at our then chain example in Figure 9, Figure 8 (c) shows
the call graph generated from Figure 8 (b), where arrow-
Fun2 triggers a chained call edge until arrowFun7.

4.2. Stage II: Data-flow Path Generation
In this stage, FAST finds a data-flow path between a

source and a sink following a specific control-flow path.
Details of such control-flow path discovery after bottom-
up abstract interpretation can be found in Appendix B.
We describe three components here: (i) intra-procedural

backward slicing, (ii) top-down abstract interpretation and
(iii) data-flow search and vulnerability detection.

First, we describe intra-procedural backward slicing.
FAST generates intra-procedural data flow for each function
and then performs a backward slicing based on the interme-
diate sink function, i.e., the next function call in the control-
flow path, to skip unrelated statements. Let us look at our
motivating example again. Figure 6 shows the backward
slicing results (highlighted statements) of the compress
function of our motivating example in Figure 1 following
a control-flow path leading to the final sink Line 7. We
marked all the intra-procedural data-flow edges related to
the intermediate sink at Line 44: Anything unrelated to
command (e.g. Line 43) or not on the control-flow path
(e.g., Line 39) is filtered. This intra-procedural data-flow
slice is used for our top-down abstract interpretation.

Second, FAST follows a specific control-flow path and
an intra-procedural slice selected based on the control-flow
path to abstractly interpret a subset of program statements.
Such a procedure is called a top-down abstract interpretation
because it follows the call sequence, especially the caller-
callee relations. We describe two substeps of top-down
abstract interpretation.
Step 1. Object-level data-flow generation. First, FAST gen-
erates data flow between different objects (i.e., object-
level data flows). Specifically, consider the following two
statements: (1) p = a; and (2) o = p + b;. Both p
and a point to the same node, which solves the points-to
information. Then, FAST creates a data flow between the
node that p and a point to and the one that o points to. So
FAST does for o and b. The plus operator is also annotated
atop of the object-level data-flow edge for the third stage to
generate exploits. Note that similar data-flows are created
for template strings (e.g., ‘string${var}‘) and built-in
function (e.g., Array.prototype.join) and operations
are annotated on the edge as well.
Step 2. Path-sensitivity information collection. FAST stores
path-sensitivity information as an object in the object-level
data-flow graph and pushes the object onto a so-called
branch stack. Consider an if statement with a condition
a && b. FAST creates an object node to denote the result
of a && b that both object nodes of a and b have a
data-dependency upon. Later on, when an object is created
under a certain branch, the object is attached with a tag
that represents the current stack, i.e., all the path-sensitivity
related objects in the stack. Then, when FAST finishes
the abstract interpretation of the branch, FAST pops the
corresponding path-sensitivity object out of the branch stack.

Lastly, FAST performs a data-flow path search to de-
termine the connectivity between sources and sinks. FAST
takes in input the list of sources and sinks and performs
a Depth First Search (DFS) over the interprocedural DFG.
The final result of this step is a set of source-sink data-flow
paths to indicate a possible vulnerability.

4.3. Stage III: Exploit Generation and Validation
The goal of this stage is to generate an exploit based on

the extracted data-flow path and the detected vulnerability.

81066

If a path is exploitable, FAST considers the vulnerability
as exploitable. Otherwise, FAST repeats Stage I to try
another control-flow path. Stage III is composed of three
steps: type inference, constraint generation, and exploit code
generation.
Type Inference. One challenge in using constraint solv-
ing with is that of translating instructions into the lan-
guage of the constraint solver. Specifically, the main issue
is that JavaScript is weakly and dynamically typed but
constraint solvers (such as the Z3) are strongly, statically-
typed. Therefore, when FAST generates constraints from
JavaScript, it also needs to provide type information to the
solver. To address this issue, FAST incorporates methods
for inferring variable types from known types. Particularly,
FAST uses two specific inference methods: forward and
backward. Forward inference follows the data flow from an
object to its uses in built-in functions and derives the type
based on the specific built-in. For example, if an object is
used in childProcess.exec, FAST can infer that this
object is a string type. Second, backward inference is that
FAST follows the data-flow in backward from an object and
iterates through all the objects related to the object in the
data flow. For example, say, FAST is inferring the type of
b in b = a + "str". When FAST goes backward and
finds that “str” is of a string type, FAST then infers both a
and b are of a string type for the solver.
Constraint Generation. The second step is to generate
constraints from the data-flow path extracted from Stage
II. We classify constraints in FAST into three categories.
(i) Sink object constraints, which are converted from the
sensitive sink object, e.g., parameters of the sink func-
tion. Such constraints have two parts: constraints on the
sink object itself, and constraints on the sink object and
source objects. The former is vulnerability specific: for
example, if the vulnerability is command injection, FAST
may add a constraint based on a vulnerable dictionary like
(str.contains o "; touch exp #"). The latter
is based on a backward traversal of the sink object in the
data-flow graph to reach sources. (ii) Path constraints, which
are converted from path objects stored in the branch stack
as discussed in Section 4.2. FAST loops through all the
objects in the stack and generates such constraints. The
generation process is similar to sink object without the
vulnerability-specific constraint. (iii) Constant constraints,
which are generated during the former two when FAST
can determine the value of a certain object from a constant
value. A detailed algorithm can be found in Appendix C.
Exploit Code Generation. The third step is to generate
exploit code based on the constraints extracted from the
second step. FAST feeds all the constraints into a solver
(such as Z3) and obtains a solution. Then, the next step is to
generate an exploit code, which has two sub-steps: function
call preparation and exploit validation. First, when the solver
gives values for each source object, FAST needs to first
find the correct way to call the function. Specifically, FAST
finds the definition of the function object and then searches
through its parent object (e.g., parent.child) until it
finds an external object, such as module.exports. Next,

it adds the solution for a source object as the parameter
to the function call. Second, FAST validates the generated
exploit by running the exploit code. Take command injection
for example. FAST checks whether an exploit file is created
under the current directory if the exploit code is to touch a
new file.

4.4. Implementation
We implemented FAST with 4,166 Lines of Code

(LoC) in Python and 274 LoC in JavaScript. Our open-
source implementation is available at this GitHub repository:
https://github.com/fast-sp-2023/fast. The abstract syntax tree
(AST) generation is based on Esprima [17]. The graph repre-
sentation reuses the graph component from the open-source
project ODGen [18] and the graph library NetworkX [19].
The constraint solving is based on Z3 Theorem Prover [20],
which includes Z3-str, now an official component of Z3.
Note that all third-party code is excluded from the above
LoC.

5. Evaluation
Our evaluation answers five Research Questions (RQs):

• RQ1 [Zero-day]: How many zero-day vulnerabilities can
FAST detect but state-of-the-art approaches cannot?
• RQ2 [FP&FN]: What are FAST’s false negatives (FNs)
and false positives (FPs) in detecting vulnerabilities?
• RQ3 [Scalability]: How scalable is FAST in detecting
vulnerabilities in large-scale packages?
• RQ4 [Call Graph]: How many new call graph edges can

FAST generate compared with state of the art?

