
FLUTE: Fast and Secure Lookup Table Evaluations

Andreas Brüggemann , Robin Hundt , Thomas Schneider , Ajith Suresh and Hossein Yalame
Technical University of Darmstadt, Germany

Email: {brueggemann,schneider,suresh,yalame}@encrypto.cs.tu-darmstadt.de,
hundt@stud.tu-darmstadt.de

Abstract—The concept of using Lookup Tables (LUTs) instead
of Boolean circuits is well-known and been widely applied
in a variety of applications, including FPGAs, image pro-
cessing, and database management systems. In cryptography,
using such LUTs instead of conventional gates like AND and
XOR results in more compact circuits and has been shown
to substantially improve online performance when evaluated
with secure multi-party computation. Several recent works on
secure floating-point computations and privacy-preserving ma-
chine learning inference rely heavily on existing LUT tech-
niques. However, they suffer from either large overhead in the
setup phase or subpar online performance.

We propose FLUTE, a novel protocol for secure LUT
evaluation with good setup and online performance. In a
two-party setting, we show that FLUTE matches or even
outperforms the online performance of all prior approaches,
while being competitive in terms of overall performance with
the best prior LUT protocols. In addition, we provide an
open-source implementation of FLUTE written in the Rust
programming language, and implementations of the Boolean
secure two-party computation protocols of ABY2.0 and silent
OT. We find that FLUTE outperforms the state of the art by
two orders of magnitude in the online phase while retaining
similar overall communication.

1. Introduction

With data collection rising to unprecedented levels and
consumers becoming more aware of and concerned about
how their personal information is being used, effective pri-
vacy safeguards are more critical than ever. While using
large amounts of user data creates new possibilities, such as
in the health industry and for machine learning [63], doing
so plainly compromises users’ privacy to the point where
it might even be against the law because of regulations
like the General Data Protection Regulation (GDPR) or
the California Consumer Privacy Act [41], [83]. Secure
multi-party computation techniques (MPC) [38], [87] have
demonstrated their ability to address this problem efficiently
in a variety of real-world applications, including finan-
cial services [7], epidemiological modeling [40], privacy-
preserving machine learning [13], [23], [42], [50], [54],
and federated learning [12], [14], [60], [64]. MPC is a
sophisticated cryptographic approach that allows a group of

parties to compute a joint function on their private inputs
while disclosing only the outputs and nothing else what
cannot be derived from the outputs.

In the context of secure two-party computation (2PC)
over boolean circuits with security against passive adver-
saries, which we explore in this paper, two of the most
prominent protocols are Yao’s garbled circuits (Yao) [88]
and the Goldreich-Micali-Wigderson (GMW) protocol [38].
To maximize practical efficiency, these methods are typically
divided into an input-independent setup phase and an input-
dependent online phase [28], [85]. In detail, the approach
enables the majority of the expensive cryptographic primi-
tives, such as oblivious transfer (OT) [6], [18], [33], [73], to
be completed in advance during the setup phase, leading to
an extremely fast online phase once the inputs are available.
Later research explored function-dependent preprocessing
and demonstrated significant improvements by using knowl-
edge of the underlying function to be evaluated [11], [67].
This is especially beneficial in practical scenarios such as
machine-learning-as-a-service, where the same function is
evaluated multiple times with different inputs.

GMW-based protocols require communication rounds
that are linear in the multiplicative depth of the circuit
yet are well-suited for high-throughput applications due
to their minimal communication. In contrast, Yao-based
protocols are preferred for low-latency solutions due to a
constant number of rounds. The mutually orthogonal goals
of these two approaches paved the way for Lookup Table-
based (LUT) computation, which seeks to strike a balance
between total communication and online round complex-
ity [29], [32], [46]. For practical applications, including the
most recent works on secure floating point evaluations [74]
and privacy-preserving recurrent neural networks (RNN)
inference [75], LUT-based techniques have been chosen over
traditional GMW-style boolean circuit evaluations due to the
improvements they bring. Concretely, SiRnn [75] uses LUTs
to improve and accelerate the approximation of non-linear
functions, such as sigmoid and tanh, that are essential in
machine learning tasks.

Two LUT evaluation protocol variants, SP-LUT and OP-
LUT, are proposed in [32], the state-of-the-art in the passive
2PC setting, to cater to different scenarios. While SP-LUT
gets better total communication at the expense of higher on-
line communication, OP-LUT has better online communica-
tion at the expense of very high total communication. How-

1515

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Andreas Brüggemann. Under license to IEEE.
DOI 10.1109/SP46215.2023.00157

20
23

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

34
5



ever, the authors of [32] left open the problem of combining
the best of both approaches, which is the starting point for
our work. In particular, they pose the following question:

“Is it possible to combine the efficient setup phase of our
SP-LUT approach with the efficient online phase of our
OP-LUT approach and thereby obtain a protocol that
achieves both, an efficient setup as well as an efficient
online phase?”

We answer this question positively by providing a LUT
evaluation protocol that is the first to offer the best of both
worlds by being efficient during both the setup and online
phases, leading to a significantly improved overall efficiency.

1.1. Our Contributions

In this work, we present FLUTE, an efficient protocol for
evaluating lookup tables. While our technique is applicable
in a variety of settings, we focus on the two-party setting
(2PC) with semi-honest corruption. Our protocol employs
function-dependent preprocessing to provide a highly ef-
ficient online phase in terms of both communication and
rounds while maintaining overall communication at par
with the state-of-the-art [32]. The following are our specific
contributions:

1. A Novel Method for LUT Evaluation While all existing
protocols for lookup table evaluation focus on perceiving a
LUT as a table with δ inputs and σ outputs (cf. §3.1), we
reimagine LUTs as a generalized notion of inner products
over a boolean domain, a fresh perspective that results in
significant performance improvements in our novel protocol
FLUTE. In particular, the setup communication in our ap-
proach is independent of LUT outputs whereas the online
communication is independent of LUT inputs. Moreover,
evaluating an arbitrary δ-input LUT using FLUTE costs the
same communication (both online and total) as a δ-input
AND gate in the 2PC protocol ABY2.0 [67]. FLUTE uses
the same sharing semantics as the underlying MPC protocol,
allowing us to use our protocol in conjunction with the
underlying secret sharing scheme at no additional cost, sup-
porting mixed protocols for improved practical efficiency.
Furthermore, our protocol’s generic design allows for easy
adaption to other settings, such as a larger number of parties
and stronger security guarantees. This is in contrast to works
such as [32], where changing the underlying 2PC semi-
honest setting is not straightforward.

2. Extensive Analysis Incorporating State-of-the-Art Op-
timizations Prior works on LUT evaluation place a strong
emphasis on either protocols with low online communica-
tion but high total communication (OTTT [46], improved
upon by OP-LUT [32]), or protocols with low total com-
munication but high online communication (SP-LUT [32]).
FLUTE bridges this gap by offering a protocol that delivers
the best of both worlds: Online communication similar to
OP-LUT and total communication on par with SP-LUT.
Fig. 1 depicts an intuitive comparison of FLUTE with
previous works in terms of setup and online communication

Online Communication

Se
tu

p
C

om
m

un
ic

at
io

n

∗ OTTT [29], [46]

∗ OTTT+

◦ OP-LUT [32]
◦ OP-LUT+

•SP-LUT [32]

•SP-LUT+

⊗ FLUTE

2δ: Depends on #inputs
2σ: Depends on #outputs

Figure 1: Comparison of setup and online communication between
prior LUT protocols and FLUTE. + denotes the modification of
prior LUTs that use silent OT [17]. The specific communication
of FLUTE relative to other approaches depends on the LUT pa-
rameters: number of inputs δ and number of outputs σ. Exact costs
depending on the given parameters are consolidated in Table 2.

costs. As indicated in the figure, FLUTE accomplishes
online communication similar to OP-LUT and OTTT while
preserving total communication comparable to SP-LUT,
which is the state-of-the-art LUT protocol in terms of total
communication. Fig. 1 also depicts the relative positions
of prior approaches when their rather expensive oblivious
transfer extension schemes in the style of IKNP [6], [45],
[51] are replaced with the state-of-the-art optimizations
using silent OT extension techniques [17], [18]. This com-
parison is backed by a comprehensive theoretical evaluation
of all approaches in §4.1.

3. Open Source Implementation in Rust To support our
theoretical findings, we provide an open source implemen-
tation of FLUTE written in the Rust programming language.
Moreover, the implementation contains the Boolean secure
two-party protocol in ABY2.0 [67] as well as the semi-
honest silent OT extension approach in [17], both of which
are implemented in Rust for the first time and are of inde-
pendent interest. Our framework is open-sourced under the
MIT License at https://encrypto.de/code/FLUTE. In contrast
to various C/C++ MPC benchmarking frameworks in the
literature, we opted for Rust as our implementation language
because it provides great performance while maintaining
memory safety and allowing for easy and safe paralleliza-
tion, a.k.a. fearless concurrency. We emphasize that the high
safety guarantees provided by Rust are especially important
for creating secure protocols as the security also relies on
a correctly working implementation.

4. Benchmarks Over a Wide Range of Circuits We illus-
trate the improved efficiency and practicality of our FLUTE
protocol by evaluating a wide range of circuits includ-
ing floating point operations. The appropriate LUT circuit
representations are produced using a hardware synthesis
toolchain that combines Yosys [86], ABC [1], and Synopsis
DC [2], [3] following the approach of [32]. §4 reports and

2516



evaluates our extensive evaluation results. When compared
to the SP-LUT approach [32], FLUTE improves the online
communication by more than 100×, while keeping the
total communication overhead to less than 4% on average.
Moreover, FLUTE could achieve a 3× improvement in
online communication when compared to the prior best LUT
evaluation approaches with improved online phase, namely
OTTT [29], [46] and OP-LUT [32].

2. Preliminaries

We consider two MPC servers, S0 and S1, that carry
out the computation over a boolean ring, denoted by Z2 =
{0, 1}. As optional variant of our protocols, we also consider
a commodity-based MPC setting in which an additional
helper server SH is used to improve protocol efficiency.
The servers are connected by a bidirectional synchronous
channel (e.g. instantiated via TLS over TCP/IP). We base
our method on the two-party (2PC) protocol in ABY2.0 [67]
and a short overview of the same is presented in §2.4. The
servers, like in ABY2.0, perform a one-time key setup,
denoted by the ideal functionality Fkey, to enable non-
interactive sampling of random values. The setup generates
random keys for a pseudo-random function (PRF), which
can be instantiated using, for example, AES in counter
mode. For this, each server Si ∈ {S0, S1} selects a random
PRF key share Ki ∈ {0, 1}κ and exchanges it, and the PRF
key is defined as K = K0 ⊕ K1.

Function-dependent Preprocessing. Our protocol uses
a function-dependent preprocessing [11], [21], [22], [67],
in which the servers perform input-independent operations
ahead of time in a setup phase and then use this data
to support a fast online phase when the actual inputs are
available. This approach is especially effective for improving
the real-time performance of practical applications such as
private machine learning inference and secure data analytics
by providing higher throughput.

2.1. Threat Model

We assume that the two servers S0 and S1 are non-
colluding and our protocol is secure against a single semi-
honest (aka passive) corruption [24], [37]. Although it is
a strong assumption to assume that corrupt parties cannot
deviate from the protocol in a semi-honest security model,
the development of protocols for this model is well justified
for a number of reasons. For example, this can represent
scenarios where you may trust your counterparty not to
break the law in order to access your data, but you may
not want or cannot give them the data outright [26]. This
can also guard against system breaches caused by attackers
attempting to inject undetectable malware into the system.
These malwares will typically be passive and will attempt to
steal as much data as possible from the machine (inluding in-
coming and outgoing communication). Moreover, this model
acts as a stepping stone towards achieving stronger security
guarantees. For instance, there exist several “compilers” that

can increase the security of a semi-honest protocol with
relatively little communication and computation overhead,
e.g. [15], [19], [39], [56].

2.2. Oblivious Transfer

In our protocol, we use the oblivious transfer (OT)
primitive [6], [33], [66], [73], which allows a sender to
obliviously send a message of the receiver’s choice to the
receiver without the sender learning the choice and the
receiver learning nothing about the set of other messages.
Concretely, in a 1-out-of-N OT, the sender PS inputs N
messages x1, ..., xN , whereas the receiver PR inputs an
index 1 ≤ c ≤ N , and PR then only learns xc while PS

learns nothing.
We use

(
N
1

)
-OTm

ℓ to denote m instances of 1-out-of-N
OT over ℓ bit inputs and |

(
N
1

)
-OTm

ℓ | denotes the required
communication in bits. Moreover,

(
N
1

)
-rOTm

ℓ denotes a
variant named random OT where the messages x1, ..., xN

and the choice c are chosen at random by the underlying
functionality. For N = 2, we use rOTm

ℓ for brevity as this
case occurs frequently in this work.

