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Abstract—We introduce the Clockwork Finance Framework
(CFF), a general purpose, formal verification framework for
mechanized reasoning about the economic security properties of
composed decentralized-finance (DeFi) smart contracts.

CFF features three key properties. It is contract complete,
meaning that it can model any smart contract platform and
all its contracts—Turing complete or otherwise. It does so
with asymptotically constant model overhead. It is also attack-
exhaustive by construction, meaning that it can automatically
and mechanically extract all possible economic attacks on users’
cryptocurrency across modeled contracts.

Thanks to these properties, CFF can support multiple goals:
economic security analysis of contracts by developers, analysis
of DeFi trading risks by users, fees UX, and optimization of
arbitrage opportunities by bots or miners. Because CFF offers
composability, it can support these goals with reasoning over any
desired set of potentially interacting smart contract models.

We instantiate CFF as an executable model for Ethereum
contracts that incorporates a state-of-the-art deductive verifier.
Building on previous work, we introduce extractable value (EV),
a new formal notion of economic security in composed DeFi
contracts that is both a basis for CFF and of general interest.

We construct modular, human-readable, composable CFF
models of four popular, deployed DeFi protocols in Ethereum:
Uniswap, Uniswap V2, Sushiswap, and MakerDAO, representing
a combined 24 billion USD in value as of March 2022. We use
these models along with some other common models such as flash
loans, airdrops and voting to show experimentally that CFF is
practical and can drive useful, data-based EV-based insights from
real world transaction activity. Without any explicitly programmed
attack strategies, CFF uncovers on average an expected $56 million
of EV per month in the recent past.

I. INTRODUCTION

The innovation of smart contracts has resulted in an explosion
of decentralized applications on blockchains. Abstractly, smart
contracts are pieces of code that run on blockchain platforms,
such as Ethereum. They support rich (even Turing-complete)
semantics, can trade in the underlying cryptocurrency, and can
directly manipulate blockchain state. While early blockchains
were built primarily to support currency transfer, newer ones
with smart contracts have enabled a wide range of sophisti-
cated and novel decentralized applications.

One particularly exciting area where smart contracts have
been influential is decentralized finance (or DeFi), a general
term for financial instruments built on top of public decentral-
ized blockchains. DeFi contracts have realized a number of
financial mechanisms and instruments (e.g., automated market
makers [11], atomic swaps [33], and flash loans [30]) that
cannot be replicated with fiat or real world assets, and have

∗The first three authors contributed equally to this work.

no analog in traditional financial systems. These innovations
usually take advantage of two distinctive properties of smart
contracts. These are atomicity, which means (potential) execu-
tion of multi-step transactions in an all-or-nothing manner, and
determinism, meaning execution of state transitions without
randomness and thus a unique transaction outcome for a given
blockchain state. Smart contracts can also intercommunicate
on-chain, which has led to DeFi instruments that can inter-
operate and compose to achieve functionality that transcends
their independent functionalities.

Recent years, however, have seen a plethora of high-profile
attacks on DeFi contracts (see, e.g., [12] for a recent survey),
with attackers stealing billions in the aggregate. These attacks
are primarily financial in nature and not pure software exploits;
they leverage complex financial interactions among multiple
DeFi contracts whose composition is poorly understood. Ex-
isting notions of software security and traditional bug-finding
tools are insufficient to reason about or discover such attacks.

A range of literature [17], [18], has attempted to apply
formal verification techniques to the study of DeFi security.
These works, though, have typically been used to check for
attack heuristics [39] that represent conventional software bugs
in smart contracts or to validate formal security properties [22],
[26] akin to those in standard software verification tools. More
recently, some work [38] has applied formal verification tools
to the economic security of DeFi contracts, quantifying such
security by identifying optimum arbitrage strategies. While an
important initial step, this work has focused on predetermined,
known attack strategies, and lacks the generality to discover
new economic attacks, rule out classes of attacks, or provide
upper bounds on the exploitable value of DeFi contracts.

Clockwork Finance. Motivated by the limited formal explo-
ration of the question of DeFi contracts’ economic security, in
this paper we present Clockwork Finance1 (CF), an approach
to understanding the economic security properties of DeFi
smart contracts and their composition. CF addresses the inher-
ently economic nature of DeFi security properties by codifying
the use of formal verification techniques to reason about the
profit extractable from the system by a participant, rather than
in terms of more traditional descriptions of software bugs as
error states. CF relies on, and we introduce in this paper, the
first formal definition for the economic security of composed
smart contracts, which we call extractable value (EV). EV

1Our name comes from the Enlightenment notion of the cosmos as a clock,
i.e., a fully deterministic and predictable machine, like the smart contract
systems we consider. The Wikipedia definition of clockwork universe [1] notes:
“In the history of science, the clockwork universe compares the universe to a
mechanical clock ... making every aspect of the machine predictable.”
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generalizes miner-extractable value (MEV)—a metric defined
in [15] to study DeFi protocol impact on consensus security.2

Clockwork Finance Framework (CFF). We realize CF in
the form of a powerful mechanized tool that we call the
Clockwork Finance Framework (CFF). To use CFF, a user
wishing to analyze the economic security of a contract creates
or reuses an existing formal model of the contract, as well as
models for potentially composed contracts. CFF, together with
the models we provide, offers three key functional properties:
• Contract completeness: CFF is contract complete in the

sense that it can model DeFi (and other) contracts, such
as those in Ethereum, with equivalent execution complexity
to the native platform. That is, for all possible transactions
(inputs), executing the formal CFF model of a contract
requires time O(1) overhead over EVM/native execution
time. CFF introduces no execution blow-up or time penalty
for the execution of any transaction sequence, even for
complex compositions of contracts. CFF also has equal
expressive power as the contract platform to which it’s
applied—again, such as Ethereum.

• Constant model overhead: The models we provide feature
at most a (small) constant-size increase in the size (number
of distinct semantic paths) of the model compared to the
target contract. Oftentimes, with path pruning, our special-
ized models are even substantially smaller than the smart
contract code being modeled. We provide a general approach
for achieving this property for new CFF models. We discuss
this approach and property in detail in Section IV-C.

• Attack-exhaustive by construction: CFF can mechanically
reason about the full space of possible state transitions
for the given set of transactions and models. CFF can
in principle—given sufficient computation—identify any
attack expressible in our definitions as a condition of
mempool transaction activity and target contract models.
We ensure this by making sure our provided models are
over-approximations of the studied contracts, yielding false
positives in the attack search as a trade-off for efficiency,
but not false negatives. We then prune these false positives
through concrete validation. We discuss this property in
detail along with sources of unsoundness in Section IV-B.

CFF also offers two important usability features:
• Modularity: CFF models are modular, meaning that once a

model is realized for a particular contract, it can be used
for any CFF execution involving that contract. Modularity
also means that models are arbitrarily composable in CFF:
any and all models in a library can be invoked for a CFF
analysis without customization.

• Human-readability: Although we do not show this experi-
mentally, we show by example that CFF models are typically
easier for human users to read, understand, and reason about
than contract source code.
Taken together, these properties and features make CFF

highly versatile and able to support a range of different uses.
Designers of DeFi contracts can use CFF to reason about the
economic security of their contracts and do so, critically, while
reasoning about interactions with other contracts. Arbitrage
bots and miners can use the same contract models to find

2CF can be extended to other metrics of economic security, e.g., arbi-
trageurs’ profits, profits of permissioned actors, etc., but we leave extensions
to future work.

profitable strategies in real-time. Users can use CFF to reason
about guarantees provided by the transactions they execute in
the network, including the value at risk of exploits by miners,
bots, and other network participants—which today is consider-
able in practice [15], [39]. With the rise of frontrunning-as-a-
service [7], users can also use CFF to set the right fees for their
transactions, which taken together with the value extractable
from their transactions determines inclusion in the block. We
explore these various use cases in the paper.

CFF achieves more than mere measurement of economic
security: It can prove bounds on the economic security of
contracts, i.e., the maximum amount adversaries can extract
from them. Furthermore, it can do so using only the formally
specified models of interacting contracts. CFF does not require
manual coding of adversarial strategies.

Notably, this means that CFF can illuminate potential
adversarial strategies even when they were not previously
exploited in the wild. This stands in contrast to existing work,
where the focus has often been on specific predefined strategies
encoded manually [39], or which has required error-prone
effort to define an action-space manually beyond the mere
contract code executing on the system [38]. We believe that
use of CFF would be a helpful part of the standard security
assessment process for smart contracts, alongside bug finding,
auditing, and conventional formal verification.

CFF is the first smart-contract analytics tool to achieve
contract completeness, constant model overhead, and attack-
exhaustiveness by construction, enabling it to bring new ca-
pabilities to ecosystem participants. Complete CFF code is
available at https://github.com/defi-anon/cff/.

The full version of this paper [9] includes additional
analyses and discussions.

II. CLOCKWORK FINANCE FORMALISM

We introduce our formalism for Clockwork Finance in
this section. It underpins the definition of extractable value
(EV) we introduce in this paper. Our contract composability
definitions in Section III are based in turn on that of EV. We
let λ throughout denote the system security parameter.

We assume the reader has general background knowledge
on software formal verification outside of cryptocurrencies,
and on some basic cryptocurrency and smart contract concepts.
We provide further background for readers who do not share
this context in Appendix A.
Accounts and balances. We use A to denote the space
of all possible accounts. For example, in Ethereum, accounts
represent public key identifiers and are 160-bit strings (in other
words, A = {0, 1}160). We define two functions, balance:
A×T→ Z and data: A→ {0, 1}d (where d is poly(λ)), that
map an account to its current balance (for a given token T) and
its associated data (e.g., storage trie in Ethereum) respectively.
For a ∈ A, as shorthand, we let balance(a) denote the balance
of all tokens held in a and balance(a)[T] denote the account
balance of token T. We use balance(a)[0] denote the balance
of the primary token (e.g., ETH in Ethereum3).

We define the current system state mapping (or simply
state) s as a combination of the account balance and data;

3We note that our usage of token to denote ETH is non-standard. While
the ETH balance is stored differently than the balance of other tokens in
Ethereum, we choose to model them using the same balance function for a
cleaner (although equivalent) formalism.

