
High-Order Masking of Lattice Signatures in Quasilinear Time

Rafaël del Pino
PQShield SAS, France

rafael.del.pino@pqshield.com

Thomas Prest
PQShield SAS, France

thomas.prest@pqshield.com

Mélissa Rossi
ANSSI, France

melissa.rossi@ssi.gouv.fr

Markku-Juhani O. Saarinen
PQShield LTD, UK
mjos@pqshield.com

Abstract—In recent years, lattice-based signature schemes have
emerged as the most prominent post-quantum solutions, as
illustrated by NIST’s selection of Falcon and Dilithium for
standardization. Both schemes enjoy good performance char-
acteristics. However, their efficiency dwindles in the presence
of side-channel protections, particularly masking – perhaps
the strongest generic side-channel countermeasure. Masking
at order d-1 requires randomizing all sensitive intermediate
variables into d shares. With existing schemes, signature gen-
eration complexity grows quadratically with the number of
shares, making high-order masking prohibitively slow.

In this paper, we turn the problem upside-down: We
design a lattice-based signature scheme specifically for side-
channel resistance and optimize the masked efficiency as a
function of the number of shares. Our design avoids costly
operations such as conversions between arithmetic and boolean
encodings (A2B/B2A), masked rejection sampling, and does not
require a masked SHAKE implementation or other symmetric
primitives. The resulting scheme is called Raccoon and belongs
to the family of Fiat-Shamir with aborts lattice-based signa-
tures. Raccoon is the first lattice-based signature whose key
generation and signing running time has only an O(d log(d))
overhead, with d being the number of shares.

Our Reference C implementation confirms that Raccoon’s
performance is comparable to other state-of-the-art signature
schemes, except that increasing the number of shares has a
near-linear effect on its latency. We also present an FPGA
implementation and perform a physical leakage assessment to
verify its basic security properties.

Index Terms—Post-Quantum Cryptography, Side-Channel Se-
curity, Masking Countermeasures, Raccoon signature.

1. Introduction

Lattice-based signatures have emerged as prominent
post-quantum solutions. They are computationally efficient
and backed up by strong mathematical assumptions that
are conjectured post-quantum secure. In July 2022, NIST
announced [1] that it will standardize two lattice-based
signatures: Dilithium [2] and Falcon [3].

The picture is less favorable when it comes to the
physical protection of implementations, partially because

these schemes have been highly optimized for performance.
Such optimizations often induce side-channel weaknesses,
as highlighted in several attacks, for example Karabulut and
Aysu [4] and Guerreau et al. [5] for Falcon, or Ravi et al.
[6] and Marzougui et al. [7] for Dilithium.

Masking is a generic countermeasure that offers prov-
able protection against physical side-channel attacks and is
broadly applied in embedded systems. Masking lattice-based
signatures with an arbitrarily high number of shares has been
achieved for schemes such as GLP [8], qTESLA [9] and
BLISS [10], but the performance penalty factor is high (for
2 shares: around ×15 for GLP [11] and ×4 for qTESLA-
I [12]; for 4 shares: around ×73 for GLP and ×37 for
qTESLA-I). Many works have also tried to mask variants of
the NIST standards efficiently, but the performance penalty
is still high, see a variant of Dilithium by Migliore et al. [13],
or Mitaka by Espitau et al. [14]. Let us present the masking
challenges in more detail.

1.1. The challenges of masking lattice signatures

As an illustration, Algorithm 1 presents a prototypical
Fiat–Shamir with aborts lattice signature scheme based on
Module Learning with Errors (or MLWE, see Definition 1).
In this work, we focus on Fiat–Shamir with aborts lat-
tice signature schemes as the requirements can be met
with masking-friendly operations in a more natural way
compared to the Falcon-like complex Gaussian sampling
over lattices that belong in the hash-and-sign paradigm. We
assume that the verification key vk is a small-secret MLWE
sample (A, t = A · s+ e).

The blueprint of Algorithm 1 was introduced by Lyuba-
shevsky [15], [16], then refined by Bai and Galbraith [17],
and in Dilithium [2]. We now explain why masking such a
scheme is challenging.

Masking consists of randomizing any secret-dependent
intermediate variable. Each of these secret-dependent in-
termediate variables, say x, is split into t + 1 variables
(xi)0≤i≤t called “shares”. The integer t is referred to as
the masking order. We define d = t+ 1 to differentiate the
masking order and the number of shares.

The two most deployed types of masking are arithmetic
masking and Boolean masking. Concretely, a sensitive vari-

11168

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Rafaël del Pino. Under license to IEEE.
DOI 10.1109/SP46215.2023.00160

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

34
2

Algorithm 1 Sign(sk, vk,msg)

Require: A signing key sk = s, a verification key (A, t),
a message msg

Ensure: A signature sig of msg under sk
1: Sample r uniformly in a small set S
2: u := Ar
3: w := Truncate(u) ▷ Commitment
4: c := H(w,msg) ▷ Challenge
5: z := r+ c · s ▷ Response
6: y := A · z− c · t
7: if CheckCondition(z,y) = False then
8: goto Line 1 ▷ Rejection sampling
9: return sig := (c, z)

able x is shared in (xi)0≤i≤t such that

x = x0 + · · ·+ xt mod q for arithmetic masking, (1)

x = x0 ⊕ · · · ⊕ xt for Boolean masking. (2)

We will use Algorithm 1 to examine the many chal-
lenges of masking Fiat–Shamir lattice signatures. We first
observe that the most natural type of masking for MLWE is
arithmetic masking. Indeed, it is compatible with the basic
algebraic operations used in these algorithms. On the plus
side, the knowledge of w does not provide any advantage
for the attacker under no assumptions (or in some cases
under mild assumptions [8, Def. 2 and Th. 1]). So, Line 4
does not need to be masked. The main issue in masking
Algorithm 1 boils down to masking non-linear operations:

• Sampling r from a small set S (Line 1) is challenging in
an arithmetic masked form. The most efficient known
approach is to sample r in Boolean masked form,
then convert the result in arithmetic masked form. This
requires so-called mask conversions, see Coron et al.
[18], [19], [20]. Despite efficiency improvements since
their introduction in 2014, known secure mask conver-
sion algorithms run in time at least O(d2). See Espitau
et al. [8, Alg. 15], Migliore et al. [13, Alg. 13] and
Gérard and Rossi [9, §3.2] for concrete instantiations
of randomness generation with mask conversions.
Some schemes replace Line 1 by sampling r according
to a discrete Gaussian. This operation is even harder to
mask, and the most masking-friendly approach requires
cumulative distribution table look-up and thus even
more comparisons are needed. See Barthe et al. [10,
§5.3.2] and Gérard and Rossi [9, Alg. 9] for more
details.

• Truncate (Line 3) discards the least significant bits of
u. This is straightforwardly expressed as a Boolean
circuit, but challenging as an arithmetic circuit. Thus,
mask conversions are also employed, which again
slows down performance. Such a masked operation
with conversions has been introduced by Gérard and
Rossi [9, §3.3] Migliore et al. [13, Alg. 14-15].

• CheckCondition (Line 7) verifies that (z,y) satisfies
some constraints and outputs a boolean value. This

step, called rejection sampling, is critical for the cor-
rectness and zero-knowledge property of the scheme. It
is critical to mask this part, since disclosing the output
of CheckCondition(z,y) typically leaks the “direction”
of the private key, which can lead to its recovery.
In practice, most schemes verify that (a) z is
short, and (b) y belongs to a set that guarantees
{Truncate(y) = w}. Once again, the most efficient
known techniques require expensive mask conversions
– it has been performed this way in existing masked de-
signs. See Barthe et al. [8, Alg. 16], [10, §4], Migliore
et al. [13, §5.3.3], and Gérard and Rossi [9, Alg. 8] for
concrete instantiations of masked rejection sampling.

As explained above, while existing lattice-based signa-
ture schemes can be masked, they are not optimized for
good masking performance. To improve efficiency, some
works have slightly modified the schemes to remove some
steps and ease the conversions. Migliore et al. [13] forego
Dilithium’s NTT-friendly modulus q for a power-of-two
modulus that is more amenable to conversions. Espitau
et al. [14] changes the Gaussian sampler in Falcon in a
simpler way to avoid complex operations that could not be
masked. However, the performance penalty factor is still
non-linear in the masking order, making it quite unsatisfying
and prohibitive for practical use in embedded devices.

1.2. Our contributions

In this work, we study the masking of lattice-based sig-
natures from a different angle. Instead of tweaking existing
schemes to improve their masked efficiency, we build from
the ground up a lattice-based signature that is tailor-made
to be masked efficiently. Our scheme is called Raccoon1. In
the process, we managed to remove mask conversions from
our design, as well as any masked gadget with an overhead
higher than quasilinear. As a result, consider the question:

“Is it possible to achieve a quasilinear masking
overhead with lattice-based signatures?”

We answer this question positively.

Main contribution. Our main contribution is to propose
a framework for building Fiat-Shamir lattice signatures
that can be masked at order d with quasilinear overhead
O(d log d). We achieve that by eliminating all the efficiency
bottlenecks identified in Algorithm 1 and thus removing the
need for mask conversions:

1) We switch from small-secret MLWE to uniform-secret
MLWE, a well-known reduction (c.f. Appendix A.1)
proves that both problems are equivalent. This trivial-
izes the generation of s and r in a masked fashion since
they are now uniformly random over the underlying
space. This also eliminates the need for checking that
z is short in CheckCondition.

2) We introduce a gadget (called ApproxShift) for
Truncate(u) in a masked fashion in time O(d log d),

1. We continue the cryptographic "tradition" of naming masking-friendly
schemes after masked characters. Indeed, the face of a raccoon looks like
it wears a mask.

21169

with one big caveat: the output is only an approxi-
mation of the actual output of Truncate. Nevertheless,
for key generation this is not an issue, and we can
replace the expensive masked error generation of e by
ApproxShift.

3) Using ApproxShift to compute the commitment w
(Line 3) is more problematic since its approximate out-
put may break the correctness of the signature scheme.
In addition, we still need to compute in masked form
whether y belongs to a certain set which guarantees
Truncate(y) = w. This is important for correctness,
but also for the zero-knowledge property.
It turns out that both issues can be solved simultane-
ously. As in Dilithium, Truncate(y) and w may differ,
and a hint h = w−Truncate(y) is sent in the signature
to allow the verifier to recompute w. We also accept
that a probing adversary may completely learn y; since
w = c · e plus some noise, this might leak information
about the private key. A careful Rényi-divergence based
study shows that if we limit the number of signatures
per key (in practice, to about 248), then our scheme
remains secure in the presence of this leakage. In
doing so, we completely remove the need to perform
expensive check conditions on masked values.

By combining all these individual improvements, we obtain
a scheme whose masked operations are only refresh gadgets,
additions, and multiplication with an unmasked operand and
ApproxShift. As a result, the scheme can be masked in
quasilinear time.

Security proofs. We complement the design with two se-
curity proofs. The first one reduces the black-box security
of the signature scheme to the MLWE problem. The second
proof ensures the masking security in the probing model by
Ishai, Sahai and Wagner [21].

Implementations. Masking is an efficient countermeasure:
It is expected that the required number of side-channel
observations to mount an attack grows exponentially in
relation to the number of shares d, see Chari et al. [22]
or Duc et al. [23]. We demonstrate that the performance of
Raccoon is practical even at higher masking levels, leading
to greater security margins against side-channel attacks.