2.3. Lookup Tables

A lookup table (LUT) T is viewed as a multi-input multi-
output boolean gate that maps δ ≥ 2 input bits to σ output
bits according to an arbitrary boolean function f : {0, 1}δ →
{0, 1}σ [32], [46]. In FLUTE (cf. §3.2), we use the public
encoding of LUT inputs and outputs, denoted as {E⃗u}u∈[δ]

and {y⃗w}w∈[σ], each having a bit size of 2δ . For instance,
in the example illustrated in Fig. 2, input E⃗1 corresponds to
00001111 and output y⃗2 corresponds to 00010001.

x1 x2 x3

⊕ ∧

∧

y1 y2

LUT
T

x1 x2 x3

y1 y2

x1 x2 x3 y1 y2
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1

Figure 2: Representation of a boolean circuit with δ = 3 inputs
and σ = 2 outputs as a δ-to-σ LUT T.

As discussed in [32], any boolean circuit, including
complex functionalities like the AES S-Box, can be repre-
sented as a compact graph of interconnected LUTs and other
linear gates using the above representation. Furthermore, the
complexity of evaluating a LUT is determined solely by its
size, i.e., the number of inputs and outputs, rather than by
its internal logic.

2.4. Revisiting ABY2.0

We revisit the 2PC protocol in ABY2.0 [67] for secure
evaluation of Boolean circuits. The protocol is run between

3517



two servers S0 and S1 and the operations are carried out over
a boolean ring Z2 . Given two boolean values x, y, x ∧ y
denotes the logical AND operation. x denotes the logical
NOT operation.

2.4.1. Sharing Semantics. We utilize two sharing schemes
over the boolean ring Z2 .

[·]-sharing. The [·]-sharing of a boolean value v ∈ {0, 1} is
an XOR sharing of v, i.e., S0 holds [v]0 and S1 holds [v]1
such that [v]0 ⊕ [v]1 = v.

⟨·⟩-sharing. The ⟨·⟩-sharing of v ∈ {0, 1} consists of two
bits λv and mv = v ⊕ λv, where λv is [·]-shared among
S0, S1 and mv is known to both servers. We use λi

v to denote
[λv]i for brevity.

Note that both secret sharing schemes are linear, i.e.,
given ⟨x⟩, ⟨y⟩ and constants a, b, c it holds that ⟨ax⊕ by ⊕
c⟩ = a⟨x⟩ ⊕ b⟨y⟩ ⊕ c. Servers S0, S1 compute this linear
combination ⟨z⟩ = a⟨x⟩ ⊕ b⟨y⟩ ⊕ c without communication
by setting mz = amx ⊕ bmy ⊕ c and λi

z = aλi
x ⊕ bλi

y

for i ∈ {0, 1}. This includes computing ⟨·⟩-shares for the
complement of bit x, which is denoted by x as ⟨x⟩ = ⟨1⊕x⟩.

Given a set Q, mQ denotes the AND of all the cor-
responding m bits and is given as mQ =

∧
qi∈Q mqi .

Similarly, λQ =
∧

qi∈Q λqi and the case when Q = ∅
corresponds to m∅ = λ∅ = 1.

2.4.2. AND operation. The idea behind the secure AND in
ABY2.0 stems from the observation that for an AND gate
with inputs ⟨x⟩, ⟨y⟩ and output ⟨z⟩ with z = xy it holds that

z = xy = (mx ⊕ λx)(my ⊕ λy)

= mxmy ⊕ λxmy ⊕ λymx ⊕ λxλy, (1)

where all terms except for λxλy are linear combinations as
mx,my are known to both servers. Now, a [·]-sharing of the
product λxy := λxλy that is input-independent is computed
in the setup phase using a black-box Fpre

AND(λx, λy) that
can be instantiated using techniques like Oblivious Transfer
(OT) [6], [18], [73] or Homomorphic Encryption (HE) [5],
[65], [77]. In addition, servers non-interactively generate [·]-
shares of λz .

In the online phase, the servers locally compute a [·]-
sharing of mz = z ⊕ λz following equation (1) and ex-
change their shares to reconstruct mz in a single round of
interaction. Thus, the online communication is 2 bits while
the setup communication is that of the Fpre

AND functionality
(cf. §A).

2.4.3. Inner Product operation. Given two binary vec-
tors of dimension d, x⃗ and y⃗, the inner product operation
involves computing z = x⃗ ⊙ y⃗ =

⊕d
i=1 xiyi. ABY2.0

extended the 2-input AND protocol to inner product compu-
tation with online communication independent of the vector
dimension. At a high level, the idea is to execute the setup
phase in accordance with the AND operation for each term

of the form xiyi, but combine the communication for all the
d terms in the online phase and communicate the combined
value in a single shot. For more concrete details of the
scheme, see [67].

2.4.4. Multi-Fan-In AND gates. In ABY2.0, the authors
note that the protocol for a 2-input AND gate can be general-
ized to a k-input AND for arbitrary k ≥ 2, while maintaining
a fixed online communication. The crucial observation is
that for ⟨·⟩-sharing of inputs I = {x1, ..., xk} it holds that

z =

k∧
i=1

xi =

k∧
i=1

(mxi ⊕ λxi
) =

⊕
Q∈2I

(
mQ ∧ λI\Q

)
. (2)

Unlike a 2-input AND gate, the servers need to compute
[·]-shares corresponding to λQ for all Q ∈ 2I and they
achieve it using an instance of a Fpre

ANDM functionality. This
makes the complexity of the setup phase grow exponential
with the size of the input set I. However, the online phase
remains similar to that of a 2-input AND gate described in
§2.4.2 and can be computed in a single round using 2 bits
of communication.

2.5. Notations

Table 1 provides a concise description of the primary
notations used in our paper.

TABLE 1: Notations used throughout this paper.

Notation Description

MPC Multi-party Computation; 2PC - two parties
S0, S1 2PC servers (non-colluding and semi-honest)

SH Helper server (commodity-based MPC setting)
OT Oblivious Transfer(N

1

)
-OTm

ℓ m instances of 1-out-of-N OT over ℓ bits(N
1

)
-rOTm

ℓ m instances of 1-out-of-N random OT over ℓ bits
|·| Cost function (communication in bits)

δ-to-σ T Lookup Table (LUT) with δ inputs and σ outputs
v Complement of bit v ∈ {0, 1}; v = 1⊕ v
x⃗ Vector of dimension d; x⃗ = (x⃗1, . . . , x⃗d)

[v]-sharing XOR sharing; Si : [v]i s.t. [v]0 ⊕ [v]1 = v
⟨v⟩-sharing Si : (mv , λi

v) s.t. v = mv ⊕ λ0
v ⊕ λ1

v

2I Powerset of set I; x ∈ 2I ⇔ x ⊆ I

3. Evaluating LUTs

This section describes our protocol for evaluating LUTs
with a highly efficient online phase. We start by taking a
quick look at the existing methods for securely evaluating
a δ-to-σ LUT.

3.1. Overview of Existing Approaches [32], [46]

In the context of 2PC, three prominent LUT evalua-
tion procedures are available: i) One-Time Truth Tables
(OTTT) [46], ii) Online-LUT (OP-LUT) [32], and iii) Setup-
LUT (SP-LUT) [32].

4518



3.1.1. One-Time Truth Tables. The idea behind the OTTT
approach [46] is to generate an additive sharing of a LUT,
rotated by a random additively-shared offset θ, among the
two servers S0 and S1. Formally, given a LUT T, the setup
phase comprises of generating two shares T0 and T1 such
that for each entry i, it holds that T[i] = T0[i⊕ θ]⊕T1[i⊕
θ]. Moreover, S0 holds (T0, r) while S1 holds (T1, s) such
that θ = r ⊕ s. Given a secret input x = x0 ⊕ x1, in the
online phase, the servers can generate an additive sharing
of T[x] by reconstructing x ⊕ θ and accessing that entry
in their respective shares of T. Thus, the OTTT approach
enables a fast online phase with 2δ bits of communication
in a single round. The setup can be realized as in [29] by
evaluating a Boolean circuit representing the table once for
every possible input.

Lemma 1. (Communication) To evaluate a δ-to-σ LUT in
the 2PC setting, the OTTT approach [29], [46] has commu-
nication of at most (|MT|+4)·(δ−1)·2δσ bits1 in the setup
phase and 2δ bits in the online phase. Here, |MT| denotes
the cost for generating a boolean multiplication triple.

3.1.2. Online-LUT. The OP-LUT approach [32] tries to
reduce the cost of the OTTT setup phase by leveraging
oblivious transfer (OT) instances while maintaining the same
online phase as OTTT. In concrete terms, S0 randomly
samples its share of the LUT T0 and then computes the other
share T1 for each potential offset value s ∈ {0, 1}δ that S1

may choose. The servers then engage in a 1-out-of-2δ OT
with S0 being the sender offering all possible shares T1 as
the inputs, and S1 with its choice string s being the receiver.
Each possible T1 share is of size 2δσ bits (2δ rows, σ outputs
each). The online phase of the protocol is the same as in
the OTTT approach.

The OP-LUT approach, as mentioned in [32], can
be considered as a natural generalization of the original
GMW construction for evaluating 2-input AND gates using
1-out-of-4 OT [37, §7.3.3]. Also, [32] provided an optimiza-
tion based on the observation that the receiver’s choice string
s is random which allows to have the OT protocol output
it instead of taking it as an input. This allows to save a
communication of δ bits in the OT protocol. We refer to [32]
for more details.

Lemma 2. (Communication) To evaluate a δ-to-σ LUT in
the 2PC setting, the OP-LUT approach [32] has communi-
cation of |

(
2δ

1

)
-OT1

2δσ| − δ bits in the setup phase and 2δ
bits in the online phase.

3.1.3. Setup-LUT. This approach, SP-LUT [32], achieves
better total communication than OTTT and OP-LUT at the
expense of higher online communication. At a high level, the
idea is to transfer all potential LUT outcomes in the online
phase itself via a precomputed 1-out-of-N OT instance. In
more detail, S0 computes the LUT output for each possible
set of S1’s input shares (a total of δ inputs resulting in 2δ

1. The number of AND gates in the Boolean circuit representation is
bounded by δ − 1.

possible outputs) and prepares the share for S1 for each of
these possibilities. The servers then engage in a 1-out-of-2δ
OT instance, with S1 as the receiver and, obtain its share
for the LUT output.

The above approach allows the OTs to be precom-
puted [9], resulting in online communication of the 2δ

potential outputs for each of the σ LUT outputs. While this
technique requires two online rounds (cf. §B), the amortized
round complexity can be reduced to one for several use
cases by swapping server roles in subsequent LUT evalua-
tions [32].

Lemma 3. (Communication) To evaluate a δ-to-σ LUT in
the 2PC setting, the SP-LUT approach [32] has communi-
cation of |

(
2δ

1

)
-rOT1

σ| bits in the setup phase and δ + 2δσ
bits in the online phase.

Summary. [32] provides a comparison of the above three
approaches with respect to a δ-to-σ LUT evaluation. They
showed that OP-LUT improves OTTT setup communication
for LUTs with small inputs (δ < 10), whereas the SP-
LUT approach outperforms the others in terms of overall
communication. In terms of OTTT setup costs, [32] assumed
a communication of 138 bits per AND gate due to its effi-
cient multiplication triple generation (for more details, see
[32, §III-E]). Recent advances in silent OT extension tech-
niques [17], [18], [25], on the other hand, have decreased the
cost of a boolean multiplication triple to less than 1 bit as
described in §B. Thus, the OP-LUT approach outperforms
the OTTT method only for δ < 4 at this moment.

Looking ahead, we will compare with the best previous
approach as a baseline, namely OTTT for the online cost,
and SP-LUT for the total communication. Furthermore, we
will use silent OT extension [17], [18] to improve com-
munication during the setup phase. For a fair comparison,
we instantiate the setup phases of the aforementioned ap-
proaches with silent OT extension as well. In particular,
during the setup phase, we generate random 1-out-of-2
OTs and utilize them to construct boolean multiplication
triples (MTs) as well as the 1-out-of-N OTs required by
the preceding approaches. §B provides additional details.

3.2. The FLUTE Protocol

This section describes FLUTE, our approach for LUT
evaluation with a fast online phase. We assume, as men-
tioned in §2.3, that the boolean circuit to be evaluated is
represented as a compact graph of interconnected LUTs.
The LUT protocol consists of creating ⟨·⟩-shares for the
input wires (cf. §2.4.1), evaluating the LUT gates using
our FLUTE protocol along with local evaluation of linear
gates such as XOR and NOT, and lastly retrieving the circuit
output via output reconstruction. We concentrate on the LUT
gate evaluation in this section since the other phases, as
stated in §2.4, follow ABY2.0.

Sharing Semantics. The secret share for a δ-to-σ LUT T
with inputs (x1, . . . , xδ) is defined as the set of ⟨·⟩-shares
corresponding to all its inputs, i.e., ⟨T⟩ = {⟨xi⟩}i∈[δ].