2
2500



that is, for an account a, s(a) = (balance(a), data(a)). We
use S to denote the space of all state mappings.
Smart contracts. As smart contracts in the system are
globally accessible, we model them within the global state
through the special 0 account. We let C(s) denote the set of
contracts in state s of the system, which may change as new
contracts are added. We use balance(C, s) and data(C, s) to
denote the balance of tokens and the data (e.g., contract state
and code) associated with a contract C in state s respectively.
Transactions. Transactions are polynomial-sized (in the se-
curity parameter) strings constructed by some player that are
executed by the system and can change the system state.
Abstractly, a transaction tx can be represented by its action:
a function from S to S ∪ {⊥} transforms the current state
mapping into a new state mapping. We denote this action
function by action(tx). We say that a transaction tx is valid
in state s if action(tx)(s) 6= ⊥ and use Ts to denote the set
of all valid transactions for state s. Our formalism is general
enough to also allow transactions that add smart contracts to
the system or interact with existing ones.
Blocks. We define a block B = [tx1, . . . , txl] to be an ordered
list of transactions. We disregard block contents regarding con-
sensus mechanics, e.g., nonce, blockhash, Merkle root which
are not relevant for our framework. Of the block metadata, we
only model the block number, denoted by num(B). The action
of a block can now be defined as the result of the action of the
sequence of transactions it contains. We use action(B)(s) to
denote the state resulting from the action of B on starting state
s. That is, action(B)(s) = action(txl)(sl−1) where s0 = s and
si = action(txi)(si−1). A block is said to be valid if all of
its transactions are valid w.r.t. their input state (i.e., the state
resulting from executing prior transactions sequentially).

We can analogously define the action of any sequence of
transactions (even spanning multiple blocks)—a concept useful
for analyzing reordering across blocks.
Network actors and mempools. Let P denote the (un-
bounded) set of players in our system, and P ∈ P denote a
specific player. We use Ts to denote the global set of all valid
transactions for state s, but note that not all transactions can be
validly generated by all players. For a player P ∈ P , we define
a set TP,s ⊆ Ts as the transactions that can be validly created
by P when the system is in state s. Transactions created by
players are included in a mempool for the current state. A
player P working as a miner to create a block may include any
transactions currently in the mempool (i.e., transactions gener-
ated by other players) as well as any transactions in TP,s that
P generates itself. Note however, that the miner cannot change
the contents of other players’ transactions, as they are digitally
signed. Abstractly, a “valid block” for a miner is any sequence
of transactions that the miner has the ability to include. We use
validBlocks(P, s) to denote the set of all valid blocks that can
be created by player P in state s if it could work as a miner. We
use validBlocksk(P, s) to denote the set of valid k length block
sequences (B1, · · · , Bk) such that B1 ∈ validBlocks(P, s)
and the other Bi ∈ validBlocks(P, si−1) where s0 = s and
sj = action(Bj , sj−1).
Extractable value. Equipped with our basic formalism, we
now define extractable value (EV), which intuitively represents
the maximum value, expressed in terms of the primary token,
that can be extracted by a given player from a valid sequence
of blocks that extends the current chain. Formally, for a state

s, and a set B of valid block sequences of length k, the EV
for a player P with a set of accounts AP is given by:

EV(P,B, s) = max
(B1,...,Bk)∈B

{ ∑
a∈AP

balancek(a)[0]
−balance0(a)[0]

}
.

where s0 = s = (balance0, data0), si = action(Bi)(si−1),
and sk = (balancek, datak).

We also define miner-extractable value, which computes
the maximum value that a miner can extract in a state s.
Consider a player P working as a miner. The k-MEV of P in
state s can now be defined as:

k-MEV(P, s) = EV(P, validBlocksk(P, s), s).

Note that the parameter k is the length by which the chain at
state s is extended (including through a chain-reorg) by P . The
most common scenario will be extension by a single block for
which we use will simply use MEV as shorthand henceforth.
k-MEV does not account for how difficult it is for P to mine
the k consecutive blocks, but it is sufficient for our purpose
to understand the value that can be extracted if a single miner
could append multiple consecutive blocks. In Appendix B, we
define a weighted notion of miner-extractable-value that takes
the probability of appending multiple blocks into account. We
call this “weighted MEV” or WMEV.

Remark 1 (Local vs global maximization). The astute reader
may notice that our definitions (along with our concrete CFF
instantiation in Section IV) only considers the maximum value
extractable in some given state s. This can be considered
analogous to finding a “local maximum” in the search space,
leaving open the possibility that a non-optimal EV computation
in the current state may lead to a higher combined EV when
future states are also considered.

As a simple example, consider a transaction tx that gives
a specific miner P a profit of 1 ETH if it is mined when a
contract C has state c1 and 10 ETH when the contract has
state c2. Assume that the state change from c1 to c2 can only
be caused (irreversibly) by a different player P ′. Now, if P
mines a block when C has state c1, local MEV maximization
would say that it should include tx within its block. But if P ′
later causes the state change to c2 in a new transaction, then
P would have made 9 ETH more if it waited to include tx.

While it is theoretically possible to define a “global max-
imum” for EV, computing it requires knowing the probability
distribution of future transactions, i.e., how new transactions
will be created and ordered within blocks (including by other
players). In other words, it requires perfect knowledge of the
strategy of all other players in the system, which is unrealistic.

We therefore focus in this work only on the maximum
EV for a particular state. We emphasize however, that our
definition is exact w.r.t. this local value.

Remark 2 (MEV subsumes other attacks). We highlight that
our notion of MEV subsumes not only arbitrage but all attacks
that can be carried out based on the current state of the
system by a profit-seeking player. Notably, this includes not
only common strategies such as frontrunning, backrunning,
and sandwich attacks [39], but also attacks with significant
complexity observed in the wild, such as [10], [28].

A common theme within these complex attacks in particu-
lar has been to use flash loans to borrow a significant amount of
some token(s) and use this capital to extract profit by violating
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an implicit assumption in another contract (e.g., the valuation
of a pool or token), before returning the loan. Such attacks can
be explored from the current state without requiring additional
state changes from other players, thereby allowing for our
local computation of extractable value. We further note that
since a miner is in a strictly more privileged position than any
other permissionless player in the system, these strategies are
exploitable by a miner. Moreover, in any competitive race to
extract these opportunities, the miner will ultimately have the
option to capture the resulting revenue. This provides intuition
for why MEV is more general than arbitrage or attacks.

We include a concrete example of such a flash-loan based
attack within CFF in Section V-E.

Since we focus on economic security, we consider only
profit-seeking players and our definition of MEV therefore
does not capture attacks that exploit a vulnerability but do not
necessarily result in financial gain. Such attacks are considered
traditional exploits, not economic ones.

A. Decentralized Finance Instruments

DeFi instruments. We define DeFi instruments quite broadly,
as smart contracts that interact with tokens in some way
other than through transaction fees. We provide three concrete
examples of DeFi instruments, which we use in running
examples throughout the paper and as building blocks to
discuss properties at higher levels of abstraction.

In particular, we specify here: (1) A simplified Uniswap
contract; (2) A simplified Maker contract; and (3) A simple
betting contract. We note that while we use simplified versions
of the original contracts, they are still useful as didactic tools
and for analyzing the core semantic properties underlying
contract composition. Note, however, that our instantiations of
the contracts in the CFF (see Section IV) include the missing
details, i.e., are complete and usable for real-world data.
Uniswap contract. The Uniswap automated market maker
contract [3] allows a player to execute exchanges between
two tokens (usually ETH and another token), according to a
market-driven exchange rate. The contract assumes the role
of the counterparty for such an exchange. Uniswap uses an
automated market maker formula, called the x×y = k formula
or the constant product formula. We discuss a simplified
version here that does not deal with liquidity provisions,
transaction fees, and rounding. Abstractly, for tokens X and
Y, the number of coins x and y for these tokens in the contract
always satisfies the invariant x×y = k, where k is a constant.
This equation can be used to determine the exchange rate
between X and Y. If ∆x coins of X are sold (to the contract),
∆y coins of Y will be received (by the user) so as to satisfy:

x× y = (x+ ∆x)× (y −∆y).

Fig. 13 (Appendix D) shows the pseudocode for our simplified
Uniswap contract C(X,Y)

uniswap for the tokens X and Y. It contains a
function exchange() which allows a user to sell InAmount
tokens of InToken to the contract in exchange for OutToken
tokens where (InToken,OutToken) ∈ {(X,Y), (Y,X)}. The
number of OutToken tokens received by the user is given by
the x× y = k market maker formula.
Maker contract. We also model Maker, a popular DeFi
protocol. The model is described in Appendix C-A.
Betting contract. To better understand composition failures,
we introduce a simple betting contract and study its interaction

Contract CX
pricebet

hasBet = false; player = ⊥
// Contract also initialized with 100 ETH

tokens when created.

function bet():

if (hasBet = false) and balance(acccaller)[ETH] ≥ 100 then
balance(acccaller)[ETH] −= 100

balance(Cpricebet)[ETH] += 100

hasBet = true; player = caller
else Output ⊥

function getreward():

if (hasBet = true) and
balance(C

(X,ETH)
uniswap )[ETH]

balance(C
(X,ETH)
uniswap )[X]

> 1 and (player =

caller) and (current time is at most t) then
balance(acccaller)[ETH] += 200

balance(Cpricebet)[ETH] −= 200

else Output ⊥

Fig. 1: Betting Contract Cpricebet

with the previous contracts. Abstractly, the betting contract
allows a user to place a bet against the contract on a future
token exchange rate as determined by using Uniswap as a
price oracle. By price oracle, we mean that the exchange rate
between tokens as determined by the Uniswap contract is used
to drive decisions in another contract.

In Fig. 1, we specify the contract CX
pricebet that takes bets

on the relative future price of token X to ETH. Specifically,
suppose that CX

pricebet is initialized with a deposit of 100 ETH
tokens. A user Alice can now call bet() and deposit 100 of
her own ETH tokens to take a position against the contract.
If at some point before the expiration time t, the Uniswap
contract C(X,ETH)

uniswap contains more ETH tokens than X tokens,
(i.e., the Uniswap contract values X more than ETH), Alice
can call getreward() to claim 200 ETH from the contract,
which includes her initial 100 ETH bet, along with her 100
ETH reward. Otherwise, Alice loses her initial bet.

For simplicity, our contract only contains a single bet, but
it is straightforward to design similar contracts with more
restrictions and/or functionalities (e.g., allowing another user
to play the counterparty in the bet).

III. DEFI COMPOSABILITY

Smart contracts don’t exist in isolation. A natural question,
therefore, is when contracts “compose securely.” Abstractly,
for a particular notion of security, does the security of a
contract C1 change when another contract C2 is added to
the system? In this paper, since our primary motivation is to
analyze DeFi instruments, we focus on an economic notion
of composable security. In particular, we look at how the
extractable value of the system changes when new contracts are
added to it. The economic composability of an existing DeFi
instrument C1 w.r.t. C2 now pertains to the added monetary
value that can be extracted if C2 is introduced into the system.
That is, C1 is composable w.r.t. C2 if adding C2 to the system
does not give an adversary significantly higher extraction gains.
For brevity, throughout this paper, we let composability refer to
this specific notion, but note that it is orthogonal to previously
considered notions (in, e.g., [21], [25]).
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Ideally, we want contracts to be “robust” enough to com-
pose securely with all other contracts. Unfortunately, this may
be too strong a notion in practice. We thus parameterize our
definitions to allow restricted or partial composability. Defini-
tion 1 defines the simplest notion of contract composability.