5.1. Experimental Setup
Datasets. We collect and form three datasets. (i) Real-
world Node.js packages with the first 100,000 NPM Node.js
packages ranked by number of dependencies. (ii) Vulner-
ability benchmark with 391 vulnerable Node.js packages
with 391 taint-style vulnerabilities from three types, i.e.,
OS command injection, arbitrary code execution and path
traversal. The packages in this benchmark come from the
ODGen repository [18], the Nodest paper [10], and legacy
CVEs in 2021 and 2022 (which is after the ODGen paper).
(iii) Scalability benchmark with 13 vulnerabilities in eight
packages-version pairs with more than 10K LoC (excluding
third-party code). We collect this dataset by surveying pop-
ular CMSes [21] in JavaScript and finding their in-scope,
taint-style vulnerabilities with confirmed exploit code.
Experimental Environment. All our experiments are per-
formed on a server with 192 GB memory and Intel Xeon E5-
2690 v4 2.6GHz CPU with 14 cores. We run 16 threads of
FAST at the same time for the real-world Node.js packages
to speed-up the analysis. We evaluate the following tools
in our experiment. First, there are two variations of FAST:
FAST-det and FAST-exp. FAST-det, the default version
of FAST, detects a vulnerability if a data-flow path is
found between a source and a sink. FAST-exp reports a
vulnerability found by FAST-det as exploitable if it can
successfully generate an exploit. Second, we also include

91067

TABLE 2: [RQ1] A breakdown of confirmed zero-day
vulnerabilities found by FAST but not state-of-the-art ap-
proaches (SOTAs), i.e., neither ODGen [8] nor CodeQL [7]
detects them, on 100k real-world Node.js packages.

Vulnerability FAST-det& FAST-exp& FAST-det&
¬SOTA ¬SOTA SOTA

Command Injection 113 92 177
Arbitrary Code Exec. 68 39 29
Path Traversal 61 51 24

Total 242 182 230

TABLE 3: [RQ2] False Positive and Negative Rate Com-
parison between FAST and ODGen.

FAST-det FAST-exp ODGen CodeQL

False Negative Rate 16.6% 58.3% 43.7% 35.3%
False Positive Rate 11.8% 0% 23.3% 27.8%

two state-of-the-art (SOTA) tools: (i) ODGen [8], the SOTA
abstract interpretation tool, and (ii) CodeQL [7], the SOTA,
industry-level syntax-directed tool.

5.2. RQ1: Zero-day Vulnerabilities
In this subsection, we answer the research question on

how many zero-day vulnerabilities FAST can detect while
four SOTA approaches (mentioned in our experimental
setup) cannot. We run all the tools upon our real-world
Node.js packages. Then, we consider a detected vulnerabil-
ity as zero-day if a human expert confirms the vulnerability
with a generated exploit and we cannot find any information
about the vulnerability online. We also have responsibly
reported all zero-day vulnerabilities to corresponding de-
velopers and gave them 45 days for fixes. So far we have
obtained 21 CVE identifiers; we anonymize them for the
purpose of double-blind submission. Table 2 shows a list of
zero-day vulnerabilities that is broken down by vulnerability
type. In total, FAST detects 242 zero-day vulnerabilities and
exploits 182 of them.

A Case Study. We use fastboot-gcloud-storage-
downloader@1.0.0., which is a downloader for the FastBoot
App Server to download and unzip deployed applications
from Google Storage, as an example. The package uses
“exec” to download and unzip deployed applications but
fails to sanitize inputs potentially controlled by an adversary,
thus leading to an OS command injection vulnerability.
FAST-det successfully detects this package as vulnerable
and then FAST-exp automatically generates an exploit. By
contrast, neither ODGen nor CodeQL detects this vulnera-
bility because of the heavy use of Promise and template
string, leading to missing control- or data-flow paths.

5.3. RQ2: False Negatives and Positives
Overview. Table 3 shows an overview of the comparison
between all four approaches. False negatives (FNs) are
evaluated on the vulnerability benchmark (because we have
the ground truth information) and false positives (FPs) on the
first 10K Node.js packages in the real-world dataset (because

TABLE 4: [RQ2-FN] False negative comparison on
vulnerability benchmark between two variations of FAST,
ODGen [8] and CodeQL [7] on vulnerability benchmark.

Cmd Injection Code Execution Path Traversal Total

TP FN TP FN TP FN TP FN

FAST-det 169 18 42 12 115 35 326 65
FAST-exp 86 101 13 41 65 85 164 228

ODGen 107 80 24 30 89 61 220 171
CodeQL 122 65 21 33 110 40 253 138

it contains non-vulnerable packages and we do not have any
ground truth).

On one hand, FAST-det outperforms all SOTAs with
the lowest FP and FN rates. FAST-det outperforms ex-
isting abstract interpretation (i.e., ODGen) because of our
improvement on scalability. FAST-det outperforms existing
syntax-driven approaches (e.g., CodeQL) because abstract
interpretation can solve dynamic JavaScript features like
dynamic object lookups using bracket syntax. On the other
hand, FAST-exp has zero false positives but relatively high
false negatives because it generates exploits by solving all
the constraints. In many cases, FNs are because Z3-solver
does not come up with a solution while our human being
can solve them manually. Note that we count packages
with intended functionalities as true positives of analysis
but not zero-day vulnerabilities because we are calculating
true positives of our program analysis, which is performing
correctly. The total number is also small, i.e., only nine
arbitrary code execution among all vulnerable packages.

False Negative Breakdown. Table 4 shows a breakdown
of false negatives of different tools. FAST-det outperforms
existing works in all vulnerability categories. The main
reason of FN for FAST-det is that there are some unmodeled
sources or sinks, leading to missing data flow. ODGen’s FNs
are mainly because of code coverage, i.e., much vulnerable
code may not be even reached during the analysis. CodeQL’s
FNs are due to dynamic JavaScript features, such as function
calls related to bracket syntax.

False Positive Breakdown. Table 5 shows a breakdown
of FAST’s false positives by vulnerability types and its
comparison with SOTAs. FAST outperforms SOTAs on all
types of vulnerabilities. The main reason of FPs of FAST-
det is that many applications contain either control- or data-
flow sanitizations, which make the detected vulnerability
unexploitable. This also shows that we need FAST-exp to
help the exploitation. As a comparison, CodeQL’s FPs are
higher than FAST-det because there are over-approximations
of control- and data-flows due to lack of abstract interpre-
tation in a syntax-driven approach.

5.4. RQ3: Scalability
In this subsection, we evaluate the scalability of FAST in

detecting vulnerabilities of the scalability benchmark. There
are two things worth noting here. First, although there is
only one CVE identifier for strapi@4.0.8, there are two

101068

TABLE 5: [RQ2-FP] False positives of two variations of
FAST in analyzing 10k real-world Node.js packages.

