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Abstract—End-to-end encryption (E2EE) prevents online ser-
vices from accessing user content. This important security
property is also an obstacle for content moderation methods
that involve content analysis. The tension between E2EE and
efforts to combat child sexual abuse material (CSAM) has
become a global flashpoint in encryption policy, because the
predominant method of detecting harmful content—server-side
perceptual hash matching on plaintext images—is unavailable.

Recent applied cryptography advances enable private hash
matching (PHM), where a service can match user content
against a set of known CSAM images without revealing the
hash set to users or nonmatching content to the service. These
designs, especially a 2021 proposal for identifying CSAM in
Apple’s iCloud Photos service, have attracted widespread criti-
cism for creating risks to security, privacy, and free expression.

In this work, we aim to advance scholarship and dialogue
about PHM by contributing new cryptographic methods for
system verification by the general public. We begin with moti-
vation, describing the rationale for PHM to detect CSAM and
the serious societal and technical issues with its deployment.
Verification could partially address shortcomings of PHM, and
we systematize critiques into two areas for auditing: trust in
the hash set and trust in the implementation. We explain how,
while these two issues cannot be fully resolved by technology
alone, there are possible cryptographic trust improvements.

The central contributions of this paper are novel crypto-
graphic protocols that enable three types of public verification
for PHM systems: (1) certification that external groups approve
the hash set, (2) proof that particular lawful content is not in
the hash set, and (3) eventual notification to users of false
positive matches. The protocols that we describe are practical,
efficient, and compatible with existing PHM constructions.

1. Introduction

End-to-end encryption (E2EE) is an invaluable safeguard
for online communications: if a service cannot access con-
tent, then a compromise of the service will not cause unau-
thorized disclosure of content. Governments, businesses,
journalists, researchers, activists, and users worldwide de-
pend on E2EE protections. Popular messaging services, in-
cluding Signal [1], Meta’s WhatsApp [2], Apple’s iMessage
[3], and Google’s Messages [4] now offer user-friendly
implementations of E2EE that are enabled by default.

But the same properties that make E2EE secure create
unprecedented challenges for content moderation: If a ser-
vice provider cannot access content, it cannot proactively
detect and mitigate online harms on the basis of content.

This limitation has led to worldwide controversy about
how E2EE interacts with efforts to combat the prolifera-
tion of child sexual abuse material (CSAM) online. The
predominant method for proactively identifying CSAM is
hash matching, typically by using a perceptual hash func-
tion (PHF) to map visually similar media to identical or
similar hash values [5]–[7]. The use of hash matching for
content moderation is not exclusive to identifying CSAM—
major platforms currently rely on hash matching for detect-
ing terrorist content [8], [9], intellectual property infringe-
ment [10], and nonconsensual intimate imagery [11], among
other categories of problematic content. Services similarly
rely on exact and approximate hash matching to detect
malware executables [12] and other online security threats.

Hash matching, as presently deployed, depends on
server-side analysis of plaintext content: the client sends
their content to the server, which computes a perceptual
hash value. The server then matches the hash value against a
confidential set of hashes for known disallowed content [6]–
[8], [10], [13]. This approach is not immediately compatible
with E2EE because, by design, the server cannot access the
client’s content to compute a perceptual hash value.

Recent advances in applied cryptography enable private
hash matching (PHM), where a service can identify a match
between a client’s hash and a server’s hash set while learning
nothing about nonmatching content and maintaining the
confidentiality of the hash set. In 2021, Kulshrestha and
Mayer [14] proposed constructions for exact and approxi-
mate PHM based on homomorphic encryption. Shortly after,
the Apple team of Bhowmick et al. [15] proposed a construc-
tion for exact matching with thresholded content disclosure
based on more efficient elliptic curve encryption, which
Apple intended to deploy in its iCloud Photos service [16].

These innovations in PHM have generated immense
interest from governments and child safety groups world-
wide as a possible approach for CSAM detection in E2EE
environments. Before Apple’s 2021 announcement, officials
from Australia, Canada, Japan, New Zealand, the U.K.,
and the U.S., among other countries, were already advo-
cating for development of new CSAM detection methods
in E2EE [17]. After the announcement, child safety groups
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worldwide praised Apple’s proposal [18]. The European
Commission and the U.K. government also launched fund-
ing initiatives for systems to detect CSAM under E2EE [19].

Meanwhile, a number of security researchers, civil rights
groups, and policymakers responded to Apple’s announce-
ment with sharp criticism, highlighting how a PHM system
could undermine security, privacy, and free expression in
the U.S. and abroad (e.g., [14], [20]–[30]). The concerns,
which we elaborate on in Section 2.4, included pressure
to expand the detection system to other kinds of content,
lack of transparency, auditability, and enforcement of Ap-
ple’s promises, and false positive matches. Apple responded
by pausing deployment of its protocol while proceeding
with other less-controversial child safety mechanisms. In
December 2022, Apple announced that it had permanently
suspended its plans to deploy the PHM system [31].

This work aims to advance scholarship and dialogue
about PHM systems by identifying particular areas of con-
cern that are amenable to technical transparency improve-
ments, then constructing and implementing cryptographic
protocols for those improvements. We focus on PHM sys-
tems for CSAM detection because they are the current focal
point for implementation and policy discourse; much of our
analysis generalizes to other methods for detecting content
and other categories of harmful content.

We begin in Section 2 with background on online CSAM
detection. We discuss the risks and costs of implementing
detection systems under E2EE, and we systematize critiques
of PHM into two areas: trust in the hash set used for
matching and trust in the implementation of the system.
These areas are amenable to trust improvements through
public verification, which is the motivation for this work.

The core of the paper proposes cryptographic protocols
for public verification of PHM. Section 3 provides technical
preliminaries, building on Apple’s protocol because it has
attracted so much attention, is efficient, and is built on
flexible primitives. The concepts that we propose could
translate to other PHM constructions. Sections 4, 5, and 6
offer protocols for the following types of verification:

• Threshold Certification of the Hash Set (Section 4).
A service can prove that the hash set was certified by
a specific combination of external groups. These could
be child safety groups, such as the National Center
for Missing and Exploited Children (NCMEC) in the
United States and the Internet Watch Foundation (IWF)
in the United Kingdom. The protocol does not require
that participating groups share hashes with each other.

• Proof of Non-Membership in the Hash Set (Section
5). A service can prove that specific content (e.g., a pro-
democracy meme) is not in the hash set, while ensuring
that users do not learn anything else about the hash set.

• Guaranteed Eventual Detection Notification (Sec-
tion 6). A service is cryptographically committed to
notifying a user if they have content that was revealed
as a false positive hash match after a fixed delay (e.g.,
after a specified period of time or number of images).

Before turning to the ongoing tussles about E2EE and
CSAM detection, we emphasize that this project is not

an endorsement of PHM systems. We take at face value
the claims by law enforcement, child safety groups, and
online services that hash matching is a valuable tool for
fighting CSAM (e.g., [32]–[34]), and we share the urgency
in addressing the proliferation of CSAM on E2EE services.

The protocols that we propose are, however, only trust
improvements—not trust solutions. These forms of verifi-
cation do not fully address the many cogent critiques of
PHM systems [14], [20]–[23], [26], [28]–[30]. We would
be deeply uncomfortable about large-scale deployment of
automated content detection for E2EE services even with
the public verification protocols that we present. At mini-
mum, complementary legal safeguards would be essential
to further ensure that PHM systems have narrow scope,
operate transparently, and are accountable to the people they
affect. Our goal, like prior work on PHM and encryption
policy [14], is to advance the policy conversation and the
research literature before any deployment—even though we
do not yet see a satisfactory system design on the horizon.

2. Benefits, Challenges, and Risks of Hash-
Based CSAM Detection Under E2EE

In this section we briefly review the importance of
CSAM detection, current hash matching methods for de-
tection in non-E2EE settings, and the risks and challenges
of implementing PHM in E2EE settings that we and others
have previously articulated (especially [20], [35]–[38]).

2.1. The Importance of CSAM Detection

Online child safety poses a broad range of problems, and
CSAM is just one component of the overall landscape [39],
[40]. But detecting and taking action against CSAM is
particularly urgent, for a number of important motivations.

First, the same people who share or receive CSAM may
engage in other forms of child sexual abuse. Some CSAM
offenders commit additional “contact” acts of abuse, such as
physical molestation or eliciting sexual behavior [41], [42].
Estimates of the share of CSAM offenders who previously
committed contact offenses against a child range from 12%
to 55% [43], [44]. Locating these CSAM offenders can pro-
vide important leads for investigating physical child sexual
abuse and rescuing children from dangerous environments.

Second, there is currently a market for CSAM, with an
estimated $250 million to $20 billion U.S. dollars spent on
CSAM annually [45]. Detecting and preventing the transfer
of CSAM dries up the market, lessening financial incentives
to create CSAM through physical sexual abuse [45], [46].

Third, survivors of child sexual abuse can be revic-
timized by the proliferation of recorded imagery of their
abuse. A 2017 survey of survivors of child sexual abuse
found that 25% reported being identified, propositioned, and
blackmailed by people who recognized them from CSAM
imagery. 67% of survivors reported trauma related to the per-
manent nature of the imagery itself [47]. Halting the ongoing
distribution of CSAM is essential to prevent perpetuating
harms to children who have been exploited.
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Finally, preventing the spread of CSAM is a worthy
goal unto itself. The content is highly offensive and lacks
societally redeeming value. As the U.S. Supreme Court has
noted, the public interest in curtailing CSAM is “evident
beyond the need for elaboration” [46].

2.2. Hash-Based Matching for CSAM in the Unen-
crypted Setting

Major social media platforms use a combination of user
reports, proactive automated scanning of content, metadata
analysis, and other techniques to detect CSAM and other
types of abuse. In a recent survey of business practices
for addressing problematic user content, involving 13 re-
spondents (from 11 companies), 7 respondents opined that
automated monitoring was currently the most effective tool
for detecting child sexual abuse imagery [34]. The next
highest response was user reporting, identified by just 2
respondents. This result was different for CSAM than for
other types of abuse (e.g., hate speech or malware) where
the survey respondents considered other techniques to be
more effective than automated content scanning.

Public policy discussion and industry practices for au-
tomated CSAM detection center on hash matching against
known CSAM. In the unencrypted setting, hash matching
is the de facto standard for CSAM detection [5], [6], [13].
This is starting to change, and there is momentum toward
machine learning classifiers to identify CSAM (e.g., [7]).

Hash-based detection systems typically use a percep-
tual hash function (PHF) instead of or in addition to a
cryptographic hash function (CHF). A PHF, unlike a CHF,
yields the same hash or a similar hash when an image is
modestly perturbed (e.g., rotation or recompression). See
Section 3.1 for details. An online service compares the hash
value for sent or stored user content against a database
of known harmful media, which could be internal to the
service or external (e.g., a third-party API). If there is a
match, the service may or may not conduct some additional
human review. The service then notifies an appropriate law
enforcement agency or child safety group.

In the U.S., online services are required by federal
law to promptly report apparent CSAM to the National
Center for Missing and Exploited Children (NCMEC), a
child safety group that works closely with law enforce-
ment as an information clearinghouse. Specifically, under
18 U.S.C. § 2258A, a company must report to NCMEC any
“facts or circumstances . . . from which there is an apparent
violation” of federal criminal law prohibiting CSAM “as
soon as reasonably possible after obtaining actual knowl-
edge of [those] facts or circumstances.”

2.3. Private Hash Matching and Its Limitations

When a user sends or stores data with E2EE, the online
service cannot access the user’s content. This important
security property is an impediment to conventional content-
based CSAM detection methods, which has led to immense

interest from law enforcement agencies, child safety groups,
and online services in alternative detection methods that
could operate in E2EE environments.