Definition 1 (Defi Composability). Consider state s and player
P . A DeFi instrument C ′ is ε-composable under (P, s) if

MEV(P, s′) ≤ (1 + ε) MEV(P, s).

Here s′ is the state resulting from executing a transaction that
adds the contract C ′ to s (no-op if C ′ already exists). Although
the composability of C ′ pertains to all contracts in C(s), when
looking at the specific interaction with a C ∈ C(s), we may
also write that C ′ is ε-composable with (C,P, s).

In other words, allowing a player to interact with contract
C ′ in a limited capacity (using at most the tokens that the
player controls in s) does not significantly increase the profit
the player can extract form the system. Note that Definition 1
can easily be extended to consider several states and or players.

A. Characteristics of Contract Composition

We find that DeFi instruments that are secure under com-
position according to Definition 1 are surprisingly uncommon,
especially when two instruments depend on each other (e.g.,
one contract using the other as a price oracle). Intuitively,
manipulating one contract can change the execution path of
the other contract. In this section, we analyze the composition
among the contracts (Cuniswap, Cpricebet, and Cmaker) introduced
in Section II-A to highlight interesting characteristics that
can arise from smart contract composition. Note that for this
simplified, didactic analysis, we do not make use of our CFF
tool. We summarize our observed characteristics below.

Characteristic 1. Composability is state dependent—contracts
may be ε-composable in state s but not in another state s′.

Characteristic 2. Composability depends on the actions al-
lowed for a player. For instance, contracts may be composable
if only transaction reordering is allowed but not if the creation
of new transactions is allowed as well.

Characteristic 3. A contract may not be composable with
another instance of itself.

Characteristic 4. It is often possible to introduce adversarial
contracts that break composability with minimal resources.
Thus it is important to consider composability not just of
existing contracts, but also over such adversarial contracts.

To provide intuition for these properties, we will analyze
the following contract compositions. Section III-B considers
the use of Cuniswap as a price oracle for either Cpricebet or Cmaker.
Appendix C-B analyzes the composition between multiple
independent instances of Cuniswap. Appendix C-C introduces
a new bribery contract that can be used to inject non-
composability into the system.

B. Uniswap as a Price Oracle

Example 1 (Cuniswap as a price oracle for Cpricebet). Consider
a simplified Uniswap contract (Cuniswap) that exchanges the
tokens BBT and ETH, and a betting contract (Cpricebet) that
uses it as a price oracle.

In particular, consider a system state s such that C(s) =
{Cuniswap} (or alternatively C(s) contains other contracts that
do not affect the composability). Suppose that in state s,
Cuniswap contains b BBT tokens and e ETH tokens such that
b > e. To denote the Uniswap transactions contained in the
mempool in state s:
• Let TB→E be the set of transactions that sell BBT tokens to

the contract in exchange for ETH tokens. Suppose the total
number of BBT tokens transacted is b′.

• Let TE→B be the set of transactions that sell ETH to the
contract in exchange for BBT tokens. Suppose that the total
number of ETH transacted is e′.

For a player P , let pe and pb be the number of ETH and
BBT tokens held by P in the state s that are not within
pending transactions in the mempool. Note that P can use
transactions from other accounts within the mempool as well
as any transactions it can create with its own capital to create
a block. Note that even if P does not have the hash power to
mine blocks, it can pay some other miner to order transactions
according to its preference. Let s′ be the state resulting from
adding Cpricebet to state s.

Composability is state dependent. It is easy to see that
contracts that are independent of each other and provide or-
thogonal functionalities should compose securely in all states.
In most real-world cases, however, we want to analyze the
composability of contracts that are not independent and may
in fact depend on each other’s state. In such situations, whether
two contracts compose securely will almost always depend on
the characteristics of the current system state.

We use Example 1 to provide intuition to this observation.
Specifically, we show that Cuniswap and Cpricebet are composable
in states with a small number of available tokens, while in
other states, an adversary can extract more MEV from the
composition. Suppose that we define the number of liquid
tokens in the Uniswap contract as follows: For player P and
state s, we say that there are lb = lb(P, s) = b′ + pb liquid
BBT tokens and le = le(P, s) = e′ + pe liquid ETH tokens.
We will now show how composability can be affected by the
number of liquid tokens in the current state.

a) Composability in states with a small number of liquid
tokens. When le ≤ b − e, i.e., the number of liquid tokens
is sufficiently small, Cuniswap and Cpricebet do in fact compose
securely. This is because regardless of what transactions P
creates or how it orders existing transactions in the transaction
pool, at no point in the execution of a created block can the
number of ETH tokens in Cuniswap exceed the number of BBT
tokens in it. In other words, P cannot maliciously create a short
term fluctuation in the exchange rate in order to claim a reward
from Cpricebet. Note that while P can still cause the exchange
rate to be manipulated even if it cannot cause the number of
ETH tokens to exceed the number of BBT tokens, since we are
focusing only on composability with Cpricebet here specifically,
P will not be able to claim the reward from Cpricebet.

Consequently, any value that P can extract in state s′

(obtained by adding Cpricebet to state s) can also be extracted in
state s. Equivalently, MEV(P, s′) = MEV(P, s). We conclude
that Cuniswap is 0-composable under (Cpricebet, P, s).

b) Non-composability in other states. Suppose now that
our low liquidity assumption was no longer valid. In particular,
we will consider states s such that e′ > b−e, and pe ≥ 100. At
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least 100 ETH is necessary in our example to actually take a
bet against the betting contract. To extract more value in state
s, a malicious miner P can proceed as follows:
1) Insert a transaction that takes a bet against the contract

Cpricebet by depositing 100 ETH.

2) Order all transactions in the set TE→B . This raises the
amount of ETH in Cuniswap temporarily.

3) Insert a transaction (a call to getreward()) to claim the
reward of 100 ETH (in addition to its original bet) from
Cpricebet due to the short term price fluctuation in Cuniswap.

4) Order the transactions in TB→E to buy ETH from Cuniswap.
Abstractly, by ordering all transactions that sell ETH to

Cuniswap first, P can create a short-term volatility in the
exchange rate between ETH and BBT, allowing P to claim the
reward from Cpricebet. When the block created by P executes,
since all transactions that add ETH to Cuniswap are ordered first,
there will be more ETH tokens than BBT tokens by the time
the P ’s transaction to claim the reward from Cpricebet executes.
This sudden change in the amount of ETH is only temporary as
the remaining transactions in the block will reduce the number
of ETH tokens. Note that this reordering attack is still possible
in the case that b′ ≈ e′ and the natural or “fair” transaction
order would not cause such a large change in the exchange
rate during normal execution. Yet, the malicious miner P was
able to profit simply by reordering user transactions.

Composability depends on the allowed actions. In the
context of Example 1, if P cannot insert its own transactions
for Cuniswap, then composability holds even if pe + e′− 100 >
b−e > e′ and pe ≥ 100, since P cannot create a large enough
price fluctuation simply from the transactions in the mempool.
However, if P has the ability to insert its own transactions,
it can use the previously mentioned procedure to extract the
reward from Cpricebet. P can also insert its transactions before
and after user transactions to take advantage of the short
term slippage in the Uniswap price. This strategy resembles
the sandwiching attack described in [39], which combines
frontrunning and backrunning. It also allows P to capitalize on
the price differential between limit orders and market orders.

C. Remarks on Composability

We provide some additional exploration of composability
and its relationship to bribery and oracles in Appendix C. We
end with some remarks on our composition examples.
Takeaways for smart contract developers. Unfortunately, as
our composition examples show, the security of a DeFi smart
contract may not always depend solely on the contract’s code;
design flaws in other contracts—even those deployed much
later—may cause composability failures. This is problematic
for contract developers since it implies that security of their
contracts may in fact be out of their hands.
Remark on capital requirements. Several of our DeFi
composability attacks in this section require the miner to
possess some initial capital to carry out malicious transaction
reorderings and extract MEV. Despite this, we note that in
the real world, capital requirements will rarely be barriers to
exploiting the system, even for smaller players, particularly
due to the availability of flash loans.Flash loans are essentially
risk-free loans that can be offered any time arbitrage or other
profitable system behavior can be executed atomically, which is
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often the case. Flash loans also do not compose with contracts
that were designed without flash loans; the attacks in [30] are
an example of this. Consequently, adding flash loans to any
of our non-composability examples will only exacerbate the
impact of malicious transaction reordering.

IV. CLOCKWORK EXPLORATION IN K

To establish a formal methodology for DeFi security, we
instantiate our Clockwork Finance Framework (CFF) in the K
framework for mechanized proofs. We include a discussion in
the full version [9] on why we chose K.

A. Scaling Formal Verification for CFF

Unfortunately, simply applying formal verification tools
out-of-the-box to our models turns out to be impractical. To
understand why, we need to step back and consider the number
of paths from the start of model execution to termination of
execution that must be explored by any formal verification tool,
in an attempt to exhaustively prove a specific property holds in
all possible executions. While general sound formal verifica-
tion techniques are known to be undecidable, in practice they
usually suffice for typical programs, where execution semantics
are primarily linear. Branching conditions (e.g., control-flow
branches) generally cause an increase in the number of paths
to explore. Here, the number of paths that must be explored
could be exponential in the number of branches in the program.

However, in our setting, miners can choose any ordering
of transactions (others’ transactions plus their inserted trans-
actions) when creating a block. This means that the number
of unique paths needed to fully explore the search space is
O(t!) where t is the number of transactions to which we apply
our CFF. This is asymptotically and concretely more expen-
sive than usual program verification proofs, and consequently
impractical for even a modest number of transactions. One
existing parallel in the literature is to semantics of concurrency
(see e.g., [19]), in which many possible interleavings must
be reasoned about. Nonetheless, most such tools either work
with a small concurrency parameter, or do not attempt to
exhaustively analyze the full state space of interleavings. They
attempt only to find plausible bugs based on observed behavior.
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Search-space reduction. To make formal verification practi-
cal, we must first reduce the search space to a tractable set of
paths. We found that reasoning about all possible transaction
orders in the formal model directly results in a large amount
of repeated computation as equivalent states are explored (e.g.,
by re-ordering non-dependent transactions).