Cmd Injection Code Execution Path Traversal Total

TP FP TP FP TP FP TP FP

FAST-det 56 4 16 5 3 1 75 10
FAST-exp 35 0 6 0 3 0 44 0

ODGen 17 5 13 5 3 0 33 10
CodeQL 52 13 12 8 1 4 65 25

TABLE 6: [RQ3] Detection and exploitation status of FAST
and ODGen of the scalability dataset (>10K LoC).

Package Version LoC Vulnerability FAST ODGen

strapi 4.0.8 196,338 CVE-2022-0764† 2/2 0/2

strapi 3.0.0-beta.17.7 85,520 CVE-2019-19609† 2/2 0/2

ghost 4.3.0 71,041 GHSA-wfrj-qqc2-83cm‡ 1/1 0/1
CVE-2021-29484 0/1 0/1

NodeBB 1.4.0 70,950 npm:nodebb:20161120‡ 1/1 0/1

NodeBB 0.6.1 46,092 npm:nodebb:20150413‡ 1/1 0/1

total.js 3.4.5 40,593

CVE-2020-28494 1/1 0/1

CVE-2021-23344 1/1 0/1

CVE-2021-23389∗ 1/1 0/1CVE-2021-32831∗

total.js 3.2.2 33,109 CVE-2019-8903 0/1 0/1
CVE-2019-10260 0/1 0/1

hapi 0.15.9 12,681 npm:hapi:20130320‡ 1/1 0/1

Total – – – 11/14 0/14

†: The CVE maps to two vulnerabilities with two sinks and two different exploits.
‡: We use snyk-id because there are no CVE identifiers.
∗: These two CVEs map to the same vulnerability.

vulnerable sinks and two different exploits, i.e., two vulnera-
bilities. The same applies to strapi@3.0.0-beta.17.7. Second,
interestingly, although there are two CVE identifiers (CVE-
2021-23389 and CVE-2021-32831) for total.js@3.4.5, there
is only one vulnerability. Note that these two CVEs are
follow-ups of CVE-2021-23344, because the patch of CVE-
2021-23344 is also vulnerable.

Table 6 shows the detection results of FAST and
ODGen. FAST is able to detect ten out of 14 vulnerabilities,
even in strapi with almost 200K LoC. By contrast, ODGen
detects none of these vulnerabilities after analyzing each
vulnerability for one day (sometimes it may crash). FAST
also misses the detection of three vulnerabilities. The main
reason is the lack of modeling of corresponding sources or
sinks by FAST. Take CVE-2021-29484 [22] in ghost@4.3.0
for example. It is client-side vulnerability starting from a
postMessage channel as a source, which was not mod-
elled by FAST. The two vulnerabilities of total.js@3.2.2
are similar. We do not find sources and sinks modeled by
FAST that are related to the vulnerabilities. Furthermore,
we cannot reproduce either vulnerability, which prevents us
from understanding the real source or sink.

At the same time, we also show the total finish time of
FAST vs. the number of Abstract Syntax Tree (AST) Nodes
of our scalability and vulnerability benchmark combination
in Figure 10. When the number of AST node increases, the

finish times of both FAST-det and FAST-exp increase. The
increase is linear as we show the trend in a line fit (both x-
and y-axes are in log scale). The finish time of FAST-exp
is slightly higher than FAST-det because of the additional
exploitation time.

We also show a cumulative distributional function (CDF)
graph of the performance overhead of both FAST and
FAST-det on our vulnerability benchmark in Figure 11.
The median performance overheads are 26.3 seconds and
31.6 seconds for FAST-det and FAST-exp respectively.
There are three things worth noting here. First, FAST
finishes analyzing most packages with one minute. Second,
the performance overheads of FAST-det and FAST-exp
are similar, i.e., exploit generation is relatively fast. Lastly,
the largest overhead is 3,401 seconds (almost an hour) for
FAST-exp (not shown in figure) in analyzing api@0.15.9
with 12K Lines of Code because of the heavily uses of
dynamic calls. We also have a performance breakdown by
stages in Appendix D.

5.5. RQ4: Call Edges
In this research question, we compare call edges pro-

duced by FAST and existing approaches, namely the open-
source implementations of (i) ODGen [8], [18], an abstract
interpretation approach, and (ii) JS Call Graph [23], [24],
a syntax-directed approach. Note that we choose JS Call
Graph because some follow-up works are either entirely
closed source [14] or does not provide a call graph for
comparison [7].

Our methodology is as follows. We run all three ap-
proaches on our vulnerability benchmark, produce call edges
and then compare the results produced by three approaches.
We then manually inspect all the edges produced by three
approaches for correctness. The inspection of all the edges
takes a graduate student approximately 230 hours. Lastly, we
show the breakdown of false positive and negative edges of
each approach.

First, Table 7 shows false positives and negatives of call
edges produced by all three approaches. FAST outperforms
both ODGen and JS Call Graph (JSCG) in terms of FPs
and FNs. Let us start from FPs, i.e., incorrect call edges.
The FPs of JS Call Graph are the highest because it adopts
a syntax-based, name-driven matching. Therefore, JS Call
Graph often mismatches a function call to a definition under
an incorrect scope. Say there are two functions called foo
under different scopes and JS Call Graph often chooses
a wrong one. By contrast, the FPs of ODGen and FAST
are relatively smaller. The main reasons are unsupported
features. For example, if FAST cannot recognize whether
a callback function is synchronous or asynchronous, FAST
will default it as synchronous, leading to potential FPs.

We then discuss FNs, i.e., missing call edges. ODGen
misses many call edges because of code reachability in the
analysis. Specifically, ODGen often has an exponential num-
ber of nodes during analysis, leading to a scalability issue
as shown in the motivating example of Figure 1. The FNs of
JS Call Graph are also mostly caused by scope mismatch,
i.e., it chooses the wrong function under a different scope.

111069

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

F
in

is
h
 t

im
e

[s
]

Number of AST nodes

FAST-det
FAST-det line fit
FAST-exp
FAST-exp line fit

Figure 10: [RQ3] Detection Finish Time vs. the Number of
Abstract Syntax Tree (AST) Nodes on a Combination of
Vulnerability and Scalability Benchmarks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

P
er

ce
n
ta

g
e

o
f

fi
n

is
h
ed

 p
ac

k
ag

es
 [

%
]

Finish time [s]

FAST-det
FAST-exp

Figure 11: [RQ3] Cumulative Distribution Function (CDF)
of Performance Overhead on a Combination of Vulnerability
and Scalability Benchmarks

TABLE 7: [RQ4] Call edge breakdown of ODGen, JS Call
Graph, and FAST (%Edges for True Positives: TP/(TP+FP);
%Edges for False Positives: FP/(TP+FP); %Edges for False
Negatives: FN/(TP+FN))

ODGen JS Call Graph FAST

#Edges %Edges #Edges %Edges #Edges %Edges

True Positives 4,137 89.4% 3,617 78.6% 6,831 92.8%

False Positives 492 10.6% 985 21.4% 531 7.2%
Scope mismatch 0 0% 985 21.4% 0 0%
Unsupported feature 380 8.2% 0 0% 479 6.5%
Implementation bug 112 2.4% 0 0% 52 0.7%

False Negatives 3,059 42.5% 3,579 49.7% 365 5.1%
Reachability 1,824 25.3% 0 0% 0 0%
Function pointers 0 0% 280 3.9% 0 0%
Scope mismatch 0 0% 2,190 30.4% 0 0%
Unknown objects 137 2.0% 0 0% 137 2.0%
Implementation bug 1,098 15.2% 1,109 15.4% 228 3.1%

There are two reasons of FNs for FAST. On one hand,
FAST cannot create call edges for an unknown object, e.g.,
one passed through a function parameter without a formal
definition. On the other hand, our current implementation
still has an engineering bug in creating call edges for some
function calls in embedded ternary operator. We will fix this
bug in the future.