The primary focus for proactive CSAM detection under
E2EE, so far, is private hash matching (PHM).1 A PHM sys-
tem has the same detection capabilities as ordinary server-
side hash matching, comparing user content to a set of
known harmful media, but with an added privacy property:
the server only learns about matching content and learns
nothing about other content [15], [38], [49].

PHM has the same inherent limitations as ordinary hash
matching. These systems only detect known content; they
cannot identify new instances of CSAM. Hash matching
systems are also simple for an adversary to circumvent by
strategically reencrypting or perturbing media.

Despite these limitations, hash matching systems suc-
ceed: in 2020, NCMEC received 21.4 million reports of
apparent CSAM from online platforms [50]. There are still
many people who send and receive known CSAM and do
not take steps to conceal the content from online services.

Recent proposals have begun to examine the use of
machine learning (ML) methods to detect novel CSAM,
such as by implementing client-side classifiers that report
results to the server [40], [51]–[53]. The issues that we
discuss about PHM for E2EE services also generally apply
to ML-based detection systems, in some cases even more
so (e.g., heightened false positive rates [40]).

The focus of this work is on transparency improvements
for PHM systems that partially address the risks that they
pose. While a full treatment of transparency improvements
for ML-based systems is beyond the scope of this paper—
and an important topic for future work—we note that our
transparency protocols related to hash sets (Sections 4 and
5) would not apply to ML-based systems, but our proposal
for eventual notification could.

2.4. Risks and Challenges of PHM

We focus on two main difficulties of detecting CSAM
via PHM, which motivate the remainder of this work. For a
more comprehensive treatment of the risks and challenges
of PHM, we refer the reader to [20], [24], [35]–[38].

From the perspective of a user sending messages via
an E2EE service that uses PHM to detect CSAM, two
essential properties are trust in the hash set and trust in the
matching implementation. As we discuss further below, an
untrustworthy hash set or an untrustworthy implementation
creates serious risks for security, privacy, and free expres-
sion. Improving trust in these areas, through auditability and
transparency, should be a priority for PHM systems.

2.4.1. Trust in the hash set. The hash set is the foundation
of a PHM system, because it determines the exact set of

1. Another detection mechanism that has generated interest and been
deployed, but that is not proactive, is manual user reporting. In a user report,
one of the “ends” in the E2EE communication (typically the message
recipient) forwards harmful content to the service. A “message franking”
protocol can guarantee the authenticity of user reports [48].
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content to match. Important challenges include: What goes
in the hash set? Who controls it? And, as we focus on in
this work, how can the public verify promises made by the
curator of a confidential hash set?

In the E2EE setting, a trustworthy hash set is incredibly
consequential. The hash set forms, essentially, an exception
to the fundamental security and privacy guarantees of E2EE.
Put differently, the hash set acts as a sort of key for de-
crypting a subset of otherwise E2EE communications. These
implications make the composition of a hash set extremely
important, since the very purpose of a PHM system is to
preserve E2EE’s benefits with the sole exception of CSAM.

Kamara et al. and Abelson et al., among others, note that
hash-based detection of CSAM is technically no different
from hash-based detection of any other content [20], [24].
The composition of the hash set—no more, no less—is what
scopes a PHM system to solely detecting CSAM.

Proponents of PHM systems generally argue for con-
sidering these proposals as-is: we should assume that a
system will scan only for CSAM and nothing more, and
there is a strong moral imperative to help children now
(e.g., [18], [40]). Privacy and civil liberties advocates have
responded that once a content detection system is available
for E2EE communications, there will be immense pressure
to increase the scope of the system [14], [20]–[23], [25]–
[28], [30], [54]–[56]. Law enforcement agencies worldwide
have already stated interest in revealing other information
currently hidden by E2EE [17], [57]. Foreign governments
have repeatedly pressured U.S. companies to use content
moderation systems to censor content within their borders,
and firms often bow to this pressure (e.g., [58]–[60]).

The slippery slope debate about PHM systems is, fun-
damentally, a set of differing predictions about how these
new technical capabilities would interact with geopolitics.
Borrowing from Volokh’s taxonomy of slippery slope mech-
anisms [61], there are several ways in which a PHM system
for CSAM could lead to PHM for other content.

• Lowering costs: Designing and implementing a PHM
system for detecting CSAM would be a significant
fixed cost. After deploying the system, though, the
marginal cost of adapting it to detect other categories
of content would be modest—just an update to the hash
set. In other words, the cost to move an E2EE system
from detecting 0 pieces of content to 1 piece of content
would be high, but the cost to move the system from
detecting n to (n+1) pieces of content would be low.

• Changing attitudes: E2EE systems, as presently imple-
mented, presumptively hide all content from all third
parties. Adding PHM for CSAM to these systems could
reshape perceptions of acceptable security tradeoffs and
broadly legitimate the notion of exceptions to E2EE
guarantees. Foreign governments might strategically
leverage this viewpoint, claiming that if PHM for
CSAM is acceptable in the U.S. then PHM for locally
objectionable content should also be acceptable. Even
if U.S. firms manage to hold out against this pressure,
foreign governments would have a strengthened argu-
ment for requiring domestic firms to implement PHM.

• Political momentum: Implementation of PHM for
CSAM could create or reinforce broader political trends
toward stricter forms of content moderation [62].

Auditability of the hash set. Robust auditability can
improve trust in the hash set, giving users confidence that it
consists solely of hashes of known CSAM media. While
auditability cannot prevent expanding a hash set beyond
CSAM, it can provide notice of scope creep, enabling
responses by users, civil society groups, and governments.2

Prior efforts to evaluate and develop consensus about
encryption policy have identified auditability as a key
goal [20], [35], [36], [40]. Apple itself suggested a third-
party auditing mechanism for aspects of its PHM system
for CSAM detection, which we touch on in Section 4.

Unfortunately, the goal of hash set auditability runs
headlong into server privacy, an important property of PHM
systems for CSAM detection. Server privacy, which we
discuss further in Section 3.2, guarantees that users do not
learn the hashes that are in the hash set in order to protect
fragile detection methods and sensitive law enforcement
investigations. Moreover, users do not (and legally cannot)
possess the original CSAM media that led to the hash values
in the hash set. Users, as a result, cannot simply inspect a
CSAM hash set and confirm its composition even if the
hashes were public.

While users cannot directly examine hashes in the hash
set, there are next-best forms of auditability that are feasi-
ble. First, third parties can, individually or in combination,
provide attestation about the hashes that are in the hash set.
We propose a protocol for this threshold external validation
in Section 4. Second, an online service can provide proof
that particular hashes are not in the hash set. We present a
protocol for proof of hash set non-membership in Section 5.

The benefits of public verification. There is broad
agreement that, where feasible, it is preferable to enable
users as verifiers as a complement to third-party auditing.
Abelson et al. note the desirability of deploying systems
that are “predict[able] and audit[able] by users” (emphasis
added) [20]. Canetti and Kaptchuk suggest having “user’s
phones” verify the validity of digests beyond third-party
audits [30]. Levy and Robinson propose addressing risks
of scope creep with “cryptographic assurances [on the hash
database] which can be attested to publicly and audited
privately” [40] (emphasis added).

In the strongest form, public verification enables users
to directly prove a property of the hash set. A manipulation
of the hash set would (assuming correct implementation)
necessarily alert users. In a weaker but still very valuable
form, public verification enables users to obtain proof that
third parties verified specific hash set properties. This form
of verification acts as a delegation of trust in the hash
set, shifting the locus of trust from the online service that
operates the PHM system and curates the hash set to the
third parties that originate the hashes in the hash set. An

2. A client implementation of PHM could make protocol participation
contingent on passing public verification. Disabling that verification would,
however, be technically trivial—effectively rendering it a form of notice.
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adversary would have to compromise or corrupt sufficient
parties to manipulate the hash set without alerting users.

Public verification has other important benefits. It al-
lows many parties to conduct verification, including highly
motivated parties like privacy and civil liberties groups,
increasing the likelihood of rapidly identifying any miscon-
duct. Verification can also be an ongoing process, instead of
waiting potentially long periods between occasional audits.
This property avoids gaps in verification coverage and could
enable faster updates to the hash set.

In Sections 4 and 5, we describe two protocols for public
verifiability of the hash set. We emphasize again that these
protocols are improvements for trust in the hash set, not
complete solutions. The protocols provide early warning
of hash set manipulation—they do not prevent hash set
manipulation. Furthermore, as we discuss in the following
subsection, cryptographic improvements do not address the
challenge of ensuring that an online service has faithfully
implemented a PHM system for CSAM detection.

2.4.2. Trust in the implementation. Suppose that an online
service has curated a hash set that consists solely of hashes
derived from CSAM media. A user would still have cause
for concern: the PHM system’s implementation of matching
against the hash set could flag content that is not CSAM
or otherwise expose the user’s content to third parties. This
problem is particularly acute for PHM deployments in E2EE
settings, because it implies plaintext access to user content
that should have remained encrypted and confidential.

False positives are one important way in which a PHM
system’s implementation could be untrustworthy. These are
instances where the PHM system identifies a match even
though a user’s content is perceptually dissimilar to the
original CSAM media for the hash set. The cryptographic
components of PHM systems induce, depending on the
construction, either a negligible false positive rate [15] or no
false positives [14]. The underlying perceptual hash function
can, however, introduce false positives that are difficult to
empirically characterize. Prior work has suggested PHF false
positive rates ranging from 1 in 1,000 [63] to (in Apple’s
proposal) 3 in 100 million [64]. These estimates are sensitive
to assumptions about hash set composition and user content.

Adversarial false positives further complicate the situ-
ation. A malicious party could induce a false positive by
generating an image that is visually innocuous but that has
the same perceptual hash value as a known CSAM image.
Prior work on encryption policy and PHM systems elabo-
rates on this risk in further detail [20], [24]. There is a vast
literature on using machine learning to generate adversarial
examples (see [65]), including for the NeuralHash PHF that
Apple proposed to use with its PHM system [66]–[68]. Levy
and Robinson note, though, that there appear to be “no real-
world [adversarial ML] attacks against current perceptual
hash systems in over a decade of widespread use” [40].

The software and hardware security of PHM systems is
another cause for concern. Adding PHM to an online service
inherently expands the threat surface and could introduce
new vulnerabilities. Abelson et al. [20] discuss specific ways

in which PHM could create security risks, depending on
where the scanning code is located, who writes the code, and
where reports are sent. The security risks of code complexity
are compounded by the difficulty of verifying the behavior
of client and server code.

Auditability of the implementation. Public verification
of individual false positives is a promising direction, provid-
ing notice to affected users and enabling overall accountabil-
ity for PHM systems. In other areas of encryption poliicy,
stakeholders have previously agreed that informing affected
users is appropriate for due process and oversight [30], [35],
[36]. In Section 6, we present a protocol that ensures a user
receives eventual notice after their content is flagged as a
positive match but an online service takes no action because
the content is a false positive.

While not the focus of this work, we note that aggregate
forms of public verification for false positives would also
be feasible. A version of the protocol that we propose, for
example, could enable a periodic count of false positives
across all users without revealing individual false positives.
For ordinary hash-matching systems, it may be possible
to statically compute a false positive rate using functional
encryption or verifiable computation.

As for the security risks from implementing PHM, there
are known—though nontrivial to implement—methods for
program verification that could improve trust [69]–[72].
Applying these methods would help prevent bugs, insider
attacks, or intentional alterations to a PHM system.

The foundational motivation of this paper is that maxi-
mizing cryptographic improvements to trust—in the hash set
and in the implementation—will be essential to exploring
any possible paths forward for PHM systems. To that end,
in the balance of the paper, we present three protocols for
improving trust: threshold zero-knowledge certification of
the hash set (Section 4), proof of non-membership in the
hash set (Section 5), and guaranteed eventual notification of
detection (Section 6).