5519



FLUTE Overview. Without loss of generality, consider a
δ-to-σ LUT T with an example illustration for δ = 3
and σ = 1 given in Fig. 3. At a high level, the goal is
to convert the LUT description into a boolean expression
made up of basic logical gates (AND, XOR). The resulting
expression can then be evaluated using the ABY2.0 protocol
summarized in §2.4. In FLUTE, the conversion is carried out
in three steps, and the details are given below.

x1 x2 x3 y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

(a) LUT T with δ = 3

LUT output z
=

(x1 ∧ x2 ∧ x3)

∨(x1 ∧ x2 ∧ x3)

∨(x1 ∧ x2 ∧ x3)

(b) LUT Output Description

(x1 ∧ x2 ∧ x3)

⊕(x1 ∧ x2 ∧ x3)

⊕(x1 ∧ x2 ∧ x3)

(c) OR to XOR Conversion

y = L⃗1 ⊙ L⃗2 ⊙ L⃗3

=x1

x1

x1

 ·

x2

x2

x2

 ·

x3

x3

x3


(d) Output Computation

Figure 3: Example for transforming a δ = 3-input single-output
LUT to an instance of Multi-Fan-In Inner Product (cf. §3.2.1).

Step I - LUT Output Description (cf. Fig. 3b): Prior
works, as mentioned in §3.1, securely compute LUTs
by enumerating through all potential inputs (OTTT and
OP-LUT) or all possible outputs (SP-LUT). After securely
computing this information, the servers use their actual
input shares to extract the right LUT output. We deviate
from this approach and rather focus on deriving the LUT
output from the inputs by first identifying only the relevant
rows of the LUT that evaluate to 1 and then using a full
disjunctive normal form representation to express the output
as a function of the inputs.

Definition 1. (DNF Representation [30]) A boolean term
f(x1, ..., xµ) is said to be in full disjunctive normal
form (DNF), if its a join of distinct terms of the form
xϵ1
1 ∧ . . . ∧ x

ϵµ
µ . By definition, xϵ equals x if ϵ = 1, and x

if ϵ = 0. In other words, f(x1, ..., xµ) can be expressed as∨k
j=1

∧µ
i=1 L⃗i

j , for some k, where for all i, j, L⃗i
j ∈ {xi, xi}.

Each L⃗i can be seen of as a k-dimensional boolean vector.

To derive a DNF representation from the description of
the LUT T, we consider only those rows of T whose output
is 1. Let there be α such rows. Then, for each such row
j ∈ [α], we build a term

∧δ
i=1 L⃗i

j that only evaluates to 1

given the row’s input assignment. In detail, we set L⃗i
j = xi

if xi = 1 in the assignment and set L⃗i
j = xi if xi = 0, for

all i ∈ [δ]. The output z is then represented as the OR of
all such terms, i.e., z =

∨α
j=1

∧δ
i=1 L⃗i

j .
In our example (Fig. 3a), the output is 1 only for the

first, fourth and sixth rows of T. The inputs for the first row
are (x1, x2, x3) = (0, 0, 0), hence the corresponding term is
x1 ∧ x2 ∧ x3. The remaining two terms are defined in the
same way, and the output is expressed as the OR of these
terms, as shown in Fig. 3b.

Given our goal of an efficient online phase, evaluating
the DNF expression obtained above with a 2PC protocol
such as ABY2.0 does not suffice. This is due to the DNF
expression involving the evaluation of αδ − 1 non-linear
operations (AND and OR combined) and a naive evaluation
will require at least log(αδ) online rounds. This could be
reduced to logn(αδ) using n-input AND gates, but at the
expense of exponential communication in the setup phase.

Step II - OR to XOR Transformation (cf. Fig. 3c): In
this step, we remove the OR operations required in the
aforementioned DNF expression by making the following
important observation: Given an assignment for the inputs
(x1, . . . , xδ), two different terms of the form

∧δ
i=1 L⃗i

j and∧δ
i=1 L⃗i

j′ can never both evaluate to 1 in the DNF expression
obtained above. This is due to the fact that in a DNF (cf.
Definition 1), all terms of the form

∧δ
i=1 L⃗i

j are distinct,
hence there will be at least one literal L⃗i that differs for
rows j and j′. Thus, in our case, it holds that

α∨
j=1

δ∧
i=1

L⃗i
j ≡

α⊕
j=1

δ∧
i=1

L⃗i
j . (3)

Fig. 3c captures this transformation with respect to our
example.

Step III - Output Computation (cf. Fig. 3d): This step
efficiently computes the LUT output given in equation (3).
For δ = 2, the computation

⊕α
j=1

∧δ
i=1 L⃗i

j =
⊕α

j=1 L⃗1
j∧L⃗2

j
is equivalent to an inner product computation over a boolean
ring. On the other hand, when α = 1, the same expression,∧δ

i=1 L⃗i, simplifies to an instance of the multi-fan-in AND
gate described in §2.4.4. Furthermore, utilizing the ABY2.0
protocol (cf. §2.4), evaluating an inner product as well
as a multi-fan-in AND gate takes only a single round of
interaction in the online phase and a communication of only
2 bits. So we combine these two primitives from ABY2.0
to get a protocol that evaluates expressions of the form⊕

j

∧
i x⃗

i
j , which we call Multi-Fan-In Inner Product gates.

Let L⃗i = (L⃗i
1, ..., L⃗i

α) for 1 ≤ i ≤ δ. Then, using
equation (3), the LUT output z can be written as

z =

α⊕
j=1

δ∧
i=1

L⃗i
j =

δ⊙
i=1

L⃗i, (4)

where
⊙

denotes a multi-fan-in inner product operation and
will be detailed in §3.2.1.

Fig. 4 provides a roadmap of our protocol design. One
advantage of our approach is that it is not limited to the 2PC
setting discussed in this work, but may be applied to any

6520



AND Multi-Fan-In
AND LUT

Inner Product Multi-Fan-In
Inner Product

ABY2.0

ABY2.0

FLUTE

FLUTE FLUTE

x ∧ y ∧
i x

i

⊕
j(x⃗j ∧ y⃗j)

⊕
j

∧
i x⃗

i
j

∨
j

∧
i L⃗i

j

Figure 4: Roadmap of FLUTE protocol design starting with the
known primitives in ABY2.0 [67]. Each node’s functionality is
provided alongside it.

MPC setting. However, as will be discussed later in §3.2.2,
the specific costs incurred depend on the instantiations of
these primitives in the respective setting. The details for re-
alising the multi-fan-in inner product protocol using ABY2.0
(cf. §2.4) are provided next.

3.2.1. Multi-Fan-In Inner Product. Given a set of β input
vectors I = {x⃗1, . . . , x⃗β} of dimension d each, the goal is

to compute z = x⃗1⊙· · ·⊙ x⃗β =
d⊕

j=1

(
β∧

i=1

x⃗i
j). Let Ij denote

the set of values at the jth position in every vector x⃗i ∈ I,
i.e., Ij = {x⃗1

j , . . . , x⃗
β
j }. Then, following equation (2), we

get

z =

d⊕
j=1

(
β∧

i=1

x⃗i
j

)
=

d⊕
j=1

(
β∧

i=1

(
mx⃗i

j
⊕ λx⃗i

j

))

=

d⊕
j=1

 ⊕
Qj∈2

Ij

(
mQj ∧ λIj\Qj

) . (5)

Similar to the case with a multi-input AND gate sum-
marized in §2.4.4, the servers need to compute [·]-shares
corresponding to λQj

for all Qj ∈ 2Ij and j ∈ [d].
Except for Qj being a nullset or singleton, all cases in-
volve communication across servers, which results in one
instance of the Fpre

ANDM functionality being invoked for each
j ∈ [d]. However, the online communication can be made
independent of both the number of inputs β and the vector
dimension d, by combining the locally computed values
in a manner similar to the inner product for fan-in 2 of
ABY2.0 [67] as summarized in §2.4.3. This results in an
online communication of just 2 bits and the formal protocol
ΠIP is given Fig. 5.

The correctness of the ΠIP protocol is straightforward
and follows from equation (5). In terms of setup phase
communication, for a set I with β elements, the Fpre

ANDM
functionality can be realised using 2β − β − 1 instances
of Fpre

AND, as detailed in §A. Furthermore, we use Beaver’s
multiplication [8] method to instantiate Fpre

AND, which results
in 4 bit communication among the servers given a boolean

multiplication triple. §D provides a formal security proof
for ΠIP.

Input: ⟨·⟩-sharing of x⃗i for i ∈ [β] and |x⃗i| = d.

Output: ⟨·⟩-sharing of z = x⃗1 ⊙ · · · ⊙ x⃗β =
d⊕

j=1
(

β∧
i=1

x⃗i
j).

Setup Phase:

1. Server Si, for i ∈ {0, 1}, samples random λi
z ∈ {0, 1}.

2. Let Ij = {x⃗1
j , . . . , x⃗

β
j } for j ∈ [d]. Then:

Execute Fpre
ANDM to generate [λQj

] for all Qj ∈ 2Ij .

Online Phase: Let Ij = {x⃗1
j , . . . , x⃗

β
j } for j ∈ [d].

1. Server Si, for i ∈ {0, 1}, locally computes

[v]i =

d⊕
j=1


⊕

Qj∈2
Ij ,

Qj ̸=Ij

(
mQj

∧ λi
Ij\Qj

)
⊕ λi

z .

2. Servers mutually exchange [v] to obtain v = [v]0 ⊕ [v]1.

3. Locally compute mz = v ⊕

(
d⊕

j=1
mIj

)
.

Protocol ΠIP(⟨x⃗1⟩, . . . , ⟨x⃗β⟩)

Figure 5: Multi-Fan-In Inner Product.

Lemma 4. (Communication) Protocol ΠIP (Fig. 5) incurs a
communication of (|MT|+4)·d·(2β−β−1) bits in the setup
phase and 2 bits in the online phase to compute the inner
product of a set of β d-dimensional vectors. Here, |MT| de-
notes the cost for generating a boolean multiplication triple.

3.2.2. LUT Evaluation Using FLUTE. Consider a δ-to-σ
LUT T with inputs (x1, . . . , xδ) and y⃗w ∈ {0, 1}2δ repre-
senting the encoding of the wth output, say z⃗w, for w ∈ [σ].
This section shows how to securely evaluate the LUT using
the multi-fan-in inner product protocol discussed above (cf.
ΠIP in Fig. 5). Our method comprises of two steps, Input
Preparation and Protocol Execution, as detailed next.

Step A - Input Preparation: This step prepares the input
vectors for the inner product protocol using the LUT’s
inputs. Recall from the LUT output description discussed
in §3.2 that the LUT output is solely dependent on rows
where the corresponding bit in the output encoding is 1. In
detail, for each LUT output z⃗w, we must filter out the row
k for which the respective encoding y⃗w

k = 1. This can be
easily achieved by incorporating the encoding y⃗w as another
input to the inner product protocol ΠIP and considering all
the rows of the LUT T. As a result, all the irrelevant rows of
the LUT will be cancelled out as the corresponding entries
in y⃗w are zeroes. Thus, following equation (4), the output
z⃗w can be formally written as

z⃗w =

⊕
j∈2δ,
y⃗w
j =1

δ∧
i=1

L⃗i
j

 = L⃗1 ⊙ . . .⊙ L⃗δ ⊙ y⃗w. (6)

7521



Since the vector y⃗w is public, the aforementioned modi-
fication incurs no communication overhead over the ΠIP

protocol with δ inputs, as detailed in the following step.
Furthermore, since there is a specific pattern across every
input column in a LUT, the modification simplifies the
preparation of the input vectors L⃗i for i ∈ [δ]. The first
column in T corresponding to the input x1, for example, will
have the first 2δ−1 entries set to zero, followed by 2δ−1 ones.
As a result, the associated vector L⃗1 will be filled with x1

in the first half and x1 in the rest. In general, the 2δ entries
in the ith vector L⃗i will alternately be filled with blocks of
xi and xi of size 2δ−i, respectively. To formalize this, we
use the LUT’s input encoding information discussed in §2.3.
The ith input vector L⃗i is defined as

L⃗i
j = xi ⊕ (1⊕ E⃗ i

j), ∀i ∈ [δ],∀j ∈ [2δ] (7)

where E⃗ i denotes the input encoding vector for the ith input.
Since the vector E⃗ i is public and our secret sharing scheme
is linear, the computation of L⃗i requires no communication
among the servers.