Second, we also show a Venn graph of all the edges
produced by three approaches in Figure 12. On one hand, the
overlaps between ODGen and FAST are large because both
are based on abstract interpretation. The missing part from
ODGen, as described, is mostly because of reachability.
On the other hand, JS Call Graph has many unique edges
compared with FAST and ODGen. The false positive rate
for the unique edges is very high and the main reason is
scope mismatch as described above.

6. Discussion
Ethics. We have contacted vulnerable Node.js package de-
velopers and given them 45 days for a fix if we can find
their contact. At the same time, we are also working with a

#: 1,825
TPR: 100%

#: 1,635
TPR: 100%

#: 1,436
TPR: 89.6%

#: 1,123
TPR: 12.3%

#: 319
TPR: 64.9%

#: 2,466
TPR: 84.6%

#: 19
TPR: 94.7%

JS Call Graph
#: 4,602
TPR: 78.6%

FAST
#: 7,362
TPR: 92.8%

ODGen
#: 4,629
TPR: 89.4%

Figure 12: A Venn diagram showing the overlaps among call
edges produced by three approaches (TPR: TP/(TP+FP)).

CVE Numbering Authority (CNA) to not only obtain CVE
identifiers but also contact corresponding developers for
fixes. Our practice follows industry standard in vulnerability
disclosure [25] and our organization’s policy.

Loops. Loops are also a major challenge leading to scal-
ability issues in prior works. FAST is able to reduce the
number of abstractly interpreted loops due to two reasons.
First, the bottom-up abstract interpretation only analyzes
loops that are related to function calls, e.g., function pointer
lookups and invocations in a loop, thus skipping many loops
related to data operations. Second, the top-down abstract
interpretation only analyzes loops that have control- or data-
dependencies with the sink, thus skipping those that do
not. The loop analysis follows two strategies: if the looping
number is known (e.g., a constant array), FAST extensively
loops through every element; if unknown, FAST uses a
threshold, i.e., three, for the loop.

Vulnerability Exploitation. The purpose of FAST-exp is
to filter packages that can be automatically exploited, thus
reducing human efforts in confirming vulnerabilities. The
current implementation can reduce the amount of human
works by about half, while still leaving the rest as human
work. The major reason of failures is that Z3 solver fails

121070

to produce a solution and times out based on provided
constraints, but a human being can come up with a solution
with the constraints. We leave this as our future work.
Analysis Soundness. While FAST significantly improves
the scalability of existing abstract interpretation, we would
like to point out that FAST—just like all existing static
analysis—is unsound [15]. Our manual inspection shows
that unsoundness, particularly False Negatives, is primarily
caused by three reasons in practice: (i) lack of model-
ing of built-in functions (>90%), (ii) AST parsing errors
from Esprima (e.g., public class field that is supported by
many browsers and Node.js [26] and to be included in
ES2023 [27]), and (iii) the pruned path in the second phase
is still heavyweight to analyze. In theory, such unsound-
ness may also be caused by dynamically introduced code
especially when user inputs are involved. At the same time,
we would like to point out that functions related to dy-
namic code are often sinks of taint-style vulnerabilities (e.g.,
eval [28], [29] for arbitrary code execution). Therefore,
such unsoundness in call graph construction often does not
affect FAST’s ability in detecting vulnerabilities.

7. Related works
We discuss the related work in this section.

Node.js Vulnerability Detection. On one hand, we start
from dynamic analysis. Jalangi [30] uses a selective record-
replay method to analyze front- and back-end JavaScript
programs dynamically. Arteau [31] proposes a dynamic
fuzzer to detect prototype pollution vulnerabilities. On the
other hand, we describe static analysis. ODGen [8] proposes
object dependence graph to detect vulnerabilities based on
graph queries. DAPP [32] uses AST and control-flow pat-
terns to detect prototype pollution vulnerabilities. ObjLu-
pAnsys [11] detects prototype pollution vulnerabilities by
expanding and mapping two clusters during the abstract
interpretation. Nodest [10], a project based on TAJS [12],
introduces an efficient method to detect command injec-
tion vulnerability. Both Ocular [33] and CodeQL [7] are
industry-level, graph query-based vulnerability detection
tool. As a comparison, FAST scales to large, complex
Node.js applications to detect taint-style vulnerabilities.

Other than taint-style vulnerabilities, in the past, re-
searchers have studied various security issues or non-taint-
style vulnerabilities in the Node.js eco-systems, which in-
clude supply chain security [34], [35], Regular Expres-
sion Denial of Service (ReDoS) [36]–[38], privilege reduc-
tion [34], debloating [39], hidden property abuse [40], and
prototype pollution [41]–[43]. As a comparison, FAST is
targeting a different problem from those work, and may be
able to help them in the future if static analysis is used.
JavaScript Symbolic Execution. JavaScript symbolic exe-
cution also has two general types: dynamic [44], [45] and
static [46]. On one hand, dynamic symbolic execution, such
as ExpoSE [45], relies on an existing JavaScript engine,
to propagate symbolic values. On the other hand, static
symbolic execution, such as Cosette [46], uses a symbolic
interpreter to propagate symbols and extract constraints to

find specification-driven bugs. FAST-exp is a static sym-
bolic execution engine and it is the first that generates
exploit code statically for JavaScript vulnerability.

Client-side JavaScript Security. We also start from dy-
namic analysis. Melicher et al. [47] and Steffens et al. [48]
both use dynamic taint analysis to find DOM-based XSS.
Deemon [49] adopts dynamic analysis and property graphs
to detect CSRF vulnerability. CSPAutoGen [50] enforces a
template following Content Security Policy to defend against
client-side XSS. PathCutter [51] cuts off the propagation
paths of XSS worms. Black Widow [52] introduces a black
box data-driven approach to crawl and scan web applica-
tions. JSObserver [53] investigates the client-side JavaScript
code integrity problem caused by JavaScript global identi-
fier conflicts. Next, we describe static analysis. JStap [5],
HideNoSeek [54], JaSt [55] and JShield [56], [57] adopt
signature matching or static analysis to detect malicious
JavaScript programs. DoubleX [6] analyzes the taint flow
to detect browser extension vulnerabilities. JSIsolate [58]
uses the dependency relationship of different components
of the JavaScript programs to prevent the functionalities
from interfering with each other. COP [59] proposes a
configurable origin policy to isolate JavaScript in a more
fine-grained pattern. Cao et al. [60] studied a new protocol
of single sign-on for client-side JavaScripot. New browser
architectures, such as virtual browser [61] and deterministic
browser [62], have also been proposed. JAW [63] models
browser objects in a Hybrid Property Graph for client-side
CSRF vulnerabilities. Researchers have also studied client-
side browser fingerprints [64]–[66] or web tracking [67] in
general. As a comparison, the target of FAST, i.e., Node.js
vulnerability, is different from prior works.