3. Technical Preliminaries

In this section we first provide technical definitions that
we use in later sections (Section 3.1), then we offer a brief
overview of the Apple PHM proposal that we extend with
our protocols (Section 3.3), and finally we touch on how we
respected ethics in carrying out this work (Section 3.4).

3.1. Technical Definitions

We denote a field of prime order p as Fp. We notate an
elliptic curve over field F as E(F). We use [n] as shorthand
for {1, . . . , n}. A negligible function negl(·) is one such that
for every positive polynomial function poly(·), there exists
some n > 0 such that for all x > n, we have negl(x) <

1
poly(x) . Let ϵcoll,n,q be the chance of a collision occurring
among n randomly sampled elements from a field of size q;
if n is polynomial and q is super-polynomial in a security
parameter then ϵcoll,n,q is negligible in the parameter. We
proceed to define several useful cryptographic tools:
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Definition 1 (Threshold Signature Scheme (adapted from
[73], [74])). A threshold signature scheme is a set of al-
gorithms T = (TKeygen, TKeyCombine, TSignShare,
TVerShare, TCombine, TVerify) among N parties known
in advance, with threshold 1 ≤ τ ≤ N , so that, informally:

1) TKeygen()→ ((sk1, vk1), . . . , (skN , vkN )) is a (pos-
sibly interactive) method that grants each party pos-
sesses a secret key share ski and public verification
key share vki.

2) TKeyCombine(vk1, . . . , vkN )→ vk is a function that
produces the aggregate public verification key vk from
the public verification key shares vki.

3) TSignShare(ski,m)→ σi yields a signature share on
m for party i.

4) TVerShare(vki, σ′
i,m) returns 1 if σ′

i is a valid signa-
ture share, 0 otherwise

5) TCombine(A,m)→ σ∗ yields an aggregate signature
on m if A contains valid signature shares from at least
τ different parties.

6) TVerify(vk, σ′
∗,m) returns 1 if aggregate signature σ′

∗
is a valid re-combination of at least τ valid signature
shares on m, 0 otherwise.

The scheme has individual and aggregate correctness and
existential unforgeability under chosen message attack.

Informally, unforgeability means that it is computation-
ally difficult to create a signature which passes TVerify
without access to at least τ secret key or signature shares.
The standard formalization is omitted for space; see [73]–
[75]. Note also that the aggregate signature is the same no
matter which τ or more parties’ shares contribute to the
aggregate signature. See [75], [76] for additional discussion.

Definition 2 (Zero-knowledge Proof of Knowledge). The
protocol (P(x,w),V(x)) is a zero-knowledge proof of
knowledge for the NP relation R(x,w) if the following
properties are met:

• Completeness: If P and V are honest and R(x,w) = 1,
V always outputs Accept when interacting with P .

• Soundness: For any malicious prover P⋆, there exists
a negligible function negl(·) such that if R(x,w) =
0, V(x) outputs Reject with probability at least 1 −
negl(|x|) when interacting with P⋆.

• Knowledge soundness: If a computationally-bounded
malicious prover P⋆ can interact with V(x) and cause
it to output Accept with non-negligible probability,
then there exists an extractor EP⋆

(x) that can output a
witness w such that R(x,w) = 1.

• Zero-knowledge: There exists a probabilistic
polynomial-time machine Sim such that for every
polynomial-time algorithm V⋆, V⋆(x, z)’s output when
interacting with P(x,w) is indistinguishable from
SimV⋆(x,z,·) for R(x,w) = 1 and z ∈ {0, 1}∗.

Definition 3 (Homomorphic Commitment). A homomor-
phic commitment scheme (HCom,HDecom,HAddCom)
over a finite field Fq allows a sender to produce a com-
mitment C = HCom(x, r) in order to commit to x ∈ Fq

with randomness r ∈ Fq. Later, the sender can reveal

HDecom(C, x, r) which “decommits” C and either returns
Valid (⊤) or Invalid (⊥). Informally,

• (Computational) Binding: A (computationally
bounded) adversary cannot produce C, x, x′, r,
r′ such that HDecom(C, x, r) and HDecom(C, x′, r′)
are both valid, where x ̸= x′.

• (Computational) Hiding: A (computationally bounded)
adversary given access to C cannot produce x.

• Homomorphism: For all pairs of messages x1, x2 in the
message space, and all pairs of randomnesses r1, r2 in
the randomness space, where C1 = HCom(x1, r1) and
C2 = HCom(x2, r2), we have

HAddCom(C1, C2) = HCom(x1 + x2, r1 + r2).

We also informally define the following tools, which we
make use of in our protocol constructions.

IND$-CPA-secure Encryption with Random Key
Robustness. In Section 4 we use an encryption scheme
(Enc,Dec) with the same properties as in [15]. In short,
the scheme must be both indistinguishable against random
chosen plaintext attack, and “random key robust,” meaning
that if c ← Enc(k,m), then if k′ ← K′ is a random key
then the decryption Dec(k′, c) fails with high probability.
See [15] for a more detailed definition.

Private Set Intersection. Private Set Intersection (PSI)
is a Multi-Party Computation protocol between two parties
A and B. Party A possesses set X , and party B possesses
set Y . The PSI functionality informally allows A and B to
learn the intersection X ∩ Y without learning anything else
about each other’s sets. Much prior work in PSI exists, see
[15] for an explanation of Apple’s specific setup.

Cuckoo Tables. Cuckoo tables have k ≥ 2 hash func-
tions h1, . . . , hk (in this work, k = 2) mapping the input
universe to the size of the data structure. Cuckoo tables
provide the guarantee that if element y is in the table, it is
located at one of h1(y), . . . , hk(y). For further discussion
we refer the reader to [77]–[79]. There is a robust line of
work using Cuckoo tables in PSI, including [80]–[84].

Perceptual Hash Functions. A Perceptual Hash Func-
tion (PHF) is informally a type of hash function that pro-
duces similar or identical hashes for perceptually similar
inputs—inputs that a person would consider to be the same
image. Perceptual hashes on images are designed to be
robust to common image perturbations such as scaling,
color or brightness changes, transformations, rotations, wa-
termarks, or noise [85]–[90]. The hashes of similar inputs
are similar with respect to a distance metric, typically
Hamming distance. Note that PHFs are quite different from
cryptographic hash functions, which aim to achieve colli-
sion resistance and unpredictable output regardless of input
similarity. PHFs do not (by design) exhibit an avalanche
effect, and they are vulnerable to collision, preimage, and
second-preimage attacks [91].

3.2. Goals and Methods for Private PHM

Current proposals for CSAM detection in E2EE online
services [14], [15] detect CSAM in the following way. The
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service holds a set X of perceptual hashes of known CSAM.
The user has some message y. The goal of PHM is to allow
a party, usually the server, to detect if y ∈ X (for exact
matching3) while maintaining the following properties.

• Client privacy: The server learns no information about
a user’s hash y unless it is in the server’s hash set X .

• Server privacy: The user learns no information about
the hash set X other than its size |X| from the PHM
protocol. The user may learn the results of the server’s
actions after the PHM protocol, such as if the user’s
image or account is blocked based on PHM output.

Constructions of PHM for CSAM attempt to achieve both
properties. In contrast, other moderation systems deployed
at scale may not have client privacy (possibly because the
server already has access to the user’s plaintext) or server
privacy (because the server’s list is not sensitive).

3.3. The Apple PSI System

Here we describe the Apple PSI system—Apple’s PHM
proposal—at a high level. We refer readers to the technical
summary [92] and Bhowmick et al. [15] for further detail.

In Apple’s fuzzy threshold PSI with associated data,
the client has a list of triples each containing a hash, a
random ID (a randomly chosen public identifier for the
triple), and some associated data. Apple has a set X of
hashes of CSAM. After running the protocol, if the client
has fewer than a threshold tsh of elements whose hashes
match Apple’s set, Apple’s goal is to learn only the IDs of
the triples, and nothing else. If the client has at least tsh
matching elements, Apple wishes to additionally learn the
associated data of all matching elements.

Public parameters of the Apple PSI System include
an elliptic curve group E(Fp) with public generator G, a
hash function H : {0, 1}∗ → E(Fp), a random-key-robust
symmetric encryption scheme (Enc,Dec) with keyspace
K′, as well as a KDF H ′ : E(Fp)→ K′.

Using hash functions h1 and h2, the server arranges
hash set X into a Cuckoo table T of length n, where
n > |X|. Empty slots are filled with random dummy
elements (which will require special treatment in Section
4). The server chooses blinding key α ∈ Fp and publicly
releases pdata = (L, {Pj}j∈[n]) where

L = α ·G,

Pj = α ·H(T [j]).

The client’s set Y contains images to match against X . Each
element has associated data ad, such as a small grayscale
version of the image. Semi-honest clients4 facilitate the
matching process by sending a voucher for each set element.

This voucher contains Enc(adkey,ad), and the adkey
will be revealed to Apple if and only if the client’s set

3. We focus on exact matching PHM systems in this paper, but our
protocols could be adapted to approximate matching systems which identify
a match if there is a hash x ∈ X where x is sufficiently similar to y.

4. Apple’s protocol maintains server privacy against malicious clients,
but can only guarantee correctness against semi-honest clients [15].

Y has at least tsh matches with Apple’s hash set X . To
accomplish this, with each image a tsh-out-of-tsh Shamir
share of adkey is also sent to the server, encrypted with
an ephemeral key rkey. The clients additionally send four
additional objects defined below, with 1 and 2 shuffled: Q1,
Q2, Enc(H ′(S1), rkey), and Enc(H ′(S2), rkey), where for
j ∈ {1, 2}, and for random βj , γj ∈ Fp:

Qj = βj ·H(y) + γjG

Sj = βj · Phj(y) + γjL

Observe that a computationally bounded server is able to
decrypt rkey (and therefore learn an additional Shamir
share of adkey) if and only if Phj(y) = αH(y) for one
of j = 1 or j = 2, meaning that y must occupy one of
its two possible locations h1(y), h2(y) ∈ {1, . . . , n} in the
Cuckoo table. If the server cannot decrypt either encryption
of rkey, it considers the image a non-match. Each match
sent by the client allows the server to learn one Shamir share
of adkey. If the client sends tsh many vouchers that do
match, the server reconstructs adkey and can then decrypt
the associated data in all matching vouchers sent thus far.
We call this event a “positive” for the remainder of this
work; it may be a true or false positive.

Finally, to hide the exact number of matching vouchers,
the fuzzy part of the protocol is that the client occasionally
sends “synthetic matches” in which the server can obtain
rkey but only learns a “dummy” share of adkey. This
component of Apple’s protocol is orthogonal to our work.

3.4. Ethical Considerations

CSAM detection is an exceptionally sensitive topic. We
took several steps that we believed were appropriate to
responsibly contribute in this area. First, we briefed firms
that were considering implementing PHM systems (includ-
ing Apple) on this line of research and how to practically
implement it. We sought to ensure that any forthcoming
PHM deployments would include trust improvements for
the benefit of users and society. Second, we closely en-
gaged with other encryption policy stakeholders to inform
this work, including law enforcement agencies, child safety
groups, and privacy and civil liberties organizations. We also
filed comments on the evaluation criteria for the U.K. gov-
ernment’s initiative to fund CSAM detection systems [19].
Third, we relied exclusively on random or non-sensitive
media in carrying out this research. At no time did we have
access to or seek access to CSAM content or hashes.

4. Threshold Zero-Knowledge Certification of
the Hash Set

As discussed in Section 2.4, a key concern about private
hash matching is trust in the hash set. Even if the firm
curating the hash set is trustworthy, it could face immense
pressure to expand the set to include material outside the
original purpose of the deployment. In Apple’s case, con-
cerns about this pressure included both domestic content
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moderation (e.g., other types of problematic or unlawful
content) and foreign governments that had already attempted
to force Apple’s hand in other policy issues [58], [60], [93].