A 2-share version of the Raccoon C implementation
exhibits roughly half of the signing performance of un-
masked Dilithium (Table 4). Raccoon masking overhead
grows sub-linearly up to d = 32 shares (Table 4, Fig. 1.)
By comparison, a Dilithium3 implementation was reported
to have an increasing 1.37× d, 1.71× d, and 1.91× d per-
share complexity for d ∈ {4, 6, 8} shares when compared to
d = 2 [24, Table 3].

We also perform a TVLA-style leakage assessment of
an RTL implementation of Raccoon-128 with d = 2. The
implementation is tested on a resource-constrained Artix 7
FPGA platform. Overall, the leakage characteristics, perfor-
mance, and other implementation metrics demonstrate the
feasibility of higher-order lattice signatures in applications
such as authentication tokens, SoC platform security, smart
cards, and cryptocurrency wallets.

2 4 8 16 32
0

0.5

1

1.5

2

Number of shares d

C
yc

le
s

/
sh

ar
e

(s
ca

le
d

to
d
=

2
.)

Raccoon Sign
Dilithium Sign

Figure 1. Cost of masking: Signing cycle count divided by d, normalized
to a common start at 1 for d = 2 (unmasked implementations are not
comparable.) For Raccoon, the cost of each additional share plateaus
and grows very slowly due to quasilinear O(d log d) complexity. For
Dilithium, each new share needs more resources as its masking complexity
is polynomial; close to quadratic O(d2). Raccoon data is for CRACCOON
(Table 4). Dilithium data is for randomized Dilithium3 [24, Table 3]. No
masking data is available for Falcon.

1.3. Comparison with Falcon and Dilithium

It is illustrative to compare Raccoon to Dilithium [2],
and Falcon [3], the two lattice-based signature schemes
selected by NIST for standardization in 2022 [1]. All three
schemes are believed to be resistant to attacks with quan-
tum computers due to being based on well-studied lattice
assumptions that are conjectured to be quantum-resistant.
We provide a security proof in the ROM; in the quantum
ROM (or QROM), we expect the proof strategy of Kiltz et
al. [25] for Dilithium to be applicable to our scheme.

1.3.1. Dilithium. In terms of cryptanalytic security,
Raccoon uses assumptions very close to the ones of
Dilithium. Instead of MLWE, Raccoon relies on an assump-
tion we call Module Learning with Rounding and Errors
(MLWRE), a hybrid between MLWE and MLWR. Since there
is no known gap in concrete security between MLWR and
MLWE, it is reasonable to assume that MLWRE is just as
hard.

Dilithium was not explicitly designed to facilitate side-
channel countermeasures beyond timing attacks. As a result,
masking Dilithium requires relatively complex gadgets as
reported in works by Migliore et al. [13] and Azouaoui et
al. [24]: a masked Keccak (SHAKE) permutation, masked
conversions between Arithmetic and Boolean representa-
tions (A2B and B2A), masked comparisons, and a masked
rejection sampler. Overall, these gadgets make the masking
overhead of Dilithium polynomial (almost quadratic) in d
(See Fig. 1.) The design of Raccoon avoids these bottle-
necks.

1.3.2. Falcon. Cryptanalytic security of Falcon relies on
the NTRU assumption. Although this assumption supports
fewer security reductions than MLWE, it is widely believed
to be as secure as MLWE for well-chosen parameters.

31170

We are not aware of any comparable masked Falcon
implementations, even at first order (d = 2.) Masking
Falcon represents a very significant technical challenge due
to Falcon’s reliance on floating point (FP) arithmetic; IEEE
754 [26] double-precision arithmetic is needed to manipulate
secret variables. Additive or multiplicative masking can
not be directly applied to floating point numbers, as the
resulting distributions would be biased. To mask Falcon, it
seems necessary to develop a masked floating point em-
ulation library with individual (Boolean) masking gadgets
for normalization, rounding, and other tasks required for FP
multiplication and addition/subtraction. This is a complex
engineering task and is likely to cause a high performance
(or area) overhead.

1.4. Structure of the paper

In Section 2, we introduce the necessary preliminaries
for lattice-based signatures, proof techniques and masking.
Next, in Section 3, we introduce our new masking-friendly
Raccoon scheme directly in its masked form. Section 4
contains both the black-box security proof of the scheme
and the masking proof in the probing model. We present
the parameter selection strategy in Section 5. We finish with
extensive experimental tests in Section 6.

2. Preliminaries

2.1. Notations

We note scalars, vectors, and matrices in italic (i.e.
x), lowercase bold (i.e. x), and uppercase bold (i.e. X),
respectively.

For n, q integer parameters, such that Xn + 1 is irre-
ducible in Zq, we define Rq =

Zq [X]
Xn+1 . We use the notation

a≫ k for the arithmetic right shift of a by k bits. Finally,
we note log the logarithm in base 2.

2.2. Sets, functions and distributions

Given an integer n ∈ N, we note [n] the set
{0, 1, . . . , n − 1}. We use the notation y := f(x) (resp.
y ← f(x)) to indicate that the function f is deterministic
(resp. randomized).

Given a finite set S, we note x ← S to indicate that x
is sampled uniformly at random in S. Finally, x ←state S
indicates that the object state is used as a source of
pseudorandomness in order to select x (pseudo-)uniformly
in S. Concretely, state will be a SHAKE256 hash object
initialized with an input string.

2.3. Hardness assumptions

Definition 1 (Module Learning With Errors, or MLWE).
Let ℓ, k, q be integers and D be a probability distribu-
tion over Rq. The Module Learning With Errors, noted
MLWERq,ℓ,k,D, comes in two variants. For s← Dℓ:

• Decisional: distinguish between (A,A · s + e) and
(A,b), where A← Rk×ℓ

q , e← Dk and b← Rk
q .

• Computational: recover s from (A,A · s + e), where
A← Rk×ℓ

q and e← Dk.
In this work, we rely on a less used variant of MLWE called
uniform secret MLWE (UMLWE). Its definition is identical
to MLWE’s, except that s can be any vector in Rk′

q instead
of s← Dk, with k′ = k + ℓ.

There is a well known reduction from UMLWERq,ℓ,k+ℓ,χ

to MLWERq,ℓ,k,χ given in Applebaum et al. [27], we are
however concerned with the other direction since we want
to rely on the well studied security of MLWE. We give the
reduction from MLWE to UMLWE in Section A.1 as it is
very close to the one of [27].

The security reduction will be under a hybrid problem
between MLWE and MLWR, which is at least as hard as
the harder of the two problems. However, for concrete
parameters we will consider the best known attacks for
such a problem which will be to consider it as an MLWE
problem with a larger distribution since the best known
attacks against MLWR consist in solving a related MLWE
instance.

Definition 2. Hybrid problem MLWRE. Let ℓ, k, q, t, q′ =
q ≫ t be integers and D be a probability distribution over
Rq′ . The Module Learning With Rounding and Errors, noted
MLWRERq,ℓ,k,t,D, comes in two variants. For s← Rℓ

q:
• Decisional: distinguish between (A, ((A · s)≫ t)+e)

and (A,b), where A← Rk×ℓ
q and e← Dk and b←

Rk
q′ .

• Computational: recover s from (A, ((A · s)≫ t)+e),
where A← Rk×ℓ

q and e← Dk.

Definition 3. MSIS. Let ℓ, k, q be integers and β > 0 a real
number. The Module Short Integer Solution MSISq,ℓ,k,β is
as follows: Given A← Rk×ℓ

q , find s ∈ Rℓ such that

∥s∥2 ≤ β ∧A · s = 0 mod q

2.4. Rényi divergence

The Rényi divergence [28] is a tool from informa-
tion theory which has recently found many applications in
lattice-based cryptography, see Bai et al. [29] and Prest [30].
We use the “exponential form” of the Rényi divergence, as
is common in lattice-based cryptography.

Definition 4 (Rényi divergence). Let P,Q be two dis-
crete distributions such that SuppP ⊆ SuppQ, and α ∈
(1;+∞). The Rényi divergence of order α is:

Rα(P;Q) =

(∑
x∈X

P(x)α

Q(x)α−1

) 1
α−1

Following Csiszár’s f -divergence framework [31],
Rα−1

α − 1 is an f -divergence for f : x 7→ xα− 1. Lemma 1
presents some properties of the Rényi divergence; proofs
can be found in van Erven and Harremoës [32] or Bai et al.

41171

[29]. Note that (R1) is a generic property of f -divergences,
and it implies (R2).

Lemma 1. For two distributions P,Q and two finite families
of distributions (Pi)i∈[n], (Qi)i∈[n], the Rényi divergence
verifies these properties:

(R1) Data processing inequality. For a (randomized) func-
tion f ,

Rα(f(P); f(Q)) ≤ Rα(P;Q).
(R2) Probability preservation. For any event E ⊆ Supp(Q):

P(E) ≤ (Q(E) ·Rα(P;Q))
α−1
α

≤ Q(E)
α−1
α ·Rα(P;Q),

(R3) Multiplicativity. Rα(
∏

i Pi;
∏

iQi) =
∏

i Rα(Pi;Qi).

2.5. Masking

In this paper, the masking will be of only one type:
arithmetic masking. A d-shared variable (xi)0≤i≤d−1 will
be denoted JxK for readability. In some parts of the paper,
the number of shares may be d′ ̸= d, in that case, we will
speficy it in the index as JxKd′ .

In other words, a sensitive variable x belonging in a
finite abelian group is shared in JxK = (xi)i∈[d] follow-
ing Eq. (1). Note that for a masking order t, there are
d = t+ 1 shares.

Definition 5 (t-probing Security or ISW security). An al-
gorithm is t-probing secure iff the joint distribution of any
set of at most t internal intermediate values is independent
of the secrets.

Masking is one of the most deployed side-channel coun-
termeasures. Indeed, the theoretical model reductions of Duc
et al. [33] relates the t-probing security to side-channel
security up to a certain level of noise. Moreover, it has been
confirmed in practice: the number of measurements required
to mount a successful side-channel attack usually increases
exponentially in the masking order, see Chari et al. [22] and
Duc et al. [23].

Although the t-probing security seems straightforward
on linear operations on Zq, proving it on non-linear oper-
ations is much more complicated. The mixture of shares
to compute the final result makes it often mandatory to
introduce random variables and the bigger the algorithm is,
the more dependencies to be considered. To resolve this
problem, extra security properties that are slightly stronger
than t-probing have been introduced in the literature. They
are applied to small sub-algorithms called gadgets. More
precisely, a gadget is a probabilistic algorithm that takes
shared and un-shared inputs values and returns shared and
un-shared values. These new security properties open the
door for composing the security of gadgets, see Barthe et
al. [34].

Definition 6 (Non interference [34]). A gadget is:
• t-non-interfering (t-NI) iff any set of at most t observa-

tions can be perfectly simulated from at most t shares
of each input.

• t-strong non-interfering (t-SNI) iff any set of at most t
observations whose tint observations on the internal
data and tout observations on the outputs can be
perfectly simulated from at most tint shares of each
input.

It is easy to check that t-SNI implies t-NI, which implies
t-probing security. Also note that any linear gadget for Zq

is immediately t-NI. An additional notion was introduced
by Barthe et al. [8] to reason on the security of lattices-
based schemes in which some intermediate variables may
be revealed to the adversary.

Definition 7. A gadget with public outputs X is t-non-
interfering with public outputs (t-NIo) iff every set of at most
t intermediate variables can be perfectly simulated with the
public outputs X and at most t shares of each input.