Some existing works [68]–[72] adopt Automated Exploit
Generation (AEG) to exploit client-side XSS vulnerabil-
ities based on dynamically collected traces or dataflows.
Kudzu [44] uses dynamic symbolic execution and a con-
straint solver to detect and exploit client-side XSS and code
injection vulnerabilities. Song et al. [73] and Kang et al. [74]
exploit the underlying JIT compiler, instead of JavaScript
itself, which could be applied to other JIT-compiled lan-
guages.

JavaScript Static Analysis Frameworks. TAJS [12] and
JSAI [75] adopt abstract interpretation to analyze JavaScript
programs for type inference. SAFE [9] and its follow-up
work SAFEWAPI [76] covert JS to an Intermediate Rep-
resentation (IR) for abstract interpretation. PageGraph [77]
and AdGraph [78] model the relations between different
browser objects. SAFEDS [79] adopts Jalangi, a dynamic
analysis tool, to build dynamic shortcuts on top of SAFE
to accelerate the static analysis to large packages such as
official tests of Lodash. As a comparison, FAST does not
need any dynamic execution, which need setup of both
inputs and environments to deploy. Furthermore, none of
these frameworks are used for vulnerability detection or
exploitation.

JavaScript call graph construction [80]–[85] has been
studied for a long time, which may use static [81], dy-

131071

namic [82], or hybrid [80] analysis. For example, Nielsen et
al. [14] scan Node.js application to construct modular (e.g.,
inter-file) call graph graph. Feldthaus et al. [23] design field-
based flow analysis for constructing call graphs. Existing
static call graph construction traditionally faces challenging
issues for dynamic features, such as bracket syntax and
Promise. Existing dynamic call graph construction often
faces issues like code coverage and practical deployment
(e.g., some Node.js packages may not run without a proper
environment setup). Hybrid analysis leverages benefits of
both static and dynamic analysis but also inherits drawbacks
of both. As a comparison, FAST is the first static abstract
interpretation based call graph construction, which tackles
call edges related to many dynamic JavaScript features.

Vulnerability Detection or Program Analysis Techniques.
Yamaguchi et al. introduce Code Property Graph (CPG) [86]
to detect C/C++ vulnerabilities. Built upon CPG, Backes et
al. [87] adapt CPG to PHP to detect PHP vulnerabilities.
Randoop [88] produces unit tests for Java via feedback-
directed random test generation. Program slicing [89], a con-
cept proposed in 1980s, has been widely used for program
analysis and vulnerability detection. Previous works [90],
[91] proposed to use abstract interpretation to facilitate
program slicing. As a comparison, the pruning process, i.e.,
program slicing adopted by FAST is used to scale abstract
interpretation.

8. Conclusion
In this paper, we propose a novel two-phase abstract

interpretation, called FAST, for detection and exploita-
tion of Node.js taint-style vulnerabilities. The first phase
(bottom-up abstract interpretation) generates a control-flow
path between source and sink. Then, the second phase (top-
down abstract interpretation) follows the control-flow path to
only analyze statements with control- and data-dependencies
with the sink. Compared with state-of-the-art abstract in-
terpretation, such a pruned analysis significantly reduces
the states in the abstract domain and scales the analysis.
After two phases, FAST also collects and solves data- and
control-flow constraints along the target control-flow path to
automatically generate exploits. Our evaluation shows that
FAST outperforms the state-of-the-art approach in reducing
false negatives and detects 242 zero-day vulnerabilities with
21 CVE identifiers.

Acknowledgement
We would like to thank Isaac Chang, Jianjia Yu, Jun-

min Zhu, and Zhengyu Liu for their help with manual
verification and exploitation of zero-day vulnerabilities. We
also would like to thank Snyk for vulnerability disclosure
and CVE assignment, and anonymous reviewers for their
helpful comments and feedback. This work was supported
in part by National Science Foundation (NSF) under grants
CNS-21-54404 and CNS-20-46361 and Defense Advanced
Research Projects Agency (DARPA) under AFRL Definitive
Contract FA875019C0006 and a DARPA Young Faculty
Award (YFA) under Grant Agreement D22AP00137-00 as

well as an Amazon Research Award (ARA) 2021. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of NSF, DARPA, or Amazon.

References
[1] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,

“Dtaint: Detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2018, pp. 430–441.

[2] “Static exploration of Taint-Style vulnerabilities found by fuzzing,”
in 11th USENIX Workshop on Offensive Technologies (WOOT 17).
Vancouver, BC: USENIX Association, Aug. 2017. [Online]. Avail-
able: https://www.usenix.org/conference/woot17/workshop-program/
presentation/shastry

[3] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic
inference of search patterns for taint-style vulnerabilities,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 797–812.

[4] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE: Understand-
ing and automatically preventing injection attacks on NODE.JS,” in
NDSS, 2018.

[5] A. Fass, M. Backes, and B. Stock, “JStap: A static pre-
filter for malicious JavaScript detection,” in Proceedings of
the 35th Annual Computer Security Applications Conference,
ser. ACSAC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 257–269. [Online]. Available:
https://doi.org/10.1145/3359789.3359813

[6] A. Fass, D. F. Somé, M. Backes, and B. Stock, “DoubleX: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 1789–1804.
[Online]. Available: https://doi.org/10.1145/3460120.3484745

[7] GitHub. CodeQL. https://codeql.github.com/.

[8] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining Node.js
vulnerabilities via object dependence graph and query,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/li-song

[9] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu, “SAFE: Formal spec-
ification and implementation of a scalable analysis framework for
ECMAScript,” in International Workshop on Foundations of Object-
Oriented Languages (FOOL), vol. 10. Citeseer, 2012.

[10] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-
driven static analysis of node.js applications,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2019, p. 455–465.

[11] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js prototype
pollution vulnerabilities via object lookup analysis,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021.

[12] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for
JavaScript,” in Proc. 16th International Static Analysis Symposium
(SAS), ser. LNCS, vol. 5673. Springer-Verlag, August 2009.

[13] Promise - JavaScript — MDN. https://developer.mozilla.org/en-US/
docs/Web/{JavaScript}/Reference/Global Objects/Promise.

[14] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular call graph
construction for security scanning of node.js applications,” in
Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 29–41.
[Online]. Available: https://doi.org/10.1145/3460319.3464836

141072

[15] F. Al Kassar, G. Clerici, L. Compagna, F. Yamaguchi, and
D. Balzarotti, “Testability tarpits: the impact of code patterns on the
security testing of web applications,” 2022.