Apple’s planned approach to handling this pressure was
to take the following two steps. First, Apple stated that its
hash set would be built exclusively from elements that were
provided by at least two independent child safety groups
(e.g., NCMEC in the U.S. and IWF in the U.K.). Second,
Apple sketched a high-level procedure by which a third-
party auditor might verify both the hash set itself and the
public information pdata, which is used to detect matches
with client content. The pdata contains a commitment L =
α ·G to Apple’s secret blinding key α and a blinded Cuckoo
table containing elements Pj = α · H(T [j]) where T is a
Cuckoo table of CSAM perceptual hashes and H is a hash
onto an elliptic curve.

Apple provides only sparse details in their technical
specification [15] and threat model document [64] of what
this auditing might look like and how it would verify the
threshold intersection property. They state first that child
safety groups could provide a “non-sensitive attestation of
the full database they sent to Apple” and Apple could
provide “technical proof to the auditor that the [threshold]
intersection and blinding were performed correctly” [64].
Here Apple is presumably referring to a cryptographic proof
that would demonstrate that the hash set X was built
only from elements appearing in at least two child safety
groups’ lists, based on those groups’ attestations. On page
13, Bhowmick et al. [15] also present a high-level non-
cryptographic approach to verifying that the pdata was
correctly formed from X , but their description suggests that
X would have to be known to the auditor.

For the reasons discussed in Section 2.4.1, it would be
valuable to complement auditing with public user verifica-
tion. In this section we describe a cryptographic method
by which users can directly and frequently verify that the
threshold intersection and blinding was done correctly. At
the same time, the protocol will not require the child safety
organizations or users to learn any additional information.

An ideal tool to use in this scenario is a threshold
signature scheme: a threshold signature on a message can
be verified using a public key as long as at least τ -out-of-N
signing groups contribute signature shares. For more details
see Definition 1 and [73]–[76]. A naive implementation in
which child safety groups directly build threshold signatures
on each pdata element would, however, present the follow-
ing two challenges.

The first challenge is mainly technical: The users have
access to pdata elements Pj = α·H(T [j]), but do not know
the blinding key α or the elements T [j] themselves. The
only “message” available over which a user could verify
a signature is the pdata element Pj . On the other hand,
although the child safety organizations know the elements
themselves and could verify elements T [j] as being on their
lists of known CSAM, the child safety organizations do
not know Apple’s blinding key α. Due to the hardness
of Decisional Diffie Hellman in the elliptic curve group,
without knowledge of α the child safety groups cannot dis-

tinguish pdata elements like Pj = α ·H(T [j]) from random
and therefore cannot directly certify that Pj corresponds to
known CSAM element T [j]. The main purpose of our new
Protocol Πcert, then, is to create a threshold signature on
pdata element Pj if and only if T [j] is held by at least τ
child safety organizations.

The second issue has to do with the random dummy
elements. In Apple’s scheme, after building Cuckoo table
T from set X , there will be empty slots remaining in T ;
Apple fills these slots with random “dummy” elements. Even
without cryptographic verification, it is not clear how a third-
party auditor could verify that these elements are actually
random and do not represent other random-looking hashes
of meaningful content. Apple’s only description of how
these would be audited is to say that they “treat this [non-
random choice of dummies] the same way as one would
treat a malicious server who is attempting to modify the
provided set X” [15]. At this high level it is not clear how
an auditor would be able to verify after the fact that a given
elliptic curve point was randomly chosen compared to it
being the hash of some non-random element. In our scheme,
we will have Apple and the child safety groups collectively
generate a random seed that will be used as the key to
a PRF, and that PRF will be used to generate the dummy
elements pseudorandomly rather than randomly. This also
allows the child safety organizations to create signatures on
the pseudorandom dummy elements with confidence that the
dummy elements are not meaningful.

We proceed to describe Protocol Πcert. The exact prop-
erties of our protocol are stated informally in more detail in
Section 4.1, and are stated and proven formally in Section
4.2. Ultimately, this protocol cannot eliminate dependence
on some final root of trust, nor does it guarantee that all of
the content contained in the pdata is truly CSAM. It does,
however, raise the bar: it reduces the amount of trust placed
in Apple alone, delegates and distributes that trust among
child safety groups whose public interest incentives pull
them in different directions, requires any external pressure
to expand the list to corrupt τ of these groups, and allows
users to validate the hash set under those assumptions much
more frequently than third-party audits would.

4.1. Protocol Goals and Overview

Protocol Πcert (shown in Figure 1a-1b) is a multi-
party protocol among a server S, N child safety groups
G1, . . . ,GN (which we often call simply “groups”), and a
user U . The goal of the protocol is for the server S and
groups to work together to prove to U that each element of
the pdata was built either from a hash held by at least τ
child safety groups, or is pseudorandom, and we accomplish
this without sacrificing server privacy.

As we will prove in Section 4.2, for particular sets
of party corruptions, Πcert implements functionality Fcert,
which has the following informal properties:

Unforgeability. Informally, even if the server and d < τ
malicious groups collude, these parties cannot cause im-
proper verification of a hash not contributed by at least
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Protocol Πcert (Part 1)

Public parameters: Number of groups N , threshold τ , Cuckoo
table parameter ϵ′, generator G of elliptic curve group E(Fp),
prime q, hash set element universe E , seed size ℓ, pseudorandom
function PRF : {0, 1}ℓ×N→ E , hash function H : E → E(Fp)
KDF H ′ : E(Fp)→ K where K is the keyspace of (Enc,Dec).
Sub-functionalities: Fcoin (a standard coin-flipping functional-
ity, see Figure 5
Inputs: Each group Gi inputs a set Xi. S inputs n, the eventual
size of the Cuckoo table. User U has no input.
Establishing the Cuckoo table:
1) (Setup.) Server S randomly chooses blinding key α← Fq .

a) (Threshold signature keygen.) Groups G1, . . . ,GN run
the threshold signature scheme’s TKeygen. Each group
Gi broadcasts its verification key share vki. U recreates
vk← TKeyCombine(vk1, . . . , vkN ).

b) (Generating seed.) S and the groups G1, . . ., GN collec-
tively run Fcoin to generate a shared ℓ-bit seed seed.

2) (Building X .) Each group Gi sends its set Xi to S. S builds
the set X of elements appearing in at least τ of these sets:
X = {e : ∃I ⊆ [N ] s.t. |I| ≥ τ ∧ e ∈ Xi∀i ∈ I}.

3) (Building the Cuckoo table.) S does the following:
a) Compute L = α ·G. Let n = ϵ′|X|.
b) Pick and tweak random hash functions h1, h2 : E → [n]

where no e ∈ E has h1(e) ̸= h2(e) (see [15]).
c) Build the initial Cuckoo table T ′ of length n using a

deterministic procedure using h1, h2, and X .
d) The final Cuckoo table T is set as follows: For every

entry j of T ′, if T ′[j] is nonempty, then T [j] = T ′[j].
If T ′[j] is empty, then T [j] = PRF(seed, j).

e) For each j ∈ [n], set Pj = α ·H(T [j]).
f) S publishes to the user U and groups G1, . . . ,GN the

following: h1, h2, L, (P1, . . . , Pn).

Figure 1a. First part of Protocol Πcert for ideal functionality Fcert (Figure
2) in the Fcoin-hybrid model. See part 2 of Πcert in Figure 1b, and see
Lemmas 5 and 4 for proofs of security properties.

(τ − d) honest groups (i.e. τ total certifications). We note
that our protocol does not (indeed, cannot) prevent malicious
groups from sharing their hash sets with each other to
inflate the number of groups that hold a particular hash, nor
colluding with a malicious server to directly send signature
shares of Pj = α ·H(ej) even though they do not have the
underlying element ej . However, our protocol does ensure
that if d groups are dishonest, at least (τ −d) honest groups
must certify a particular element in order to have it pass
verification. This property is shown formally in Lemma 4.

Server Privacy. We also wish to ensure that our scheme
has the same privacy properties as Apple’s original pro-
tocol [15]. Our protocol maintains server privacy, which
is formally captured in Lemma 5. Informally, under the
same computational assumptions of the original protocol
[15] plus a pseudorandom function PRF, a coalition of up
to (N − τ) malicious groups and semi-honest user U learn
no new information as a result of running Πcert aside from
the outputs of Fcert (the hash functions h1 and h2, the size
of the Cuckoo table n, and the fact that all signatures were
certified by τ groups) if all signatures verify. In particular

Protocol Πcert (Part 2)

Group certification of table elements:
4) (Sending encrypted signature shares.) Each group Gi com-

putes Ji = {(h1(e), e) : e ∈ Xi} ∪ {(h2(e), e) : e ∈ Xi},
the set of tuples of that group’s elements and their possible
locations in T . For each j ∈ [n], group Gi acts as follows:
a) Generate σi,j ← TSignShare(ski, Pj), a share of a

signature on message Pj .
b) Let dj = PRF(seed, j) be the dummy value for j. Let

Vi,j be the set {e : (j, e) ∈ Ji} ∪ {dj}; this is the set of
elements Gi will approve at index j (the dummy dj , and
any element e ∈ Xi such that h1(e) = j or h2(e) = j).

c) Initialize the empty list Ei,j , which will contain several
encryptions of σi,j under different keys.

i) Compute Qi,j,k = βi,j,k · H(e) + γi,j,k · G, where
βi,j,k, γi,j,k

$← Fq .
ii) Let ci,j,k ← Enc(H ′(Si,j,k), (j, σi,j)) be an encryp-

tion of message (j, σi,j) under key H ′(Si,j,k), where
Si,j,k = βi,j,k · Pj + γi,j,k · L.

iii) Append (j,Qi,j,k, ci,j,k) to Ei,j ; note that S can
decrypt ci,j,k if Pj = α ·H(e).

d) Send Ei,j to S.
5) (Signature aggregation.) For each index j ∈ [n] S does:

a) Initialize Aj as an empty set. For each group i ∈ [N ]:
i) For each (j,Qi,j,k, ci,j,k) in the received Ei,j :

A) Compute S′
i,j,k = α ·Qi,j,k. If Qi,j,k was built

from e and Pj = α ·H(e), then S′
i,j,k = Si,j,k.

B) Call Dec(H ′(S′
i,j,k), ci,j,k), parse the resulting

plaintext as (j, σ′
i,j) if decryption did not fail.

C) Attempt verification of σ′
i,j by running

TVerShare(vki, σ
′
i,j , Pj).

ii) If S is honest and Gi was honest, then there will be
either zero or one element of Ei,j such that σ′

i,j =
σi,j verifies (one if T [j] ∈ Xi or is a dummy, zero
if T [j] is not a dummy and not in Xi). If there was
such an element, add it to Aj .

b) Reconstruct σ∗,j ← TCombine(Aj , Pj), the aggregate
signature on Pj , using the shares in Aj . Publish σ∗,j .

User verification:
6) For all j ∈ [n], U runs TVerify(vk, σ∗,j , Pj). U outputs 1

if all n signatures verify, 0 otherwise.

Figure 1b. Continuation of Πcert beginning in Figure 1a

no party except the server S learns any information about
the elements themselves, including which groups certified
which elements and which elements are dummies.

This protocol’s client privacy is negligibly close to the
client privacy guarantee of Apple’s protocol; the only change
is that the dummies are now pseudorandom.

The server learns the same information it would have
learned in Apple’s original protocol: the individual hash set
Xi of each group Gi. One could design an alternate version
of this protocol in which the server does not learn Xi, and
learns only the threshold intersection. We choose to allow
the server to learn each group’s hash set as in the original
protocol, to make it easier for S to catch malicious groups
trying to include non-CSAM hashes.
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Functionality Fcert

Establishing the Cuckoo table:
1) Provide sub-functionality Fcoin as in Figure 5. Respond to

messages from parties until the honest parties have built
an ℓ-bit random seed as in the protocol step 1b.