Definition 8. We introduce a Decode gadget that takes
JxK = (xi)i∈[t+1] as input, refreshes it with Algorithm 4,
then computes the sum x0 + · · ·+ xt mod q. It is identical
to the FullAdd algorithm in [8, Alg. 16].

Conversely, we define the Encode gadget that takes
an unmasked value x as input and outputs the shares by
generating the first t shares uniformly at random and fixing
xt as x− x0 − · · · − xt−1 mod q.

3. The Raccoon Signature Scheme

3.1. Additional notations

Let q ∈ N and pt, pw < q be powers-of-two: pt = 2κt

and pw = 2κw for κt, κw ∈ N. We note qt = ⌊q/pt⌋ and
qw = ⌊q/pw⌋. Observe that q ≈ qt · pt ≈ qw · pw.

For x ∈ Zq, we also note ⌊x⌋q→qt
= ⌊x/pt⌋, and

similarly ⌊x⌋q→qw
= ⌊x/pw⌋.

3.2. Subroutines ApproxShift, OrderSwitch and
Refresh

We present three subroutines that are integral to the
efficiency and provable security of Raccoon.

ApproxShift. A first subroutine is ApproxShift (Algo-
rithm 2), which performs the arithmetic right shift ≫ on
masked integers in an approximate manner. The subroutine
is extremely simple to implement and prove secure. As it
manipulates the inputs share by share without adding any
randomness, ApproxShift is t− NI.

Algorithm 2 ApproxShiftq→q′()

Require: JxK = (xi)i∈[d] ∈ Zd
q , an integer q′ = q ≫ k for

k ∈ N, a precomputed value δ = δ(q, d, k) ∈ Zq

Ensure: JyK ∈ Zd
q′

1: for i ∈ [d] do
2: yi := (xi + δ)≫ k

3: return JyK = (yi)i∈[d]

51172

Algorithm 2 requires one to precompute a value δ =
δ(q, d, k). Lemma 2 shows how to set to set δ in a way that
bounds the output error of Algorithm 2.

Lemma 2. Let JxK ∈ Zd
q , q

′ = q ≫ k,
JyK = ApproxShiftq→q′(JxK), x := Decode(JxK), y :=
Decode(JyK) and y∗ = x ≫ k. If d | 2k−1 and δ =
(d−1)2k−1

d , it holds that:

|y − y∗| ≤
⌈
d+ 1

2

⌉
. (3)

The proof of Lemma 2 is elementary and is provided in
Section A.2. In practice, the output error of Algorithm 2 is
much better than predicted by Lemma 2. The average error
observed in practice grows in O(

√
d), which is easily ex-

plained by the fact that each individual share independently
adds an error O(1) centered on zero.

OrderSwitch. The OrderSwitch subroutine (Algorithm 3),
converts a d1-encoding of a value x ∈ Zq into a d2-encoding
of the same value, for d2 ≥ d1. The goal of this operation is
to reduce the amount of information that an adversary learns
by probing nprob < d1 values. In particular, it will become
clear in Section 3.3 that combining Algorithms 2 and 3 pro-
vides better security guarantees than applying Algorithm 2
alone. We will show in Lemma 4 that OrderSwitch is t−SNI.
In practice, we use d2 = 2d1.

Algorithm 3 OrderSwitchd1→d2
(JxKd1

)

Require: Two integers d1, d2 ∈ N with d2 ≥ d1, a d1-
sharing of a value x ∈ Zq, denoted JxKd1

Ensure: a d2-sharing JxKd2 of the same value x ∈ Zq

1: JzKd2−d1 := (0)i∈[d2−d1]

2: JxKd2 = (JxKd1∥JzKd2−d1)
3: JxKd2 ← Refresh (JxKd2)
4: return JxKd2

Refresh. Finally, we require an efficient Refresh proce-
dure as a subroutine of OrderSwitch (Algorithm 3) and
Sign (Algorithm 7). This Refresh procedure is functionally
equivalent to the identity function: the unmasked input value
is equal to the unmasked output value. But, the shares are
renewed in a way that the gadget enjoys the t-SNI property,
which is necessary in the masking composition proofs.

We use an evolution of a refresh gadget described by
Battistelo et al. [35], which appears independently in works
by Mathieu-Mahias [36] and Goudarzi et al. [37]. It was
proven SNI in [36]. Its time and randomness complexity
are O(d log d).

Algorithm 4 Refresh()

Require: A d-shared JxK of x ∈ Zq

Ensure: A fresh d-shared JxK of x
1: JzK← ZeroEncoding()
2: return JxK = JxK + JzK

Algorithm 5 ZeroEncoding()

Require: A power-of-two integer d, a ring Zq

Ensure: A d-shared JzK ∈ Zd
q of 0 ∈ Zq

1: if d = 1 then
2: return Jz1K = (0) ▷ Masking order zero.
3: Jz1Kd/2 ← ZeroEncoding(d/2)
4: Jz2Kd/2 ← ZeroEncoding(d/2)

5: JrKd/2 ← Zd/2
q ▷ Uniform random vector.

6: Jz1Kd/2 = Jz1Kd/2 + JrKd/2
7: Jz2Kd/2 = Jz2Kd/2 − JrKd/2
8: return JzKd =

(
Jz1Kd/2 ∥ Jz2Kd/2

)
▷ Concatenate.

3.3. Key generation

Recall that we use the notation JxK to refer to a sharing
of x. The number of shares is always d except if indicated
otherwise.

Algorithm 6 describes the key generation of Raccoon, in
which sensitive variables are masked with (at least) d shares.
Intuitively, one can think of Algorithm 6 as generating d
independent UMLWR samples, briefly expanding them into
2d shares, then collapsing them into a verification key.

First, consider a simplified variant of Algorithm 6: (a)
A public matrix A is uniformly generated, (b) d secret key
shares si are generated in parallel, (c) d rounded products
ti := (Asi + δ) ≫ k are computed, and finally (d)
the private key is defined as JsK and the public key is
computed as (A, t =

∑
i∈[d] ti). Note that each (A, ti) is

an UMLWR sample and (A, t) is also such a sample with a
larger noise. Intuitively, the optimal strategy for a t-probing
adversary A wishing to infer a coefficient of A · s is to
probe the corresponding coefficients of A · si and compute
the corresponding coefficient of t −

∑
i∈[t] A · si. As long

as nprob < d, at least one share ti is pseudorandom under
the UMLWR assumption.

For proving such a key generation, one would need
to assume that a t-probing adversary can decrease by a
factor

√
d the error rate in the LWE/LWR problem and

thus adapting the choice of parameters for preventing any
attack. Adding a temporary increase of the number of shares
in Line 4 prevents this degradation; in its presence, if an
adversary probes nprob < d values, at least 2d−nprob shares
ti remain pseudorandom under the LWR assumption, and
the error rate is only decreased by a factor

√
2d

2d−δ <
√
2.

This gain of a factor O(
√
d) allows one to select more

efficient parameters.

3.4. Signing procedure

The signing procedure follows the usual commit-
challenge-response flow, and we are able to perform all

2. Following the standard practice in MLWE/MLWR schemes [2], [38],
A is actually generated in a pseudorandom manner from a public seed.
This has no influence on security and, for simplicity, is omitted in our
description.

61173

Algorithm 6 Keygen()

Require: ∅
Ensure: A signature keypair (JskK, vk), where JskK is an

order-d sharing of sk
1: A← Rk×ℓ

q ▷ See Footnote 2
2: JsK← (Rℓ

q)
d

3: JuK := A · JsK
4: JvK2d ← OrderSwitchd→2d(JuK)
5: JtK2d := ApproxShiftq→qt(JvK2d)
6: t := Decode(JtK2d) ▷ t ∈ Rk

qt
7: return (JskK := JsK, vk := (A, t))

sensitive operations in a masked fashion.

Sensitive components. Let us first discuss which compo-
nents need to be masked, and which don’t.

• Operations involving r need to be masked. This in-
volves computing the commitment w and the response
z, although w and z are revealed as part of the signing
procedure.

• On the other hand, the challenge and its computation
do not need to be masked. Note that for Fiat-Shamir
with aborts schemes, this may require some additional
assumptions due to the fact that some signatures are
not supposed to be output, see Barthe et al. [8, Def.
2 and Th. 1]. We do not require such an assumption;
as explained in Remark 1, w can be recomputed from
public information.

Algorithm 7 Sign(JskK, vk,msg)

Require: A masked signing key JskK, a message msg
Ensure: A signature sig of msg under sk

1: JrK← (Rℓ
q)

d ▷ Masked ephemeral secret
2: JuK := A · JrK
3: JuK← Refresh(JuK) ▷ Alg. 4
4: JwK := ApproxShiftq→qw(JuK) ▷ Alg. 2
5: w := Decode(JwK) ▷ Commitment, Def. 8
6: chash := H(w,msg) ▷ Challenge hash
7: cpoly := ChalPoly(chash) ▷ Challenge. Alg. 8
8: JsK← Refresh(JsK) ▷ Alg. 4
9: JrK← Refresh(JrK) ▷ Alg. 4

10: JzK := cpoly · JsK + JrK
11: z := Decode(JzK) ▷ Response, Def. 8
12: y := A · z− pt · cpoly · t
13: ytop := ⌊y⌋q→qw

14: h := w − ytop ▷ Hint
15: if (∥h∥2 > B2) or (∥h∥∞ > B∞) then
16: goto Line 1 ▷ Check the hint’s norms
17: return sig := (chash, z,h)

Masking the signing algorithm. The signing procedure is
presented in Algorithm 7. We explain the intuition of (a)
how we can mask all relevant operations efficiently, and (b)
why our scheme is secure. The full proofs will be detailed
in Section 4.

• Since the ephemeral randomness r is uniformly ran-
dom, it is straightforward to generate in masked form
(Line 1). Similarly, computing JuK is a linear operation
(Line 2) and can be done with computational overhead
O(d).

• The commitment w needs to be computed in masked
form. In Dilithium [2] and related schemes, this is done
by rounding (or equivalently, shifting) the coefficients
of u. With known techniques, masking this operation
incurs an overhead at least O(d2), see Coron et al. [39,
§5].
Instead, we approximately shift the coefficients of u
using ApproxShift (Line 4). This has the major advan-
tage of incurring an overhead O(d). The drawback is
that this adds a small error term to w, which breaks
the correctness of the scheme. We discuss below how
this is solved.

The hint h. We repair correctness by computing a hint
h (Line 14) which encodes the difference between the
commitment w computed by the signer, and the commitment
ytop the verifier initially computes. This hint h is output as
part of the signature, and it allows the verifier to recompute
w.

However, if h is left unconstrained, then an adversary
A could forge a signature by A first generating w and z
randomly, then compute cpoly, ytop and h honestly.

As in Dilithium, we prevent this type of attack by
imposing bounds on the L2 and L∞ norms of h, enabling a
clean security reduction to MSIS and a variant of UMLWE.

Number of queries. Compared to similar schemes like
Dilithium [2] and qTESLA [40], Raccoon has no masked
rejection sampling. This makes the implementation much
simpler, but it also means that signatures can leak informa-
tion about the private key. Indeed, if we note w = u+ ew,
ytop = y+ey and ptt = As+et, then one can check that:

h = ew − ey − cpoly · et (4)

There is therefore a correlation between h and the signing
key s. In Section 4.1, we show via a Rényi divergence
argument that as long as Qs is upper bounded by a function
of Raccoon’s parameters, the leakage provoked by h does
not weaken the security of Raccoon. In Section 5.3, we
provide an explicit formula (with some heuristics) for setting
Qs.