Step B - Protocol Execution: Since each of the L⃗i vectors
has size 2δ , evaluating ΠIP over these vectors naively will
result in a factor of 2δ in setup communication. We use the
structure of the L⃗i vectors prepared in the preceding step
to get rid of this factor. In particular, each L⃗i is made up
of only the input xi and its complement xi. Furthermore,
as discussed in §2.4.1, ⟨xi⟩ is obtained by flipping only the
masked value mxi

and leaving the mask λxi
unchanged. In

other words, for the case of LUT, we have λL⃗i
j

= λxi
for

all j ∈ [2δ] and i ∈ [δ]. Thus, the preprocessing needs to be
done only once for the set I = {x1, . . . , xδ}, removing the
factor 2δ in setup communication discussed above. Using
this observation, we incorporate the encoding vector y⃗w to
the computation with no additional communication:

z⃗w = L⃗1 ⊙ . . .⊙ L⃗δ ⊙ y⃗w =

2δ⊕
j=1

((
δ∧

i=1

L⃗i
j

)
∧ y⃗w

j

)

=

2δ⊕
j=1

((
δ∧

i=1

(
mL⃗i

j
⊕ λL⃗i

j

))
∧ y⃗w

j

)

=

2δ⊕
j=1

 ⊕
Qj∈2

Ij

(
mQj ∧ λIj\Qj

∧ y⃗w
j

)
=
⊕
Q∈2I

 2δ⊕
j=1

(
mQj ∧ y⃗w

j

) ∧ λI\Q


=
⊕
Q∈2I

(
(m⃗Q ⊙ y⃗w) ∧ λI\Q

)
, (8)

where Qj for some Q ∈ I denotes replacing each xi in
Q by L⃗i

j , and m⃗Q denotes a vector of dimension 2δ with
elements mQj for every Qj ∈ 2Ij .

The computation of z⃗w in equation (8) resembles the
ΠIP protocol discussed in §3.2.1 and the formal protocol
ΠLUT is given in Fig. 6.

Input: LUT T for a function f : {0, 1}δ → {0, 1}σ , with inputs ⟨xk⟩
and input encoding E⃗k ∈ {0, 1}2δ , for k ∈ [δ], and output encoding
y⃗w ∈ {0, 1}2δ , for w ∈ [σ].
Output: ⟨⃗z⟩, where z⃗ = (⃗z1, ..., z⃗σ) = T[x1, ..., xδ].

Setup Phase:

1. Server Si, for i ∈ {0, 1} samples random λi
z⃗
∈ {0, 1}σ .

2. Let I = {x1, . . . , xδ}. Then:

– Execute Fpre
ANDM to generate [λQ] for all Q ∈ 2I .

Online Phase:
1. Input Preparation:

– Locally set L⃗i
j = xi ⊕ (1⊕ E⃗i

j), ∀i ∈ [δ], ∀j ∈ [2δ].

– Locally set Ij = {L⃗1
j , . . . , L⃗δ

j}, ∀j ∈ [2δ].

2. Server Si, for i ∈ {0, 1} and w ∈ [σ], locally computes

[v⃗w]i =
⊕

Q∈2I ,Q≠I

(
(m⃗Q ⊙ y⃗w) ∧ λI\Q

)
⊕ λi

z⃗w
.

3. Servers mutually exchange [v⃗] to obtain v⃗ = [v⃗]0 ⊕ [v⃗]1.

4. Locally compute mz⃗w = v⃗w ⊕ (m⃗I ⊙ y⃗w).

Protocol ΠLUT((⟨x1⟩, ..., ⟨xδ⟩),T)

Figure 6: FLUTE Lookup Table Evaluation

The correctness of the ΠLUT protocol follows from
equation (8) and the security is similar to the ΠIP protocol
in Fig. 5. One key difference between ΠLUT and ΠIP is
that in ΠLUT, multiple output wires use the same set of
preprocessing materials generated using Fpre

ANDM. Despite
this, privacy is still maintained as each message [v⃗w]i ex-
changed in the online phase contains a randomly sampled
mask λi

z⃗w
, not known to either of the servers. The formal

details of instantiating Fpre
ANDM using Beaver’s multiplication

method [8] are given in §A and the security details are
elaborated in §D.

Concerning communication, as previously mentioned in
the protocol execution step, preprocessing is only required
once for a set of δ elements, necessitating a single call to
Fpre

ANDM, which can be implemented using 2δ−δ−1 calls to
Fpre

AND (cf. §A). The online phase requires a communication
of 2 bits per output wire similar to ABY2.0 [67].

Lemma 5. (Communication) To evaluate a δ-to-σ LUT in
the 2PC setting, FLUTE (ΠLUT in Fig. 6) has communica-
tion of (|MT|+4) · (2δ − δ− 1) bits in the setup phase and
2σ bits in the online phase. Here, |MT| denotes the cost for
generating a boolean multiplication triple.

Besides the 2PC setting, we also explore the potential
benefits that an untrusted helper server SH can provide
to the setup phase. At a high level, SH will be given the
λxi

-shares that correspond to all the inputs ⟨xi⟩ for i ∈ [δ].
This allows SH to perform the computation associated
with Fpre

ANDM locally. SH will then generate a [·]-share of
the values it computed, resulting in communication of
(2δ − δ − 1) bits in the setup phase. Details are deferred to
§C due to space constraints.

8522



4. Evaluation

In this section, we compare and evaluate our FLUTE
protocol against the existing LUT evaluation approaches
OTTT [29], [46], OP-LUT [32], and SP-LUT [32], which
were summarized in §3.1. While §4.1 deals with an ana-
lytical assessment of a single LUT instance’s communica-
tion, §4.2 includes both theoretical and practical evaluation
results for a range of LUT circuits. Additional benchmark
results are given in §E. While each functionality might theo-
retically be represented by a single large LUT, as discussed
in [32], this would significantly increase communication.
As a result, in this work, we consider δ-to-σ LUTs with
up to δ = 8 inputs and σ = 8 outputs in accordance
with [32]. Furthermore, for the evaluation, we assume that
the communication for one instance of a random 1-out-of-2
OT, rOT1

ℓ , is ≈ 0.118 bits, based on our implementation
of silent OT extension in [17] for a batch size of 107 with
128-bit security.

4.1. Analytical Communication Costs

This section focuses on the setup and online communi-
cation of a δ-to-σ LUT for varying choices of δ and σ. For
a fair comparison, communication for OT instances is pro-
vided utilizing Beaver’s OT precomputation technique [9],
which generates a random OT first, followed by a standard
conversion to obtain OT over the actual inputs (cf. §B.2).
Table 2 provides a summary of both the setup and on-
line communication of the different approaches. The factor
(|MT|+ 4) in the setup communication of both OTTT and
FLUTE stems from the OT-based instantiation of their setup
phase, as discussed in §A. However, their setup phase might
be realized using alternative techniques such as homomor-
phic encryption [67], providing greater flexibility than the
OP-LUT and SP-LUT approaches, which are designed to
work using only OT instances. In contrast to OTTT and OP-
LUT, the online communication of FLUTE depends solely
on the number of LUT outputs σ rather than the inputs δ.
As will be seen in §4.2 for the case of real circuits, often
σ ≤ δ, which leads to improved online communication.
Fig. 14 in §E depicts the protocols’ online communication
for different LUT sizes.

Since [32] evaluated OTTT, OP-LUT, and SP-LUT ap-
proaches using their optimized 1-out-of-N OT extension
protocol, the impact of the recent silent OT optimiza-
tions [17] on these approaches is unclear. For example, when
using the optimized protocols from [32], one instance of
1-out-of-2 OT has a communication of 138 bits, whereas
silent OT reduces it to only 4.2 bits. As a result, we analyze
these protocols by substituting silent OT for OT instances
in [32], and the results are shown in Table 2 with a super-
script “+”. Note that the online phase of these approaches
remains unchanged. While [32] showed that OP-LUT out-
performs OTTT in terms of setup communication for δ ≤ 8,
this argument does not hold true when comparing the silent
OT versions. Concretely, for δ ≥ 4, OTTT+ outperforms
OP-LUT+ with respect to setup communication, while its

TABLE 2: Setup and online communication of existing LUT
evaluation approaches [29], [32], [46], and FLUTE for LUTs with
δ inputs and σ outputs. We use silent OT cost as |rOT1

ℓ | ≈
0.118 bits [17].

Protocol Online

OTTT [29], [46] ≤ (|MT|+ 4)(δ − 1)2δσ 2δ

OP-LUT [32] |
(2δ
1

)
-rOT1

2δσ
|+ 22δσ 2δ

SP-LUT [32] |
(2δ
1

)
-rOT1

σ | 2δσ + δ

FLUTE (this work) (|MT|+ 4)(2δ − δ − 1) 2σ

OTTT [29], [46] ≤ 138(δ − 1)2δσ 2δ
OP-LUT [32] ≥ 190 + 22δσ 2δ
SP-LUT [32] ≥ 190 2δσ + δ

OTTT+ ≤ 4.236(δ − 1)2δσ 2δ
OP-LUT+ 0.118δ + 22δσ 2δ
SP-LUT+ 0.118δ 2δσ + δ
FLUTE (this work) 4.236(2δ − δ − 1) 2σ

OTTTH 2δσ 2δ
FLUTEH (this work) 2δ − δ − 1 2σ

Setup

Generic cost (2PC)

Concrete cost in bits as in [32] (2PC)

Concrete cost in bits using silent OT [17] (2PC)

Concrete cost in bits using a helper server SH

cost is at most 6% worse for smaller choices of δ. We infer
that efficient OT protocols will render OP-LUT obsolete.

In terms of total communication, SP-LUT+ is a close
competitor to FLUTE. Since a precise comparison of the
total communication of these two approaches is difficult due
to the reliance on the choice of δ and σ, we plot the total
communication versus δ for various σ in Fig. 7. We infer
that for larger values of σ, FLUTE will start to outperform
SP-LUT+ in terms of total communication. This is because
the expensive component of FLUTE’s total communication
only depends on δ, whereas SP-LUT+ depends on both δ
and σ.

Table 3 summarizes the improvement of FLUTE over
SP-LUT+ with respect to total communication. We observe
that for σ ≥ 5, FLUTE outperforms SP-LUT+, while for
smaller values of σ, it does so only for low values of
δ. A similar comparison of improvements in the online
communication is provided in Table 7 in §E.

TABLE 3: Improvement factor of total communication of FLUTE
over SP-LUT+ when evaluating one δ-input σ-output LUT. High-
lighted cells correspond to the configurations where FLUTE out-
performs SP-LUT+.

δ
σ

1 2 3 4 5 6 7 8

2 1.00 1.24 1.39 1.49 1.56 1.62 1.66 1.69
3 0.60 0.92 1.19 1.42 1.61 1.77 1.92 2.04
4 0.42 0.72 1.00 1.25 1.49 1.71 1.92 2.12
5 0.34 0.61 0.87 1.13 1.38 1.62 1.85 2.07
6 0.29 0.55 0.80 1.05 1.30 1.54 1.78 2.01
7 0.27 0.51 0.76 1.01 1.25 1.49 1.73 1.97
8 0.25 0.50 0.74 0.98 1.22 1.46 1.70 1.94

9523



2 3 4 5 6 7 8
 (inputs)

101

102

103

104

105

Co
m

m
un

ica
tio

n 
[b

its
]

=1 outputs
OP-LUT
OTTT +

SP-LUT
SP-LUT +

FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

104

105

Co
m

m
un

ica
tio

n 
[b

its
]

=2 outputs
OP-LUT
OTTT +

SP-LUT
SP-LUT +

FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

104

105

Co
m

m
un

ica
tio

n 
[b

its
]

=4 outputs
OP-LUT
OTTT +

SP-LUT
SP-LUT +

FLUTE

2 3 4 5 6 7 8
 (inputs)

102

103

104

105

Co
m

m
un

ica
tio

n 
[b

its
]

=8 outputs
OP-LUT
OTTT +

SP-LUT
SP-LUT +

FLUTE

Figure 7: Total communication for different LUT sizes with 2 ≤
δ ≤ 8 inputs and σ ∈ {1, 2, 4, 8} outputs.

In terms of total communication, we conclude that
FLUTE not only outperforms previous LUT protocols with
improved online phase, but also outperforms SP-LUT+, the
state-of-the-art in total communication, for different LUT
sizes.

Optimizations using Helper Server. We close our analyt-
ical evaluation by reviewing the improvement that can be
achieved by using an untrusted helper in the setup phase
as described in §C. This setting, for the case of OTTT and
FLUTE, is shown in Table 2 with a superscript “H”.

Fig. 8 provides a comparison of OTTT+, OTTTH,
FLUTE and FLUTEH in terms of total communication. We
observe that a helper server yields significant improvements
in communication for both OTTT and FLUTE. Moreover,
FLUTEH has better total communication than OTTTH, even
by a large margin except for high δ and low σ.

4.2. Experimental Evaluation for Real Circuits

In this section, we evaluate the performance of FLUTE
on LUT representations for basic and complex operations.
In particular, we use the following circuits: addition (ripple-
carry Add-RC [47] and Ladner-Fischer Add-LF [55]), mul-
tiplication (ripple-carry Mul-RC [47] and Ladner-Fischer
Mul-LF [81]), tree-based greater-than GT-Tree [36], the
AES S-Box [16], and floating point operations [31]. The
circuits are generated using a hardware synthesis toolchain
similar to the one used in [32]. We use Yosys [86] as
an open-source framework for front-end processing of our
Verilog HDL to map them into a network of low-level logic
operations in an intermediate format. Then, the ABC tool [1]
is used to structure this network into a Directed Acyclic

2 3 4 5 6 7 8
 (inputs)

101

102

103

104

Co
m

m
un

ica
tio

n 
[b

its
]

=1 outputs
OTTT +

OTTT
FLUTE
FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

104

Co
m

m
un

ica
tio

n 
[b

its
]

=2 outputs
OTTT +

OTTT
FLUTE
FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

104

Co
m

m
un

ica
tio

n 
[b

its
]

=4 outputs
OTTT +

OTTT
FLUTE
FLUTE

2 3 4 5 6 7 8
 (inputs)

102

103

104

Co
m

m
un

ica
tio

n 
[b

its
]

=8 outputs
OTTT +

OTTT
FLUTE
FLUTE

Figure 8: Total communication for different LUT sizes with 2 ≤
δ ≤ 8 inputs and σ ∈ {1, 2, 4, 8} outputs using a helper server
SH (cf. §C).