2) From each group Gi, receive set Xi. Send all Xi to S.
3) Receive h1, h2, and the Cuckoo table T of length n from
S. If Apple was honest then T was built from X = {e :
∃I ⊆ [N ] s.t. |I| ≥ τ∧e ∈ Xi∀i ∈ I} (the set of elements
appearing in at least τ groups’ sets) and seed as in steps
3a-3d of Πcert. Send h1, h2, and n to all groups and U .
Abort if there are any repeat elements of T .

Group certification of table elements:
4) Process the table in the following way:

a) For each j ∈ [n]: Receive (Vouch, j, Vi,j) from each
group Gi. For honest parties, Vi,j is the set including
PRF(seed, j) and any element e ∈ Xi such that
h1(e) = j or h2(e) = j.

b) For each j ∈ [n]: Receive (PublishSig, j, sj) from S
where sj ∈ {0, 1}. In the honest execution, all sj =
1; if sj = 0 this represents a malicious S refusing to
publish a valid hash certification even if it could do so.

User verification:
5) For each element j ∈ [n]: Send U (Verified, j, 1) if both of

the following properties are met, else send (Verified, j, 0).
a) T [j] appears in at least τ groups’ Vi,j sets sent as

(Vouch, j, Vi,j) in step 4a.
b) and sj = 1 from step 4b

6) An honest U outputs 1 if it received (Verified, j, 1) for all
j ∈ [n], 0 if it received any (Verified, j, 0).

Figure 2. Ideal functionality Fcert for verifying that at least τ external
groups approve of the released pdata.

4.1.1. Certification Protocol Overview. The full protocol
Πcert is given in Figure 1a and 1b. A corresponding ideal
functionality Fcert is given in Figure 2; in Section 4.2
we show that the two are indistinguishable under specific
assumptions and sets of corrupt parties. Here we provide a
brief overview of how the protocol works.

Part 1. Establishing the Cuckoo table: The groups
and server begin by generating relevant keys, and building
a shared random seed which will be used to generate
dummies. The groups send their sets Xi to the server,
which builds the threshold set X as the set of all elements
appearing in at least τ of the Xi sets. The server builds
a Cuckoo table from X , filling the empty spaces in with
dummies pseudorandomly derived from seed.

Part 2. Group certification of table elements: Each
child safety group Gi computes a set of elements it would
certify for each index j in the pdata, including the pseudo-
random dummy element and any element e ∈ Xi for which
h1(e) = j or h2(e) = j. It generates a signature share σi,j

on pdata element Pj , and encrypts it once per each element
e of that set. Each encryption uses a key generated from
H(e), similar to how the client vouchers are encrypted in
[15]. The server will be able to decrypt that signature share
if Pj = α · H(e), that is, if the pdata element Pj was

the server’s blinding key α times the hash of that element
onto the elliptic curve. If Pj ̸= α ·H(e), the server will be
unable to decrypt the signature share with high probability.
The group sends the sets of encrypted signature shares to
the server, who decrypts any shares encrypted using e for
which Pj = α ·H(e). The server aggregates the shares and
publishes the aggregate signature on Pj .

Part 3. User verification: The user verifies each of the
threshold signatures and outputs 1 if all signatures pass.

4.2. Proofs of Security

Our proofs are simulation-based proofs in the Simple
Universal Composability (SUC) model of Canetti, Cohen,
and Lindell [94], like the Apple PSI protocol [15].5

In this model, an environment Z will monitor either a
“real” protocol Π, in which it is interacting with real adver-
sary A, or an ideal functionality F , in which it interacts with
a simulator Sim. The environment’s goal is to distinguish
between these settings, outputting a bit 0 or 1. We notate
the following:

• REALΠ,A,Z is the output of Z in the “real” setting,
where several parties (some of whom are controlled by
A) conduct protocol Π. Z sets the inputs and reads
the outputs for all parties in the protocol, and can send
messages to the real adversary A.

• IDEALF,Sim,Z is the output of Z in the “ideal” setting,
where the ideal honest parties are interacting with
F , and Sim is “simulating” the dishonest parties (by
running a copy of A). As in the real setting, Z sets
inputs and reads outputs of all parties, however unlike
the real setting Z interacts with Sim instead of A.

• HYBFsub
Π,A,Z is the output of Z in the “hybrid” setting,

where the honest parties are conducting the real pro-
tocol Π, but can also interact with functionality Fsub.6
In this setting, Z interacts with A in the same way as
in the real world.

Lemmas 5 and 4 show that for various sets of corrupted par-
ties, there is a negligible probability that the environment’s
outputs IDEALFcert,Sim,Z versus HYBFcoin

Πcert,A,Z will differ,
where Fcoin is a standard coin-flipping ideal functionality
defined in Appendix A. These lemmas formally capture the
properties stated informally in Section 4.1.

5. The SUC model implicitly handles much of the boilerplate informa-
tion in the standard UC model, especially in the following ways: The set of
parties is fixed and public. Messages contain a public authenticated header
containing the message’s sender and receiver, and secret content. The
adversary sees the public header, but cannot tamper with or forge the header
and cannot see the private content. Because of this, SUC proofs can omit
explicitly writing down the sender and receiver ID. Furthermore, each copy
of F has a session ID and ignores messages sent with a different session
ID, allowing omission of the session ID in SUC proofs. The environment
Z communicates directly only with the adversary A and can write inputs
and read outputs from all parties. For additional details, see [94].

6. This is slight abuse of notation; in the SUC model strictly speaking
Fsub is a sub-functionality of the full functionality F , however we notate
this Fsub to remind ourselves that the only aspects of F the parties will
interact with are those of Fsub.
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Lemma 4 (Honest user, dishonest server and (τ−1) groups).
For every efficient adversary Ac there exists a adversary
Simc such that for every efficient environment Z which
statically maliciously corrupts S and d < τ groups:∣∣∣Pr[HYBFcoin

Πcert,Ac,Z ]− Pr[IDEALFcert,Simc,Z ]
∣∣∣

is negligible if hash function H is modeled as a random
oracle and answers at most Qro queries, H ′ is a secure
key derivation function, T is a secure threshold signature
scheme, PRF is a pseudorandom function, (Enc,Dec) is
an IND$-CPA-secure random-key-robust encryption scheme,
and DDH is hard in E(Fp).

Notice the implication of Lemma 4: even if d groups
collude with S, the user will correctly reject any signature
shares held by fewer than (τ − d) parties with all but
negligible probability; this is the best we can hope for for a
threshold approval mechanism with d malicious participants.

The full proof of Lemma 4 is available in Appendix
B. The intuition of the proof of this statement is the same
as the proof of client privacy in [15]. This protocol works
via the same technical mechanism as Apple’s PSI scheme.
In Apple’s scheme, the clients send encrypted key shares
that S can only recover if Pj = α · H(e), where e is the
PHF of the client’s content. Here, an honest child safety
group that holds element ej will send encrypted signature
shares that S can only recover if Pj = α · H(ej). In the
proof, the simulator will send these encrypted shares on the
honest groups’ behalf. Along the way the simulator must
recover AH

S ’s Cuckoo table; it does so by emulating the
random oracle H . If A is able to provide a signature for
any element that fewer than (τ − d) honest parties vouched
for with non-negligible probability, then A has either broken
the threshold signature scheme, the random-key-robust IND-
CPA$ encryption scheme, or DDH.

We now turn to proving server privacy and security
against a coalition of dishonest groups and the user. For
an adversary A and simulator Sim, let ZA,Sim be the set of
environments which take actions that either cause a semi-
honest user to eventually output 1 with all but negligible
probability. We will only prove privacy for these environ-
ments. It is possible that malicious child safety groups could
learn information about honest groups’ sets by refusing to
sign particular elements, but in doing so they would cause
verification to fail. The server could notice this in Step 5(a)ii
and prevent those groups from participating in future rounds.

Lemma 5 (Honest server, dishonest (N − τ) groups and
user). For every efficient adversary Ap there exists an effi-
cient adversary Simp, such that for every efficient environ-
ment Z ∈ ZAp,Simp

which maliciously statically corrupts
up to (N − τ) groups GM and may semi-honestly corrupt
the user U:∣∣∣Pr[HYBFcoin

Πcert,Ap,Z ]− Pr[IDEALFcert,Simp,Z ]
∣∣∣

is negligible if Decision Diffie-Hellman (DDH) is hard in
E(Fp), hash function H is modeled as a random oracle,
and PRF is a pseudorandom function.

Observe that Lemma 5 captures our informal privacy
definition: The ideal functionality will not reveal any infor-
mation about Xi to the user, and so as long as an honest
U would output 1 (i.e. all signatures verify), this property
continues to hold in Πcert even if all groups and the user are
corrupt. Without this condition on the signature verification,
privacy no longer holds; in other words, the child safety
organizations could learn about each others’ sets, but only
by causing signature verification to fail.

The full proof of Lemma 5 is in Appendix B. The idea of
the proof is that Simp simulates the pdata by building it out
of only dummies and using a freshly sampled blinding key
α′. This is indistinguishable from random by the same logic
as the proof of server privacy in [15] under the assumption
that DDH is hard in E(Fp) and H is a random oracle.
As stated in the lemma statement, we only require this
simulation to hold for environments in which a (semi-)
honest user outputs 1.

4.3. Implementation and Benchmarks

Total communication overhead is O(|X|N). We imple-
mented Protocol Πcert in Go using NIST P-256 and bilinear
pairings on a 256-bit Barreto-Naehrig curve. The parties
were run sequentially for N = 3 and τ = 2 at the 128-
bit security level on a 6-core Intel i7-10710U processor
at 1.10GHz with a 12MB cache and 32GB RAM. For a
matchlist containing 220 elements, the server’s runtime was
466s, the groups’ average runtime was 255s, and the linear
verification time was 469s. The verification time for a faster
verification algorithm (see below) was 0.25s. The code is
available at https://github.com/citp/pvphm.

Faster Public Verification. By running the full Πcert,
any user could get cryptographic assurance that each ele-
ment of pdata was either a real hash of an image held by
at least τ child safety groups, or a pseudorandom value.
Verification of this fact naively requires checking a number
of signatures equal to the size of the Cuckoo table (Step
6). To speed this process, after Πcert has been run, child
safety groups may run TVerify as members of the public,
and if the result passes, output a share of a signature
ρi = TSign(ski,pdata). This then allows users ∈ U to
verify TVerify(vk,TAggSign({ρi, . . . , ρτ},pdata),pdata)
by checking only one signature. Such verification takes only
0.25s on the same hardware. We still recommend that the
signatures on each element be published as well, for users
who wish to check the full set manually.

5. Proof of Non-Membership in the Hash Set

As discussed in Section 2.4, online services that deploy
PHM could face immense pressure to include non-CSAM
matches in the hash set. Apple promised that it “would
refuse such demands” and that “this technology is limited
to detecting CSAM stored in iCloud and we [Apple] will
not accede to any government’s request to expand it” [95].

Users may doubt these types of promises by online
services and (potential) auditors. While Apple, for example,
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has refused some government requests for data access—
including a high-profile case involving the FBI [96]—it has
also acceded to other requests. Apple now stores the data of
Chinese users on servers physically located in China, with
lesser encryption standards, and in data centers managed by
a government-owned cloud computing company [58], [97].

Given these foreseeable risks of pressure and scope
creep, it is in the interest of users and online services to
be able to cryptographically prove that a PHM hash set
does not contain specific images. This property mitigates—
though does not eliminate—one of the concerns described
in Section 2.4, that Apple’s system could be used to censor
or surveil sending of legitimate images. We achieve this
property by constructing a zero-knowledge “proof of non-
membership” in the hash set.