Therefore, we apply the following optimizations (both
general and DeFi instrument specific) to our analysis to reduce
the number of paths by excluding semantically equivalent
orderings. First, transactions carry a per user serialization
number (“nonce”) such that transactions that are mined out
of order are considered invalid. Thus, we consider orderings
equivalent if for each non-miner player, the longest consecutive
(by nonce) subsequence of transactions is the same (since
transactions not belonging to these subsequences are invalid).
Second, transactions that interact with different contracts (such
as swaps on different Uniswap pairs) are independent of each
other. They produce equivalent orderings if reordered relative
to one another. Third, we allow for models to incorporate
application-specific optimizations. We do so, for example, for
our AMM models. The constant-product AMM function is
provably path independent [11]. For example, if the miner
makes multiple sequential trades selling an asset, exploring
their reorderings will have no effect. This optimization cuts
the work required by our tool by orders of magnitude, and
allows CFF to explore problem instances with larger number of
transactions. Note that the above optimizations4 are all sound.
While we would ideally like to avoid application-specific
optimizations even if sound, and our tool does support this, we
found that they substantially improved performance. Similar
optimizations will likely be helpful for any MEV analysis.

B. Design and Implementation

Fig. 2 shows the CFF architecture. The core of CFF is the
language model whose syntax and semantics are fed to the
K framework to automatically generate the deductive verifier
kprove along with other tools for parsing, compiling, and
symbolic execution of transactions. Note that because of gas
limits on the size of a block and computation done in a
transaction, the semantics of our language model are decidable.
Due to [32], this implies that the deductive verifier we obtain
is sound and complete for any reachability property of our
language model. Since we model the problem of economic se-
curity as a reachability problem (of a state with certain MEV),
CFF is attack exhaustive for the transactions and contracts it
is given. Any sources of unsoudness in our verification come
from our language model, which we now describe.

The first component of our language model defines the
specific parameters for the MEV computation as per in the
CF model (Section II). It starts with defining a transaction
type, block type, and player types. A player of type “miner”
can produce a block by deciding the order of the mempool
transactions and any inserted new transactions. Note that
the miner cannot manipulate others’ transaction contents, as
transactions are digitally signed by their creators. While our
formalism from Section II allows for arbitrary transaction
insertions (including inserting transactions that create new
contracts!), our implementation, for tractability, only handles
user-specified templates of inserted transactions. These are

4We encode our optimizations in the run_uniswapv2_experiments
& run_mcd_experiments files provided in our Github repository.

template transactions because their calldata is allowed to have
symbolic parameters rather than concrete values. The lack of
arbitrary transaction insertions in our implementation is one
source of unsoundness when CFF proves upper bounds on
MEV as a measure of economic security. Fortunately, this
is not a theoretical limitation since limits on block sizes in
Ethereum and other blockchains also constrain the number
and type of permissible insertions. (e.g., a transaction cannot
exceed the block size). Moreover, arbitrary transaction inser-
tions are observed only rarely in the wild, and incur high
gas fees. Barring transaction insertions that create a contract,
given enough computing resources, CFF can be extended to
reason about all types of insertions by enumerating all possible
interactions with the given contracts.

The second component of our language model defines
the semantics of the smart contract code and specific smart
contract models. The K Framework has built-in semantics
of basic arithmatic and logical operations. We enrich it with
definitions of currency transfers and smart contract storage.
These limited semantics are sufficient to express our smart
contract models, and make the verification much faster than
incorporating full EVM semantics. We then manually translate
the smart contract code into CFF models written in K; we
give details in Section IV-C. This needs to be done only
once for each contract. Note that our limited semantics of
EVM and the way we obtain our CFF models mean that any
successful trace obtained in the actual smart contract can be
obtained in our CFF models (but not vice-versa). We elaborate
on this in Section IV-C. As a result, the proofs of economic
security found by CFF on the smart contract models for the
given transactions also hold for the actual smart contracts
(i.e., there are no false positives introduced here). However,
this over-approximation introduces false negatives, i.e., the
counterexample strategies (sequence of transaction) found by
kprove may not all be valid on the actual smart contracts.
To validate potential counterexample strategies, CFF simulates
the sequence of transactions in these strategies on an archive
node at the appropriate block height. This validation step
is fully automatic and takes on average 39 milliseconds per
counterexample with a standard deviation of 22 milliseconds.

We have contributed our implementation for simulating
transactions at a given block height into the latest public
release of the Erigon (popular Ethereum client) software and is
now accessible via the eth_callBundle JSON-RPC API.

The gap between our smart contract models and the actual
corresponding smart contracts can be closed by substituting the
second component of our language model with KEVM [17].
There is a tradeoff, however: the performance of CFF would
degrade with use of KEVM. We leave exploration of KEVM
integration to future work. We also believe there is room
for a wide range of hybrid approaches, including randomized
testing / fuzzing, symbolic execution, concolic testing [36],
and machine learning, to attempt to learn and optimize for
this state transition model.

C. Equivalence and Over-Approximation in CFF models

We now discuss a general approach we used for creating
our models. This is not the only way to create CFF models,
but is the most formal possible approach, allowing for a clear
equivalence between the EVM executing on-chain and the CFF
model. The approach proceeds in three steps:
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1 Status: SUCCESS
2 Returns: msg.value * 997 * token_reserve / ((self.balance - msg.value) * 1000 + msg.value * 997)
3 Path condition: deadline >= block.timestamp /\ eth_sold > 0 /\ min_tokens > 0 /\ not(#status(130) == 0) /\

↪→ self.balance - msg.value > 0 /\ token_reserve > 0 /\ (msg.value *Word 997) /Int msg.value == 997 /\
↪→ (input_amount_with_fee *Word output_reserve) /Int input_amount_with_fee == output_reserve /\
↪→ (input_reserve *Word 1000) /Int input_reserve == 1000 /\ not((input_reserve * 1000) +
↪→ input_amount_with_fee < (input_reserve * 1000)) /\ not(tokens_bought < min_tokens) /\
↪→ not(#status(133) == 0) /\ not(#transferReturn(133) == 0)

1 Status: REVERT
2 Path condition: not(deadline >= block.timestamp and eth_sold > 0 and min_tokens > 0)

1 Address in TokenOut gets (997 *Int TradeAmount *Int USwapBalanceOut) /Int (1000 *Int USwapBalanceIn +Int 997
↪→ *Int TradeAmount)

Fig. 3: Two example paths from Uniswap EVM contract verification through symbolic execution (above line, prior work [37]),
and corresponding CFF model return value formula (below line, uniswap.k).

1) Path decomposition/verification (before CFF): Perform
a path decomposition of the target smart contract, a
standard technique required for formal verification of
smart contracts in KEVM [17] (outside of CFF). For the
highest possible assurance, developing a fully validated
model requires some developer effort beyond developing
the EVM code, but minimal effort beyond developing a
formal proof. Developing unvalidated models is possible,
but in our development of CFF we have instead started
with a formal proof about the target EVM code (see [37])
and built a CFF model from there.

2) Pruning/selection and refinement: Select all relevant
paths in (1), prune reverting or non-MEV-relevant paths
(e.g., utility functions), and import these remaining paths
into a CFF model. This process can mainly be automated
from (1), but some minimal developer judgment on which
paths to include can improve analysis speed.

3) Argument of equivalence: If any changes to the obtained
path formulas are desired, e.g., variable renaming for
readability, argue equivalence of the CFF model in (2)
to the path decomposition/formal EVM proof in (1) (see
our example code for Uniswap equivalence).

We expand on each on these three steps below.
(1) Path decomposition. The first step is simply performing a
standard complete symbolic exploration of the EVM bytecode
of the smart contract. This is a general pattern of smart contract
development that is not specific to our work. To prove a
contract correct in the K framework, K executes the EVM code
against the KEVM semantics [17] on fully symbolic input and
EVM state, and decomposes all possible return values of the
contract into a mathematical formula over all possible inputs.
This involves many possible paths, which represent symbolic
branches through the EVM contract code. A contract is said to
be verified in K if desired security properties hold as invariants
on every such path. A formal specification of a contract’s
behavior in K is equivalent to a specification of its behavior
on each possible path.

This path decomposition step is not mandatory (one can
simply directly give a mathematical specification as on the
bottom of Fig. 3 without decomposing EVM code), but it leads
to high assurance models by construction, and requires little
developer effort beyond a formal proof (which has independent
value), so it is the technique we choose to describe.

This approach is standard for verifying high-assurance
smart contracts. An ideal case study is provided specifically for
Uniswap in a report commissioned by Uniswap to demonstrate

the security of their contracts, described in [37]. We directly
use the results published for the Uniswap EVM contract by
Runtime Verification Inc. of the process above to generate our
CFF model of Uniswap. We execute their proofs of correctness
for Uniswap to extract all paths in the EVM code. One such
example path is shown in the upper box of Fig. 3, for the
tokenToEthInput function, which swaps a token for ETH.

This generated path states that, if the listed path condition
(Line 3) is met across input and world state (where the variable
names have been manually labeled in some cases by the author
of the formal proof, in this case Runtime Verification, Inc.), the
return value of the EVM call (Line 2) will be successful and
will output the formula listed. This formula contains variables
that can be sourced from the input or world state.

The box just above the horizontal line in Fig. 3 is another
path in which EVM execution reverts when the input and world
state meet different conditions.
(2) Pruning/selection and refinement. In our CFF model,
we include a simplified variant of the top path, shown below
the line in Fig. 3. We do not include the reverting bottom path,
and can simplify the resulting path conditions (our model has
no concept of e.g. deadlines).

By choosing to omit all reverting paths, we are able to
study the properties of interactions between the compositions
of non-reverting paths without reasoning about the complex
branching and path conditions that may lead to these reverts,
simplifying our underlying queries to K (the size of the Z3 [16]
formula kprove queries on the backend is proportional to the
complexity of the models [32]).

Omitting reverts will never reduce the amount of MEV
found by our search. The only consequence will be that some
attack we explore would revert in an actual execution, but
will not in our analysis. This can only add, not remove, MEV
to each execution. We allow for initial discovery of such
executions through our automated tool, and filter them out
through our automated validation described in IV-B.
(3) Argument of equivalence. The final step is to argue that
each path in our CFF model is equivalent to a successful path
generated by contract verification. There are two possibilities.
One can manually algebraically inspect the formulas, reasoning
about equivalence on-paper. There is a very direct argument
in this case that the formulas are structurally the same by
inspection, modulo variable renaming.

For automatic equivalence, one can turn to unification, a
standard technique for creating a map of variable renamings
in syntactically equivalent formulas, to create a substitution of

8
2506



variable names. This can be automated to verify a large number
of paths against automatically performed path decomposition.
We provide an example argument using unification [2] in the
cff_model_equivalence directory. This example shows
that our Uniswap CFF model is equivalent to the deconstructed
paths from the Uniswap EVM code listed above it (arguing that
the bottom and top of Fig. 3 are equivalent).

Using the above three-step approach, as we have demon-
strated for Uniswap, yields several convenient properties of the
resulting CFF models, which hold for all models we provide:
Over-approximation. Following this technique for model
construction, any resulting model is an over-approximation
of the EVM bytecode: it models exactly all non-reverting
paths on which the underlying contract successfully executes
a transaction, and avoids modeling code paths in the contract
bytecode or EVM-related semantic rules/details that do not
affect relevant state or balances.