[16] ECMAScript 2015 language specification. https://262.
ecma-international.org/6.0/.

[17] Esprima: ECMAScript parsing infrastructure for multipurpose analy-
sis. https://esprima.org/.

[18] S. Li. ODGen source code. https://github.com/Song-Li/ODGen/.

[19] NetworkX: Network analysis in python. https://networkx.org/.

[20] Z3 thereom prover. https://github.com/Z3Prover/z3.

[21] N. James. Best Node.js CMS platforms for 2022. https://blog.
logrocket.com/best-node-js-cms-platforms-2022/.

[22] P. Gerste. Ghost CMS 4.3.2 - cross-origin admin takeover. https://
blog.sonarsource.com/ghost-admin-takeover.

[23] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip,
“Efficient construction of approximate call graphs for JavaScript
ide services,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 752–761.

[24] Field-based call graph construction for JavaScript. https://github.com/
Persper/js-callgraph.

[25] A. Manion. Vulnerability disclosure policy. https://vuls.cert.org/
confluence/display/Wiki/Vulnerability+Disclosure+Policy.

[26] [MDN] public class fields. https://developer.mozilla.org/en-US/docs/
Web/{JavaScript}/Reference/Classes/Public class fields.

[27] ECMAScript 2023 language specification. https://tc39.es/ecma262/.

[28] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the eval
that men do,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New York,
NY, USA: Association for Computing Machinery, 2012, p. 34–44.
[Online]. Available: https://doi.org/10.1145/2338965.2336758

[29] F. Meawad, G. Richards, F. Morandat, and J. Vitek, “Eval
begone! semi-automated removal of eval from JavaScript programs,”
SIGPLAN Not., vol. 47, no. 10, p. 607–620, oct 2012. [Online].
Available: https://doi.org/10.1145/2398857.2384660

[30] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 488–498. [Online].
Available: https://doi.org/10.1145/2491411.2491447

[31] O. Arteau, “Prototype pollution attack in NodeJS application,” North-
Sec, 2018.

[32] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun, J. H. Shin,
and K. Kim, “DAPP: automatic detection and analysis of prototype
pollution vulnerability in Node.js modules,” International Journal of
Information Security, pp. 1–23, 2021.

[33] Ocular interpreter. https://docs.shiftleft.io/ocular/interpreter.

[34] N. Vasilakis, C.-A. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. De-
Hon, and M. Pradel, “Preventing dynamic library compromise on
Node.js via rwx-based privilege reduction,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 1821–1838.

[35] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package man-
agers for interpreted languages,” arXiv preprint arXiv:2002.01139,
2020.

[36] C.-A. Staicu and M. Pradel, “Freezing the web: A study of ReDoS
vulnerabilities in JavaScript-based web servers,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 361–376.

[37] Z. Bai, K. Wang, H. Zhu, Y. Cao, and X. Jin, “Runtime recovery
of web applications under zero-day redos attacks,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1575–
1588.

[38] J. C. Davis, E. R. Williamson, and D. Lee, “A sense of time for
JavaScript and Node.js: First-class timeouts as a cure for event handler
poisoning,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 343–359.

[39] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack
surface of Node.js applications,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp.
121–134.

[40] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee,
“Abusing hidden properties to attack the Node.js ecosystem,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2951–
2968.

[41] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent Spring: Proto-
type pollution leads to remote code execution in Node.js,” 2023.

[42] Z. Kang, S. Li, and Y. Cao, “Probe the Proto: Measuring client-
side prototype pollution vulnerabilities of one million real-world
websites,” in Network and Distributed System Security Symposium
(NDSS 2022), 2022.

[43] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun, J. H. Shin,
and K. Kim, “DAPP: automatic detection and analysis of prototype
pollution vulnerability in Node.js modules,” International Journal of
Information Security, vol. 21, no. 1, pp. 1–23, 2022.

[44] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for JavaScript,” in 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 513–528.

[45] B. Loring, D. Mitchell, and J. Kinder, “ExpoSE: Practical symbolic
execution of standalone JavaScript,” in Proceedings of the 24th
ACM SIGSOFT International SPIN Symposium on Model Checking
of Software, ser. SPIN 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 196–199. [Online]. Available:
https://doi.org/10.1145/3092282.3092295

[46] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner,
“Symbolic execution for JavaScript,” in Proceedings of the
20th International Symposium on Principles and Practice of
Declarative Programming, ser. PPDP ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3236950.3236956

[47] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding
out DOMsday: Towards detecting and preventing DOM cross-site
scripting,” in Network and Distributed System Security Symposium
(NDSS), 2018, https://doi.org/10.14722/ndss.2018.23309.

[48] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-
site scripting in the wild,” in Network and Distributed System Se-
curity Symposium (NDSS), 2019, https://publications.cispa.saarland/
id/eprint/2744.

[49] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting csrf with dynamic analysis and property graphs,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1757–1771.
[Online]. Available: https://doi.org/10.1145/3133956.3133959

[50] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “Cspautogen:
Black-box enforcement of content security policy upon real-world
websites,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, New York,
NY, USA, 2016.

[51] Y. Cao, V. Yegneswaran, and Y. Chen, “Pathcutter: Severing the self-
propagation path of xss JavaScript worms in social web networks.”
in NDSS, 2012.

[52] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in 2021 IEEE Symposium on Security and
Privacy (SP), 2021, pp. 1125–1142.

151073

[53] M. Zhang and W. Meng, “Detecting and understanding JavaScript
global identifier conflicts on the web,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 38–49. [Online]. Available:
https://doi.org/10.1145/3368089.3409747

[54] A. Fass, M. Backes, and B. Stock, “HideNoSeek: Camouflaging
malicious JavaScript in benign asts,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1899–1913. [Online]. Available:
https://doi.org/10.1145/3319535.3345656

[55] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “JaSt: Fully
syntactic detection of malicious (obfuscated) JavaScript,” in Detection
of Intrusions and Malware, and Vulnerability Assessment, C. Giuf-
frida, S. Bardin, and G. Blanc, Eds. Cham: Springer International
Publishing, 2018, pp. 303–325.

[56] Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “Jshield: Towards real-time
and vulnerability-based detection of polluted drive-by download
attacks,” in Proceedings of the 30th Annual Computer Security
Applications Conference, ser. ACSAC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 466–475. [Online].
Available: https://doi.org/10.1145/2664243.2664256

[57] Y. Cao, X. Pan, Y. Chen, J. Zhuge, X. Qian, and J. Fu, “Malicious
code detection technologies,” Dec. 15 2015, US Patent 9,213,839.

[58] M. Zhang and W. Meng, “Jsisolate: Lightweight in-browser
JavaScript isolation,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 193–204. [Online]. Available: https://doi.org/10.1145/3468264.
3468577

[59] Y. Cao, V. Rastogi, Z. Li, Y. Chen, and A. Moshchuk, “Redefining
web browser principals with a configurable origin policy,” in 2013
43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2013, pp. 1–12.