5.1. Goals and Threat Model

This protocol has two primary goals.
Limited exception to server privacy. The online ser-

vice should be able to prove that the elements of a set of
hashes for known legitimate images are not elements in the
PHM hash set, as a deliberate relaxation of server privacy.
Achieving this goal necessitates the server’s participation
in the protocol, or else the resulting protocol could violate
server privacy more seriously: If clients could prove non-
membership of hashes without the server’s help, a client
wishing to store CSAM could use the proof protocol to
repeatedly test images with small perturbations until finding
one with a hash distinct enough to avoid detection. It could
also eventually allow enumeration of the server’s private set.

Non-interactivity. The server should be able to publish
the proof once, clients should be able to verify separately.

Soundness. The server should not be able to prove non-
membership of a hash that is on the hash list.

5.2. Protocol for Proof of Non-Inclusion

Proving membership of an element in an otherwise-
secret set is a common problem that can be solved di-
rectly with zero-knowledge proofs on commitments [98],
[99], accumulators [100]–[102], or private set intersection
[103], [104]. Proving non-membership is slightly trickier. A
negative accumulator [105], [106] would allow proving non-
membership in the set. However, we wish to make use of the
pdata that is already published in the Apple PSI protocol.

Our approach is to combine a standard zero-knowledge
proof of knowledge (ZKPoK) of a discrete log with a
homomorphic commitment scheme. We take advantage of
the fact that Apple’s set is encoded in the form of a blinded
Cuckoo table where an element e appears to the public as
either Ph1(e) = α · H(e) or Ph2(e) = α · H(e), where α
is Apple’s secret blinding key. If the hash to be checked
for non-membership is x, this will allow Apple to prove
knowledge of α such that:

L = α ·G
∧

Ph1(x) ̸= α ·H(x)
∧

Ph2(x) ̸= α ·H(x).

Protocol Πzk-pok-nm

Shared parameters: Hash value x, size of Cuckoo table n,
generator G of EC group E(Fq), domain universe U , hash
function H : U → E(Fq), Cuckoo table hash functions
h1, h2 : U → {1, 2, . . . , n}, pdata containing L = α · G and
Pi = α · H(ei)—the blinded hash of element ei at location
i of the Cuckoo table—for i ∈ {1, . . . , n}, homomorphic
commitment scheme (HCom,HDecom,HAddCom)
Inputs: P holds secret blinding key α such that Pi = α ·H(ei)
for all locations i ∈ {1, . . . , n} in the Cuckoo table
Outputs: V accepts or rejects a proof produced by P

1) (P → V) Prover chooses r, s, t
$← Fq , uses HCom to

commit to α, r, s, and t and sends R = r · G,S =
s ·H(x), T = t ·H(x) to V .

2) (V → P) V chooses i as follows: With probability 1/2, set
i to 0, or with probability 1/6 each, set i to either 1, 2, or
3. Send i to the Prover.

3) (P → V)
a) If i = 0, Prover decommits r, s, and t. V accepts if

r ·G = R
∧

s ·H(x) = S
∧

t ·H(x) = T

and if the commitment is valid, otherwise it rejects.
b) If i = 1, P decommits a′ = α+ r. V accepts if and only

if a′ ·G = L+R and the commitment is valid.
c) If i = 2, P decommits a′ = α+ s. V accepts if and only

if a′ ·H(x) ̸= Ph1(x) + S and the commitment is valid.
d) If i = 3, P decommits a′ = α+ t. V accepts if and only

if a′ ·H(x) ̸= Ph2(x) + T and the commitment is valid.

Figure 3. Πzk-pok-nm, a zero knowledge proof of non-membership of x in
the Cuckoo table

We use a protocol for ZKPoK of a discrete log that
yields a soundness error of approximately 1/6. Therefore, it
must be repeated 128 log2(6) ≈ 331 times to achieve 128-
bit security. We compute these proofs in parallel, and we
make them non-interactive using the Fiat-Shamir heuristic.

We note that the efficiency and soundness of our protocol
do not depend on the size of Apple’s Cuckoo table and the
protocol remains useful even if the hash set X grows large.

Proofs of Security. Proofs of soundness, knowledge
soundness, and zero knowledge are standard and can be
found in Appendix C.

5.3. Implementation and Benchmarks

We use the Pedersen scheme over NIST curve P-
256 for homomorphic commitments [107]. The runtime
of Πzk-pok-nm is presented in Table 1. We ran tests on
a 6-core Intel i7-10710U processor at 1.10GHz with a
12MB cache and 32GB of RAM. The code is available at
https://github.com/citp/pvphm.

Our single-threaded implementation requires 147 ms to
generate a non-interactive proof and 66 ms to verify it at
the 128-it security level, independent of the hash set size.

This makes our approach efficient enough to apply to
databases of banned content, such as 220 political images
CitizenLab found to be banned in WeChat [108] in less
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Round Time
Prover (Round 1) 897.7 µs
Verifier (Round 2) 2.409 µs
Prover (Round 3) 0.534 µs

Verifier (Verification) 441.9 µs
One iteration (Prover + Verifier) 1,342 µs

Prover (Non-Interactive) 147 ms
Verifier (Non-Interactive) 66 ms

Total (Interactive) 515 ms
Total (Non-Interactive) 213 ms

TABLE 1. RUNTIME OF ΠZK-POK-NM AT 128-BIT SECURITY

than a minute, or a criticized Russian database of banned
“extremist” materials [109] in about 15 minutes.

6. Guaranteed Eventual Detection Notification

In the previous two sections, we described transparency
methods that improve the trust in the hash set itself. In this
section, we turn to a different question: how to improve
transparency in the implementation.

A surprisingly underexamined question in the PHM de-
bate is: what guarantees should be given to a user when their
content has a match? In Apple’s proposal, a positive match
would be sent to a human moderator, who would “confirm
that [the image was] CSAM material, in which case they
would disable the offending account and refer the account
to a child safety organization” [64]. It is not clear , however,
what action Apple would take after a false positive (i.e., the
threshold for reconstructing adkey was reached even though
the user never stored CSAM).

This question has been considered more carefully in
other areas of encryption policy. The Carnegie Endowment
for International Peace developed a consensus report on
encryption policy in 2019 in the context of law enforcement
access to encrypted smartphones, and some of the principles
neatly translate to PHM. One of the Carnegie principles
is “Auditability: When a phone is accessed, the action is
auditable to enable proper oversight, and is eventually made
transparent to the user (even if in a delayed fashion due to
the need for law enforcement secrecy)” [35]. Abelson et al.
touch on this question for PHM systems, suggesting that
they would “need to be designed in such a way that users
could eventually learn which content was scanned . . . and
what was ultimately made available to the authorities” [20].

Informing users about false positive matches would be
an important step forward for transparency and accountabil-
ity. A user could also learn if they have been targeted with
adversarially generated images that mimic CSAM hashes.
For Apple’s protocol, a user could learn when to rotate their
adkey to prevent future disclosures.

Because differentiating between a true or false positive
depends on subsequent manual review, whether by the on-
line service, a child safety group, or a law enforcement
agency, immediately notifying a user is infeasible. A delay
is also important to prevent a malicious user from rapidly
iterating images and testing for inclusion in the PHM sys-

tem’s hash set. Immediate notification could additionally tip
off users who might become investigation targets.

In this section, we construct a delayed user notification
system. When a user sends content that matches the online
service’s hash set, the service learns about the match imme-
diately, and the user learns about the match after a delay.

6.1. Goals and Threat Model

Informally, protocol Πev-notif has the following goals.
Privacy. Computationally bound users should learn

nothing from the protocol until the delay has elapsed. After
the delay is complete, a user should learn whether their own
adkey was disclosed to the server and learn nothing about
any other user’s adkey.

Note that because our protocol involves a secure two-
party computation (2PC), we must ensure that the very act
of executing the protocol does not give away whether or
not the server learned adkey until after delay. Thus, we
design the protocol to be run once per timestep regardless
of whether or not users have met the threshold of matches,
and the online service will simply not learn anything if the
user does not meet the threshold. For this reason, we would
expect timesteps to be reasonably short (for instance, 1 day)
to enable an online service to learn matching users’ adkeys
quickly. However, delay could be set to an arbitrarily longer
period, for example months or many images shared.

Guaranteed notification. If a malicious server learns a
user’s adkey, then after delay has passed and if no party
aborts, the user learns that this has happened.

Correctness. If the user acts as it would in the honest
protocol, then the server learns the user’s adkey immedi-
ately after timestep t ends. We do not attempt this property
against a malicious user, since the Apple PSI protocol
already fails correctness against a malicious user [15].

6.2. Protocol for Eventual Notification

We present protocol Πev-notif for guaranteed eventual no-
tification, which allows users to learn when their content was
part of a positive match after a delay. The full description
of the protocol is in Figure 4; we summarize it here.

We make one change to Apple’s existing PSI protocol.
Let adkey be the key the user uses to encrypt her associated
data for Apple’s threshold PSI scheme with associated data.
In [15] the server learns secret shares of adkey each time
the user sends a voucher containing a hash matching Apple’s
set. In our protocol, the user will still encrypt her data using
adkey, but when the user sends vouchers, she will send
shares of a new intermediate key ika instead of adkey. Our
protocol requires the online service and the user to engage
in a 2PC for the service to learn the final adkey, in such a
way that the user will be able to, after a delay, learn whether
or not the service learned the adkey from the 2PC.

In more detail, we break time up into epochs. At the
start of epoch t, the server commits to encryption key ekt,
which can be the same across all users. Furthermore, during
each timestep each user has a nonce nonce that is user and
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Protocol Πev-notif

Shared Parameters: Key length k, pseudorandom user-and-
epoch-specific k-bit nonce nonce known to both parties, a
timestep delay delay, encryption scheme (Enc,Dec).
Inputs: At the beginning of time epoch t, the Server inputs
encryption key ekt in the keyspace of (Enc,Dec). At the end
of epoch t, the server additionally inputs its guess ikb for the
user’s intermediate key. The user inputs its AEAD key adkey
and intermediate key ika.
Commit Phase: At the beginning of timestep t, the server
publishes a commitment c committing to ekt.
Main Phase: At the end of timestep t, let ikb be the server’s
guess for the intermediate key. The server enters ekt and ikb
into a malicious-secure 2-party computation computing:

Enc(ekt, nonce⊕ (adkey ∧ 1ika=ikb))

where 1ika=ikb is all 1s if ika = ikb below. In our implemen-
tation, Enc is the AES block cipher. The user inputs its true
intermediate key ika and its adkey. The 2PC outputs its return
statement to both parties.
Let the output of the 2PC be e. The server outputs Dec(ekt, e).
Post-delay Phase: After delay time has passed, the server
opens the commitment c to reveal ek′

t. The user then outputs
Dec(ek′

t, e).

Figure 4. Protocol Πev-notif for guaranteed eventual notification

epoch specific. Both the user and the server can generate
nonce from public information.

At the end of each timestep, the user and server conduct
a two-party computation. During epoch t, the server may
or may not have been able to reconstruct the shares of ika
sent by the user. Either way, the server will input ikb into
a 2PC as a “guess” for the intermediate key. If there are
not enough shares to reconstruct, ikb is random. If there are
enough shares to reconstruct, then ikb is the result of that
reconstruction (which is equal to ika if the user is honest).

The output of the 2PC is a ciphertext e encrypted with
ekt. If ikb = ika, then e is an encryption of adkey⊕nonce;
if ikb ̸= ika then the encryption is of nonce. The server is
able to immediately decrypt e using ekt. However, the user
must wait until the server opens the commitment to ekt,
which happens after a delay of delay many timesteps.

Proofs of Security. We prove the privacy of Proto-
col Πev-notif against a malicious server and user, and we
prove that an honest user will always detect whether their
adkey was learned by a malicious server or the server
deviated from the protocol. We interpret server abort as
malicious; the user should rotate her adkey in this case.
Security proofs can be found in Appendix D.