Challenge computation. The challenge cpoly is selected
uniformly in the subset C ⊊ R of polynomials such that
∥cpoly∥∞ = 1 and ∥cpoly∥1 = ω. As in Dilithium [2], we
separate the challenge computation in two parts:

• The challenge hash chash is computing via a hash
function H : {0, 1}∗ → {0, 1}λTARGET ;

• The challenge polynomial cpoly is derived from chash
through an unmasked function ChalPoly (Algorithm 8).
Note that Algorithm 8 is not constant-time, but this is
not an issue since it is always performed on public data.

This two-step description is convenient from an im-
plementation point of view, since the signing procedure

71174

Algorithm 8 ChalPoly(chash)

Require: A hash digest chash ∈ {0, 1}λ
Ensure: A polynomial cpoly ∈ C

1: shake := SHAKE256.new()
2: shake := SHAKE256.update(chash)
3: c = (ci)i∈[n] := 0n

4: while ∥c∥1 ≤ ω do
5: (i, b)←shake [n]× {0, 1}
6: if (ci = 0) then
7: ci = (−1)b

8: return cpoly =
∑

i∈[n] cix
n

computes chash then cpoly, whereas the verification procedure
computes cpoly then chash.

3.5. Verification procedure

Compared to the signing procedure, the verification pro-
cedure (Algorithm 9) is straightforward since all operations
are performed unmasked. As usual in Fiat-Shamir schemes,
the verifier recomputes the challenge and checks it against
the one in the signature, helped in our case by the hint h.
In addition, the verifier checks the L2 and L∞ norms of the
hint.

Algorithm 9 Verify(vk,msg, sig)

Require: A verification key vk, a message msg, a signature
sig = (chash, z,h)

Ensure: accept or reject
1: cpoly := ChalPoly(chash)
2: y = A · z− pt · cpoly · t
3: w′ = ⌊y⌋q→qw

+ h
4: chash

′ := H (w′,msg)
5: if (∥h∥2 > B2) or (∥h∥∞ > B∞) or (chash ̸= chash

′)
then

6: reject
7: accept

4. Security Proof

4.1. Security reduction

In this section we prove the unforgeability of our sig-
nature scheme. Given that we prove in Section 4.2 that the
signing protocol is t-NI we can assume that the adversary
is only given the output of the signing oracle (as the t-NI
property guarantees that any set of at most t internal probes
can be simulated with at most t shares of each input). For
our proof, we introduce ApproxShift′q→q′ , which replicates
in unmasked form the functionality of ApproxShiftq→q′ :

ApproxShift′q→q′ = Decode◦ApproxShiftq→q ◦Encode (5)

The security proof of Raccoon is given in Lemma 3.

Lemma 3. Let A be a forger with advantage AdvSignA ,
making Qs signing queries. Let AdvPKA be the advantage of
an adversary in distinguishing the public key from uniform.
Then:

AdvSignA
Qs

≤ 2
(
Adv

Hybrid6
A + AdvPKA

) RQs
α (D4;D5)

Qs
+

1

qℓnw
,

(6)
where Di is the distribution of the quadruple (cpoly, z,h,w)

output by Hybridi of Fig. 2, and α = − log2

(
Adv

Hybrid5
A

)
.

Proof. We use a series of hybrids as defined in Fig. 2, with
Hybrid0 corresponding to the unforgeability security game.
Hybrid0: This hybrid is the signing protocol

Adv
Hybrid0
A = AdvSignA

Hybrid1: This hybrid is just a rewriting of the signing
protocol where we assume the t-NI property. We also
consider the security of the scheme in the random
oracle model (ROM) and hence replace the challenge
computation with a random oracle H. Observe that the
output of this hybrid has the same distribution as the
signing protocol.

Adv
Hybrid1
A = Adv

Hybrid0
A

Hybrid2: In this hybrid we replace the hash function with
a random element and program the hash function to
said element. The games are indistinguishable except
if the signing algorithm has to program a value that was
already queried by the adversary.Using the min-entropy
of w we get:∣∣∣AdvHybrid2A − Adv

Hybrid1
A

∣∣∣ ≤ Qs ·
1

qℓnw

Hybrid3: One can check that y + z′ = Ar. Therefore this
hybrid is simply a rewriting of the previous one.

Adv
Hybrid3
A = Adv

Hybrid2
A

Hybrid4: In this hybrid we sample z uniformly. Note that
the distribution of z is unchanged since z = cpoly ·s+r
and r is uniform.

Adv
Hybrid4
A = Adv

Hybrid3
A

Hybrid5: In this game we set z′ := 0. This part of the
proof uses a Rényi divergence argument. For i ∈ {4, 5},
let ϵi = Adv

Hybridi
A . It follows from Lemma 1 (more

precisely, Item (R1) then Item (R3)) that:

ϵ4 ≤ ϵ
α−1
α

5 ·RQs
α (D4;D5), (7)

We can set α = − log2(ϵ5), so that Eq. (7) implies:

Adv
Hybrid4
A ≤ 2 · AdvHybrid5A ·RQs

α (D4;D5). (8)

Hybrid6: In this hybrid we replace t with a uniform vector.
Note that since the secret key is not used in the previous
hybrid this does not change the signing algorithm.∣∣∣AdvHybrid6A − Adv

Hybrid5
A

∣∣∣ ≤ AdvPKA

81175

Hybrid1
1 : r←Rℓ

q

2 : w := ApproxShift′q→qw
(Ar)

3 : cpoly = H(w,msg)

4 : z := cpoly · s+ r

5 : y := A · z− pt · cpoly · t
6 : h := w − ⌊y⌋q→qw

7 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

8 : then return ⊥
9 : return (cpoly, z,h,w)

Hybrid2
1 : r←Rℓ

q

2 : w := ApproxShift′q→qw
(Ar)

3 : cpoly ← C
4 : z := cpoly · s+ r

5 : y := A · z− pt · cpoly · t
6 : h := w − ⌊y⌋q→qw

7 : H(w,msg) := cpoly

8 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

9 : then return ⊥
10 : return (cpoly, z,h,w)

Hybrid3
1 : r←Rℓ

q

2 : cpoly ← C
3 : e := pt · t−A · s
4 : z := cpoly · s+ r

5 : z′ := cpoly · e
6 : y := A · z− pt · cpoly · t
7 : w := ApproxShift′q→qw

(y + z′)

8 : h := w − ⌊y⌋q→qw

9 : H(w,msg) := cpoly

10 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

11 : then return ⊥
12 : return (cpoly, z,h,w)

Hybrid4
1 : cpoly ← C
2 : e := pt · t−A · s
3 : z←Rℓ

q

4 : z′ := cpoly · e
5 : y := A · z− pt · cpoly · t
6 : w := ApproxShift′q→qw

(y + z′)

7 : h := w − ⌊y⌋q→qw

8 : H(w,msg) := cpoly

9 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

10 : then return ⊥
11 : return (cpoly, z,h,w)

Hybrid5
1 : cpoly ← C
2 : z←Rℓ

q

3 : z′ := 0

4 : y := A · z− pt · cpoly · t
5 : w := ApproxShift′q→qw

(y + z′)

6 : h := w − ⌊y⌋q→qw

7 : H(w,msg) := cpoly

8 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

9 : then return ⊥
10 : return (cpoly, z,h,w)

Hybrid6
1 : cpoly ← C
2 : t←Rk

qt

3 : z←Rℓ
q

4 : z′ := 0

5 : y := A · z− pt · cpoly · t
6 : w := ApproxShift′q→qw

(y + z′)

7 : h := w − ⌊y⌋q→qw

8 : H(w,msg) := cpoly

9 : if (∥h∥2 > B2) or (∥h∥∞ > B∞)

10 : then return ⊥
11 : return (cpoly, z,h,w)

Figure 2. The security hybrids in the proof of Lemma 3. Changes between each hybrid are highlighted in blue.

An adversary breaking Hybrid6 can be used to solve
MSIS. This is stated in Theorem 1, and proven in Sec-
tion A.3.

Theorem 1. Let A be a forger for Hybrid6 which is as
defined above. Using A we construct an adversary for the
MSISq,k−ℓ,BMSIS

where BMSIS = 2pwB2+pw
√
kn+2pt

√
ω.

Theorem 2. An adversary adversary who distinguishes the
public key vk from uniform can break the MLWRE problem
with the same advantage. I.e.

AdvPKA ≤ Adv
MLWRER

q′ ,ℓ,k,k,χ

A

Where χ is the Irwin-Hall distriubtion of degree d shifted
by k bits.

Proof. The proof is given in Section A.4.

4.2. Masking Proof

As the verification only uses public information, to
achieve t-probing security, we need to prove the masking

security of both the key generation scheme in Algorithm 6
and the signature scheme in Algorithm 7. This scheme has
been designed to be "masking friendly", so the proofs are
quite standard. However, in Section 4.2.1, we deal with a
technical issue in the key generation because an intermediate
value is correlated to the secret in an unintuitive way.

Let us first decompose both the Keygen and Sign algo-
rithms into a sequence of elementary gadgets. We present
the different gadgets and their security properties in Table 1.

TABLE 1. SECURITY PROPERTIES OF THE KNOWN AND NEW GADGETS

Name Property Reference

Refresh t-SNI Section 3.2 [35], [36], [37]
Decode t-NIo Elementary, see [8]
Line 1 t-NI Zq−linear
×A t-NI Zq−linear
Line 10 t-NI Zq−linear
ApproxShiftq→q′ t-NI Zq−linear
OrderSwitch t-SNI Lemma 4
H and ChalPoly None Section 3.4
Computing the hint h None Section 3.4

91176

The gadget represented in Line 1 and the
ApproxShiftq→· gadget can both be easily proved secure
in the t-probing model because of their linearity with the
addition modulo q.

Concerning OrderSwitch, note that even though the
number of shares may increase inside this gadget, the tar-
geted security is t−NI and not t′−NI (where t′ = 2d− 1).
Indeed, this temporary mask increase is performed for
achieving the general t − NIo security of the Keygen as
will be presented in Section 4.2.1.

Lemma 4. OrderSwitch (Algorithm 3) is t− SNI.

Proof. This OrderSwitch gadget corresponds to a Zq−linear
operation at Lines 1 to 3 and a Refresh (that is t′−SNI and
thus t− SNI because t′ ≥ t). Hence, the t− SNI security is
directly inherited from the Refresh gadget.

Remark 1. For a signature (chash, z,h) generated with the
secret key associated with the public key (A, t), the internal
value w can be recomputed only with public information,

w = h+ ⌊Az− pt · cpoly · t⌋q→qw
.

Thus, w can be considered as available for any attacker
and, for proof matters, it will be part of the public outputs
of the Sign algorithm.

4.2.1. Masking security of the signature algorithm. Let
us now introduce the composition proofs of the signature
scheme.

Theorem 3. Sign (Algorithm 7) algorithm is t − NIo with
public outputs (chash, z,h,w).

Proof. The overall gadget decomposition of the algorithm is
presented in Fig. 3. Let us assume that an attacker has access
to nprob ≤ t observations on the whole signature scheme.
Then, we want to prove that all these nprob observations
can be perfectly simulated with at most nprob shares of JsK
and the public variables. With such a result, the signature
scheme is then secure in the t-probing model since no set
of at most t observations would give information on the
secret values. To fix notations, let us consider the following
distribution of the attacker’s nprob observations: nprob

1 on
the last instance of Decode, nprob

2 on Line 10, nprob
3 on

the first instance of Decode, nprob
4 on ApproxShiftq→qw ,

nprob
5 on the multiplication with A, nprob

6 on the randomness
generation, and nprob

7 on the refresh algorithm. Some other
observations can be made on the computation of the hash
of the message and the computation of the hint h, their
number will not matter during the proof. Finally, we have∑7

i=1 n
prob
i ≤ nprob.