[60] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G. Vigna, and
Y. Chen, “Protecting web-based single sign-on protocols against
relying party impersonation attacks through a dedicated bi-directional
authenticated secure channel,” in Research in Attacks, Intrusions and
Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds. Cham:
Springer International Publishing, 2014, pp. 276–298.

[61] Y. Cao, Z. Li, V. Rastogi, and Y. Chen, “Virtual browser: A web-
level sandbox to secure third-party JavaScript without sacrificing
functionality,” ser. CCS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 654–656. [Online]. Available:
https://doi.org/10.1145/1866307.1866387

[62] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,”
ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 163–178. [Online]. Available: https://doi.org/10.
1145/3133956.3133996

[63] S. Khodayari and G. Pellegrino, “JAW: Studying client-side CSRF
with hybrid property graphs and declarative traversals,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 2525–2542. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity21/presentation/khodayari

[64] Y. Cao, S. Li, E. Wijmans et al., “(cross-) browser fingerprinting via
os and hardware level features.” in NDSS, 2017.

[65] S. Wu, P. Sun, Y. Zhao, and Y. Cao, “Him of many faces: Char-
acterizing billion-scale adversarial and benign browser fingerprints
on commercial websites,” in 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego, California, USA,
February 27 - March 3, 2023. The Internet Society, 2023.

[66] S. Wu, S. Li, Y. Cao, and N. Wang, “Rendered private: Making glsl
execution uniform to prevent webgl-based browser fingerprinting.” in
USENIX Security, 2019.

[67] X. Pan, Y. Cao, and Y. Chen, “I do not know what you visited
last summer: Protecting users from third-party web tracking with
trackingfree browser,” in NDSS, 2015.

[68] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site
scripting in the wild.” 2019.

[69] S. Bensalim, D. Klein, T. Barber, and M. Johns, “Talking about my
generation: Targeted dom-based xss exploit generation using dynamic
data flow analysis,” in Proceedings of the 14th European Workshop
on Systems Security, 2021, pp. 27–33.

[70] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu,
and P. Saxena, “Dexterjs: Robust testing platform for dom-based
xss vulnerabilities,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: Association for Computing Machinery, 2015,
p. 946–949. [Online]. Available: https://doi.org/10.1145/2786805.
2803191

[71] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-
scale detection of dom-based xss,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013,
pp. 1193–1204.

[72] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns,
“Code-reuse attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1709–1723.

[73] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski, “Exploiting and
protecting dynamic code generation.” in NDSS, 2015.

[74] X. Kang and S. Debray, “A framework for automatic exploit gen-
eration for jit compilers,” in Proceedings of the 2021 Research on
offensive and defensive techniques in the Context of Man At The End
(MATE) Attacks, 2021, pp. 11–19.

[75] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons,
J. Sarracino, B. Wiedermann, and B. Hardekopf, “JSAI: A static
analysis platform for JavaScript,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 121–132. [Online]. Available:
https://doi.org/10.1145/2635868.2635904

[76] S. Bae, H. Cho, I. Lim, and S. Ryu, “Safewapi: Web api misuse
detector for web applications,” ser. FSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 507–517.
[Online]. Available: https://doi.org/10.1145/2635868.2635916

[77] “Brave PageGraph,” https://github.com/brave/brave-browser/wiki/
PageGraph.

[78] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking,” in
IEEE Symposium on Security and Privacy, May 2020.

[79] J. Park, J. Park, D. Youn, and S. Ryu, “Accelerating JavaScript
static analysis via dynamic shortcuts,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1129–1140. [Online]. Available:
https://doi.org/10.1145/3468264.3468556

[80] G. Antal, Z. Tóth, P. Hegedűs, and R. Ferenc, “Enhanced bug predic-
tion in JavaScript programs with hybrid call-graph based invocation
metrics,” Technologies, vol. 9, no. 1, p. 3, 2020.

[81] G. Antal, P. Hegedus, Z. Tóth, R. Ferenc, and T. Gyimóthy, “Static
JavaScript call graphs: A comparative study,” in 2018 IEEE 18th
International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2018, pp. 177–186.

[82] T. R. Toma and M. S. Islam, “An efficient mechanism of generating
call graph for JavaScript using dynamic analysis in web application,”
in 2014 International Conference on Informatics, Electronics & Vi-
sion (ICIEV). IEEE, 2014, pp. 1–6.

161074

[83] J. Dijkstra, “Evaluation of static JavaScript call graph algorithms,”
Ph.D. dissertation, Software Analysis and Transformation, 2014.

[84] D. Seifert, M. Wan, J. Hsu, and B. Yeh, “An asynchronous call graph
for JavaScript,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE, 2022, pp. 29–30.

[85] M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi,
“Automatic root cause quantification for missing edges in JavaScript
call graphs,” in 36th European Conference on Object-Oriented Pro-
gramming (ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[86] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy, 2014, pp. 590–604.

[87] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,”
in 2017 IEEE European Symposium on Security and Privacy (EuroS
P), 2017, pp. 334–349.

[88] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
random testing for java,” in Companion to the 22nd ACM
SIGPLAN Conference on Object-Oriented Programming Systems and
Applications Companion, ser. OOPSLA ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 815–816. [Online].
Available: https://doi.org/10.1145/1297846.1297902

[89] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[90] I. Mastroeni and D. Zanardini, “Abstract program slicing: An
abstract interpretation-based approach to program slicing,” ACM
Trans. Comput. Logic, vol. 18, no. 1, feb 2017. [Online]. Available:
https://doi.org/10.1145/3029052

[91] H. S. Hong, I. Lee, and O. Sokolsky, “Abstract slicing: A new
approach to program slicing based on abstract interpretation and
model checking,” in Fifth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM’05). IEEE, 2005, pp. 25–
34.

Appendix A.
Control-flow Graph Generation

Algorithm 1 shows a high-level overview of procedure
of generation of functional dependency and call edges. The
algorithm accepts a stack holding all the functions to
analyze and an initially empty callDepGraph, which
combines the known call graph (with resolved call edges)
with the functional dependency graph. Specifically, FAST
first pops up a function from the stack (Line 3), analyzes the
function and pushes all function definitions in this function
scope onto the stack for future analysis (Line 4). Then,
FAST loops through all statements in the function in the
abstract domain (Line 5) and adds edges based on statement
types (Lines 6–29).

After bottom-up abstract interpretation, FAST searches
for interprocedural control-flow paths between sources and
sinks of taint-style vulnerabilities. We remind readers that
the FAST also constructs intra-procedural control flow
graphs of each function but have omitted the description
of this standard step for space reasons. The search has two
steps: locating sources and searching paths to sinks from
sources.