6.3. Implementation and Benchmarks

We implemented the circuit capturing C in the open
source Efficient Multi-Party Computation Toolkit (EMP-
Toolkit) [110] using Authenticated Garbling and Efficient
Maliciously-Secure 2-Party Computation [111], with AES-
128 as the encryption scheme (since longer messages were

not desired, a simple block cipher suffices for encryption).
The circuit outputs AES(ekt,nonce⊕ (adkey∧ 1ika=ikb)),
where 1ika=ikb is all 1s if ika = ikb, and all 0s otherwise.
We used the Bristol AES-128 “non-expanded” circuit [112]
as our original AES circuit. Our ev-notif circuit contained
25509 XOR gates, 1693 NOT gates, and 7055 AND gates,
of which 25124 XOR, 1692 NOT, and 6800 AND gates
were part of the original AES circuit.

Averaged over 100 runs with random valid inputs, the
protocol has an online time of 0.747 milliseconds and an
offline preprocessing time of 38.2 milliseconds, not in-
cluding network delays. The test machine had a 6-core
Intel i7-10710U processor at 1.10GHz with a 12MB cache
and 32GB of RAM. The code is available on GitHub at
https://github.com/citp/pvphm.

7. Conclusion

In this work, we proposed protocols for public verifica-
tion of PHM that would increase trust in the hash set and
the implementation. The protocols would allow certification
of the hash set by external groups, proof that particular
content is not in the hash set, and eventual notification of
false positives. We urge continued research and dialogue
about how to implement content moderation in E2EE envi-
ronments and improve trust in content moderation systems,
including through both technical and nontechnical means.
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Appendix A: Coin-flipping functionality for
Section 4

Our proofs are written in the Fcoin-hybrid model, mean-
ing the parties have access to a shared coin flipping func-
tionality (see Figure 5). The server and groups will call this
functionality ℓ times to generate an ℓ-bit seed. This coin
flipping protocol is standard and can be considered as a
common random string shared among the groups and server.
See [113], [114] for more on UC coin flipping.

Functionality Fcoin

Coin flip:
1) Receive (Flip) from each group in [N ] and S. Ignore

repeat messages from a group until all groups have sent
this message.

2) When all parties sent Flip, randomly choose b ∈ {0, 1}.
3) Send (Result, b) to all parties.

Figure 5. Standard ideal functionality Fcoin that allows S and N groups
to flip a shared ideal coin
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Appendix B: Security Proofs from Section 4

Proof of Lemma 4. Consider the simulator Simc which
does the following:

1) Emulate random oracle H : E → E(Fp) \ {O} for AH
S

by doing the same procedure as in Sims of [15]. To
summarize: Begin by initializing an empty list LH . For
each of a bounded number of queries on e ∈ U : check
LH to see if it contains a triple (e, β,R); if so, send
it to the AH

S . If not, then sample β ← Fq \ {0}, set
R = β ·G, add (e, β,R) to LH , and send R to AH

S .
2) Initialize a pair of efficient adversaries AH

S and AH
GM

,
both with access to random oracle H . Always forward
communication normally between these machines and
Z , and abort of either machine aborts.

3) Run the key generation process TKeygen on behalf of
the honest groups, interacting with AH

GM
. Recombine

the vki into vk as the honest user would, and store vk.
4) Pass along messages between all ideal and adversarial

parties to conduct Fcoin. Store the seed generated
honestly from the output.

5) Eventually, the honest groups will output a message
sending Xi to Fcert, and the malicious parties will
output Xi to send to S. Forward the malicious parties’
sets to AH

S , and send empty sets to AH
S on behalf of the

honest parties. When Fcert outputs the honest parties’
Xi to send to S, send the sets to AH

S as messages from
the honest parties and also store the honest Xi for later.

6) Eventually, AH
S will output the pdata (consisting of

h1, h2, L, (P1, . . . , Pn)). Send this to AH
GM

but also
process it further in the next step.

7) Extract the set of “actual” elements X ′ and dummies
D′ stored in the pdata by doing the following. For each
element (e, β,R) of LH :

a) Augment each tuple (e, β,R) into (e, β,R, P, j)
where P = βL, and j is set to either ⊥ (if there
is no Pj′ = P ) or to j′ if Pj′ = P . There should be
no repeats because the simulation already aborted if
any Pj = Pj′ for j ̸= j′.

b) For each tuple, if j ̸= ⊥, let D′[j] = e if there is a
tuple of (e, β,R, P, j) such that PRF(seed, j) = e.
Let dj = e.

c) For each tuple, if j = h1(e) or j = h2(e), then add
e to X ′ as in [15].

So each element of pdata corresponds either to an
element X ′, an element of D′, or neither. X ′ and D′

put together create a Cuckoo table T ′. If T ′ does not
contain exactly n elements recovered in this way, halt.
Pass h1, h2, T

′ to Fcert.
8) Eventually the honest groups send (Vouch, j, Vi,j) to
Fcert. Use the stored Xi from honest groups from step
5 and use the pdata to honestly build sets Ei,j using
the input set Xi ∪ {PRF(seed, j)}.

9) Send the simulated Ei,j to AH
S along with the adver-

sarial Ei,j sent by AH
GM

.
10) AH

S will eventually send aggregate signatures σ∗,j . For
each j ∈ [n], let sj = TVerify(vk, σ∗,j , Pj).

11) For all j ∈ [n], send (Vouch, j, {T ′[j]}) to Fcert on
behalf of all malicious groups Gi in GM .

12) Send (PublishSig, j, sj) to Fcert on behalf of S.
13) Fcert eventually sends (Verified, j, bj) to U for each j.
14) The ideal user outputs 1 if all bj = 1, 0 otherwise.

We must show both that the simulator does not fail and
that Z’s interaction with this simulator is indistinguishable
from its interaction with Ac.

First, consider the ways the simulator might fail. The
simulator will halt at step 6 if any P ′

j value is equal to
another, which could happen if:

1) a pseudorandom dummy collided with either another
dummy or a real element of X , causing the ideal
functionality to abort

2) there is a pair of elements e ̸= e′ ∈ T (dummy or real)
for which H(e) = H(e′), or

and additionally will halt at step 7 if
3) the extraction of X ′ or D′ fails (and thus |T ′| < n)

because AH
S guessed some value y = H(e) from e

without querying H .
We expect the chance that n unique inputs to the PRF

have a collision is at most ϵcoll,n,2ℓ plus the negligible chance
ϵprf with which the PRF can be distinguished from random,
so we can upper bound the chance of failure 1 above by
ϵcoll,n,2ℓ + ϵprf.

For the next component, 2, the chance that some pair of
unequal elements e ̸= e′ ∈ T yield the same hash H(e) =
H(e′) for random oracle H is exactly ϵcoll,n,q.

Finally, for 3, Simc will fail if AH
S guessed some value

y = H(e) from e without querying H , or by querying H(e)
after y was chosen. This chance is at most (n+Qro)/(q−1)
where Qro is the number of queries made to H .

Thus, the total chance the simulation fails is at most
ϵcoll,n,2ℓ + ϵcoll,n,q +

n+Qro
q−1 + ϵprf.

Now we turn to Z’s ability to distinguish the ideal from
the hybrid world. The view of the environment consists of
the user’s output in addition to the views of AH

S and AH
GM

:
• The TKeygen exchanges between the honest and ma-

licious groups in step 3
• The Fcoin exchanges in step 4
• The Xi messages to AH

S sent in step 5
• The pdata given to AH

GM
in step 6

• The Ei,j sent to S from both the honest and malicious
groups in step 9

• The user output 0 or 1
Notice that all of these items except the user output

have the same distribution in both the real and ideal worlds:
For TKeygen, Simc acts exactly as the real honest parties
would, the Fcoin calls are the same in both worlds, and the
Xi sent by Simc to AH

S are, for honest parties, the same
Xi sent by Fcert to Simc. The pdata are generated by AH

S
and so therefore do not provide any new information to
Z when passed to AH

GM
. The Ei,j are generated by Simc

in exactly the way the honest parties would generate them
when running the protocol.

The only remaining task is to show that the user output
is indistinguishable in the hybrid and ideal worlds. In the
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hybrid world, the user will output 1 if and only if for
each signature σ∗,j obtained in step 10, TVerify(vk, σ∗,j , Pj)
outputs 1. In the ideal world, the user will output 1 if and
only if each bj value sent in step 13 are 1. For a given
bj to be 1 in the ideal world, it must be true that T ′[j]
appeared in at least τ sets Vi,j across steps 8 and 11, and
sj = TVerify(vk, σ∗,j , Pj) = 1.

There are two cases in which the ideal bj and the
real signature verification could diverge: either bj = 1 but
TVerify(vk, σ∗,j , Pj) = 0, or bj = 0 but TVerify(vk, σ∗,j ,
Pj) = 1. The first case is impossible because bj = 1 is
only true if sj = 1, and Simc set sj as the output of
TVerify. So we are left with the other case, where bj = 0
but TVerify(vk, σ∗,j , Pj) = 1.

In this case, sj = 1 since it was defined as the output
of TVerify. Thus the only way bj = 0 is if fewer than τ
groups included T ′[j] in their Vouch sets. By construction
all d malicious parties vouch for T ′[j] in step 11, Thus fewer
than (τ−d) honest groups Gi had T ′[j] ∈ Xi. If AH

S is able
to produce the valid signature σ∗,j despite this, then either

• AH
S forged the threshold signature σ∗,j despite having

fewer than τ legitimate shares,
• AH

S managed to decrypt a ciphertext in Ei,j despite
not having the key,

• or AH
S successfully guessed the key Si,j from Qi,j even

though Pj ̸= α ·H(T ′[j]).
All three of these possibilities occur with at most negligible
probability, combining them with a union bound we see that
Z can distinguish with probability at most ϵts+ϵenc+2ϵorig.

Thus, the overall probability with which either the sim-
ulation will fail or Z will distinguish is at most

ϵcoll,n,2ℓ + ϵcoll,n,q−1 +
n+ Qro

q − 1
+ ϵprf + ϵts + ϵenc + 2ϵorig.

This is negligible in a security parameter for an appropriate
choice of ℓ, n, q, and Qro, and so this proves the statement.

Proof of Lemma 5. Consider the following simulator Simp,
interacting with the ideal S, honest parties GO, possibly an
honest user U , and the environment Z:

1) Emulate random oracle H as in [15].
2) LetAH

GM
be the portion of the efficient adversaryA that

acts as the malicious groups GM , exchanging messages
with environment Z , user U , server S, and honest
parties GO. If the user is corrupt, let AH

U be the portion
of A that acts as U , exchanging messages with Z ,
GM , GO, and S. Always forward messages from these
adversaries to and from the environment. Always abort
if these machines ever abort.

3) As the groups in AH
GM

run TKeygen, Simp acts on
behalf of each honest group in GO when running
TKeygen, sending and receiving messages from ma-
licious groups in GM as needed. Eventually the groups
in GM output verification key shares vki; Simp does
the same on behalf of the honest groups GO.

4) If U is corrupt, Simp computes vk← TKeyCombine(
vk1, . . . , vkN ) and sends it to AH

U .

5) Simp relays messages between honest and corrupted
parties and the Fcoin functionality as normal, and builds
the ℓ-bit seed from the responses to AH

GM
as an honest

party would.
6) Eventually the honest groups GO output Xi to send to

the functionality; Simp forwards these. AH
GM

outputs
a message Xi to send to S for each malicious group
Gi. Simp ignores these and instead sends the empty
set to Fcert on behalf of each malicious group. Simp

forwards all sets from Fcert to S.
7) The honest server eventually sends T of length n to

the functionality, along with hash functions h1 and h2;
T should contain only dummies and the elements input
by at least τ honest groups.

8) The functionality sends to all groups n, h1, and h2.
Simp picks random alternate blinding key α′ $← Fq. It
computes L′ = α′ ·G and P ′

j = α′ ·H(dj), where dj =
PRF(seed, j) is the dummy element for all j ∈ [n].
If any of the P ′

j values are equal, abort. Simp sends
pdata′ of h1, h2, L

′, P ′
1, . . . , P

′
n to the corrupted party

adversary AH
GM

and, if the user is corrupted, to AH
U .