Such a model will over-approximate attacks, yielding some
attacks that do not actually work on-chain because they may
trigger an unmodeled reverting path (which we call false
positives). Because weeding out false positives is cheap and
easily parallelizable, while reasoning about attacks is expensive
and scales with underlying code complexity, the less literal
approach of simplifying our model and filtering out reverting
paths as needed allows us to explore a wider space of attacks
than use of an exact but more complex model.

Our techniques do not generate false negatives, or non-
reverting paths that could have occurred in practice but are not
explorable by our search. This is because we maintain all non-
reverting paths in our models, and strictly relax the relevant
path conditions, as we show by example for Uniswap.

We say that under this relaxation—which allows for
false positives but not false negatives—our models are over-
approximations of the underlying contracts.
Development overhead. Note that constructing the models
according to the three-step strategy we’ve described requires
virtually no developer effort/overhead for a developer who
has already created a formal proof of contract correctness.
Because formal verification is a popular technique for high-
assurance contracts, in many cases, robust CFF models can be
extracted from existing formal models with minimal additional
developer effort. If developers do not want to formally verify
their contracts, their CFF models must be coded manually and
may prove less secure, as they will need to manually reason
about or concretely validate the models’ correctness against
an EVM deployment (Section V-A). Note that this practice is
still supported by our framework: we allow for reasoning about
models that are not created using our three-step approach, or
may be different than the EVM code they represent, as this may
be useful for creating new contracts, perhaps before EVM code
is even developed. Our intent is here instead to showcase the
possibility and process for developing high-assurance, useful
models such as our Uniswap model.
Constant model overhead. If models are developed using
the above technique of symbolic path decomposition, we argue
that our model size has a constant overhead compared to the
corresponding smart contracts. In our work, the model used for
verification is only the set of paths we deem relevant. Because
we strictly remove paths and conditions from the verified EVM
to create an over-approximation, our models are by definition
smaller in both number and complexity of semantic rules than

a complete contract model (the two relevant scaling metrics
for formal language models). While the exact number of paths
removed depends on the target contract, this puts our approach
in contrast to approaches such as [38], which require, e.g., a
path definition for each token pair, and thus scales poorly in
size compared to the EVM contract itself.

D. CFF Uniswap Model

Fig. 4 shows an implementation (in K) of a snippet of our
abstract Uniswap contract from Fig. 13, the same contract we
developed above using path decomposition. This refines our
presented abstract contract and formalism and transforms it
into a computer-readable executable model, capable of being
symbolically and concretely reasoned about by the symbolic
execution engine and deductive verifier bundled with K. We
provide a more complete explanation of the syntax and seman-
tics of this model in Appendix D.

V. EXPERIMENTAL EVALUATION

Using our full CFF models (not the simplified ones from
above), we ran several experiments on data from Uniswap V1,
Uniswap V2, SushiSwap, and MakerDAO, which we detail
here. We aim to experimentally address several key questions:
1) Are our CFF models accurate in reproducing the on-chain

behavior of corresponding contracts? How efficient is this
execution?

2) Can our models yield mechanized proofs about the extent
of security of DeFi contracts and their composition while
handling transaction reorderings and generic transaction
insertions by miners?

3) Is use of our CFF models economically sensible in uncov-
ering DeFi exploits on-chain?

Experimental setup. We ran most of our experiments on a
mid-range server, equipped with an AMD EPYC 7401P 24-
core server processor, 128GB of system memory, and a solid-
state drive. For our computations, only the result is written
to disk, and therefore our code is primarily CPU-intensive.
We did not observe substantial memory overhead. For our
parallelism experiments only, we used an AWS cluster of c5
instances with 256 vCPUs unless specified otherwise.
Dataset collection. We used Google’s BigQuery Ethereum
to download every swap and liquidity event generated (until
May 16, 2021) by Uniswap V1, Uniswap V2, and SushiSwap.
These are three Uniswap-like AMMs that see substantial
volume and are relevant to our analyses. In total, we collected
50,038,981 swaps, 2,317,917 liquidity addition events, and
844,709 liquidity removal events traded for 39,329 token pairs.
For each token pair, we created a chronological log of events.

For MakerDAO, we used BigQuery to download all the
log events generated (until May 16, 2021) by its core smart
contract5 which manipulates CDPs (“vaults”) and updates
stability fees and oracle prices. This data includes 322,771
CDP manipulation events (including 284 liquidations) across
18,642 CDPs and 25 collateral types. For each collateral type,
we created a chronological log of all relevant events.

A. Execution Validation and Performance Experiments

We start with experiments to validate our CFF models with
on-chain data and show the performance of our CFF tool.

5https://github.com/makerdao/dss/blob/master/src/vat.sol
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1 <k> exec(Address:ETHAddress in TokenIn:ETHAddress swaps TradeAmount:Int input for TokenOut:ETHAddress) =>
2 AmountToSend = (TradeAmount *Int USwapBalanceOut) /Int (USwapBalanceIn +Int TradeAmount);
3 Address in TokenIn gets 0 -Int TradeAmount;
4 Address in TokenOut gets USwapBalanceOut -Int var(AmountToSend);
5 Uniswap in TokenIn gets TradeAmount;
6 Uniswap in TokenOut gets 0 -Int var(AmountToSend);
7 ...
8 </k>
9 <S> ... (Uniswap in TokenOut) |-> USwapBalanceOut (Uniswap in TokenIn) |-> USwapBalanceIn ... </S>

10 <B> ... .List => ListItem(Address in TokenIn swaps TradeAmount input for TokenOut) </B>

Fig. 4: Simplified Uniswap contract implemented in CFF. Ellipses match the rest of the program state in each cell.

CFF model validation. We executed our CFF models on
the collected data to ensure that our framework computes
the correct final state, i.e., actual on-chain state. For the data
from the three AMMs, we ran our executable semantics and
inspected the resulting chain. We found that the resulting chain
state from our CFF models matches exactly the on-chain state.

We evaluated our CFF Maker model similarly. We found
that the stability fees and final debt and collateral values for
each CDP before liquidation exactly match the chain state.
Since we do not model the liquidation auction mechanism, we
do not expect the Maker model to accurately derive the state
after liquidation events. MEV reported in our experiments only
depends on the state before the first liquidation. The state after
liquidation does not affect our results.

We provide scripts to download, process, and validate data
for each protocol in the all-data sub-folder of our reposi-
tory. This validation mechanism highlights the importance of
executable formal semantics: execution is a key requirement
for validating abstract formal models against real-world data.

CFF performance and parallelism. We evaluate the per-
formance for two types of functionalities. First, for different
UniswapV2 token pairs, we execute all corresponding on-chain
transactions that manipulate the state in the same order as they
happened. This measures the execution time of our model,
or the time to derive the full on-chain state from the list of
transactions. Fig. 5 shows the time taken for our CFF to derive
the state for different pairs as a function of the number of
transactions executed for the pair. K’s internal execution engine
intrinsically gives roughly a 4x parallel speedup, which can be
seen in the figure as a speedup of real/wall execution time over
the amount of total CPU time required to compute model state.
These results, combined with our model validation, answer our
first experimental question. Our modeling execution engine
is sufficiently performant to ensure that our models’ output
matches the full chain state on Ethereum for all relevant
transactions using only commodity hardware. For instance, the
most active pairs traded on any AMM contained about 100k
transactions in our data, and it took under 2 hours of CPU time
to parse this data and perform end-to-end model validation.

Second, we evaluate the performance for exploring all
possible reorderings available to a miner as part of their ex-
traction of MEV, and analyze how the computation of optimal
miner orderings can be efficiently parallelized. This will allow
us to use our models to also find transaction orderings not
exploited by past miners. For these experiments, we use an
AWS c5.metal instance optimized for computation. This
machine features 96 3.9 GHz cores running on Intel’s Second
Generation Xeon Cascade Lake processors, with 192GiB of
available memory. In Fig. 6, we report the average execution
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Fig. 5: CFF execution time to evaluate and validate resultant
state for a transaction sequence.

times for attacks with 7, 8 and 9 transactions to be reordered
using different number of CPU cores. As discussed in Sec-
tion V-C, blocks with 10 or more relevant transactions (i.e.,
transactions interacting with our models) are rare. Transactions
chosen for this particular figure are UniswapV2 transactions
and MakerDAO transactions explored using a composition
of our UniswapV2 and MakerDAO models, so as to be
representative of our MEV extraction experiments described
in Section V-D ; changing to a different transaction type that
deals with our other models does not have any material impact
on the reported numbers. Since we used a 96-core machine
for our experiments, and given that K provides a 4x parallel
speedup, we find that the real wall clock time converges to
the fastest execution speed at around 24 worker threads before
CPU limitations are reached. Given that our parallel explo-
ration of possible state spaces has no synchronization between
parallel workers, the embarrassingly parallel nature of this
problem suggests future scaling across machines to be a natural
direction for handling larger problem instances. Before the
scale ceiling of 24 parallel workers is hit, approximately linear
scaling is visible in Fig. 6, with some overhead associated with
scheduling threads and managing shared system resources.

B. Mechanized Proofs and Symbolic Invariants

We now use the deductive program verifier (kprove) from
the K framework along with our refined CFF models to assess
the security of the composition of Sushiswap and UniswapV2.
To achieve this, we have to specify the initial state of the two
contracts along with the set of transactions interacting with
these particular contracts. These transactions include the user
transactions as well any given symbolic transactions inserted
by the miner. We also specify a reachability claim that MEV is
no greater than 0. If the two contracts compose securely as per
our definition in Section II, then running kprove generates a
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Fig. 6: CFF Parallelism: Time taken to explore all reorderings
with varying number of transactions (7,8,9) as a function of
the number of threads used.

deductive proof for the specified claim. On the other hand,
when the composition under the specified initial state is
insecure, kprove automatically generates a counterexample
strategy (i.e. sequence of transactions) and a symbolic invariant
for MEV in terms of the symbols appearing in the initial state
or inserted transaction template. More precisely, the symbolic
invariant is a set of (satisfiable) formulae representing the
amount of MEV in terms of the variables appearing in the
specified initial state and the transactions applied to it.

While our CFF can reason about the security of any
specification of initial state and set of transactions, we describe
an example detailed specification in Appendix E-B capturing
one of the biggest arbitrage opportunities6 observed on-chain
involving two AMMs as reported in [29]. To capture this
arbitrage opportunity, we specify the AMM states at block-
number 10854887, the user transactions interacting with the
AMMs, and swap transactions inserted by miner with symbolic
parameters (representing the size of miner’s trade). We plot the
MEV formula output by our CFF representing the available
MEV opportunity as a function of the size of the trades inserted
by the miner in Appendix E-B. The arbitrageur in this arbitrage
made a profit of 76 ETH, while our CFF reports a higher MEV
of 123 ETH not captured by miners.