Now we build the proof from right to left as follows.
As z is a public output and the last instance of Decode in

t−NIo, all the observations performed during the execution
of Decode and after can be perfectly simulated with at most
nprob
1 shares of JzK and the public outputs (w, z, chash,h).

The gadget in line Line 10 is t − NI. Thus, all the
observations performed after Line 10, Decode and after can

be perfectly simulated with at most nprob
1 +nprob

2 shares of
JrK and JsK and the public outputs.

We continue with the refresh gadget. As it is t−SNI, the
observations performed in Refresh, MultAdd, Decode and
after can be perfectly simulated with at most nprob

1 + nprob
2

shares of JsK, nprob
7 shares of JrK and the public outputs.

The first Decode is t−NIo with public output w, thus,
all the observations performed during the execution of the
first Decode, of the Refresh, of Line 10, of the Decode and
after can be perfectly simulated with at most nprob

1 + nprob
2

shares of JsK, nprob
7 shares of JrK, nprob

3 shares of JwK and
the public outputs.

Then, since both ApproxShiftq→qw and the multiplica-
tion with A are t − NI, we propagate the observations :
all the observations performed during the signature strictly
after the randomness generation can be perfectly simulated
with at most nprob

1 + nprob
2 shares of JsK, nprob

7 + (nprob
3 +

nprob
5 + nprob

5) shares of JrK and the public outputs.
Finally, the left randomness generation gadget is also t-

NI secure and does require any input; thus, the observations
cannot be propagated any more. We need to ensure that
the number of reported observations does not exceed nprob.
Finally, the simulation relies on nprob

1 + nprob
2 shares of

JsK and the public outputs, which is sufficient to ensure the
t− NIo security with public outputs (w, z, chash,h).

4.2.2. Masking security of the key generation algorithm.
We present here a technical overview of the challenge of
proving the masking of the Keygen. The detailed proof can
be found in Section A.4.

Even though the gadget structure of the Keygen,
presented in Fig. 4, would enable a straightforward
masking proof at first sight, the t-probing security of
Keygen is actually unintuitively technical. Indeed, unlike
usual key generations in Fiat–Shamir with aborts signatures
schemes, the error of the MLWE instance defining the
pseudorandomness of vk relies on noise induced by the
approximate shift of the shares of JvK. Thus, if an attacker
probes the shares of JvK, the MLWE instance of vk gets
easier and sk can be recovered more easily.

Hence, as highlighted in Lemma 6 in Section A.4, there
exist a correlation between the joint distribution of (vk, (vi))
and sk. This prevents from simulating all intermediate values
of Algorithm 6 with random and public data. We resolve
this problem by introducing a new masking proof relying
on a MLWE hypothesis.

The final result of Section A.4 is as follows. Let the
discrete Irwin–Hall distribution be the distribution of the
sum of a number of independent random variables, each
having a uniform distribution.

Theorem 4. Keygen (Algorithm 6) is t − NIo with public
output vk under the MLWERq,ℓ,k−ℓ,χ hypothesis where χ
is the discrete Irwin–Hall distribution of standard deviation
pt
√

t/12 and center 0.

To close up the masking security, Theorems 3 and 4
allow concluding that Raccoon is EUF-CMA secure in the

101177

Line 1 ×A ApproxShift Decode H , ChalPoly

Refresh

Line 10 Decode Compute h

JsKmsg

h
JrK JuK JwK w cpoly JzK z

JsK

JrK

Figure 3. Structure of Sign (Algorithm 7). A gadgets proven t−NI (resp. t−SNI, resp. unmasked) is noted gadget (resp. gadget , resp. gadget).
Single arrows () and double arrows () represent plain and masked values, respectively. Triangular gadgets either start from a masked input and
output an unmasked value, or the other way around.

RandGen ×A OrderSwitch ApproxShift Decode

JskK

vk

The joint distribution of
(vk, (vi)) is correlated to
sk (Lemma 6)

JsK JuK JvK JtK

Figure 4. Structure of Keygen (Algorithm 6). Terminology as in Fig. 3.

t-probing model if the secret key JsK is refreshed at each
signature query. We refer to Barthe et al. [8, Def. 1] for
more details about this masking security model.

5. Parameter Selection

We now discuss parameter selection for Raccoon. The
overarching goal is to ensure that Lemma 3 guarantees
a bit-security λTARGET. More precisely, individual terms in
the right side of Eq. (6) should guarantee AdvSignA /Qs ≤
2−λTARGET under well-defined, explicit assumptions.

There are four important terms in Lemma 3, Eq. (6):
A. AdvPKA is the advantage of A when distinguishing the

verification key vk from a uniformly random vector.
This is studied in Section 5.1.

B. Adv
Hybrid6
A is the advantage of A when forging a

signature for a pseudorandom vk. This is studied in
Section 5.2.

C. RQs
α (D4;D5)/Qs quantifies an upper bound on the se-

curity loss that is entailed in the (Hybrid4 → Hybrid5)
game hop. This bound can be expressed as a function
of Qs. Conversely, this means we can set a number of
queries Qs which guarantees a limited security loss.
This is studied in Section 5.3.

D. |C| quantifies the security loss in the game hop
(Hybrid1 → Hybrid2). This is studied in Section 5.4.

As illustrated by Table 2, each relevant term in Eq. (6)
of Lemma 3 depends on the parameter set in a distinct way,
which makes a global parameter selection slightly delicate.
We start by studying each term separately, in Sections 5.1

TABLE 2. CONSTRAINTS FOR PARAMETER SELECTION.
TERMINOLOGY: ↗↗ (RESP. ↗, ↘, ↘↘) INDICATES THAT INCREASING
THIS PARAMETER HAS A VERY POSITIVE (RESP. POSITIVE, NEGATIVE,

VERY NEGATIVE) IMPACT ON THE CONSIDERED SECURITY METRIC.

Name Key-recovery Forgery Rényi div. Size of C
Lemma 3 AdvPKA Adv

Hybrid6
A RQs

α /Qs 1/|C|
In Sect. 5.1 5.2 5.3 5.4
Qs ↘
q ↘ ↗
pt ↗↗ ↘↘
pw ↘↘ ↗↗
n ↗↗ ↗↗ ↘ ↗
k ↘ ↗↗ ↘
ℓ ↗↗ ↘
ω ↘ ↗↗
d ↗

to 5.4. We also briefly discuss the bounds B2 and B∞
in Section 5.5. Finally, we propose parameter sets in Sec-
tion 5.7.

5.1. Pseudorandomness of vk

We model the sum of d UMLWR samples with implicit
error rate α as being hard to distinguish from a rounded sam-
ple of identical dimensions and error rate α

√
d. Following

the security reduction of Section A.1, an adversary solving
UMLWERq,ℓ,k,χ can be used to solve the MLWERq,ℓ,k−ℓ,χ

problem, where χ is the distribution induced by the summa-
tion of d roundings. We use the lattice estimator by Albrecht
et al. [41] to estimate the hardness of this problem. As is
usual, we ignore the ring structure and model χ as a discrete
Gaussian of standard deviation pt

√
d
12 .

Let us note Hardness the function which takes as input
an MLWE instance, computes its Core-SVP hardness using
the lattice estimator [41], and applies the dimensions-for-
free optimization by Ducas [42]. The best known attacks
according to the lattice estimator are the primal uSVP attack
by by Alkim et al. [43] and the dual/hybrid attack by
by Espitau et al. [44]. The key-only bit-security λKO-KR of
Raccoon against a key-recovery attack is:

λKO-KR = Hardness(MLWERq,ℓ,k−ℓ,χ) (9)

111178

In practice, the number of MLWE samples (k − ℓ) has a
negligible influence on the hardness of Eq. (9). The concrete
evolution of AdvPKA as a function of the most influential
parameters is given in Fig. 5.

22 24 26 28 210
0

128

256

pt = ⌊q/qt⌉

B
it-

se
cu

ri
ty

(−
lo
g

A
d
vP

K A
) ℓ

7
6
5
4
3
2
1

Figure 5. Key-only bit-security of key-recovery as a function of pt =
⌊q/qt⌉ and ℓ, using Eq. (9) with q = 249 − 218 + 1, n = 512, d = 32,
k = ∞.

5.2. Forgery

The second important step is to bound Adv
Hybrid6
A , which

corresponds to forging a signature for a pseudorandom
verification key vk. While Theorem 1 provides a reduction
to the MSIS problem, we consider directly the hardness of
finding (cpoly, z,h) with small h such that:

H (A · z− pt · cpoly · t+ h,msg) = chash (10)

This choice of considering the direct forgery problem mir-
rors what is done in Dilithium [2]. The similarity doesn’t
end there: the problem underlying Eq. (10) is a variant of
SelfTargetMSIS problem [2], and many of the observations
made in [2] are applicable here. The best known ways to
solve Eq. (10) are to either break the hash function H or,
using the same transformation as in the proof of Theorem 1,
to find v ∈ Rk

q such that:

B · v = w′, where

{
w′ = B (w + pt · cpoly · t) ,
v = δ + pw · h,

(11)
and B ∈ R(k−ℓ)×k

q and δ are defined in the proof of
Theorem 1. The best known way to solve Eq. (11) is by solv-
ing the inhomogenous MSIS problem IMSISRq,k−ℓ,k,BIMSIS

,
where:

BIMSIS = pw

(
B2 +

√
kn

2

)
.

The best known strategy for solving IMSIS is outlined by
Chuengsatiansup et al. [45, §4.2]. Following their analysis,

Raccoon is secure against a direct forgery attack using BKZ
with blocksize β as long as:

BIMSIS ≤ min
ℓn≤m≤kn

(
q

(k−ℓ)n
m · δmβ

)
, (12)

where δβ =

(
(πβ)1/β · β

2πe

)1/(2(β−1))

. (13)

Following the Core-SVP methodology and the dimensions-
for-free optimization [42], the key-only bit-security of
Raccoon against forgery,

(
− log Adv

Hybrid6
A

)
, is a non-

decreasing function of the highest BKZ blocksize β for
which Eq. (12) is satisfied.

22 24 26 28 210
0

128

256

qw

B
it-

se
cu

ri
ty

(−
lo
g

A
d
vH

yb
ri
d
6

A

)

k
11
10
9
8
7
6
5

Figure 6. Key-only bit-security of forgery as a function of qw and k, using
Eq. (12) with q = 249 − 218 + 1, n = 512, d = 32, ℓ = 3, B∞ =
8. We rule out (gray area) parameter sets for which 2B∞ ≥ qw (see
Section 5.5).

Fig. 6 provides security estimates for a forgery attack
based on our analysis. We note that we only studied whether
a forgery attempt is successful with respect to the L2 bound
B2. A security analysis with respect to the L∞ bound B∞
may lead to different conclusions. Of course, since our
scheme relies on both metrics, it remains secure as long
as the IMSIS problem is secure for either the L2 or L∞
norms.