Graph (DAG) and maps it into LUTs in a depth-optimized
fashion. To generate LUTs of more complex functionalities,
such as trigonometric and floating point functions, we use
the hardware Intellectual Property (IP) libraries in the Syn-
opsys Design Compiler (DC) [2], [3].

Table 4 shows the distribution of LUT sizes with respect
to the number of inputs δ for the circuits that we consider in
this work. Following [32], we restrict the LUT sizes up to 8
(1 ≤ δ, σ ≤ 8) in the hardware synthesis tool. Moreover, we
apply the post-processing optimization from [32] that com-
bines smaller LUTs that are compatible with each other into
larger LUTs. By doing so, we are able to reduce the costs
that would otherwise be incurred when recomputing the
same set of values. Notably, the Add-RC circuit comprises
17 LUTs, among which 13 possess no less than 7 inputs. In
contrast, the FP-DIV circuit involves 964 LUTs, with 831
containing at least 7 inputs. The AES S-box, in comparison,
employs a 8-to-8 LUT as its primary design element.

Fig. 9 depicts an empirical evaluation of FLUTE as
well as the OTTT and SP-LUT approaches with silent OT
optimization. The online and total communication of these
approaches are computed by parsing the LUT architecture
from the LUT description files. Furthermore, we include the
total communication for the constant round solution of Yao’s
garbled circuits protocol (Yao) [88], which incorporates the
recent three-halves garbling optimization of [79]. Regarding
the online communication, we find that FLUTE not only
outperforms SP-LUT+ by a factor of over 99× in all cases,
but also offers significant advantages over OTTT+, which
it outperforms by a factor of 1.88× up to 4.32×. The AES
S-box is the only exception, as it is implemented by a
single LUT with 8 inputs and outputs, producing the same

10524



Add-RC Add-LF GT-Tree AES S-box

10 2

10 1

100

Co
m

m
un

ica
tio

n 
[K

iB
]

Online communication, small circuits
(Yao)
OTTT +

SP-LUT +

FLUTE

Mul-LF FP-Add FP-Mul FP-Div FP-Sqr FP-Cos

100

101

Co
m

m
un

ica
tio

n 
[K

iB
]

Online communication, large circuits
(Yao)
OTTT +

SP-LUT +

FLUTE

Add-RC Add-LF GT-Tree AES S-box
10 1

100

101

Co
m

m
un

ica
tio

n 
[K

iB
]

Total communication, small circuits
Yao
OTTT +

SP-LUT +

FLUTE

Mul-LF FP-Add FP-Mul FP-Div FP-Sqr FP-Cos

102

103

Co
m

m
un

ica
tio

n 
[K

iB
]

Total communication, large circuits
Yao
OTTT +

SP-LUT +

FLUTE

Figure 9: Online and total communication using Yao’s garbled circuits [88] using three-halves garbling [79] (Yao), OTTT [29], [46] with
silent OT [17] (OTTT+), SP-LUT [32] with silent OT [17] (SP-LUT+) and FLUTE. We omit Yao in the online communication for a
fair comparison to secret-shared protocols, where the inputs are assumed to be secret-shared.

TABLE 4: Distribution of LUT sizes for various circuits in FLUTE.
#LUTδ denotes the number of δ-to-σ LUTs with 1 ≤ σ ≤ 8.

Circuit #LUT2 #LUT3 #LUT4 #LUT5 #LUT6 #LUT7 #LUT8

Basic Functionalities

Add-RC – 4 – – – 1 12
Sub-RC – 4 – 1 – – 11
Mul-RC – – 2 4 211 53 436
Add-LF – – – 2 1 7 17
Sub-LF – – – 2 1 7 17
Mul-LF – – 2 15 51 111 324
GT-Tree – 1 – – – 1 9
AES S-box – – – – – – 1

Floating-Point Functionalities

FP-Add – – 5 10 16 97 213
FP-Sub 1 2 5 8 19 88 205
FP-Mul 1 – 4 11 31 148 485
FP-Div – 6 14 26 86 267 564
FP-Sqr 1 – – 5 18 53 210
FP-Sqrt 2 5 7 13 58 131 285
FP-Sin – 2 8 17 66 195 551
FP-Cos 2 1 6 23 83 196 515

online communication as OTTT+. Recall that the online
communication of OTTT+ is twice the number of inputs for
each LUT evaluation, while the communication of FLUTE
is twice the number of outputs. As a result, our findings
indicate the number of LUT outputs σ is typically less than
the number of inputs δ. In terms of total communication,
FLUTE outperforms OTTT+ in all cases and by a factor
with a geometric mean2 of 27.61× across all circuits. In
some cases, compared to SP-LUT+, FLUTE improves be-
tween 1.43 × −1.94× in total communication, however in
others, SP-LUT+ has up to 2.33× better communication,

2. Using the arithmetic mean would be ineligible for relative perfor-
mance [34].

with the geometric mean being 4% less communication in
favor of SP-LUT+. In comparison, the constant round Yao
only provides lower total communication in some of the
smaller circuits while being outperformed by FLUTE by a
factor ranging from 1.71×−6.14× in the remainder.

TABLE 5: Online communication rounds of FLUTE, OTTT, SP-
LUT and ABY2.0 for floating point operations.

Circuit FLUTE/OTTT SP-LUT ABY2.0

FP-Add 18 19 59
FP-Mul 16 17 47
FP-Div 78 79 296
FP-Sqr 11 12 41
FP-Cos 25 26 98

Recall that, in addition to reducing the online communi-
cation, the goal of using LUTs is to minimize the number of
online communication rounds. Table 5 provides an overview
of the online rounds for FLUTE and prior LUT approaches
along with a standard boolean circuit evaluation3 using the
ABY2.0 protocol [67]. We only consider the larger floating-
point circuits, because smaller circuits resulted in mostly
trivial round complexities. We find that the round complexity
is reduced by a factor of up to 3.92×, especially for large
circuits. We do not compare to Yao since we do not consider
the input sharing phase, and Yao does not require any further
online interactions.

Rust Implementation. We proceed with benchmarks of
our FLUTE implementation developed in the Rust [4] lan-

3. We used publicly available .aby and .bristol circuits that only had
2-input AND gates and no multi-input AND gates.

11525



guage to analyze how the actual performance of FLUTE
compares to the theoretical baseline. Rust combines high
performance similar to C++ with memory safety and thread
safety, all aspects that are of special interest for crypto-
graphic implementations that should not only be fast, but
also minimize the risk of code vulnerabilities. Along the
way, we implemented the 2PC semi-honest boolean proto-
cols in ABY2.0 [67], as well as silent OT [17], both of
which are their first implementations in Rust that are of
independent interest. Our implementation of silent OT [17]
is based on the C++-based code available in the libOTe [70]
library. We used a batch size of 107, compression factor of 2
and the protocols are implemented with 128-bit security.

Benchmarking Environment. We run the benchmarks on a
server equipped with a 16-core Intel Core i7-4790 CPU
at 3.6 GHz and 32 GB of RAM operated at 2400 MHz.
Realistic network behaviour is simulated using the tools tc
(traffic control) and NetEm. The benchmarks are run in a
LAN setting with 10 GBit/s bandwidth and 1 ms round-trip
time (RTT) and a WAN setting at 100 MBit/s bandwidth and
100 ms RTT. For our benchmarks, we use the Rust stable
toolchain v1.65.0.

TABLE 6: Theoretical and experimental evaluation of FLUTE in
terms of total communication in KiB (first online, then total) over
batch sizes {1, 1000}.

Circuit Theoretical Batch 1 Batch 1000

Add-RC 0.014 1.22 0.318 1.80 0.015 1.22
Add-LF 0.017 2.09 0.119 2.45 0.017 2.09
GT-Tree 0.005 1.22 0.107 1.59 0.005 1.22
S-box 0.002 0.13 0.035 0.42 0.002 0.13
Mul-LF 0.452 34.29 0.723 34.86 0.453 34.29
FP-Add 0.186 23.28 0.798 24.19 0.187 23.28
FP-Mul 0.340 48.74 0.936 49.64 0.340 48.74
FP-Div 0.534 69.51 3.214 72.49 0.537 69.52
FP-Sqr 0.194 21.39 0.591 22.08 0.194 21.39
FP-Cos 0.462 57.15 1.303 58.30 0.463 57.15

Table 6 provides a comparison of the actual communi-
cation obtained from our implementation and the theoret-
ical baseline for various circuits for batch sizes {1,1000}.
Without batching, our approach incurs some overhead over
the theoretical baseline, particularly during the online phase.
This is mostly due to the relatively low number of payload
bits sent and received, which increases the impact of seri-
alization and paddings. Increasing batch sizes dramatically
reduces such overheads to the point that the measured values
almost identically match the theoretical baseline for batch
size 1000.

In Fig. 10, we compare the run time of FLUTE with
the 2PC baseline in ABY2.0 [67] with silent OT, denoted
by ABY2.0+, over a LAN and WAN setting. Table 9 in §E
provides the concrete results.

In the LAN setting, when compared to ABY2.0+,
FLUTE improves the online run time by a factor ranging
from 1.17× for small circuits and 1.27× for large circuits
up to 2.33×. The total run time is between 14% and 66%
less for ABY2.0+ owing to the expensive computation in
FLUTE’s setup and the time for computation being the

Add-LF GT-Tree Mul-LF FP-Add FP-Mul FP-Div FP-Sqr FP-Cos

101

102

Ru
n 

tim
e 

[m
s]

LAN setting
ABY 2.0 +  (online)
ABY 2.0 +  (total)
FLUTE (online)
FLUTE (total)

Add-LF GT-Tree Mul-LF FP-Add FP-Mul FP-Div FP-Sqr FP-Cos
102

103

104

Ru
n 

tim
e 

[m
s]

WAN setting
ABY 2.0 +  (online)
ABY 2.0 +  (total)
FLUTE (online)
FLUTE (total)

Figure 10: Run time of our implementations of FLUTE and
ABY2.0 [67] with silent OT [17] (ABY2.0+) for various circuits
and batch size 1.

dominant factor over communication in a LAN. However,
for large circuits, the gap narrows when the online phase
begins to dominate the setup phase. Over a WAN, the im-
provement in online run time of FLUTE over ABY2.0+ rises
to a factor ranging between 1.82× and 3.82×. In addition,
the increased RTT takes a toll on ABY2.0+, so that even the
total run time of FLUTE outperforms ABY2.0+ in all large
circuits by a factor ranging from 1.41× up to 3.19×. This
demonstrates that FLUTE can not only be used to improve
the online time of the state-of-the-art 2PC protocols, but can
also greatly outperform them in both online and total run
time depending on the network setting.

5. Related Work

This section provides a concise summary of the impor-
tant related work, with a focus on the 2PC semi-honest
setting considered in this work.
Two-Party Computation (2PC). The arguably oldest 2PC
protocol is Yao’s garbled circuits protocol (Yao) [88] which
has been subject to ongoing optimizations, the most recent
one given by [79]. Its key aspect is that it essentially splits
the evaluation of a binary circuit into garbling where one
party, the garbler sends a so called garbled circuit to the
other party, the evaluator. Further communication is only
required to let the evaluator obtain encrypted versions of
both parties’ inputs. Another commonly used technique is
secret sharing (SS) where each input is shared between
both parties that then can locally evaluate linear gates while
non-linear gates require further interaction. One well-known
example is the GMW protocol [38].
Preprocessing Model. Yao naturally splits the computa-
tion into an input-independent setup phase and an input-
dependent online phase. For SS-based MPC, a similar seg-

12526



mentation that was initiated by [8], [49], [81] lets the parties
generate correlated randomness in the setup phase which
later speeds up the online phase regarding communication,
interactive rounds and hence also run time. These works
started a rich line of work on increasingly efficient MPC
protocols in the preprocessing model [22], [32], [52], [53],
[61], [67], [69], [74], [75]. Some works, most notably
LUT-based protocols [32], even have a function-dependent
setup phase, i.e., they assume the parties already know the
function during setup [11], [57], [67], [85]. ABY2.0 [67] is
one such work that for the binary domain also implements
multi-input AND gates at the same online cost as standard
two-input ANDs.
Lookup Tables in SS-based 2PC. Following the prepro-
cessing model, the idea of using lookup tables (LUTs) in
SS-based protocols was proposed by [46]. Their approach
OTTT originally represents the entire circuit as one LUT
leading to poor overall performance for non-trivial circuits.
The idea of LUTs was also used by [29] to evalute AES
S-boxes with malicious security. The concept of OTTT
together with preprocessing from [29] was eventually com-
bined in [32] for semi-honest security. In contrast to [46],
its modification in [32] is also considered as replacement of
sub-circuits to replace groups of gates by single multi-input
gates. In addition, [32] proposes the current state-of-the-art
LUT protocols for the semi-honest setting to replace their
version of OTTT. One version, OP-LUT, is optimized for
online communication while the other, SP-LUT, minimizes
overall communication. We explain OP-LUT, SP-LUT and
their version of OTTT in §3.1 and compare them to our
protocol in §4. TinyTable [27] uses maliciously secure LUTs
but no evaluation for multi-input gates is given. [32] notes
that TinyTable suffers from low performance similar to
their OTTT variant as it uses similar setup. [48] extends
TinyTable to the multi-party case based on secret-sharing.