This example illustrates the power of CFF in finding
opportunities left on the table by arbitrageurs currently. Note
that our refined mechanized models account for fees, slippage,
and integer rounding and hence, the deduced size of the
opportunity available to the miner is slightly less than the
theoretical value derived in Section III. We provide the full
specification in the proofs sub-folder of our repository.
CFF can also mechanically reason about the security of many
disparate AMMs composed together, as well as more complex
composed smart contracts, but we leave this to future work.

C. AMM Experiments

We ran a series of experiments on our CFF models for the
three AMMs to quantify the MEV extractable from them, and
prove the utility of our models further by furnishing real-world
insights into available MEV. Our experiments are intended to
validate the ability of our tool to uncover profit-seeking miner
strategies, and can easily be used for other DeFi contracts.
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Fig. 7: 7-day moving average of MEV per block in a random
sample of 1000 random blocks in each month. 1 ETH ∼ 3200
USD at the time of writing.

Reordering to lower-bound MEV. We consider all possible
transaction reorderings that can be performed by a miner.
For this, we do not consider transaction insertion by miners,
and therefore we will find a lower bound on the MEV by
computing the difference between the most and least profitable
transaction ordering with respect to a user who colludes with
the miner to get the most profitable ordering. Otherwise stated,
we define MEV in this setting as the amount a miner could
make with a composed ordering bribery contract. We expand
on this subtle difference in Appendix E-C. In certain cases
of restrictions imposed by other (wrapper) contracts involved
in the transaction, not all reorderings might be valid. We
automatically validate the optimal ordering in the last phase
of CFF as described in Section IV-B. Note that providing our
CFF tool with the models of the other (wrapper) contracts
interacting with the AMM contracts would ensure that this
validation is unncessary, however we defer this to future work.

For each AMM that we support, we conduct two kinds of
analysis: First, we analyse the average MEV in a randomly
sampled block (having transactions for any token pair) ob-
tained by sampling 1000 blocks per month that have at least
2 transactions interacting with it. We report the 7-day moving
average of MEV found per block as a time series plot in Fig. 7.
For the year 2021, total MEV across all the AMMs in our
random sample is 1.5 million USD, which by extrapolation
comes to about 56 million USD per month in 2021. Second,
we examine the token pairs with the top 10 highest number of
transactions, and randomly sample 30 blocks involving these
token pairs. Our tool can fully explore the state space for
blocks with 9 or fewer AMM transactions; we call these blocks
“tractable”. We report the average MEV found per block (for
each token pair) in our random sample in Fig. 8.
Intractable-block exploration. For blocks with 10 or more
relevant AMM transactions (i.e., transactions that interact
with the AMM), we do not explore the full search space.
Instead, for these “intractable blocks,” we compute the MEV
through a randomized search. We explore 400,000 paths, but
randomize which paths are explored. The average MEV values
for intractable blocks in our random sample are also reported in
Fig. 8. Because our primary aim was developing and validating
our models’ ability to find attacks, we did not optimize this
search for performance further. Using further optimization or
more parallel computation could likely yield more accurate
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Fig. 9: Convergence towards the optimal MEV for a random sample vs percentage of total paths explored for tractable blocks.

estimates for intractable blocks, but we defer this to future
work. We found that “intractable” blocks are rare in our
dataset. Fig. 10 shows a histogram of the number of blocks
containing a particular number of AMM transactions.
Approximate convergence. To support our exploration of
intractable blocks, a natural question is to what extent a
random search on a sample of orderings approximates the
MEV for a given block. For this, we look at how the MEV
converges for tractable blocks as more paths are explored
iteratively. For each AMM, we randomly explore the same
tractable blocks in our random sample, and report the quartiles
for MEV convergence in Fig. 9. On average, we uncover 70%
of MEV in more than 90% of the instances by exploring
just 1% of total paths. Since we explore 400,000 paths for
intractable blocks, we explore roughly 11% of the total paths
for blocks with 10 transactions, and roughly 1% of the total
paths for blocks with 11 transactions. As evident from Fig. 10,
blocks with more than 11 transactions are even more rare.
Reordering insights. Our results show that UniswapV2
exposes significantly less MEV compared to UniswapV1 and
Sushiswap, thanks to the huge liquidity on UniswapV2. It is
interesting to note that some of the token pairs have negligible
MEV compared to the rest. It turns out that all of these pairs in-
clude a stablecoin (or are both stablecoins, e.g., USDC/USDT),
which exposes only small price fluctuations for users across
reorderings. On the other hand, pairs with unstable prices
(UNI, YFI, BAT) expose the highest MEV (75-175 ETH). On
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Fig. 10: Distribution of AMM transactions in blocks

manual examination, we find that the blocks exposing huge
MEV (∼100 ETH) often involve a user making a big purchase
of token X with token Y and being either frontrun or backrun
by a bot. In the full version of this work [9], we provide a
deep dive into a backrunning example—one of the highest
MEV instances uncovered by our tool.

D. Composability Experiments

To highlight the capability of our tool in finding MEV
in the composition over multiple contracts, we consider our
running example of the composition between MakerDAO and
Uniswap. Here, we use the price from Uniswap V2 instead of
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Fig. 11: MEV for Maker composed with Uniswap V2

the one from Maker’s oracle module. Although MakerDAO
does not currently use Uniswap as a price oracle, making
the attacks in this section purely theoretical, this change
reflects similar proposals from over 60 projects (enumerated at
https://debank.com/ranking/oracle), as well as academic results
suggesting a possible security argument for such a change [6].
Using our tool, we can compute the MEV exposed as a result
of MakerDAO adopting this potential composition.
Oracle attacks. We extend the AMM reordering experiments
from Section V-C to allow for an additional miner action,
where the miner can liquidate under-collateralized CDPs. For-
mally, if CDPs with index 1, ..., n are open in the system, the
set of transactions s is extended to include a liquidation of
all n CDPs by a miner account M . We then compute the total
amount of profit earned by M from any successful liquidations
as a lower-bound metric for MEV.

To quantify this, we examine on-chain data for the top 100
CDPs and blocks in MakerDAO when the CDPs are at the
highest risk of liquidation (i.e., CDPs with the least collateral-
to-debt ratio). For a given block, we consider possible re-
orderings over all Uniswap V2 and MakerDAO transactions,
and then compute the MEV as a result of a miner possibly
inserting a CDP liquidation transaction. We report this in
Fig. 11 for the top 20 blocks with the largest liquidations
(calculated using the collateral value at the time of liquidation).
We found a total MEV of 542,827 USD—orders of magni-
tude larger than the block rewards and transaction fees for
these blocks. These experiments can be reproduced using the
run_mcd_experiments script in our Github repository.

E. Other Notable Attacks

Airdrops. Airdrops are a recent DeFi phenomenon where
users who have taken a specific action on the blockchain (e.g.,
interacted with some contract function, held an NFT etc.)
can claim a proportionate share of a newly released token. If
the airdrop contract checks only the ownership in the current
state and not the historical record, then it can be exploited
using flash loans. One such exploit was observed recently
where an attacker was able to exploit the much anticipated
ApeCoin airdrop for BAYC NFT holders for approximately
$1,100,000 [23] 7. We reproduce this attack using CFF. To
this end, we implement 3 new CFF models. First, a flash loans
model that has a rewrite rule (with appropriate state updates)
for allowing any player to borrow desired amount of a certain

70xeb8c3bebed11e2e4fcd30cbfc2fb3c55c4ca166003c7f7d319e78eaab9747098

fungible token, call another contract, and then deposit back
certain amount of the same fungible token. The rule requires
that the deposited amount be greater than the borrowed amount
along with some fees. The second model is for a “vault”
contract that allows for minting and redeeming of fungible
tokens (“BAYC tokens” here, which function as a fungible
wrapper to the BAYC NFTs) against NFTs pooled together
in a vault. The third model is for the naı̈ve aidrop contract
that allows any player to claim a fixed amount of ApeCoin
tokens against their NFT for which a claim has not been passed
before. We compose these models along with our Sushiswap
model in CFF in order to obtain a strategy (counterexample to
composability proof) that yields the same amount of profits in
ETH as observed in the attack [23]. The strategy first borrows
BAYC tokens through the flash loans model, calls into the vault
model to redeem them for other players’ NFTs found in the
vault, claims the ApeCoin airdrop for these NFTs, then returns
the NFTs back to the vault for the BAYC tokens which it pays
back to the flash loans model with fees. Finally, the ApeCoin
tokens are swapped on Sushiswap for ETH.
Governance. We use CFF to illustrate how flash loans can
be used to exploit governance mechanisms. To this end, we
model a simple governance contract that finalizes the vote
at a certain blocknumber based on the capital staked for or
against the vote in the current state. As a proxy for the
economic incentives from the governance vote, we model a
simple betting contract (conceptually similar to Cpricebet) that
awards any player a certain amount of ETH if the vote passes.
We use CFF to study the composability of the flash loans
contract, the governance contract, and the betting contract. The
current state supplied to CFF has symbolic variables x for the
flash loans reserves, y for the capital staked in favor of the
vote and z for the capital staked against the vote. CFF outputs
a strategy (counterexample to the composability proof) with
the MEV equal to the betting contract reward less the flash
loans fees, along with the condition:

(x > z - y) and (x > 0 ) and (y >= 0) and (z >= 0)

We provide the models for the flash loans, vault, airdrop, gov-
ernance and betting contracts used above in the cff_models
directory, and provide the modules for reproducing the Air-
drops attack and Governance attack in the proofs directory
of our Github repository.

VI. CONCLUSION

We have introduced a powerful and novel approach—
that adopts the lens of miner-extractable value (MEV)—for
reasoning about and quantifying security guarantees for DeFi
contracts and their interaction. We have instantiated a number
of semantic models in a new computational framework, the
Clockwork Finance Framework (CFF)—an executable proof
system that allows us to reason about the financial security
of smart contracts. We have provided open-source models,
both abstract and executable, that represent key MEV-exposing
deployed smart contracts. We have shown how our definitions
enable powerful proofs of composition for popular smart
contract protocols, a missing ingredient in the current deploy-
ment of DeFi contracts. We believe that MEV, smart contract
composition, and formal verification can serve as viable key
ingredients for empirically and rigorously measuring and im-
proving DeFi contract security.
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APPENDIX A
BACKGROUND AND RELATED WORK

Our work intersects with several well-studied areas which
we briefly introduce here as background.