5.3. Number of queries Qs

We now bound RQs
α (D4;D5)/Qs. As a function of

Qs, this term asymptotically grows to infinity since
Rα(D4;D5) > 1. Therefore, in order to make Lemma 3
non-vacuous, we impose an upper bound on Qs. In this
section, we show that under mild heuristic assumptions, Qs

can be set to be concretely large with little to no impact on
the security of Raccoon.

We recall that D4 and D5 are the distribution of the
outputs (chash, z,h,w) of Hybrid4 and Hybrid5, respec-
tively. We note that in both hybrids, the distributions of
chash and z are identical, and h = f(chash, z,w) for a
randomized function f that is exactly the same in both
hybrids. By the data processing inequality of the Rényi
divergence (Lemma 1, Item (R1)):

Rα(D4;D5) ≤ max
{cpoly,z}

Rα(P4;P5), (14)

121179

where Pi is the distribution of w in Hybridi conditioned on
(cpoly, z) being fixed to the same values in both hybrids.

As a stepping stone, we rely on Conjecture 1, which
bounds the Rényi divergence between the individual integer
coefficients of w in Hybrid4 and Hybrid5. This numerical
conjecture is supported by experiments available from the
public repository. We expect a formal proof to be extremely
tedious but feasible to obtain.

Conjecture 1. Let q = pwqw, let u1, u2 ∈ Zq such that
|u1 − u2|2 ≤ ϵ2p2w, and Pi = ApproxShift′q→qw(ui). With
probability at least 1− pw

−(d−1), it holds that:

logRα(P1;P2) ≤
Cαϵ2

d
, (15)

for a constant C ≈ 6.

The next step is to bound a value related to ϵ in Conjec-
ture 1. Note that the inputs of ApproxShift′ in Hybrid4 and
Hybrid5 differ by an additive term z′ = cpoly · et, which
is easily characterized under mild heuristics. Recall that
the verification key can be written as pt · t = As + et.
Heuristically, each integer coefficient of et can be modeled
as the sum of 2d errors in {−pt/2, . . . , pt/2}. From there,
we derive a heuristic formula for the expected L2 norm of
et · cpoly:

E[∥et · cpoly∥22] ≈
nkdωp2t

6
(16)

In Eq. (16), the factor nk corresponds to the number of
integer coefficients, and the factor dωp2

t

6 corresponds to the
fact that each integer coefficient is the sum of 2dω errors in
{−pt/2, . . . , pt/2}.

We can now establish a bound on Qs. Let λKO =

log
(
Adv

Hybrid6
A + AdvPKA

)
. Note that Adv

Hybrid5
A ≤ 2−λKO .

Since the Rényi divergence Rα is non-decreasing in its
parameter α, in order to bound Eq. (6) it suffices to have:

2−λKO+1 ·
RQs

λKO
(P4;P5)

Qs
≤ 2−λTARGET (17)

We now estimate RλKO
(P4;P5). Combining Conjecture 1,

the multiplicativity property of the Rényi divergence (R3),
and Eq. (16), provides this approximation:

logRλKO
(P4;P5) ≲

CλKOϵ
2

d
,with ϵ2 =

nkdωp2t
6p2w

. (18)

We can combine Eq. (17) and Eq. (18), which provides the
following (heuristic) sufficient condition on Qs:

Qs
CλKOnkω

6

(
pt
pw

)2

− logQs ≤ λKO − λTARGET − 1 (19)

5.4. Challenge space

It is clear from Eq. (6) that we need |C| ≥ 2λTARGET . This
translates to the condition Eq. (20).(

n

ω

)
2ω ≥ 2λTARGET . (20)

5.5. Bounds B2 and B∞ on the norms of the hint

Setting B2
2 = d2kn

4 and B∞ = d
2 guarantees that Line 15

of Algorithm 7 returns true with probability 1. In practice,
setting B2 and B∞ lower maintains this probability to 1−
o(1) while making forgery harder.

For B∞ to be non-vacuous, we also require 2B∞ < qw.

5.6. Masking Order

Unlike other security parameters, choosing the masking
order t and the number of shares d = t+ 1 depends on the
use case and the physical characteristics of the implemen-
tation platform. As reported by Chari et al. [22] or Duc et
al. [23], there is an exponential relationship between d and
a lower bound on the number of observations required for
an attack. In practice, the number of shares depends on the
use case and needs to be determined experimentally.

The safety margin for d selection should account for
inadvertent mixing of (share) signals in the data paths of
the implementation and developments in the efficiency of
analysis (e.g., machine learning.) For some low-security
applications running in high-noise environments, even d = 2
may be sufficient. However, due to its quasilinear masking
complexity, Raccoon can have a substantial security margin
to prepare for advances in physical attacks (such as Laser
Logic State Imaging [46]). We conjecture that d = 32 is
sufficient for the foreseeable future (if implemented dili-
gently), and propose it as the default value for Raccoon. As
the software and low-end FPGA experiments (Section 6)
demonstrate, d = 32 can be supported in applications such
as HSMs, secure elements, and smart cards.

5.7. Parameter sets

Based on this section’s analysis, we propose three pa-
rameter sets in Table 3. They correspond to at least 128,
192 and 256 bits of security, respectively.

TABLE 3. PARAMETER SETS FOR RACCOON. THE SYMBOL "-"
INDICATES THAT THE VALUE IS IDENTICAL ACROSS ALL PARAMETER

SETS. THE SIZES |vk| AND |sig| ARE PROVIDED IN BYTES.

Name Raccoon-128 Raccoon-192 Raccoon-256

λTARGET 128 192 256
Qs 248 248 249

d 32 - -
log q 49† - -
log pt 10 6 7
log pw 43 40 42

n 512 - -
k 8 11 14
ℓ 3 5 6
ω 19 31 44
B2

2 214 214 215

B∞ 8 - -
|vk| 19 968 30 272 37 632
|sig| 12 000 19 232 23 328

†Across all parameter sets, we set q = (225 − 218 +1) · (224 − 218 +1).
See Section 6 for a detailed discussion.

131180

6. Implementation Characteristics

Raccoon has been designed not to require masked sym-
metric cryptography primitives. Unlike Dilithium, a stan-
dard, unmasked version of SHA3/SHAKE can be used
in Raccoon without negatively affecting the side-channel
security of the construction.

6.1. Portable C Implementation: CRACCOON

This reference implementation3 is written in ANSI C for
portability. The purpose of CRACCOON is to evaluate the
relative performance characteristics of Raccoon. Note that
for actual security one would require d-probing secure ran-
dom number generators. Simple non-cryptographic masking
generators are used in CRACCOON for testing purposes.

Table 4 summarizes the performance characteristics of
the CRACCOON in relation to an unmasked C reference
implementation of Dilithium.

TABLE 4. LATENCY (MILLISECONDS AND MILLIONS OF CYCLES) OF C
REFERENCE CODE OF DILITHIUM, FALCON, AND MASKED RACCOON.

Keygen() Sign() Verify()

Algorithm d ms Mc ms Mc ms Mc

Raccoon-128 2 0.624 1.308 0.731 1.532 0.559 1.171
Raccoon-128 4 0.970 2.034 1.020 2.139 0.564 1.182
Raccoon-128 8 1.718 3.600 1.673 3.506 0.583 1.222
Raccoon-128 16 3.426 7.181 3.098 6.494 0.584 1.224
Raccoon-128 32 7.127 14.93 6.201 12.99 0.584 1.224
Raccoon-192 32 11.08 23.23 10.30 21.60 1.187 2.487
Raccoon-256 32 14.96 31.37 13.78 28.89 1.752 3.672
Dilithium2 1 0.098 0.205 0.382 0.801 0.109 0.229
Dilithium3 1 0.179 0.375 0.416 0.872 0.174 0.365
Dilithium5 1 0.269 0.564 1.343 2.814 0.283 0.593
Falcon-512 1 15.86 33.25 4.578 9.596 0.043 0.090
Falcon-1024 1 44.03 92.31 10.00 20.97 0.089 0.186

Notes: AMD Ryzen 5 PRO 3500U, gcc 11.3.0, flags -O3. Dilithium v3.1
and Falcon v1.2 implementations are “clean” versions from https://github.
com/PQClean/PQClean. The benchmarked Falcon code uses floating point
emulation, making key generation and signing several times slower, but
also more likely to be resistant to timing attacks (“constant-time”.)

6.2. Experimental Hardware Validation: t-PANDA

t-PANDA is a further application of an architecture that
has been used in a commercial side-channel secure (ASIC)
PQC unit. Hence t-PANDA is also able to run first-order
masked Dilithium (and Kyber); See Table 5.

On a XC7A100T (Xilinx Artix 7) FPGA target, this
size-optimized design (including the simplified control Core,
Keccak unit, lattice coprocessor, masking random number
generator, and communication peripherals) was 10,638 Slice
LUTs (16.78%), 4,140 Slice registers / Flip Flops, (3.26%)
and 3 DSPs. The design was rated for 78.3 MHz.

One may compare these results with the Dilithium im-
plementation in [47], which is faster, but also twice the size

3. CRACCOON artefact: https://github.com/masksign/sp23-craccoon

of our implementation on the same Artix 7 target. However,
this architecture lacks the features to achieve side-channel
security. The side-channel secure Dilithium implementation
reported in [24] requires almost three times more (6.757M /
0.19) cycles for a successful signature with Level 3 / d = 2
parameters.

TABLE 5. FPGA / t-PANDA CYCLE COUNTS AT VARIOUS
SIDE-CHANNEL SECURITY LEVELS. THE DEVICE ALSO SUPPORTS

TWO-SHARE DILITHIUM.

Algorithm Shares Keygen() Sign() Verify()

Raccoon-128 d = 2 1,366,000 2,402,000 1,438,000
Raccoon-128 d = 4 2,945,000 3,714,230 1,433,034
Raccoon-128 d = 8 6,100,000 6,345,000 1,389,000
Raccoon-128 d = 16 12,413,000 11,605,000 1,389,000
Raccoon-128 d = 32 25,073,000 22,160,000 1,393,000

Dilithium2 d = 1 572,000 3,102,000 510,000
Dilithium3 d = 1 886,000 5,010,000 725,000
Dilithium5 d = 1 1,399,000 5,889,000 1,174,000
Dilithium2 d = 2 1,633,000 7,866,000 510,000
Dilithium3 d = 2 2,538,000 12,326,000 725,000
Dilithium5 d = 2 3,389,000 13,489,000 1,174,000

6.3. Leakage Assessment

We performed a leakage assessment on the FPGA im-
plementation, following the general test procedure of ISO
17825:2022 [48]. This “TVLA” type random-vs-fixed test
was adapted to detect leakage from JsK in the signature
generation function.

Power signal was acquired from connectors on the
CW305 board [49, Sect. C.3] with a PicoScope 2208B
oscilloscope. The test was run with a 32ns (31.25 MHz)
clock cycle. Power samples were gathered at the same rate.

The ISO 17825 testing procedure is generally limited to
first-order leakage, and hence a d = 2 version of Raccoon
was used. At N = 200, 000 traces, the maximum t-value
was 4.89 (Fig. 7). No leakage was detected.

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M

-6

-4

-2

0

+2

+4

+6

Figure 7. No secret key leakage was detected in a 200, 000-trace leakage
assessment of Raccoon-128 (d = 2) signature function. Each trace had
2.59 × 106 time points (one for each cycle – horizontal axis); a total of
518 billion measurements. The vertical axis has the t-statistic, which was
bound by |t| < 4.89. This is well under the critical value (C = 6.94).