Several recent works use SP-LUT, e.g., [76] for compar-
isons in secure inference, [74] for evaluating math functions
on floating-point numbers, and [75] for math functions on
fixed-point numbers. The authors of [75] emphasize that
LUTs play a crucial role in their protocol’s performance.
[74], [75] both also are of special interest for secure infer-
ence tasks.
Garbled LUTs. In Yao’s GC setting [88], prior work no-
ticed that 2-input/1-output gates can be extended into multi-
input/multi-output gates to reduce the circuit evaluation
overhead [44], [59], [72]. Fairplay [59] implemented Yao’s
GC protocols to evaluate gates with up to 3-input gates,
but their method generalizes to an arbitrary number of in-
puts. The TASTY framework [44] implemented multi-input
garbled gates including garbled-row reduction [71]. Re-
cently, [72] proposed garbled circuits with multi-input/multi-
output gates.
Boolean Circuit Compilers. Compilers that translate high-
level code to binary circuits offer a higher level of abstrac-
tion when running MPC in the binary domain. Works in this
area include CBMC-GC [35], HyCC [20], ObliVM [58], and
LLVM-MPC [43]. Another approach is the deployment of

existing hardware synthesis tools that take code in a hard-
ware description language (HDL) such as Verilog as input.
Examples of that include TinyGarble [82], TinyGMW [31],
and Syncirc [68]. As demonstrated in [32], this approach can
be extended to LUTs by utilizing and re-purposing LUT-
based synthesis tools.

LUTNet for Neural Network Inference. Binary neural
networks (BNN) are a promising approach to improv-
ing the efficiency of privacy-preserving machine learning
(PPML) [78], [80], [89]. LUTNet [84] implements a LUT-
based neural network architecture that yields significantly
lower logic size than state-of-the-art BNNs and can be
deployed on field-programmable gate arrays (FPGAs). This
yields the potential of combining secure LUT protocols and
LUTNet for efficient PPML as an option for future research.

6. Conclusion & Future Work

We presented FLUTE, a secure protocol for lookup table
(LUT) evaluation that builds upon a vastly different idea
than prior LUT approaches. We showed how this approach
combines the best of two worlds that prior approaches
for LUT evaluation reside in, namely an improved online
communication and an improved overall communication.

We see three potential future directions. While we focus
on using LUTs for efficient semi-honest 2PC as in [32],
[74], [75], the first direction is to improve the security of
our construction against malicious corruption. We anticipate
that the general high-level design underlying our method, as
mentioned in §3.2, could ease the transition. For instance,
one may use either compilers like [15], [19], [39], [56]
or adapt field-based protocols like [11] to enhance the
security against malicious corruption. Another direction is
the engineering of a novel compiler/toolchain that computes
LUT circuits that are fine-tuned for our FLUTE technique,
as the ones utilized in this work were generated with past
approaches in mind. The third direction would be to investi-
gate the impact of integrating our improved LUT evaluation
approach with recent works on privacy-preserving machine
learning [75] and floating point arithmetic [74], both of
which significantly rely on prior LUT approaches. Our
protocols could potentially replace some of their building
blocks, leading to increased efficiency. However, a more in-
teresting avenue for research would be to develop end-to-end
applications such as SecFloat [74] using our enhanced LUT
constructions. This would require a substantial engineering
effort, as these applications use hybrid circuits with both
binary and arithmetic sharing and in contrast to FLUTE, do
not utilize function-dependent preprocessing.

Acknowledgments. This project received funding from
the ERC under the European Union’s Horizon 2020
research and innovation program (grant agreement No.
850990 PSOTI). It was co-funded by the DFG within
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230.

13527



References

[1] “Berkeley Logic Synthesis. ABC: A System for Sequential Synthesis
and Verification,” https://github.com/berkeley-abc/abc, 2010, (visited
on 11/25/2022).

[2] “Synopsys Inc. Design Compiler,” https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html, 2010,
(visited on 11/25/2022).

[3] “Synopsys Inc. DesignWare Library - Datapath and Building Block
IP.” https://www.synopsys.com/dw/buildingblock.php, 2015, (visited
on 11/25/2022).

[4] “Rust Programming Language v1.65.0,” https://www.rust-lang.org,
2022, (visited on 11/25/2022).

[5] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,”
ACM Comput. Surv., 2018.

[6] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient
Oblivious Transfer and Extensions for Faster Secure Computation,”
in CCS, 2013.

[7] S. Atapoor, N. P. Smart, and Y. T. Alaoui, “Private Liquidity Matching
Using MPC,” in CT-RSA, 2022.

[8] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomiza-
tion,” in CRYPTO, 1992.

[9] ——, “Precomputing Oblivious Transfer,” in CRYPTO, 1995.

[10] ——, “Correlated Pseudorandomness and the Complexity of Private
Computations,” in STOC, 1996.

[11] A. Ben-Efraim, M. Nielsen, and E. Omri, “Turbospeedz: Double
Your Online SPDZ! Improving SPDZ Using Function Dependent
Preprocessing,” in ACNS, 2019.

[12] Y. Ben-Itzhak, H. Möllering, B. Pinkas, T. Schneider, A. Suresh,
O. Tkachenko, S. Vargaftik, C. Weinert, H. Yalame, and A. Yanai,
“ScionFL: Secure Quantized Aggregation for Federated Learning,”
CoRR, vol. abs/2210.07376, 2022, https://arxiv.org/abs/2210.07376.

[13] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A Mixed-Protocol Machine Learning Framework for Pri-
vate Inference,” in ARES, 2020.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Ag-
gregation for Privacy-Preserving Machine Learning,” in CCS, 2017.

[15] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear
PCPs,” in CRYPTO, 2019.

[16] J. Boyar and R. Peralta, “A Small Depth-16 Circuit for the AES
S-Box,” in Information Security and Privacy Conference, 2012.

[17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal,
and P. Scholl, “Efficient Two-Round OT Extension and Silent Non-
Interactive Secure Computation,” in CCS, 2019.

[18] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient Pseudorandom Correlation Generators: Silent OT Extension
and More,” in CRYPTO, 2019.

[19] E. Boyle, N. Gilboa, Y. Ishai, and A. Nof, “Secure Multiparty
Computation with Sublinear Preprocessing,” in EUROCRYPT, 2022.

[20] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and
T. Schneider, “HyCC: Compilation of Hybrid Protocols for Practical
Secure Computation,” in CCS, 2018.

[21] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: Fast and
Robust Framework for Privacy-preserving Machine Learning,” PETS,
2020.

[22] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: High
Throughput 3PC over Rings with Application to Secure Prediction,”
in CCSW@CCS, 2019.

[23] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning,” in NDSS,
2020.

[24] A. Choudhury and A. Patra, Secure Multi-Party Computation Against
Passive Adversaries, 1st ed. Springer International Publishing, 2022.

[25] G. Couteau, P. Rindal, and S. Raghuraman, “Silver: Silent VOLE
and Oblivious Transfer from Hardness of Decoding Structured LDPC
Codes,” in CRYPTO, 2021.

[26] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential Benchmarking Based on Multiparty Computation,” in
FC, 2016.

[27] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The
TinyTable Protocol for 2-Party Secure Computation, or: Gate-
Scrambling Revisited,” in CRYPTO, 2017.

[28] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty Com-
putation from Somewhat Homomorphic Encryption,” in CRYPTO,
2012.

[29] I. Damgård and R. W. Zakarias, “Fast Oblivious AES A Dedicated
Application of the MiniMac Protocol,” in AFRICACRYPT, 2016.

[30] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
2nd ed. Cambridge University Press, 2002.

[31] D. Demmler, G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated Synthesis of Optimized Circuits for
Secure Computation,” in CCS, 2015.

[32] G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the Communication Barrier in Secure
Computation using Lookup Tables,” in NDSS, 2017.

[33] S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for
Signing Contracts,” in CRYPTO, 1982.

[34] P. J. Fleming and J. J. Wallace, “How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results,” Commun. ACM,
vol. 29, no. 3, 1986.

[35] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and H. Veith,
“CBMC-GC: An ANSI C Compiler for Secure Two-Party Computa-
tions,” in International Conference on Compiler Construction, 2014.

[36] J. A. Garay, B. Schoenmakers, and J. Villegas, “Practical and Secure
Solutions for Integer Comparison,” in PKC, 2007.

[37] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic
Applications, 1st ed. Cambridge University Press, 2009.

[38] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority,” in STOC, 1987.

[39] V. Goyal, Y. Song, and C. Zhu, “Guaranteed Output Delivery Comes
Free in Honest Majority MPC,” in CRYPTO, 2020.

[40] D. Günther, M. Holz, B. Judkewitz, H. Möllering, B. Pinkas,
T. Schneider, and A. Suresh, “Poster: Privacy-Preserving Epidemi-
ological Modeling on Mobile Graphs,” in CCS, 2022.

[41] A. Hamlin, N. Schear, E. Shen, M. Varia, S. Yakoubov, and
A. Yerukhimovich, Cryptography for Big Data Security, 1st ed.
Auerbach Publications, 2016.

[42] A. Hegde, H. Möllering, T. Schneider, and H. Yalame, “SoK: Efficient
Privacy-preserving Clustering,” PETS, vol. 2021.

[43] T. Heldmann, T. Schneider, O. Tkachenko, C. Weinert, and
H. Yalame, “LLVM-Based Circuit Compilation for Practical Secure
Computation,” in ACNS, 2021.

[44] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for Automating Secure Two-Party Computations,” in
CCS, 2010.

[45] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious
Transfers Efficiently,” in CRYPTO, 2003.

14528



[46] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the Power of Correlated Randomness in Secure
Computation,” in TCC, 2013.

[47] M. H. S. Javadi, M. H. Yalame, and H. R. Mahdiani, “Small Constant
Mean-Error Imprecise Adder/Multiplier for Efficient VLSI Implemen-
tation of MAC-Based Applications,” IEEE Trans. Computers, 2020.

[48] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and
S. Vivek, “Faster Secure Multi-party Computation of AES and DES
Using Lookup Tables,” in ACNS, 2017.

[49] J. Kilian, “Founding Cryptography on Oblivious Transfer,” in STOC,
1988.

[50] B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten, “CrypTen: Secure Multi-Party Computation
Meets Machine Learning,” in NeurIPS, 2021.

[51] V. Kolesnikov and R. Kumaresan, “Improved OT Extension for
Transferring Short Secrets,” in CRYPTO, 2013.

[52] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning,” in USENIX
Security, 2021.

[53] N. Koti, S. Patil, A. Patra, and A. Suresh, “MPClan: Protocol suite
for privacy-conscious computations,” 2022, https://ia.cr/2022/675.

[54] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively Secure
4PC for Secure Training and Inference,” in NDSS, 2022.

[55] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,”
Journal of the ACM, 1980.

[56] Y. Lindell and B. Pinkas, “An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries,” Journal of
Cryptology, 2015.

[57] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient Constant
Round Multi-party Computation Combining BMR and SPDZ,” in
CRYPTO, 2015.

[58] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
Programming Framework for Secure Computation,” in IEEE S&P,
2015.

[59] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - Secure
Two-Party Computation System,” in USENIX Security, 2004.

[60] F. Marx, T. Schneider, A. Suresh, T. Wehrle, C. Weinert, and
H. Yalame, “HyFL: A Hybrid Approach For Private Federated Learn-
ing,” CoRR, vol. abs/2302.09904, 2023, https://arxiv.org/abs/2302.
09904.

[61] J. Münch, T. Schneider, and H. Yalame, “VASA: Vector AES Instruc-
tions for Security Applications,” in ACSAC, 2021.

[62] M. Naor and B. Pinkas, “Oblivious Transfer and Polynomial Evalu-
ation,” in STOC, 1999.

[63] K. Y. Ngiam and I. W. Khor, “Big Data and Machine Learning
Algorithms for Health-Care Delivery,” Lancet Oncol, vol. 20, no. 5,
2019.

[64] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering,
H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, S. Zeitouni,
F. Koushanfar, A. Sadeghi, and T. Schneider, “FLAME: Taming
Backdoors in Federated Learning,” in USENIX Security, 2022.