A. Blockchain and Smart Contracts

Smart contracts are executed in transactions, which, like
ACID-style database transactions [34], modify the state of a
cryptocurrency system atomically (that is, either the entire
transaction executes or no component of the transaction exe-
cutes). A transaction’s output and validity depends on both the
system’s state and the code being executed, which can read and
respond to this state. The state may also include user balances
of tokens representing assets or of cryptocurrencies in the
underlying system. In the smart contract setting, the primary
purpose of the underlying blockchain is to order transactions.
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The execution of a transaction sequence is then deterministic,
and can be computed by all parties. The sequencing of trans-
actions is done by actors known as miners (or validators or
sequencers, terms we use interchangeably).

A unique attribute of smart contract transactions that proves
critical to decentralized finance is their ability to throw an
unrecoverable error, reverting any side-effects of a transaction
until that point and converting the transaction into a no-op.
This allows actors to execute transactions in smart contracts
that are reverted if some operation fails to complete as expected
or yield desired profit.
Miner extractable value. A notion called MEV, or miner-
extractable value, introduced in [15], measures the extent to
which miners can capture value from users through strategic
placement and/or ordering of transactions. Miners have the
power to dictate the inclusion and ordering of mempool
transaction in blocks. (Thus MEV is a superset of the front-
running/arbitrage profits capturable by ordinary users or bots,
because miners have strictly more power.) Previous studies
of MEV have performed transaction-level measurements of
the outcome of specific strategies (e.g., sandwiching attacks
in [39] and pure revenue trade composition in [15]). Other
work has abstracted away transaction-level dynamics, analyz-
ing DeFi protocols such as AMMs using statistical modeling
and economic agent-based simulation [6].

B. Formal Verification Tools

Formal verification is the study of computer programs
through mathematical models in well-defined logics. It sup-
ports the proof of mathematical claims over the execution of
programs, traditionally to reason about program safety and
correctness. Formal verification has been applied to traditional
financial systems in the past (like [27]) but as noted in
Section I, DeFi systems have novel properties not present in
these older systems. Most formal verification works for smart
contracts (such as [5], [8], [18], [26], [39]) do not reason
about economic security and hence cannot characterize finan-
cial exploits in DeFi (i.e., they are not attack-exhaustive by
construction). Recent work [38] has attempted to apply formal
verification to find profitable arbitrage strategies but does not
provide formal proofs of economic security. Moreover, the
tool covers only certain types of manually encoded smart
contract actions, so that the tool lacks contract completeness
and optimal model sizes.

Our work aims to establish a clear translation interface
between existing program verification tools and the unique
security requirements of DeFi. We develop our models in the
K Framework [31], which provides a formal semantics engine
for analyzing and proving properties of programs. K allows
developers to define models that are mathematically formal,
machine-executable, and human-readable.

By mathematically formal, we mean that K uses an un-
derlying theory called “matching logic” that allows claims
expressed about programs in programming languages defined
by K to be proven formally. Such proofs have been used in
industry to verify the practical security properties of smart
contracts that hold billions of dollars [20].

By executable, we mean that K provides concurrent and
non-deterministic rewrite semantics [14] that allow for efficient
execution of large programs in the developer-specified pro-
gramming language model. Fig. 12 shows the high-level goals
of the K Framework, which include deriving an interpreter

Fig. 12: K Framework: In this figure from [31], the yellow box
is a user-specified language model (like that in Section IV);
blue boxes are tools generated automatically by the framework.

and compiler for a specified language semantics, as well as
model-checking tools.

By human-readable, we mean that K provides output in
a form that can serve as a reference for other mathematical
models, as it uses only abstract and human-readable mathe-
matical operations. Examples of human-readable K semantics
include the Jello Paper for the Ethereum VM.8 Because DeFi
contracts today lack standardized abstract models, we believe
K’s abstract models are especially suitable to DeFi and hope
they can ease security analysis and specification.

K is one of a number of formal verification tools; other
common tools include Coq, Isabelle, etc. Indeed, several
have been applied to model Ethereum-based systems in the
past [5], [8], [18]. We refer the reader to [13], [14], [31]
for details on the mathematical and formal foundations of
K. We emphasize that our MEV-based secure composability
definitions and general results are not specific to K.

APPENDIX B
GENERALIZED MEV AND COMPOSABILITY DEFINITIONS

In Section II, we defined k-MEV which computes the MEV
for a miner if it appends k consecutive blocks to the chain and
can change the transaction ordering across those k blocks. In
this section, we define weighted miner-extractable value, or
WMEV, which is weighted by the probability that a miner
can mine k consecutive blocks.

Formally, for a miner P , let pk be the probability that
it mines exactly k consecutive blocks. We assume that pk is
not state dependent (at least in the short term). pk may be a
function of the mining difficulty or the fraction of hash power
owned by the miner. We can now define weighted MEV as:

Definition 2 (Weighted MEV).

WMEV(P, s) =

∞∑
k=1

pk · k-MEV(P, s)

As a simple example, consider a miner P who controls a
fraction f of the total hash power. If we assume that mining is
modeled as a random oracle and that there is no selfish mining,
then the probability pk that P mines exactly k consecutive
blocks is pk = fk(1 − f). Suppose further that the extra

8The “Jello Paper” (https://jellopaper.org/), based on [17], reimplements the
original Ethereum yellow paper [35] in a machine executable, mathematically
formal manner and can generate an Ethereum interpreter and contract proofs.

15
2513



MEV obtained per extra mined block is a constant m. For
this simplified example, we can compute the WMEV as:

WMEV(P, s) =

∞∑
k=1

fk(1− f)(km) =
fm

(1− f)

Equipped with this, we can also generalize the definition
of Defi composability to include WMEV. For this, MEV in
Definition 1 will be replaced by WMEV.
Miner cost. All of our notions of extractable value abstract
out the actual cost incurred by the miner (e.g., the cost of
equipment, electricity). We do this to make our definitions
more broadly applicable. We note that the cost of a specific
miner can be calculated independently, and subtracted from
the extractable value to obtain the profit a miner could make
from transaction reordering.

APPENDIX C
ADDITIONAL COMPOSABILITY EXAMPLES

We further explore composability examples here.

A. Maker Contract Model

The Maker protocol allows users to generate and redeem
the collateral-backed “stablecoin” Dai through Collateralized
Debt Positions (CDPs). Users can take out a loan in Dai by
depositing the required amount of an approved cryptocurrency
(e.g., ETH) as collateral, and can pay back the loan in
Dai to free up their collateral. If a user’s collateral value
relative to their debt falls below a certain threshold called the
“Liquidation Ratio” (> 1), then their collateral is auctioned
off to other users in order to close the debt position. Maker
uses a set of external feeds as price oracles to determine
the value of the collateral. A separate governance mechanism
is used to determine parameters like the Liquidation Ratio,
stability fees (interest charged for the loan), etc., and also
to approve external price oracle feeds and valid collateral
types. We consider here a simplified version of Maker’s single-
collateral CDP contract that does not model stability fees, or
liquidation penalties. The contract C(X,Y)

maker allows users to take
out (or pay back) loans denominated in token X by depositing
(or withdrawing) the appropriate collateral in token Y, and
allows for liquidation as soon as the debt-to-collateral ratio
drops below the Liquidation Ratio. Fig. 14 details the contract.

It should be noted that the amount of collateral liquidated
and received by the liquidator as well as the debt (in Dai) paid
off by the liquidator in exchange for the collateral depends on
the outcome of a 2-phase auction. If the auction is perfectly
efficient, the winning bidder pays off an equivalent amount of
debt for receiving the offered collateral. On the other hand,
when the auction is inefficient due to system congestion,
collusion, transaction censoring, etc., the winning bidder can
receive the entire collateral on offer without paying off an
equivalent amount of debt. In our simplified Contract C(X,Y)

maker ,
we assume that liquidation is perfectly efficient.
Uniswap as a price oracle for Maker. If Uniswap is
used as a price oracle in the Maker contract, by reordering
Uniswap transactions, and thereby manipulating the exchange
rate, a miner can cause the value of a user’s collateral to fall
below the acceptable threshold, and trigger a liquidation event.
Furthermore, the miner can buy the user’s collateral tokens in
the liquidation event, and later sell them for a profit when the
exchange price returns to normal.

B. Composition of multiple AMMs

Perhaps surprisingly, we find that even multiple contracts
deployed with the same code need not be composable with
each other. An interesting example of this non-composability
is seen when two automated market makers (AMM) contracts
co-exist in a system. Example 2 highlights this observation.

Example 2. Consider state s containing two instances, Cuniswap
and C∗uniswap, of the Uniswap contract that exchange between
the same two tokens (BBT and ETH). Let b, e be the number of
BBT and ETH tokens respectively in Cuniswap, and let b∗, e∗ be
the number of BBT and ETH tokens respectively in C∗uniswap.

Lemma 3. If be∗ 6= b∗e, then there exists a δ > 0 such that
for any 0 < α < δ, a miner with at least α ETH (equiv. BBT)
tokens can achieve an end balance of more than α ETH (equiv.
BBT) tokens by only interacting with Cuniswap and C∗uniswap.

Proof: We prove for ETH tokens but note that the proof is
exactly the same for BBT tokens. Let U = {Cuniswap, C

∗
uniswap}.

Consider the following sequence of transactions: (1) Deposit
ETH in contract A ∈ U to retrieve tokens of BBT; (2) Deposit
the BBT tokens in A′ ∈ U \A to get tokens of ETH. We will
show that when be∗ 6= b∗e, there exists a δ > 0 such that
depositing α (0 < α < δ) tokens in step (1) results in more
than α tokens in step (2).

First, suppose that α0 ETH tokens are deposited in Cuniswap
in the first step. This results in bα0

e+α0
BBT tokens, which when

deposited in C∗uniswap gives back be∗α0

b∗e+b∗α0+bα0
ETH tokens.

Similarly, if α0 ETH tokens were first deposited in C ′uniswap,
then the user would end up with b∗eα0

be∗+bα0+b∗α0
ETH tokens.

Now, we consider the following cases:
Case (1) be∗ − b∗e > 0. Let δ = be∗−b∗e

b+b∗ . Therefore,
b∗e+ bα+ b∗α < be∗ which gives α < be∗α

b∗e+bα+b∗α . In other
words, depositing first in Cuniswap and then in C∗uniswap yields
more ETH tokens than the initial deposit.

Case (2) be∗− b∗e < 0. This is analogous to the first case.
Let δ = b∗e−be∗

b+b∗ . Therefore, be∗+bα+b∗α < b∗e which gives
α < b∗eα

be∗+bα+b∗α . In other words, depositing first in C∗uniswap
and then in Cuniswap yields more ETH than the initial deposit.

C. MEV Bribery Contracts

New contracts can be introduced into the system specif-
ically with the goal of breaking composability. One such
example is that of bribery contracts. The existence of MEV
in a system can give rise to new bribery-based incentives for
miners to choose the final transaction ordering. For instance,
a user could bribe a miner to give her transactions preferential
treatment (e.g., a better exchange rate for Uniswap transac-
tions). Such bribes can be carried out securely through bribery
contracts. Consider the following simple example.