9) The honest groups Gi ∈ GO eventually output (Vouch,
j, Vi,j); because these groups are honest Vi,j will in-
clude dj . Simp forwards these messages to Fcert.

10) AH
GM

eventually outputs Ei,j for all j for malicious
groups i ∈ GM .

11) Simp attempts decryption of the Ei,j . If there is no
Ei,j element that decrypted to a valid share of P ′

j then
Simp sends (Vouch, j, {}) to the ideal S on behalf of
malicious group Gi. If there is a valid share, Simp sends
(Vouch, j, {dj}) to the ideal S on behalf of Gi.

12) The ideal S sends (PublishSig, j, 1) to Fcert for all j.
13) By construction, and because S was honest, the two

properties in Step 5 of Fcert will have been met, and
so Fcert will output (Verified, j, 1) to U for all j ∈ [n].
If U is honest, this completes the simulation.

14) If the user is corrupt, Simp builds σ∗,j values to send
to the corrupt AH

U using the τ signature shares from
the honest parties it conducted TKeygen on behalf of;
input from the malicious groups is not needed. It uses
TCombine to combine these into valid signature shares
and sends them to AH

U .
As with the proof of Lemma 4, we must show that the

chance the simulation fails, and the chance Z can distinguish
the real from the hybrid world, is negligible.

For the chance of failure, this simulation Simc will fail
under either of the first two conditions as Simc from Lemma
4, which together bound the chance of failure by ϵcoll,n,2ℓ +
ϵcoll,n,q−1 + ϵprf.

Now we have to show that if the simulation does not
fail, Z cannot distinguish between the ideal world where
it interacts with Simp and the hybrid setting where it is
interacting with Ap. The view of Z contains the output of
the semi-honest or honest U at the end of the protocol (by
assumption, always 1), as well as the views of AGM

and
AU . These contain:

• Messages sent during TKeygen in step 3
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• The outputs from calls to Fcoin in step 5
• The simulated pdata′ or real h1, h2, L, P1, . . . , Pn in

step 8
• If the user is corrupt, then the signatures in step 14

The TKeygen and Fcoin messages have identical distribu-
tions in the real and ideal worlds, and so we are left with
simulation failure if either the pdata simulation fails, or if
the signatures allow distinguishing the real and ideal worlds.

First, the pdata: h1 and h2 are generated the same
way in the ideal and real worlds. Similarly, L and L′ have
identical distributions. Since n is input by the honest S
and therefore the same in both worlds, it only remains to
show that the set of Pj values is indistinguishable from
the ideal P ′

j . Like in [15], the real (L,P1, . . . , Pn) can
be distinguished from random elements in E(Fp) under
the Decision Diffie Hellman (DDH) assumption when H
is a random oracle (even with knowledge of the element
ej such that Pj = α · H(ej)) with at most negligible
probability ϵorig. By the same reasoning, (L′, P ′

1, . . . , P
′
n)

is also indistinguishable from random with the same bound.
Thus, the real pdata is indistinguishable from the simulated
pdata′ with probability at most 2ϵorig.

Finally, the signatures. In the ideal world, the function-
ality will send (Verified, j, 1) to the user for all j, because
T ′ contains only dummies and elements provided by at least
τ honest parties (and therefore also vouched for by τ honest
parties. In the real world, we conditioned on the fact that the
honest user output 1, so the server must have sent enough
valid signature shares to pass verification for each j.

Thus, the probability that Z can distinguish between the
real and ideal worlds (or the simulator fails) is at most

ϵcoll,n,2ℓ + ϵcoll,n,q−1 + ϵprf + 2ϵorig

which is negligible in a security parameter for appropriate
choices of n, q, and ℓ. This completes the proof.

Appendix C: Security Proofs from Section 5

Lemma 6 (Soundness). Πzk-pok-nm has soundness of (1/6−
δ), where δ is the chance the prover breaks binding.

Proof. This is a straightforward case analysis. Let δ be the
chance the prover breaks binding on the commitment.

First, suppose Apple’s input α is such that L ̸= α · G.
If R = r · G is set honestly, then either the commitment
failed or V will reject if i = 1 (probability 1/6). If R is not
honest, then V will reject if i = 0 (probability 1/2).

Next, suppose Ph1(x) ̸= α ·H(x). If S = s ·H(x) is set
honestly, then either the commitment failed (probability δ)
or V will reject if i = 2 (probability 1/6). If S is not honest,
then V will reject if i = 0 (probability 1/2).

Finally, suppose Ph2(x) ̸= α · H(x). Similar to the
previous case, if T = t ·H(x) is set honestly, then either the
commitment failed (probability δ) or V will reject if i = 3
(probability 1/6). If T is not honest, then V will reject if
i = 0 (probability 1/2).

In all cases the verifier will reject with probability at
least (1/6− δ).

Lemma 7 (Knowledge soundness). Πzk-pok-nm has knowl-
edge soundness of at least 1/2.

Proof. Let P⋆ be a (possibly cheating) prover which con-
vinces an honest verifier it is truthful with probability
1/2+ ϵ. (A party that doesn’t know a witness may succeed
with probability 1/2 by following the protocol and hoping
i = 0.) Observe that any cheating strategy which allows
P⋆ to successfully cheat when sent at least one of i = 1,
i = 2, or i = 3, can be modified to a cheating strategy
where it cheats on all three, using a similar method. We
consider only these cheating provers for simplicity. Let X
be an extractor which runs the protocol twice, rewinding
through step 2 to send two choices of i. If exactly one of
these two choices for i is 0 (which occurs with probability
1/2), then the extractor learns α by subtracting the values
from the two iterations of round 3. This extractor succeeds
with probability at least ϵ′ ≥ ( 12 + ϵ)2− ( 12 + ϵ)/2 = ϵ

2 + ϵ2

by the Rewinding Lemma [115, Section 19.2].

Lemma 8 (Zero knowledge). Πzk-pok-nm is statistically zero
knowledge in the commitment-hybrid model (in which com-
mitments are perfectly hiding and binding).

Proof. Let Sim be a simulator which does the following:

1) Randomly pick î from the same distribution as i.
2) Set variables depending on the choice of î:

a) If î = 0, randomly (honestly) pick r, s, and t. Pick
a random value for α̂. Commit to all of these with
HCom, and send honest R = r · G, S = s · H(x),
and T = t ·H(x).

b) If î = 1, randomly pick â′. Randomly pick α̂ and
r̂ such that â′ = α̂ + r̂. Randomly pick s and t.
Commit to all these with HCom. Let Â = â′ · G,
and let R̂ = Â−L. Let S = s·H(x) and T = t·H(x)
as normal. Send R̂, S, and T .

c) If î = 2, randomly pick ŝ. Randomly pick α̂ con-
ditioned on (α̂ + ŝ) · H(x) ̸= Ph1(x) + ŝ · H(x).
Honestly pick r and t. Commit to α̂, ŝ, r, and t and
send R = r ·G, Ŝ = ŝ ·H(x), and T = t ·H(x).

d) If î = 3, randomly pick t̂. Randomly pick α̂ condi-
tioned on (α̂+ t̂) ·H ̸= Ph2(x) + t̂ ·H(x). Honestly
pick r and s. Commit to α̂, t̂, r, and s and send
R = r ·G, S = s ·H(x), and T̂ = t ·H(x).

3) Receive i from the verifier. If î = i, continue. Else,
rewind to step 1.

4) To simulate round 3, decommit honestly.

Observe that in all decommitted values a′ are uniformly
distributed, as in the real protocol. Also observe that R̂
has the same (uniform) distribution as the honest R, and
similarly for Ŝ and T̂ . The only remaining difficulty is
in ensuring that the simulator terminates. No matter what
the strategy V∗ uses to pick i, it takes at most 6 expected
repetitions to reach a repetition where î = i; the simulator
is thus polynomial time.
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Appendix D: Security Proofs from Section 6

To show privacy against the malicious server, we show
that the server has a negligible chance of winning the fol-
lowing game GS

ev-notif with a challenger: The server chooses
nonce and sends it to the challenger. The challenger chooses
a random (ika,adkey) and plays the role of the user in
Protocol Πev-notif (including playing the role of the ideal
functionality of the 2PC); then the challenger presents either
(ika,adkey) or freshly randomly chosen values from the
same space. The server wins if they guess correctly whether
the challenger presented the real (ika,adkey) chosen at the
start, or fresh random values.

Lemma 9 (Privacy and detection against malicious server).
a. If there is no match, then under the same assumptions

as the 2PC protocol, the chance a malicious server
wins game GS

ev-notif is negligible.
b. If the server is malicious and computationally bounded,

protocol Πev-notif reveals to the client whether there was
a match or allows the client to detect malicious activity
at most delay periods later, assuming the commit-
ment scheme is computationally binding, (Enc,Dec)
is a computationally-binding committing encryption
scheme, and the 2PC is malicious-secure up to abort.

Proof. To show (a), consider an execution of game GS
ev-notif.

The server chooses the nonce nonce and sends it to the
challenger, and the challenger then chooses (ika,adkey)
randomly. The malicious server sends a commitment to
the challenger, then inputs its (ekt, ikb) for the 2PC. The
challenger checks whether ika = ikb; if so it returns
e = Enc(ekt,adkey ⊕ nonce). If not, it returns e =
Enc(ekt,nonce). The server sends an arbitrary commit-
ment opening to the challenger. The challenger then flips a
coin b. If b = 0, it reveals (ika,adkey). If b = 1, it rolls
new random choices (ika′,adkey′) and sends those instead.
The adversarial server wins if it guesses b correctly.

The only information learned by the server is the output
of the 2PC. It is clear from inspection that the only way
for the server to get any information about either ika or
adkey is if they manage to guess ikb = ika, or if they break
the security of the 2PC. However, since ika was randomly
chosen, the chance of choosing ikb = ika is negligible in
the security parameter of the encryption scheme for which
ika is a key. Thus, (a) is true.

Consider (b). Suppose for a moment the commitment
scheme is perfectly binding and the encryption scheme com-
mits perfectly to the key and message. (That is, decryption
of a ciphertext e will fail if any key/message combination
other than the one used to encrypt e was used.)

Then, if no parties abort and the decommitment and
the decryption during the post-delay phase delay time after
timestep t do not fail, then the message m the user obtains
from decryption must have been the same as the message
obtained by the server, which is the only information learned
by the server. If that message was nonce, then the client
knows no information about adkey was leaked to the server
during timestep, assuming the 2PC is secure. If the message

was nonce⊕ adkey, the user knows this was also learned
by the server during timestep t.

The chance of a failure in binding of the committing
encryption or the commitment scheme, or a failure of secu-
rity in the 2PC, are all negligible. So by a union bound on
these failure rates, the user detects notification with all but
negligible probability as long as no party aborts.

If the server aborts before the post-delay phase, the user
also interprets this as a malicious action, and so the property
continues to hold.

Lemma 10 (Privacy against malicious client). Protocol
Πev-notif reveals no information about the result of the match
to a computationally bound malicious client, until after
delay time periods, assuming (Enc,Dec) is IND$-CPA
secure, the commitment scheme is computationally hiding,
and the 2PC is malicious-secure.

Proof. The only inputs given by the client are into the
malicious-secure 2PC. So consider the other possible
sources of information for the client: First, we note that
the commitment scheme has at most a negligible chance of
leaking information to the user about ekt. Second, if the
commitment scheme were perfectly hiding, we note that the
encryption e has at most a negligible chance of leaking in-
formation to the user. Third, assuming the encryption holds,
the only additional information the user could learn is from
the 2PC. Thus, assuming the 2PC is secure, the encryption
scheme is IND$-CPA-secure, and the commitment scheme
is hiding, the semi-honest client learns no information about
the result of a match.
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