[65] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in EUROCRYPT, 1999.

[66] A. Patra, P. Sarkar, and A. Suresh, “Fast Actively Secure OT Exten-
sion for Short Secrets,” in NDSS, 2017.

[67] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved Mixed-Protocol Secure Two-Party Computation,” in USENIX
Security, 2021.

[68] ——, “SynCirc: Efficient Synthesis of Depth-Optimized Circuits for
Secure Computation,” in IEEE HOST, 2021.

[69] A. Patra and A. Suresh, “BLAZE: Blazing Fast Privacy-Preserving
Machine Learning,” in NDSS, 2020.

[70] L. R. Peter Rindal, “libOTe: An Efficient, Portable, and Easy to Use
Oblivious Transfer Library,” https://github.com/osu-crypto/libOTe,
(visited on 11/30/2022).

[71] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
Two-Party Computation Is Practical,” in ASIACRYPT, 2009.

[72] E. Pohle, A. Abidin, and B. Preneel, “Poster: Fast Evaluation of S-
boxes in MPC,” in NDSS, 2022.

[73] M. O. Rabin, “How To Exchange Secrets with Oblivious Transfer,”
Harvard University Technical Report TR-81, 1981, https://ia.cr/2005/
187.

[74] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “SecFloat: Accurate Floating-Point meets Secure 2-Party
Computation,” in IEEE S&P, 2022.

[75] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chan-
dran, and A. Rastogi, “SiRnn: A Math Library for Secure RNN
Inference,” in IEEE S&P, 2021.

[76] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
CCS, 2020.

[77] D. Rathee, T. Schneider, and K. K. Shukla, “Improved Multiplication
Triple Generation over Rings via RLWE-Based AHE,” in CANS,
2019.

[78] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: XNOR-based Oblivious Deep Neural Net-
work Inference,” in USENIX Security, 2019.

[79] M. Rosulek and L. Roy, “Three Halves Make a Whole? Beating the
Half-Gates Lower Bound for Garbled Circuits,” in CRYPTO, 2021.

[80] M. Samragh, S. U. Hussain, X. Zhang, K. Huang, and F. Koushan-
far, “On the Application of Binary Neural Networks in Oblivious
Inference,” in CVPR, 2021.

[81] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient Secure Two-
Party Computation with Low Depth Circuits,” in FC, 2013.

[82] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly Compressed and Scalable Se-
quential Garbled Circuits,” in IEEE S&P, 2015.

[83] A. Treiber, D. Müllmann, T. Schneider, and I. S. genannt Döhmann,
“Data Protection Law and Multi-Party Computation: Applications
to Information Exchange between Law Enforcement Agencies,” in
WPES, 2022.

[84] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Learning FPGA Configurations for Highly Efficient Neural
Network Inference,” IEEE Trans. Computers, 2020.

[85] X. Wang, S. Ranellucci, and J. Katz, “Authenticated Garbling and
Efficient Maliciously Secure Two-Party Computation,” in CCS, 2017.

[86] C. Wolf, J. Glaser, and J. Kepler, “Yosys - A Free Verilog Synthesis
Suite,” in Austrian Workshop on Microelectronics, 2013.

[87] A. C.-C. Yao, “Protocols for Secure Computations (Extended Ab-
stract),” in FOCS, 1982.

[88] ——, “How to Generate and Exchange Secrets (Extended Abstract),”
in FOCS, 1986.

[89] W. Zhu, M. Wei, X. Li, and Q. Li, “SecureBiNN: 3-Party Secure
Computation for Binarized Neural Network Inference,” in ESORICS,
2022.

15529



Appendix

1. Setup Phase in FLUTE

Recall from §3.2.2 that the goal of Fpre
ANDM is to generate

[λQ], given the ⟨·⟩-shares of δ elements I = {x1, . . . , xδ},
for all Q ∈ 2I . In FLUTE, we implement Fpre

ANDM using
the Fpre

AND functionality as the basis. Given the [·]-shares of
two bits u, v ∈ {0, 1}, Fpre

AND computes [uv] and we in-
stantiate the same using Beaver’s multiplication method [8].
The formal protocol Πpre

AND that realises Fpre
AND in the 2PC

semi-honest setting is given in Fig. 11. Protocol Πpre
AND has

a communication of 4 + |MT| bits, where MT denotes
a boolean multiplication triple, and is realised using the
FgenMT functionality (cf. §B.1) in this work.

Deriving a protocol Πpre
ANDM that implements Fpre

ANDM
from Πpre

AND now is straightforward. Recall that the goal
is to compute [λQ] for all Q ∈ 2{x1,...,xk} given inputs
[λx1

], ..., [λxk
]. In the first step, we run Πpre

AND for each
Q where |Q| = 2. From the results, the next step then
runs Πpre

AND for each Q where |Q| ∈ {3, 4} utilizing the
previously computed values. For instance, [λx1x2x3

] can
be computed from [λx1x2

], [λx3
] and [λx1x2x3x4

] can be
computed from [λx1x2

], [λx3x4
]. By continuing this scheme

which doubles the size of considered Q in each step,
eventually all Q ∈ 2{x1,...,xk} are covered. As for each
Q with |Q| ≥ 2 one multiplication is required, the total
communication amounts to (2k − k − 1)(4 + |MT|).

Input: [·]-shares of u, v ∈ {0, 1}.
Output: [·]-shares of z = uv.

Computation:
1. Servers invoke the FgenMT functionality to generate the [·]-shares of
a boolean multiplication triple MT, i.e., ([a], [b], [c]) with c = a ∧ b.

2. Server Si, for i ∈ {0, 1}, computes [d]i = [u]i ⊕ [a]i, [e]i =
[v]i ⊕ [b]i and sends ([d]i, [e]i) to S1−i.

3. Servers reconstruct d = [d]0 ⊕ [d]1 and e = [e]0 ⊕ [e]1.

4. Si, for i ∈ {0, 1}, sets [z]i = i · de⊕ d[b]i ⊕ e[a]i ⊕ [c]i.

Protocol Πpre
AND([u], [v])

Figure 11: Instantiating the Fpre
AND functionality in the 2PC semi-

honest setting using Beaver’s multiplication method from [8].

2. Silent OT for Multiplication Triples, OP-LUT
and SP-LUT

In recent years, the communication required for rOTm
ℓ

has been significantly decreased by silent OT extension
introduced by [18]. The state-of-the-art silent OT exten-
sion [17], [25] that is proven secure under variants of the
learning parity with noise (LPN) assumption can decrease
the cost of each random OT instance rOT1

ℓ to less than a
single bit. In this section, we elaborate on using silent OT for
generating multiplication triples that are required by FLUTE
and OTTT (§B.1), and used to improve the communication
for OP-LUT and SP-LUT (§B.2).

2.1. Generation of Multiplication Triples. A boolean mul-
tiplication triple [x], [y], [z] where z = x∧y can be obtained
from two random OTs using no further communication [6].
Due to low random OT cost from silent OT, we use this
technique to generate multiplication triples which yields
|MT| = |rOT2

1|. For the sake of completeness, we give the
complete protocol in Fig. 12.

Output: [·]-shares of independently and randomly sampled x, y ∈ Z2,
and z = x ∧ y.

1. S0, S1 call rOT1
1 twice, once with S0 being the sender and once

with S1 being the sender.

– S0 as sender: S0 receives random a0, a1 ∈ {0, 1}, S1 receives
random r ∈ {0, 1} as well as ar .

– S1 as sender: S1 receives random b0, b1 ∈ {0, 1}, S0 receives
random s ∈ {0, 1} as well as bs.

2. S0, S1 define their outputs as:

– S0: x0 = s, y0 = a0 ⊕ a1, z0 = sy0 ⊕ bs ⊕ a0.

– S1: x1 = r, y1 = b0 ⊕ b1, z1 = ry1 ⊕ ar ⊕ b0.

Protocol ΠgenMT()

Figure 12: Instantiating the FgenMT functionality in the 2PC semi-
honest setting for boolean multiplication triple generation from [6].

2.2. OT Conversions for Optimizing OP-LUT and SP-
LUT. While [32] uses their own

(
2δ

1

)
-OTm

ℓ and
(
2δ

1

)
-rOTm

ℓ

protocols to implement OP-LUT and SP-LUT, silent OT
can significantly decrease the cost of these LUT approaches.
As SilentOT implements rOTm

ℓ , additional OT conversions
become necessary.

First, in the 2PC semi-honest setting,
(
2δ

1

)
-rOTm

ℓ as re-
quired for SP-LUT can be reduced to rOTmδ

ℓ without further
communication using the construction from [62]. Thus, it
holds that |

(
2δ

1

)
-rOTm

ℓ | = |rOTmδ
ℓ | for the 2PC semi-honest

setting considered in this work. The OT instantiation for a
single SP-LUT can hence be replaced by rOTδ

σ using silent
OT.

Furthermore, such 1-out-of-N random OT can be used
to obtain 1-out-of-N actual OT as required for OP-LUT. The
main idea is from [9] which allows to reduce

(
2
1

)
-OTm

ℓ to
rOTm

ℓ using an additional communication of m(1+2ℓ) bits.4
Here, the sender’s outputs from the random OT are used as
one-time pad to encrypt its inputs to the actual OT which
are then sent resulting in 2ℓ bits of additional communi-
cation per instance. The remaining bit is used beforehand
to correct the random choice bit that the receiver got from
the random OT to its actual choice bit. It is easy to see
that this approach generalizes to obtaining

(
2δ

1

)
-OTm

ℓ from(
2δ

1

)
-rOTm

ℓ plus m(δ + 2δℓ) bits of communication. Thus,
it holds that |

(
2δ

1

)
-OTm

ℓ | = |
(
2δ

1

)
-rOTm

ℓ | + m(δ + 2δℓ) =

|rOTmδ
ℓ |+m(δ + 2δℓ) bits. Recall that the communication

for
(
2δ

1

)
-OTm

ℓ in [32] is reduced by δ bits by keeping the
receivers choice string random (cf., §3.1.2). This is equiva-

4. In [9], only ℓ = 1 is considered, but this easily generalizes to arbitrary
ℓ using techniques from [10].

16530



lent to not derandomizing the choice string in the aforemen-
tioned conversion decreasing the additional communication
from m(δ + 2δℓ) bits down to m2δℓ bits. Thus, the OT
instantiation for a single OP-LUT using that optimization
can be replaced by rOTδ

2δσ using silent OT and 2δ ·2δσ bits
additional communication.

3. Optimizations Using an Untrusted Helper

In this section, we discuss how FLUTE and prior LUT
protocols can perform better with an additional helper server
during the setup phase. In detail, we augment the semi-
honest 2PC setting by a semi-honest helper server SH that
does not collude with S0 or S1 and does not send or
receive any messages in the protocols’ online phases. This is
motivated by the overall communication of OTTT, OP-LUT
and FLUTE being dominated by the setup phase. As SP-
LUT, especially when utilizing silent OT, pushes almost all
communication to the online phase, we see no promising
approach of improving its setup communication using a
helper and hence omit it.

For our optimizations, we assume a pre-shared key setup
among the 2PC servers S0, S1 and the helper SH, where
Si, SH share a PRF key Ki,H, for i ∈ {0, 1}. This allows SH
to generate the same randomness used by the other servers
without interaction. Our setting with a helper resembles
to the three party semi-honest setting in ASTRA [22] as
our 2PC baseline ABY2.0 [67] and ASTRA share similar
sharing semantics. However, we consider the helper to be
available only during the setup phase and analyzing our
approach in a three-party honest majority setting is left for
future work.

3.1. OTTT and OP-LUT. Recall that OTTT and OP-
LUT use the exact same approach and only differ in how
they compute their sharings of the randomly rotated LUT
(cf. §3.1.1 and §3.1.2). We observe that this setup can be
replaced by yet another approach when using an additional
helper which is significantly more efficient than both OTTT
and OP-LUT. Using their pre-shared keys, S0, SH sample
random r and S1, SH sample random s to obtain a sharing
of a random LUT rotation θ = r ⊕ s as it is used in
OTTT and OP-LUT. Then, SH locally computes the LUT
rotated by θ. Note that this does not violate the protocol’s
security because while SH knows the rotation and resulting
rotated LUT, it never sees any actual inputs and does not
collude with one of the other parties. The straightforward
next step would be to let SH set up two shares T0,T1

(cf. §3.1.1) of the rotated LUT and sending them to S0, S1

resulting in 2 · 2δσ setup communication. Instead, we let
S0, SH use K0,H to randomly sample T0 and only send T1.
Thus, the overall setup communication is only 2δσ bits and
this clearly outperforms OP-LUT and OTTT. Even when
ignoring the cost of required random OTs for OP-LUT, we
thus outperform its setup communication by a factor of 2δ .
For OTTT, the factor when ignoring the cost of generating
multiplication triples still is 4δ − 4.

3.2. FLUTE. Regarding FLUTE, recall that the setup com-
munication exclusively comes from computing the AND of
values [λx] and [λy]. For each AND, one multiplication
triple and an additional 4 bits of communication is required.
We show that using a helper SH, the cost per AND can be
decreased to a single bit yielding an improvement of over
4×.