Example 3. A user U and a miner P enter into a bribery
smart contract with a payout as follows: P submits two valid
transaction orderings, O1 and O2, such that O1 is preferred by
U ; if O1 is the finalized order, P receives a payout proportional
to the difference to the user U in value of O1 and O2.

Intuitively, U is “bribing” the miner to provide U with a
more profitable transaction ordering. To maximize its profit,
a miner may potentially enter into multiple such bribery
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Contract C
(X,Y)
uniswap

function exchange(InToken, OutToken, InAmount):
if balance(acccaller)[InToken] ≥ InAmount then

x = balance(Cuniswap)[InToken]
y = balance(Cuniswap)[OutToken]
OutAmount = y − xy/(x+ InAmount)
balance(acccaller)[InToken] −= InAmount
balance(acccaller)[OutToken] += OutAmount
balance(Cuniswap)[InToken] += InAmount
balance(Cuniswap)[OutToken] −= OutAmount

else Output ⊥

Fig. 13: Simplified abstract Uniswap contract

contracts with other users, and pick the best one to complete.
Bribery contracts could also pose a threat to the long term
stability of the system; given enough incentive, it could be
worthwhile to mine a consensus block on a stale chain, thereby
attempting to rewrite blockchain history. This is similar to
time-bandit attacks, which as observed in [15] can be highly
detrimental for current blockchain consensus protocols.

APPENDIX D
UNISWAP CFF MODEL DETAILS

We detail simplified Uniswap and Maker contracts in
Fig. 13 and 14. A few key differences exist between our
abstract contract and executable CFF models. The first is that
our executable CFF models contain an XML-like configuration
consisting of cells, or mathematical objects in the K Frame-
work. The k, S, and B cells of our executable model are
featured in Fig. 4. Recall that our model represents a state ma-
chine executing Uniswap transactions. The k cell specifies the
transactions left to execute in the model and not yet included
in a block, and can be viewed similarly to a program tape
in a Turing-style execution machine. Note that execution of
these transactions by CFF takes different paths corresponding
to different orderings (including the original order in k cell)
and censoring combinations of these transactions. The S cell
represents the space of state mapping S in CFF (Section II),
and stores a mapping of addresses to balances (state entries).
The B cell represents the prefix of the block that has been
constructed thus far by CFF. The model is consistent with our
formalism by maintaining the invariant : S = action(B)(s0)
where s0 is the initial state. When no instructions are left to
execute by CFF (empty k cell), the B cell will represent a
valid block. The final state and the contents of the valid block
potentially vary for different execution paths.

Another key difference is that our abstract contract has im-
perative semantics while K is fundamentally rewrite-based [14]
using “A => B” as a special operator meaning “A rewrites
to B”. Lines 1-6 in Fig. 4 correspond to one of the rewrite
operators in our CFF Uniswap model. Line 1 in Fig. 13 then
corresponds to “A”, or the initial configuration of our model
when this semantic rule applies. This semantic rule describes
execution when the next instruction to execute (first transaction
in the k cell, wrapped in an “exec” keyword) is a token swap
on Uniswap for swapping a symbolic amount TRADEAMOUNT
of the input token denoted by symbol TOKENIN for an output
token denoted by symbol TOKENOUT. This swap rewrites to
(“=>”) a series of statements (Lines 2-6) that will execute one
at a time with separate operational semantic rules in CFF. The

Contract C
(X,Y)
maker

threshold = 1.5; collateral = {}; debt = {};

function deposit_collateral(qty) :
if balance(acccaller)[Y ] ≥ qty then
balance(acccaller)[Y ] −= qty
balance(Cmaker)[Y ] += qty
collateral[caller] += qty

function deposit_loan(qty) :
if balance(acccaller)[X] ≥ qty and debt[caller] ≥ qty then
balance(acccaller)[X] −= qty
debt[caller] −= qty

function withdraw_collateral(qty) :
if collateral[caller] ≥ qty and getprice(Y,X) ∗

(collateral[caller]− qty)− threshold ∗ debt[caller] ≥ 0 then
balance(acccaller)[Y ] += qty
balance(Cmaker)[Y ] −= qty
collateral[caller] −= qty

function withdraw_loan(qty) :
if getprice(Y,X) ∗ collateral[caller]− threshold ∗ (debt[caller] +

qty) ≥ 0 then
balance(acccaller)[X] += qty
debt[caller] += qty

function liquidate(acc) :

if getprice(Y,X) ∗ collateral[acc] − threshold ∗ debt[acc] < 0

then
balance(acccaller)[X] −= debt[acc]
balance(acccaller)[Y ] += debt[acc]/getprice(Y,X)

balance(Cmaker)[Y ] −= debt[acc]/getprice(Y,X)

debt(acc) = 0

collateral[acc] −= debt[acc]/getprice(Y,X)

function getprice(Y,X) :

return
balance(Cuniswap)[X]

balance(Cuniswap)[Y ]

Fig. 14: Maker contract

ellipsis in the k cell signifies the remaining transactions, in S
cell signifies the rest of the state mapping, and in the B cell
signifies the prefix of the block constructed so far.

We leave further exploration of our executable models to
the interested reader, and provide more notes on K-specific
keywords in the above model in the expanded version of this
work [9]. We also describe some refinements necessary for a
model that behaves the same as deployed DeFi contracts and
discuss subtleties of modeling MakerDAO liquidations in [9].

APPENDIX E
CFF DETAILS

A. Why K?

A natural question is why we chose the K framework for
our implementation of the CFF. While CFF can be instantiated
using any good formal verification tool, we found K code to be
especially human readable and intuitive (mainly because of its
concurrent semantics) for developers who may not be experts
in formal verification. Prior work [17] has already implemented
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1 claim <k>
2 On UniswapV2 697323163401596485410334513241460920685086001293 swaps for ETH by providing

↪→ 1300000000000000000000 COMP and 0 ETH with change 0 fee 1767957155464 ;
3 On Sushiswap Miner swaps for ETH by providing Alpha:Int COMP and 0 ETH with change 0 fee 0 ;
4 On UniswapV2 Miner swaps for Alpha COMP by providing ETH fee 0 ;
5
6 => .K
7 </k>
8 <S> (Sushiswap in COMP) |-> 107495485843438764484770 (Sushiswap in ETH) |-> 49835502094518088853633

↪→ (UniswapV2 in COMP) |-> 5945498629669852264883 (UniswapV2 in ETH) |-> 2615599823603823616442 =>
↪→ ?S:Map </S>

9 <B> .List => ?_ </B>
10 requires (Alpha >Int 0) andBool (Alpha <Int 10000000000000000000000) //10**22
11 ensures ({?S[Miner in COMP]}:>Int <=Int 0 ) andBool ({?S[Miner in ETH]}:>Int <=Int 0 )

Fig. 15: Specification for Composition of Sushiswap and UniswapV2
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Fig. 16: The region boundary represents MEV extractable by
the miner as a function of the input variable (size of its trade).
The maximum value is 123 ETH.

full EVM semantics using K. We also chose K for qualitative
reasons, detailed in Section A-B. We emphasize that our results
are not tool-specific, and should be straightforward to replicate.
K vs. Coq. As a specific comparison point, we explain our
choice of K over Coq [24], another popular formal verification
tool. A comparison in [4] found similar performance numbers
for the proving engines of both K and Coq; simple proofs
took approximately the same amount of real time on test
hardware. We posit (though defer detailed study) that perfor-
mance differences would be minor. As [4] points out, however,
models in K are always executable, and allow for concrete
inputs to be evaluated. On the other hand, in Coq, execution
must be defined separately as its own function and proved
equivalent to the relational definition of the corresponding
models. We believe that this additional step would impose
substantial overhead on model development our framework.

B. Mechanized Proofs

We now provide the details of an example specification
used to check the security of the composition of Sushiswap
and UniswapV2 in Fig. 15. This example captures one of the
biggest arbitrage captures9 observed on-chain involving two
AMMs as reported in [29]. The hex addresses for users are
converted to base 10 integers. The initial state for Sushiswap
and UniswapV2 is specified in the S cell. The last two
transactions in the k cell represent the transactions inserted by
the Miner according to the strategy described in Section III.

9https://etherscan.io/tx/0x2c79cdd1a16767e90d55a1598c833f77c609e97
2ea0fa7622b70a67646a681a5

Note that the Miner transaction can be symbolic, Alpha being
the symbol representing the size of the swap Miner does
denominated in Wei (1 ETH = 1e18 Wei). The requires
clause specifies the constraints on Alpha, essentially denoting
the Miner budget. Finally, the ensures clause represents the
claim that the Miner is not able to extract any value regardless
of the way specified transactions are reordered.

Our tool derives a counterexample to the claim with the
MEV formula given by (plotted in Fig. 16):
-1 - 2147460244936306246609000 * Alpha / ( 997 *
( 7245498629669852264883 - Alpha ) ) + 997 * Alpha
* 49835502094518088853633 / ( 997 * Alpha +
107495485843438764484770000)

C. Bounding the MEV for AMMs

Although the price offered by the AMMs we study at
the end of a given set of transactions is independent of the
order of the transactions [11], individual users’ transactions
get different prices depending on the order of the transactions.
A miner can thus influence the value individual users get for
their trades by choosing a different order for the transactions.
For each user, there is an optimal and a worst case ordering.

Let bh be the highest ETH-value of a trader’s account after
a block has elapsed, assuming access to a price oracle for
pricing a user’s tokens at an invariant market price for the
time of trade execution. Let bl be the lowest such value. It is
therefore rational for the trader to pay bh − bl − ε to miners
as a bribe. For miners to elicit this bribe, they would deploy a
contract allowing each user of an AMM to deposit ETH. They
would then credibly commit to mining the order resulting in bl
if no funds were available. Otherwise, they would submit both
bl and bh, along with associated proofs, to the smart contract,
which would enforce the order resulting in bh, pay the miner
bh − bl − ε, and pay the trader ε. Note that paying such a
contract is a strictly dominant from a trader point of view,
as the trader profits ε more than without paying into such
a contract. Introducing this new contract increases MEV by
exactly bh− bl − ε through a direct payment by inspection; in
our experiments, we assume ε is negligible when compared to
bh − bl: since being paid this ε is a strictly dominant strategy,
miners need only compensate users for the low cost of locking
capital (which can be removed freely) in the bribery contract.

When analyzing attacks like this on DeFi protocols, a
natural question becomes how to efficiently and thoroughly
uncover reordering-based differences that would allow for
an accurate measurement of bh and bl, and therefore the
MEV in the presence of such contract composition. It is this
measurement on which we focus in our AMM experiments.
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