Algorithm 1 Bottom-up Abstract Interpretation
1: procedure BOTTOMUP(stack← init, callDepGraph← init)
2: while stack is not empty do
3: func←stack.POP() , addEdge←callDepGraph.addEdge
4: Push func.scope.fns onto stack, update callDepGraph
5: for stmt in func.stmts do
6: switch stmt do
7: case resolvable-fn-call:
8: addEdge(func

call−−→stmt.fn)
9: stmt.fn.args.foreach(arg => resolve(

10: arg.func
lookup−−−−→*)

11: case pending-fn-call:
12: stmt.fn.lookupPath.args.foreach(arg =>

13: addEdge(arg.func
callback−−−−−→stmt.fn))

14: case ret-fn-call: addEdge(func ret−−→stmt.fn)
15: case param-fn (callback):
16: stack.push(stmt.fn)
17: x ← isKnown?call:trigger
18: target ← isSync?stmt.caller-fn:top
19: addEdge(target

x−→stmt.fn)
20: case return-fn:
21: stack.push(stmt.fn), resolve(stmt.fn ret−−→ ∗)
22: case function expression: stack.push(stmt.fn)
23: case new Promise:
24: stack.push(exec←stmt.executor)

25: addEdge(func
new−−→Promise, func

call−−→exec)

26: case then: addEdge(stmt.prms then−−→stmt.then)

27: case await: addEdge(stmt.prms await−−−→stmt.await)
28: case resolve/reject:

29: addEdge(func
resolve/reject−−−−−−−−−→stmt.defFunc.prms)

30: resolve(stmt.defFunc.prms)
31: end switch
32: end for
33: end while
34: end procedure

TABLE 8: A list of sources and sinks that are broken down
by vulnerability types.

Vulnerabilities Sources Sinks

Command Injection
Arguments of functions in
module.exports,
command line arguments,
environment variables,
HTTP* requests

functions in
child_process

Arbitrary Code Exec. eval, Function

Path Traversal HTTP* requests
file systems →
HTTP* responses

*: “HTTP” includes HTTPS and third-party server packages such as Express.

Appendix B.
Source and Sink Discovery and Path Search

We describe how FAST discovers sources and sinks and
then finds a control-flow path between sources and sinks.
Note that a list of sources and sinks can be found in Table 8.

Here are the details. First, FAST finds sources as
the start of a control flow path. There are generally
two source types: specific API calls and functions de-
fined in module.exports. The former can be found
via pattern matching; the latter needs a search on all
the defined functions. Specifically, FAST adopts a breadth
first search (BFS) to loop all possible objects start-
ing from module.exports to all properties and sub-
properties that are defined under module.exports. That
is, FAST finds functions like module.exports.foo()
and module.exports.foo().bar() as sources.

Second, FAST adopts a depth first search (DFS) to

171075

Algorithm 2 Extracting constraints from a data-flow path
1: map← a map from object nodes to symbols
2: procedure GETSYMBOLS(constraints, type, o0, o1, o2, . . .)
3: for every oi in o0, o1, o2, . . . do
4: if oi is in map then
5: if map[oi] has the same type as type then
6: si ← map[oi]
7: else
8: try type conversion
9: end if

10: else
11: si ← map[oi]← MAKESYMBOL(type)
12: if oi has a concrete value then
13: constraints.ADD(MAKECONSTRAINT(=, si, oi.value))
14: end if
15: end if
16: end for
17: return s0, s1, s2, . . .
18: end procedure
19: procedure DFCONSTRCONV(constraints, sinkObj, conditions)
20: queue← [sinkObj] + conditions
21: while queue is not empty do
22: head← queue.POP()
23: for each incoming edge e to head do
24: e0, e1, e2, . . .← all edges in the same group with e
25: o0, o1, o2, . . .← e0.tail, e1.tail, e2.tail, . . .
26: op← operation of the edge group
27: switch type of op do
28: case string operations:
29: s0, s1, s2, . . .← GETSYMBOLS(string, o0, o1, o2, . . .)
30: case number operations:
31: s0, s1, s2, . . .← GETSYMBOLS(number, o0, o1, o2, . . .)
32: end switch
33: constraints.ADD(MAKECONSTRAINT(=, head,

MAKECONSTRAINT(op, s0, s1, s2, . . .)))
34: end for
35: end while
36: end procedure

find a control-flow path from sources to sinks. The search
follows the timing sequence of call edges on a specific
statement. For example, say we have func1(func2())
or func2().func1(). In both cases, FAST searches
through func2() first and then reaches func1() to en-
sure the feasibility of the following data-flow path gener-
ation stage. FAST also limits the number of times that
a statement can be visited to avoid loops in the control-
flow path. Note that this is unrelated with the follow-up
top-down abstract interpretation, which can still explore
functions recursively.

Appendix C.
Constraint Generation

Algorithm 2 shows a simplified algorithm of constraint
generation. Given an object, FAST loops through all the
incoming edges to the object (Line 23), obtain objects
related to incoming edges (Line 25) and the operator (Line
26). Then, FAST obtains symbols for this operator based
on the type (Line 27) and then adds the constraint to the
pool (Line 33). The symbol generation and lookup process
is shown in Lines 2–18. FAST maintains a map between
symbols (which are acceptable by constraint solvers) and
object nodes (Line 1). When FAST accepts an operator and
their operands, FAST tries to lookup or generate symbols
(Line 11). Note that if there are type issues, FAST will
attempt to perform type conversion (Line 8) and if FAST

TABLE 9: A breakdown of performance overhead of FAST
by different stages.

strapi@4.0.8 strapi@3.0.0-beta.17.7 total.js@3.4.5

Stage I: CF Path 1,298 ± 588 301 ± 41.8 1,534 ± 85.3
Stage II: DF Path 22.4 ± 1.59 3.20 ± 0.67 146 ± 110
Stage III: Exploit 72.3 ± 14.0 41.7 ± 33.5 280 ± 342

TABLE 10: A list of CVE identifiers assigned to zero-day
vulnerabilities detected by FAST.

CVE-2022-24431 CVE-2022-25855 CVE-2022-25908
CVE-2022-24377 CVE-2022-25923 CVE-2022-21191
CVE-2022-25906 CVE-2022-25171 CVE-2022-25916
CVE-2022-21129 CVE-2022-25853 CVE-2022-21810
CVE-2022-25962 CVE-2022-25890 CVE-2022-25350
CVE-2023-25805 CVE-2022-25926 CVE-2020-7735
CVE-2020-7730 CVE-2020-15123 CVE-2020-15362

encounters constants, FAST adds a corresponding constant
constraint.

Appendix D.
Performance Breakdown Evaluation

We break down the performance overhead of three pack-
ages with more than 10K LoC by three different stages.
Table 9 shows the breakdown. Stage I is the slowest because
FAST needs to analyze all the function. Stage II is faster
than Stage I because FAST follows a subset of program with
control- and data-flow dependencies with the sink. Lastly,
Stage III is also relatively slow (much faster than Stage I but
slower than Stage II), because its takes time for Z3 solver
to find a solution given constraints.

Appendix E.
A List of CVE Identifiers for Zero-day Vulner-
abilities

Table 10 lists 21 CVE identifiers that are assigned to
zero-day vulnerabilities found by FAST.

181076