The first essential change is that for each secret-shared
value v that is used at some point of the computation, SH
also knows λ0

v, λ
1
v that are already selected in the setup

phase. Each time that S0, S1 would sample these values for
some wire v, this can be achieved by Si, SH for i ∈ {0, 1}
instead using Ki,H to generate λi

v. Now, assume that the
AND of values [λx] and [λy] is to be computed. As SH
knows all shares, it can locally compute λx ∧ λy. Then,
S0, SH sample random λ0

xy using K0,H, and SH locally
computes λ1

xy = λx∧λy⊕λ0
xy and sends it to S1. Thus, the

cost of each such multiplication is decreased from 4+ |MT|
bits down to 1 bit. The security of the resulting protocol
changes directly follows from the security of ASTRA [22].

4. Security Proof

In this section, we discuss the security details of FLUTE.
Since we use the 2PC protocol of ABY2.0 [67] as our
baseline without any modifications, we inherit the security
of ABY2.0. Hence, we focus on the security of the multi-
fan-in inner product protocol ΠIP (cf. §3.2.1) proposed in
this paper. Furthermore, since the ΠLUT protocol for LUT
evaluation (Fig. 6) is an optimized variant of ΠIP, we then
briefly elaborate on how the security proof for ΠIP translates
to ΠLUT.

FIP interacts with {S0, S1} and the adversary A.
Input: FIP receives ⟨·⟩-shares for β boolean vectors, denoted

by (⟨x⃗1⟩, . . . , ⟨x⃗β⟩), from the respective servers in {S0, S1},
with the vectors having d elements each.

Computation: FIP reconstructs the vectors from its ⟨·⟩-shares
and computes

z = x⃗1 ⊙ · · · ⊙ x⃗β =

d⊕
j=1

(

β∧
i=1

x⃗i
j).

FIP then samples random λ0
z, λ

1
z ∈ {0, 1} and sets mz = z ⊕

λ0
z ⊕ λ1

z .
Output: FIP sends (mz, λ

i
z) to Si, for i ∈ {0, 1}.

Figure 13: Ideal functionality FIP for Multi-Fan-In Inner
Product in the 2PC semi-honest setting.

The ideal functionality for the ΠIP protocol, denoted by
FIP, is given in Fig. 13 and we prove security using the
standard real world / ideal world paradigm. We provide the
simulation for the case of a corrupt S0. Since the protocol is
symmetric, the simulation for the case of corrupt S1 follows
similarly. Our proof works in the Fpre

ANDM-hybrid model and
the security of Πpre

ANDM implementing Fpre
ANDM reduces to that

of Πpre
AND implementing Fpre

AND as discussed in §A.

17531



Theorem 1. In the {Fkey,Fpre
ANDM}-hybrid model, ΠIP

(cf. Fig. 5) securely realizes the functionality FIP against
a semi-honest adversary A, who corrupts S0.

Proof. Let A denote the semi-honest adversary that corrupts
S0 during the protocol ΠIP. We now present the steps of the
ideal-world adversary (simulator) SIP for A for this case.
Note that the ΠIP protocol is simply one component of the
underlying 2PC protocol ABY2.0 [67], which includes other
stages such as input sharing and output reconstruction, as
discussed in §2.4. As a result, we presume that all the stages
till ΠIP are correctly simulated, and we use the information
obtained by SIP during those stages in this simulation. For
instance, as discussed in ABY2.0 [67], the simulation of the
shared-key setup Fkey enables SIP to receive the PRF key
that the adversary A (in other words, the corrupt S0) uses in
the protocol and hence SIP learns all the intermediate values
of the circuit in the clear. Similarly, during the simulation
for input sharing, SIP has to simulate nothing for the inputs
of S0 since A is not receiving any messages in this case.
Instead, SIP receives the mv values from A on behalf of S1.
For the case of S1’s inputs, SIP executes the protocol steps
honestly, assuming the inputs of S1 to be all 0.

With respect to the multi-fan-in inner product protocol,
the setup phase involves locally sampling random masks
λ0
z, λ

1
z ∈ {0, 1} and the invocation of the ideal functionality

Fpre
ANDM which generates the required correlated randomness.

Since we make only black-box access to Fpre
ANDM, the simula-

tion for the same follows from the security of the underlying
primitive used to instantiate Fpre

ANDM (cf. §A). During the
online phase, SIP follows the step honestly using the data
obtained from the corresponding setup phase. The resulting
view is indistinguishable from a real protocol execution for
the following reason: The only message that S0 receives
from S1 is [v]1 ∈ {0, 1}. In both the simulation and the
real protocol execution, this value is obtained by taking the
XOR of an intermediate value and a random mask λ1

z that is
chosen by S1 and unknown to S0. Note that this mask is not
used again to mask any other value. Therefore, to S0, [v]1
appears as a uniformly random bit in both the real protocol
execution and the simulation.

The security of ΠLUT follows similar to ΠIP, but with
some minor modifications in the prior simulation of ΠIP, as
listed below:

1. For the setup phase, the simulator randomly samples σ
values λ0

z⃗i
, λ1

z⃗i
∈ {0, 1} for 1 ≤ i ≤ σ instead of a single

value; one for each output wire.

2. The simulation requires only a single invocation of the
Fpre

ANDM ideal functionality as opposed to d many in ΠIP.

3. The simulator sends a vector of σ bits [v⃗]1 to S0 on
behalf of S1, instead of a single bit.

Note that the simulation of the setup phase remains inde-
pendent of the number of output wires, denoted by σ. This
does not compromise the security of FLUTE because a sin-
gle instance of Fpre

ANDM provides all the necessary values for

local computation in the online phase. Moreover, each mes-
sage sent in the online phase is concealed by a unique and
random one-time mask, denoted by λ0

z⃗i
or λ1

z⃗i
, ensuring the

security of FLUTE. Furthermore, using different and inde-
pendent random masks guarantees that the shares of differ-
ent output wires belonging to one server are not correlated.

5. Additional Benchmark Results

Here, we give complementary results from our theo-
retical and practical evaluation and benchmarks. Regarding
our theoretical considerations per LUT from §4.1, Fig. 14
compares the online complexity of OTTT/OP-LUT, SP-LUT
from [32] as well as FLUTE. Recall that the use of silent
OT does not affect the online phase.

2 3 4 5 6 7 8
 (inputs)

101

102

Co
m

m
un

ica
tio

n 
[b

its
]

=1 outputs
OTTT/OP-LUT
SP-LUT
FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

Co
m

m
un

ica
tio

n 
[b

its
]

=2 outputs
OTTT/OP-LUT
SP-LUT
FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

Co
m

m
un

ica
tio

n 
[b

its
]

=4 outputs
OTTT/OP-LUT
SP-LUT
FLUTE

2 3 4 5 6 7 8
 (inputs)

101

102

103

Co
m

m
un

ica
tio

n 
[b

its
]

=8 outputs
OTTT/OP-LUT
SP-LUT
FLUTE

Figure 14: Online communication for different LUT sizes with
2 ≤ δ ≤ 8 inputs and σ ∈ {1, 2, 4, 8} outputs.

Table 7 gives the online improvement factor of FLUTE
over SP-LUT. Table 8 provides a full analytical communica-
tion comparison of all considered circuits when using Yao,
OTTT+, SP-LUT+, FLUTE as well as the helper variants
OTTTH and FLUTEH. Table 9 contains our implementa-
tion’s communication and run time for LAN and WAN set-
tings when using ABY2.0+ or FLUTE on different circuits.

TABLE 7: Improvement factor of online communication of FLUTE
over SP-LUT when evaluating one δ-input σ-output LUT.

δ
σ

1 2 3 4 5 6 7 8

2 3.0 2.5 2.3 2.3 2.2 2.2 2.1 2.1
3 5.5 4.8 4.5 4.4 4.3 4.3 4.2 4.2
4 10.0 9.0 8.7 8.5 8.4 8.3 8.3 8.3
5 18.5 17.3 16.8 16.6 16.5 16.4 16.4 16.3
6 35.0 33.5 33.0 32.8 32.6 32.5 32.4 32.4
7 67.5 65.8 65.2 64.9 64.7 64.6 64.5 64.4
8 132.0 130.0 129.3 129.0 128.8 128.7 128.6 128.5

18532



TABLE 8: Analytical comparison of total communication in KiB (first online, then total) of Yao’s garbled circuits [88] using three-halves
garbling [79], OTTT [29], [46] with silent OT [17] (OTTT+), SP-LUT [32] with silent OT [17] (SP-LUT+) and FLUTE. The case of
OTTT and FLUTE with a helper server is marked with a superscript “H”. We do not consider the input phase leading to zero online
communication for Yao.

Circuit Yao OTTT+ SP-LUT+ FLUTE OTTTH FLUTEH

Basic Functionalities

Add-RC 0 0.73 0.028 46.68 1.598 1.60 0.014 1.22 0.028 1.61 0.014 0.30
Sub-RC 0 0.75 0.026 45.61 1.557 1.56 0.014 1.19 0.026 1.57 0.014 0.29
Mul-RC 0 93.59 1.258 1,577.94 54.961 55.04 0.514 48.60 1.258 55.59 0.514 11.86
Add-LF 0 3.73 0.049 54.50 1.900 1.90 0.017 2.09 0.049 1.92 0.017 0.51
Sub-LF 0 3.73 0.049 54.50 1.900 1.90 0.017 2.09 0.049 1.92 0.017 0.51
Mul-LF 0 96.52 0.917 1,405.54 48.910 48.96 0.452 34.29 0.917 49.37 0.452 8.44
GT-Tree 0 2.09 0.020 15.26 0.528 0.53 0.005 1.22 0.020 0.54 0.005 0.29
AES S-box 0 0.80 0.002 7.42 0.251 0.25 0.002 0.13 0.002 0.25 0.002 0.03

Floating-Point Functionalities

FP-Add 0 51.09 0.622 567.08 19.924 19.96 0.186 23.28 0.622 20.24 0.186 5.64
FP-Sub 0 49.27 0.595 539.33 18.968 19.00 0.179 21.92 0.595 19.27 0.179 5.31
FP-Mul 0 106.01 1.263 1,083.16 37.900 37.97 0.340 48.74 1.263 38.53 0.340 11.76
FP-Div 0 128.16 1.735 1,543.49 54.613 54.72 0.534 69.51 1.735 55.48 0.534 16.82
FP-Sqr 0 49.03 0.534 647.98 22.420 22.45 0.194 21.39 0.534 22.69 0.194 5.20
FP-Sqrt 0 70.90 0.893 753.65 26.770 26.82 0.268 35.92 0.893 27.22 0.268 8.68
FP-Sin 0 122.23 1.536 1,459.79 50.996 51.09 0.461 57.59 1.536 51.76 0.461 13.95
FP-Cos 0 122.51 1.498 1,444.20 50.495 50.58 0.462 57.15 1.498 51.24 0.462 13.84

TABLE 9: Actual communication in KiB and run time for LAN and WAN in ms (first online, then total) for FLUTE and ABY2.0 [67]
with silent OT [17] (ABY2.0+).

Circuit Communication [KiB] Run time for LAN [ms] Run time for WAN [ms]

ABY2.0+ FLUTE ABY2.0+ FLUTE ABY2.0+ FLUTE

Basic Functionalities

Add-RC – – 0.318 1.80 – – 13 32 – – 415 827
Sub-RC – – 0.318 1.76 – – 13 32 – – 422 846
Mul-RC – – 1.910 50.30 – – 116 444 – – 2,084 2,815
Add-LF 0.207 0.32 0.119 2.45 7 11 6 33 207 307 114 539
Sub-LF 0.207 0.32 0.119 2.45 7 11 6 33 213 317 110 549
Mul-LF 1.497 2.79 0.723 34.86 48 89 38 290 1,321 1,570 450 1,112
GT-Tree 0.299 0.39 0.107 1.59 7 10 4 22 298 404 109 534
AES S-box – – 0.035 0.42 – – 1 12 – – 5 413

Floating-Point Functionalities

FP-Add 2.979 4.10 0.798 24.19 107 138 46 205 3,599 3,730 945 1,484
FP-Sub 2.946 4.07 0.863 22.91 105 135 47 200 3,595 3,728 935 1,500
FP-Mul 3.191 5.55 0.936 49.64 109 170 58 347 3,078 3,237 864 1,565
FP-Div 11.855 14.73 3.214 72.49 435 506 187 585 15,611 15,781 4,088 4,942
FP-Sqr 1.777 2.88 0.591 22.08 62 93 33 186 1,865 1,996 555 1,136
FP-Sqrt 8.091 9.70 2.114 38.06 290 336 120 342 11,041 11,187 2,813 3,442
FP-Sin 4.458 7.20 1.304 58.75 155 222 91 454 4,731 4,900 1,286 2,077
FP-Cos 4.567 7.32 1.303 58.30 158 226 88 448 4,902 5,075 1,292 2,133

19533