141181

7. Conclusion
In this paper, we propose the first lattice-based signature

scheme that can be masked at high order with a quasilinear
overhead. We achieved that by proposing new algorithmic
techniques, as well as new proof techniques. We prove the
security of our design under variants of standard lattice
assumptions (MLWE and MSIS) and in the well-known SNI
proof framework. Finally, we implemented our signature
scheme and measure efficiency and security metrics; both
the performance and concrete leakage profile are consistent
with our theoretical analyses.

Since our design is rather simple and generic, we hope
to see more efficient instantiations and more applications of
it in the future.

References

[1] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the third round
of the NIST post-quantum cryptography standardization process,”
NISTIR 8413-upd1, National Institute of Standards and Technology,
Interagency or Internal Report, September 2022. [Online]. Available:
https://csrc.nist.gov/publications/detail/nistir/8413/final

[2] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe,
G. Seiler, D. Stehlé, and S. Bai, “CRYSTALS-DILITHIUM,” Na-
tional Institute of Standards and Technology, Tech. Rep., 2020,
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[3] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyuba-
shevsky, T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and
Z. Zhang, “FALCON,” National Institute of Standards and Tech-
nology, Tech. Rep., 2020, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[4] E. Karabulut and A. Aysu, “FALCON down: Breaking FALCON
post-quantum signature scheme through side-channel attacks,” in
58th ACM/IEEE Design Automation Conference, DAC 2021, San
Francisco, CA, USA, December 5-9, 2021. IEEE, 2021, pp. 691–
696. [Online]. Available: https://doi.org/10.1109/DAC18074.2021.
9586131

[5] M. Guerreau, A. Martinelli, T. Ricosset, and M. Rossi, “The hidden
parallelepiped is back again: Power analysis attacks on falcon,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2022, no. 3, p. 141–164, Jun. 2022. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9697

[6] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on Dilithium - A
NIST PQC candidate,” Cryptology ePrint Archive, Report 2018/821,
2018, https://eprint.iacr.org/2018/821.

[7] S. Marzougui, V. Ulitzsch, M. Tibouchi, and J.-P. Seifert, “Profiling
side-channel attacks on Dilithium: A small bit-fiddling leak breaks
it all,” Cryptology ePrint Archive, Report 2022/106, 2022, https://
eprint.iacr.org/2022/106.

[8] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi,
and M. Tibouchi, “Masking the GLP lattice-based signature scheme
at any order,” in EUROCRYPT 2018, Part II, ser. LNCS, J. B. Nielsen
and V. Rijmen, Eds., vol. 10821. Springer, Heidelberg, Apr. / May
2018, pp. 354–384.

[9] F. Gérard and M. Rossi, “An efficient and provable masked
implementation of qtesla,” in Smart Card Research and Advanced
Applications - 18th International Conference, CARDIS 2019, Prague,
Czech Republic, November 11-13, 2019, Revised Selected Papers,
ser. Lecture Notes in Computer Science, S. Belaïd and T. Güneysu,
Eds., vol. 11833. Springer, 2019, pp. 74–91. [Online]. Available:
https://doi.org/10.1007/978-3-030-42068-0_5

[10] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi, and M. Ti-
bouchi, “GALACTICS: Gaussian sampling for lattice-based constant-
time implementation of cryptographic signatures, revisited,” in ACM
CCS 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM
Press, Nov. 2019, pp. 2147–2164.

[11] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical lattice-
based cryptography: A signature scheme for embedded systems,” in
CHES 2012, ser. LNCS, E. Prouff and P. Schaumont, Eds., vol. 7428.
Springer, Heidelberg, Sep. 2012, pp. 530–547.

[12] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann,
E. Eaton, G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E. Ricardini,
and G. Zanon, “qTESLA,” National Institute of Standards and Tech-
nology, Tech. Rep., 2019, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[13] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
Dilithium - efficient implementation and side-channel evaluation,” in
ACNS 19, ser. LNCS, R. H. Deng, V. Gauthier-Umaña, M. Ochoa,
and M. Yung, Eds., vol. 11464. Springer, Heidelberg, Jun. 2019, pp.
344–362.

[14] T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Ti-
bouchi, A. Wallet, and Y. Yu, “Mitaka: A simpler, parallelizable,
maskable variant of falcon,” in EUROCRYPT 2022, Part III, ser.
LNCS, O. Dunkelman and S. Dziembowski, Eds., vol. 13277.
Springer, Heidelberg, May / Jun. 2022, pp. 222–253.

[15] V. Lyubashevsky, “Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures,” in ASIACRYPT 2009, ser. LNCS,
M. Matsui, Ed., vol. 5912. Springer, Heidelberg, Dec. 2009, pp.
598–616.

[16] ——, “Lattice signatures without trapdoors,” in EUROCRYPT 2012,
ser. LNCS, D. Pointcheval and T. Johansson, Eds., vol. 7237.
Springer, Heidelberg, Apr. 2012, pp. 738–755.

[17] S. Bai and S. D. Galbraith, “An improved compression technique
for signatures based on learning with errors,” in CT-RSA 2014, ser.
LNCS, J. Benaloh, Ed., vol. 8366. Springer, Heidelberg, Feb. 2014,
pp. 28–47.

[18] J.-S. Coron, J. Großschädl, and P. K. Vadnala, “Secure conversion be-
tween Boolean and arithmetic masking of any order,” in CHES 2014,
ser. LNCS, L. Batina and M. Robshaw, Eds., vol. 8731. Springer,
Heidelberg, Sep. 2014, pp. 188–205.

[19] M. Hutter and M. Tunstall, “Constant-time higher-order Boolean-to-
arithmetic masking,” Journal of Cryptographic Engineering, vol. 9,
no. 2, pp. 173–184, Jun. 2019.

[20] J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala, “Conver-
sion from arithmetic to Boolean masking with logarithmic complex-
ity,” in FSE 2015, ser. LNCS, G. Leander, Ed., vol. 9054. Springer,
Heidelberg, Mar. 2015, pp. 130–149.

[21] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing
hardware against probing attacks,” in CRYPTO 2003, ser. LNCS,
D. Boneh, Ed., vol. 2729. Springer, Heidelberg, Aug. 2003, pp.
463–481.

[22] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in CRYPTO’99, ser.
LNCS, M. J. Wiener, Ed., vol. 1666. Springer, Heidelberg, Aug.
1999, pp. 398–412.

[23] A. Duc, S. Faust, and F.-X. Standaert, “Making masking security
proofs concrete (or how to evaluate the security of any leaking
device), extended version,” Journal of Cryptology, vol. 32, no. 4,
pp. 1263–1297, Oct. 2019.

[24] M. Azouaoui, O. Bronchain, G. Cassiers, C. Hoffmann,
Y. Kuzovkova, J. Renes, M. Schönauer, T. Schneider, F.-X. Standaert,
and C. van Vredendaal, “Leveling Dilithium against leakage:
Revisited sensitivity analysis and improved implementations,”
Cryptology ePrint Archive, Paper 2022/1406, 2022, fourth PQC
Standardization Conference, NIST (Virtual) 29 Nov – 1 Dec 2022.
[Online]. Available: https://eprint.iacr.org/2022/1406

151182

[25] E. Kiltz, V. Lyubashevsky, and C. Schaffner, “A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model,” in
EUROCRYPT 2018, Part III, ser. LNCS, J. B. Nielsen and V. Rijmen,
Eds., vol. 10822. Springer, Heidelberg, Apr. / May 2018, pp. 552–
586.

[26] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019
(Revision of IEEE Std 754-2008), p. 84, June 2019.

[27] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast cryptographic
primitives and circular-secure encryption based on hard learning
problems,” in CRYPTO 2009, ser. LNCS, S. Halevi, Ed., vol. 5677.
Springer, Heidelberg, Aug. 2009, pp. 595–618.

[28] A. Rényi, “On measures of entropy and information,” in Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Contributions to the Theory of
Statistics. Berkeley, Calif.: University of California Press, 1961, pp.
547–561. [Online]. Available: http://projecteuclid.org/euclid.bsmsp/
1200512181

[29] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld, “Im-
proved security proofs in lattice-based cryptography: Using the Rényi
divergence rather than the statistical distance,” in ASIACRYPT 2015,
Part I, ser. LNCS, T. Iwata and J. H. Cheon, Eds., vol. 9452.
Springer, Heidelberg, Nov. / Dec. 2015, pp. 3–24.

[30] T. Prest, “Sharper bounds in lattice-based cryptography using the
Rényi divergence,” in ASIACRYPT 2017, Part I, ser. LNCS, T. Takagi
and T. Peyrin, Eds., vol. 10624. Springer, Heidelberg, Dec. 2017,
pp. 347–374.

[31] I. Csiszár, “Eine informationstheoretische ungleichung und ihre an-
wendung auf den beweis der ergodizitat von markoffschen ketten,”
Magyar. Tud. Akad. Mat. Kutató Int. Közl, vol. 8, pp. 85–108, 1963.

[32] T. van Erven and P. Harremoës, “Rényi divergence and kullback-
leibler divergence,” IEEE Trans. Information Theory, vol. 60, no. 7,
pp. 3797–3820, 2014. [Online]. Available: http://dx.doi.org/10.1109/
TIT.2014.2320500

[33] A. Duc, S. Dziembowski, and S. Faust, “Unifying leakage models:
From probing attacks to noisy leakage,” in EUROCRYPT 2014, ser.
LNCS, P. Q. Nguyen and E. Oswald, Eds., vol. 8441. Springer,
Heidelberg, May 2014, pp. 423–440.

[34] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire,
P.-Y. Strub, and R. Zucchini, “Strong non-interference and type-
directed higher-order masking,” in ACM CCS 2016, E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM
Press, Oct. 2016, pp. 116–129.

[35] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun, “Horizon-
tal side-channel attacks and countermeasures on the ISW mask-
ing scheme,” in CHES 2016, ser. LNCS, B. Gierlichs and A. Y.
Poschmann, Eds., vol. 9813. Springer, Heidelberg, Aug. 2016, pp.
23–39.

[36] A. Mathieu-Mahias, “Securisation of implementations of
cryptographic algorithms in the context of embedded systems.
(sécurisation des implémentations d’algorithmes cryptographiques
pour les systèmes embarqués),” Ph.D. dissertation, Uni-
versity of Paris-Saclay, France, 2021. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-03537322

[37] D. Goudarzi, T. Prest, M. Rivain, and D. Vergnaud, “Probing security
through input-output separation and revisited quasilinear masking,”
Cryptology ePrint Archive, Report 2022/045, 2022, https://eprint.iacr.
org/2022/045.

[38] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lep-
oint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehlé,
“CRYSTALS-KYBER,” National Institute of Standards and Tech-
nology, Tech. Rep., 2020, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[39] J.-S. Coron, F. Gérard, S. Montoya, and R. Zeitoun, “High-
order table-based conversion algorithms and masking lattice-based
encryption,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2022, no. 2, p. 1–40, Feb. 2022. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9479

[40] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann,
E. Eaton, G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E. Ricardini,
and G. Zanon, “qTESLA,” National Institute of Standards and Tech-
nology, Tech. Rep., 2017, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[41] M. R. Albrecht, R. Player, and S. Scott, “On the concrete
hardness of learning with errors,” Journal of Mathematical
Cryptology, vol. 9, no. 3, pp. 169–203, 2015. [Online]. Available:
https://doi.org/10.1515/jmc-2015-0016

[42] L. Ducas, “Shortest vector from lattice sieving: A few dimensions
for free,” in EUROCRYPT 2018, Part I, ser. LNCS, J. B. Nielsen and
V. Rijmen, Eds., vol. 10820. Springer, Heidelberg, Apr. / May 2018,
pp. 125–145.

[43] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange - A new hope,” in USENIX Security 2016, T. Holz and
S. Savage, Eds. USENIX Association, Aug. 2016, pp. 327–343.

[44] T. Espitau, A. Joux, and N. Kharchenko, “On a dual/hybrid approach
to small secret LWE - A dual/enumeration technique for learning
with errors and application to security estimates of FHE schemes,”
in INDOCRYPT 2020, ser. LNCS, K. Bhargavan, E. Oswald, and
M. Prabhakaran, Eds., vol. 12578. Springer, Heidelberg, Dec. 2020,
pp. 440–462.

[45] C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa,
“ModFalcon: Compact signatures based on module-NTRU lattices,”
in ASIACCS 20, H.-M. Sun, S.-P. Shieh, G. Gu, and G. Ateniese, Eds.
ACM Press, Oct. 2020, pp. 853–866.

[46] T. Krachenfels, F. Ganji, A. Moradi, S. Tajik, and J.-P. Seifert,
“Real-world snapshots vs. theory: Questioning the t-probing security
model,” in 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2021, pp. 1955–1971.

[47] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing
Dilithium on reconfigurable hardware,” in Smart Card Research and
Advanced Applications - 20th International Conference, CARDIS
2021, Lübeck, Germany, November 11-12, 2021, Revised Selected
Papers, ser. Lecture Notes in Computer Science, V. Grosso and
T. Pöppelmann, Eds., vol. 13173. Springer, 2021, pp. 210–230.

[48] ISO, “Information technology – security techniques – testing methods
for the mitigation of non-invasive attack classes against cryptographic
modules,” International Organization for Standardization, Draft Inter-
national Standard ISO/IEC DIS 17825:2022(E), 2023.

[49] ——, “IT security techniques – test tool requirements and test
tool calibration methods for use in testing non-invasive attack
mitigation techniques in cryptographic modules – part 2: Test
calibration methods and apparatus,” International Organization for
Standardization, Standard ISO/IEC 20085-2:2020(E), 2020. [Online].
Available: https://www.iso.org/standard/70082.html

Appendix A.
Omitted Proofs

A.1. Reduction from MLWE to UMLWE

Lemma 5. For any integers ℓ, k, UMLWERq,ℓ,k+ℓ,χ is at
least as hard as MLWERq,ℓ,k,χ.

Proof. We give a transformation that maps any (A,b) ∈
Rk×ℓ

q to (A′,b′) ∈ R(k+ℓ)×ℓ
q . Where if (A,b) is

an MLWERq,ℓ,k,χ instance then (A′,b′) will be an
UMLWERq,ℓ,k+ℓ,χ instance; and if (A,b) is uniform then
(A′,b′) will be uniform.
For an instance (A;b) we sample A′

1 ← Rℓ×ℓ
q , b′

1 ← Rℓ
q,

and set
A′ =

[
A′

1

AA′
1

]
;b′ =

[
b′
1

b−Ab′
1

]
.

161183

It is clear that if (A,b) is uniform then (A′,b′) is
uniform. If b = As+ e with s, e← χℓ × χk, then we can
fix s′ = A′

1
−1

(b1+s) (we can assume that A′
1 is invertible

as the reduction can simply sample another matrix if it is

not true) and e′ =

[
−s
e

]
. It is then easily checked that

A′s′ + e′ = b′, with s′ ∈ Rℓ
q and e′ ← χk+ℓ.

A.2. Proof of Lemma 2

Proof. On one hand:

y =
∑
i∈[d]

⌊
xi + δ

2k

⌋
≤

∑
i∈[d]

xi + δ

2k

≤

∑
i∈[d]

xi

2k

+

⌈
dδ

2k

⌉
≤ y∗ + 1 +

⌈
dδ

2k

⌉
(21)

On the other hand:

y ≥
∑
i∈[d]

⌈
xi + δ

2k

⌉
− d

≥

∑
i∈[d]

xi + δ

2k

− d ≥ y∗ +

⌊
dδ

2k

⌋
− d (22)

Setting δ = (d−1)2k−1

d in Eq. (21) and Eq. (22) gives Eq. (3).

A.3. Proof of Theorem 1

Proof. Let M be the random matrix given in the MSIS
instance. W.l.o.g we assume M is of the form

[
M′ | −I | v

]
,

with M′ ∈ R(k−ℓ)×ℓ
q . We sample (A1, t1) ← Rℓ×ℓ

q ×Rl
q,

and set:

A :=

[
A1

A2

]
=

[
A1

M′ ·A1

]
, t :=

[
t1

v −M′ · t1

]
.

Note that both A and t are uniform, and give them to the
adversary A. When A outputs a forgery (cpoly, z,h), we can
assume w.l.o.g that H(⌊A · z− pt · cpoly · t⌋q→qw

+h,msg)
was queried by A. When receiving a forgery we rewind the
adversary to obtain a new forgery (cpoly, z

′,h′) such that

⌊A · z− pt · cpoly · t⌋q→qw
+ h

= ⌊A · z′ − pt · cpoly
′ · t⌋

q→qw
+ h′

Which can be rewritten as:

A · z− pt · cpoly · t+ δ + pw · h
= A · z′ − pt · cpoly

′ · t+ δ′ + pw · h′,

where δ and δ′ are the errors entailed by the modulus
shiftings ⌊·⌋q→qw

. Which is equivalent to

A·z̃+ẽ = pt·c̃poly·t, where

z̃ = z− z′,

ẽ = δ + pw · h− δ′ − pw · h′,

c̃poly = cpoly − cpoly
′.

If we note B :=
[
A2 ·A−1

1 | −I
]
, then BA = 0 and:

B · ẽ = pt · c̃poly ·B · t,

Since M =
[
B | v

]
and by definition of t, this implies:

M ·
[

ẽ
pt · cpoly

]
= 0,

which concludes the proof.

A.4. Masking security of the key generation algo-
rithm

In this section, we introduce all the technical details
for proving the t-probing security of Raccoon Keygen
algorithm.

Note that we will ignore the shift δ used in the
ApproxShiftq→qt algorithm as this makes proofs a lot more
readable, its purpose is to add a static shift to the key so
that its error is centered on 0, as such it does not affect the
masking security.

We first introduce a lemma highlighting the technical
issue of the correlation between an intermediate value and
the secret through a MLWRE equation.

Lemma 6. For JvK the output of OrderSwitch in Fig. 4, let
t be the output of Decode ◦ ApproxShiftq→qt in Fig. 4, we
have:

t = (v≫ k)−

(

2t∑
i=0

(vi mod 2k)

)
︸ ︷︷ ︸

∈[0,2t(2k−1)]

≫ k

Proof. By definition of ApproxShiftq→qt , t =

2t∑
0
(vi ≫ k).

We can also rewrite vi as:

vi = (vi ≫ k) · 2k + (vi mod 2k)

By summing, we obtain:

v =

2t∑
0

vi =

(
2t∑
0

vi ≫ k

)
· 2k +

2t∑
0

(
vi mod 2k

)
Note that:(

2t∑
0

(vi mod 2k)

)
mod 2k =

(
2t∑
0

vi

)
mod 2k = 0

From which we get the result.

Lemma 6 underlines a particular link between the shares
of an intermediate value v and the secret key s via a

171184

MLWRE equation involving the public key. We can rewrite
the equation of Lemma 6 as

t︸︷︷︸
∈vk

= ⌊As⌋q→qw
−

(
2t∑
i=0

(vi mod 2k)

)
≫ k︸ ︷︷ ︸

Extra error

.

We see that the first term corresponds to the rounding and
the second term adds some extra error. The knowledge of
a subset of shares vi implies a reduction of the error and a
potential easier MLWRE problem. However, we will prove
in the sequel (Theorem 6) that the parameters are set up
such that the MLWRE instance stays hard even if the extra
error is a sum of t terms. In other words, even if the attacker
has the exact value of t shares of v, the MLWRE instance
stays hard. Let us first introduce a masking result.

Theorem 5. Assume that an attacker has access to nprob ≤
t observations on the whole key generation scheme (Algo-
rithm 6). All these observations can be perfectly simulated
with the public information (vk and the parameters) and at
most t shares of JvK.

Proof. The overall gadget decomposition of the algorithm
is in Fig. 4.

This proof is not a usual composition proof because the
joint distribution of v and vk is correlated to the secret
(see Lemma 6).

We will then divide the proof in two parts: simulation
before OrderSwitchd→d′ and one simulation after. First of
all, as in hypothesis, let us assume that an attacker has access
to nprob ≤ t observations on the whole key generation
scheme. Let us consider the following distribution of the
attacker’s nprob observations: nprob

1 on Decode, nprob
2 on

ApproxShiftq→qw , nprob
3 on OrderSwitchd→d′ , nprob

4 on the
multiplication with A, nprob

5 on the randomness generation.
Some other observations can be made on the computation of
the matrix A, but we do not fix a notation for this number.
Finally, we have

∑5
i=1 n

prob
i ≤ nprob.

Similarly to the proof of Theorem 3, we can prove that
all the observations strictly after OrderSwitchd→d′ can be
perfectly simulated with at most nprob

1 + nprob
2 ≤ nprob

shares of JvK.

Next, we continue the proof. Due to the t-SNI prop-
erty of OrderSwitchd→d′ , all the observations performed
strictly after OrderSwitchd→d′ are not propagated but due
to Lemma 6 they are not discarded. Due to the t-SNI
property of OrderSwitchd→d′ and the t-NI property of
the multiplication with A, all the observations performed
strictly after the randomness generation and before the end
of ApproxShiftq→qw can be perfectly simulated with at most
nprob
3 +nprob

4 ≤ nprob shares of JsK. Finally, the left random-
ness generation gadget is also t-NI secure and does require
any input; thus, these observations are not propagated.

Let us summarize:

• all the observations performed during the key gen-
eration before the end of ApproxShiftq→qw can be
perfectly simulated from public parameters.

• all the observations performed during the key gener-
ation strictly after OrderSwitchd→d′ can be perfectly
simulated with at most nprob

1 + nprob
2 ≤ nprob ≤ t

shares of JvK and public parameters.

Theorem 6. Under MLWRE, an adversary with at most d
shares of JvK cannot distinguish vk from uniform.

Proof. As per Lemma 6, the output (A, t) of Keygen is
such that

t = v≫ k −

(
2t∑
i=0

(vi mod 2k)

)
≫ k.

Where JvK is a fresh masking of As of order 2t. Hence v =
As, and given any subset I ⊂ [2t] of size at most d, after
fixing the value of (vi)i∈I , the distribution of the remaining
(vi)i/∈I is uniform. By decomposing

∑
i∈I(vi mod 2k) as∑

i∈I

(vi mod 2k) = a · 2k + b

we can write(
2t∑
i=0

(vi mod 2k)

)
≫ k = a+

(
b+

∑
i/∈I

(vi mod 2k)

)
≫ k

= a+ e

where e follows a discrete Irwin–Hall distribution, denoted
as χ, of standard deviation pt

√
t/12 and center 0.

Let us rewrite the MLWRE instance:

t+ a = ⌊As⌋q→qw
− e.

By Definition 2 the vector t is indistinguishable from uni-
form over Rqt under the MLWRERq,ℓ,k,χ which is at least
as hard as MLWERq,ℓ,k−ℓ,χ.

181185

